RU2007124240A - METHOD FOR SIMULTANEOUS DETERMINATION OF PARTICLE DISTRIBUTION BY MASS IN A DISPERSED SAMPLE AND ELEMENT CONCENTRATION IN A PARTICLE OF A SAMPLE - Google Patents

METHOD FOR SIMULTANEOUS DETERMINATION OF PARTICLE DISTRIBUTION BY MASS IN A DISPERSED SAMPLE AND ELEMENT CONCENTRATION IN A PARTICLE OF A SAMPLE Download PDF

Info

Publication number
RU2007124240A
RU2007124240A RU2007124240/28A RU2007124240A RU2007124240A RU 2007124240 A RU2007124240 A RU 2007124240A RU 2007124240/28 A RU2007124240/28 A RU 2007124240/28A RU 2007124240 A RU2007124240 A RU 2007124240A RU 2007124240 A RU2007124240 A RU 2007124240A
Authority
RU
Russia
Prior art keywords
sample
mass
particle
concentration
plasma
Prior art date
Application number
RU2007124240/28A
Other languages
Russian (ru)
Other versions
RU2357233C2 (en
Inventor
кина Светлана Борисовна За (RU)
Светлана Борисовна Заякина
Владимир Александрович Лабусов (RU)
Владимир Александрович Лабусов
Геннадий Никитович Аношин (RU)
Геннадий Никитович Аношин
Анатолий Николаевич Путьмаков (RU)
Анатолий Николаевич Путьмаков
Original Assignee
ОБЩЕСТВО С ОГРАНИЧЕННОЙ ОТВЕТСТВЕННОСТЬЮ "ВМК-Оптоэлектроника" (RU)
Общество С Ограниченной Ответственностью "Вмк-Оптоэлектроника"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ОБЩЕСТВО С ОГРАНИЧЕННОЙ ОТВЕТСТВЕННОСТЬЮ "ВМК-Оптоэлектроника" (RU), Общество С Ограниченной Ответственностью "Вмк-Оптоэлектроника" filed Critical ОБЩЕСТВО С ОГРАНИЧЕННОЙ ОТВЕТСТВЕННОСТЬЮ "ВМК-Оптоэлектроника" (RU)
Priority to RU2007124240/28A priority Critical patent/RU2357233C2/en
Publication of RU2007124240A publication Critical patent/RU2007124240A/en
Application granted granted Critical
Publication of RU2357233C2 publication Critical patent/RU2357233C2/en

Links

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Claims (6)

1. Способ определения распределения частиц пробы по массе и концентрации искомых элементов в частицах дисперсной пробы, включающий ввод пробы в факел плазмы, регистрацию последовательности атомно-эмиссионных спектров во время поступления пробы в плазму, вычисление интенсивности аналитической спектральной линии искомого элемента в зависимости от времени поступления пробы в факел плазмы, определение по градуировочной зависимости концентрации искомого элемента в пробе, и определение распределения частиц пробы по массе, отличающийся тем, что концентрации всех искомых элементов определяют одновременно за счет того, что каждый спектр последовательности регистрируют в спектральном диапазоне, включающим аналитические спектральные линии искомых элементов, при этом вычисление интенсивности аналитических спектральных линий производят в каждом спектре с учетом фона под линией, после этого получают зависимости концентраций искомых элементов от времени поступления пробы в плазму, а по указанным зависимостям определяют массу частиц и концентрацию искомых элементов в частице.1. A method for determining the distribution of sample particles by mass and concentration of the desired elements in the particles of a dispersed sample, which includes introducing the sample into a plasma torch, recording the sequence of atomic emission spectra when the sample enters the plasma, calculating the intensity of the analytical spectral line of the desired element depending on the time of arrival samples in a plasma torch, determination by the calibration dependence of the concentration of the desired element in the sample, and determination of the distribution of sample particles by mass, differing in those m, that the concentrations of all the desired elements are determined simultaneously due to the fact that each spectrum of the sequence is recorded in the spectral range, including analytical spectral lines of the desired elements, while the intensity of the analytical spectral lines is calculated in each spectrum taking into account the background under the line, after which the dependencies are obtained the concentrations of the desired elements from the time the sample was delivered to the plasma, and the particle mass and the concentration of the desired elements in part ce. 2. Способ по п.1, отличающийся тем, что в качестве источника плазмы используют двухструйный дуговой плазмотрон с температурой в аналитической зоне (6000-8000)°К.2. The method according to claim 1, characterized in that as a plasma source using a two-jet arc plasma torch with a temperature in the analytical zone (6000-8000) ° K. 3. Способ по п.1, отличающийся тем, что ввод пробы в факел плазмы осуществляют регулируемым газовым потоком.3. The method according to claim 1, characterized in that the injection of the sample into the plasma torch is carried out by controlled gas flow. 4. Способ по п.1, отличающийся тем, что градуировочные зависимости искомых элементов строят по стандартным образцам с матричным составом, идентичным пробе.4. The method according to claim 1, characterized in that the calibration dependences of the desired elements are built according to standard samples with a matrix composition identical to the sample. 5. Способ по п.1, отличающийся тем, что регистрацию спектров осуществляют набором линейных многоэлементных детекторов.5. The method according to claim 1, characterized in that the registration of the spectra is carried out by a set of linear multi-element detectors. 6. Способ по п.1, отличающийся тем, что среднюю концентрацию каждого искомого элемента в пробе определяют по формуле:6. The method according to claim 1, characterized in that the average concentration of each element in the sample is determined by the formula: Cср=(∑NmiCi)/∑Nmi, где Сi - концентрация искомого элемента в i-й частице, а mi - масса i-й частицы, которую определяют из выражения: mi=M×N, где М - масса пробы, вводимой в плазму за время регистрации одного спектра, а N - количество спектров, приписываемых частице. C cf = (∑ N m i C i ) / ∑ N m i , where C i is the concentration of the element in the i-th particle, and m i is the mass of the i-th particle, which is determined from the expression: m i = M × N, where M is the mass of the sample introduced into the plasma during the recording of one spectrum, and N is the number of spectra attributed to the particle.
RU2007124240/28A 2007-06-27 2007-06-27 Method of simultaneous determination of particle distribution by mass in dispersive sample and concentration of elements in particle of sample RU2357233C2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2007124240/28A RU2357233C2 (en) 2007-06-27 2007-06-27 Method of simultaneous determination of particle distribution by mass in dispersive sample and concentration of elements in particle of sample

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2007124240/28A RU2357233C2 (en) 2007-06-27 2007-06-27 Method of simultaneous determination of particle distribution by mass in dispersive sample and concentration of elements in particle of sample

Publications (2)

Publication Number Publication Date
RU2007124240A true RU2007124240A (en) 2009-01-10
RU2357233C2 RU2357233C2 (en) 2009-05-27

Family

ID=40373674

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2007124240/28A RU2357233C2 (en) 2007-06-27 2007-06-27 Method of simultaneous determination of particle distribution by mass in dispersive sample and concentration of elements in particle of sample

Country Status (1)

Country Link
RU (1) RU2357233C2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2657333C1 (en) * 2017-04-14 2018-06-13 Валентин Николаевич Аполицкий Integrated scintillation method of investigation of a substance with its introduction into plasma
WO2020197425A1 (en) * 2019-03-27 2020-10-01 Владимир Александрович ЛАБУСОВ Method for determining element composition and granulometric composition of a sample
RU2702854C1 (en) * 2019-03-27 2019-10-11 Федеральное государственное бюджетное учреждение науки Институт автоматики и электрометрии Сибирского отделения Российской академии наук, (ИАиЭ СО РАН) Method of determining content of elements and forms of their presence in a dispersed sample and its granulometric composition

Also Published As

Publication number Publication date
RU2357233C2 (en) 2009-05-27

Similar Documents

Publication Publication Date Title
Yao et al. Extracting coal ash content from laser-induced breakdown spectroscopy (LIBS) spectra by multivariate analysis
Palm et al. Secondary organic aerosol formation from ambient air in an oxidation flow reactor in central Amazonia
Köster et al. Anaerobic digestates lower N2O emissions compared to cattle slurry by affecting rate and product stoichiometry of denitrification–An N2O isotopomer case study
JP4840516B2 (en) Method and apparatus for analyzing sulfur in metal samples
Ulenikov et al. Study of the high resolution FTIR spectrum of CH2CD2 in the region of 1300–1450 cm− 1: The ν12 (A1) and 2ν10 (A1) bands
Köster et al. Novel laser spectroscopic technique for continuous analysis of N2O isotopomers–application and intercomparison with isotope ratio mass spectrometry
EA200800901A1 (en) METHOD AND DEVICE OF ELEMENT ANALYSIS OF FLUID IN A WELL
ATE490457T1 (en) METHOD FOR ONLINE ANALYSIS OF A GAS PHASE PROCESS STREAM
WO2009117823A8 (en) Continuous measurement of amine loading in gas processing plants using raman spectroscopy
Qi et al. Three whole-wood isotopic reference materials, USGS54, USGS55, and USGS56, for δ2H, δ18O, δ13C, and δ15N measurements
JP2003065958A (en) Method and apparatus for analysing sulfur
RU2007124240A (en) METHOD FOR SIMULTANEOUS DETERMINATION OF PARTICLE DISTRIBUTION BY MASS IN A DISPERSED SAMPLE AND ELEMENT CONCENTRATION IN A PARTICLE OF A SAMPLE
van Dijk et al. Sulfur in foraminiferal calcite as a potential proxy for seawater carbonate ion concentration
Schmidberger et al. Advanced online monitoring of cell culture off‐gas using proton transfer reaction mass spectrometry
Qin et al. Compound specific stable isotope determination of methylmercury in contaminated soil
Zhang et al. Optimal wavelength selection for visible diffuse reflectance spectroscopy discriminating human and nonhuman blood species
Kantnerová et al. Clumped isotope signatures of nitrous oxide formed by bacterial denitrification
Zhou et al. In situ analysis for herbal pieces of Aconitum plants by using direct analysis in real time mass spectrometry
Duixiong et al. A semi-quantitative analysis of essential micronutrient in folium lycii using laser-induced breakdown spectroscopy technique
US20230107753A1 (en) Atmospheric aerosol inorganic and organic nitrogen quantification method and system
Niimura Thermogravimetry-linked scan mass spectrometry—Detection of urushiol from an East Asian lacquer film—
Dyckmans et al. Comparison of methods to determine triple oxygen isotope composition of N2O
RU2014127623A (en) METHOD FOR DETECTING EXPLOSIVES (EXPLOSIVES) IN AIR
Macdonald et al. The influence of increasing organic matter content on N2O emissions
CN104122322A (en) Method and device for detecting whole process of compound cracking

Legal Events

Date Code Title Description
NF4A Reinstatement of patent

Effective date: 20110627

MM4A The patent is invalid due to non-payment of fees

Effective date: 20140628

NF4A Reinstatement of patent

Effective date: 20170313