RU2008120587A - METHOD FOR BUILDING DYNAMIC CHARACTERISTICS OF FUNCTION CALLS - Google Patents
METHOD FOR BUILDING DYNAMIC CHARACTERISTICS OF FUNCTION CALLS Download PDFInfo
- Publication number
- RU2008120587A RU2008120587A RU2008120587/09A RU2008120587A RU2008120587A RU 2008120587 A RU2008120587 A RU 2008120587A RU 2008120587/09 A RU2008120587/09 A RU 2008120587/09A RU 2008120587 A RU2008120587 A RU 2008120587A RU 2008120587 A RU2008120587 A RU 2008120587A
- Authority
- RU
- Russia
- Prior art keywords
- graphs
- dynamic
- function calls
- period
- function call
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for program control, e.g. control units
- G06F9/06—Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for program control, e.g. control units
- G06F9/06—Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
- G06F9/30—Arrangements for executing machine instructions, e.g. instruction decode
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Software Systems (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Data Mining & Analysis (AREA)
- Databases & Information Systems (AREA)
- Mathematical Physics (AREA)
- Debugging And Monitoring (AREA)
- Stored Programmes (AREA)
Abstract
1. Способ построения динамических графов вызовов функций, отличающийся ! тем, что разбивают весь период наблюдения за работой программы на периоды выбора образцов, при этом для каждого периода выбора образцов определяют страницы памяти с кодом программы, которые были доступны приложению, определяют части кода программы, которые были доступны, на основании информации о доступных страницах памяти с кодом программы, определяют набор функций, которые расположены в доступных частях кода программы, строят возможные динамические графы вызовов функций, определяют правильные динамические графы вызовов функций, при этом удаляют ошибочные динамические графы вызовов функций из набора возможных динамических графов вызовов функций на основании анализа исходного кода, строят возможные динамические графы вызовов функций для всего периода наблюдения, при этом соединяют правильные динамические графы вызовов функций для периодов выбора образцов, определяют возможные динамические графы вызовов функций для всего периода наблюдения, при этом удаляют ошибочные динамические графы вызовов функций для всего периода наблюдения из набора возможных динамические графов вызовов функций для всего периода наблюдения на основании анализа исходного кода. ! 2. Способ по п.1, отличающийся тем, что объектом анализа является бинарный код. ! 3. Способ по п.1, отличающийся тем, что определяют страницы памяти с кодом программы, которые были доступны приложению за определенный период времени, при этом используют возможности операционной системы. ! 4. Способ по п.1, отличающийся тем, что строят динамические графы вызовов функций, при этом применя1. The way of constructing dynamic graphs of function calls is different! the fact that the entire period of observation of the program operation is divided into periods of sample selection, while for each period of sample selection, the memory pages with the program code that were available to the application are determined, the parts of the program code that were available are determined based on information about the available memory pages with the program code, define a set of functions that are located in accessible parts of the program code, build possible dynamic function call graphs, determine correct dynamic function call graphs, while removing erroneous dynamic function call graphs from the set of possible dynamic function call graphs based on the analysis of the source code , build possible dynamic function call graphs for the entire observation period, while connecting the correct dynamic function call graphs for sample selection periods, determine possible dynamic function call graphs for the entire observation period, while removing erroneous dynamic graphs function calls for the entire observation period from a set of possible dynamic graphs of function calls for the entire observation period based on the analysis of the source code. ! 2. The method according to claim 1, characterized in that the object of analysis is a binary code. ! 3. The method according to claim 1, characterized in that the pages of memory with the program code that were available to the application for a certain period of time are determined, while using the capabilities of the operating system. ! 4. The method according to claim 1, characterized in that they build dynamic graphs of function calls, while applying
Claims (7)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2008120587/09A RU2008120587A (en) | 2008-05-26 | 2008-05-26 | METHOD FOR BUILDING DYNAMIC CHARACTERISTICS OF FUNCTION CALLS |
KR1020090036569A KR101577771B1 (en) | 2008-05-26 | 2009-04-27 | Method for constructing dynamic call graph of applications |
US12/471,506 US8990792B2 (en) | 2008-05-26 | 2009-05-26 | Method for constructing dynamic call graph of application |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2008120587/09A RU2008120587A (en) | 2008-05-26 | 2008-05-26 | METHOD FOR BUILDING DYNAMIC CHARACTERISTICS OF FUNCTION CALLS |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2008120587A true RU2008120587A (en) | 2009-12-10 |
Family
ID=41488826
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2008120587/09A RU2008120587A (en) | 2008-05-26 | 2008-05-26 | METHOD FOR BUILDING DYNAMIC CHARACTERISTICS OF FUNCTION CALLS |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR101577771B1 (en) |
RU (1) | RU2008120587A (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101886203B1 (en) * | 2016-07-19 | 2018-09-06 | 주식회사 스패로우 | Apparatus and method for analyzing programs |
KR102397340B1 (en) * | 2020-07-30 | 2022-05-12 | 경북대학교 산학협력단 | Microcontroller Update Managemnet Method and Management System |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7509632B2 (en) | 2005-03-24 | 2009-03-24 | International Business Machines Corporation | Method and apparatus for analyzing call history data derived from execution of a computer program |
US7836433B2 (en) | 2006-01-26 | 2010-11-16 | Microsoft Corporation | Analyzing binary code |
-
2008
- 2008-05-26 RU RU2008120587/09A patent/RU2008120587A/en unknown
-
2009
- 2009-04-27 KR KR1020090036569A patent/KR101577771B1/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
KR101577771B1 (en) | 2015-12-28 |
KR20090122879A (en) | 2009-12-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019083737A8 (en) | System and method for analyzing binary code for malware classification using artificial neural network techniques | |
DE60313215D1 (en) | METHOD AND SYSTEM FOR IMPLEMENTING CALCULATION OPERATIONS AND DEVICE | |
CN112181758B (en) | Fault root cause positioning method based on network topology and real-time alarm | |
ATE480772T1 (en) | METHOD FOR ACOUSTICALLY OUTPUTING INFORMATION IN AN ANALYSIS SYSTEM | |
CN109065046A (en) | Method, apparatus, electronic equipment and the computer readable storage medium that voice wakes up | |
BR112014023865A8 (en) | method for identifying a candidate audio segment from a telephone call, a candidate data set and a candidate audio segment, method for creating a ternary bitmap from a data set and an audio segment, method for creating a compact representation weighted from a dataset | |
RU2014104582A (en) | RUNNING SYSTEM | |
CN104504084A (en) | Method and device for determining user retention rate | |
CN103915092A (en) | Voice identification method and device | |
JP6904043B2 (en) | Input discovery for unknown program binaries | |
JP2019512126A (en) | Method and system for training a machine learning system | |
CN111414619B (en) | Data security detection method, device, equipment and readable storage medium | |
RU2008120587A (en) | METHOD FOR BUILDING DYNAMIC CHARACTERISTICS OF FUNCTION CALLS | |
ATE519145T1 (en) | METHOD FOR PARAMETIZING EQUIPMENT | |
US20140108323A1 (en) | Compressively-accelerated read mapping | |
ATE466442T1 (en) | SYSTEM AND METHOD FOR PROCESSING INFORMATION ABOUT THE PRESENCE STATE WITH IMPROVED RELIABILITY | |
CN103942140A (en) | Automatic testing program conversion method | |
CN103885754A (en) | Automatic data model generating system and automatic data model generating method | |
CN105701004B (en) | Application testing method and device | |
ATE387670T1 (en) | DEFINING NODES IN A DEVICE MANAGEMENT SYSTEM | |
CN113919971A (en) | Sewage treatment sample data management method and system based on block chain and big data | |
CN109408235B (en) | Data processing method and device, computing equipment and storage medium | |
CN103955449A (en) | Target sample positioning method and device | |
CN106557368B (en) | Spark program optimization method and device | |
CN112860527A (en) | Fault monitoring method and device of application server |