RU2005912C1 - Поршневой компрессор с электродинамическим приводом - Google Patents

Поршневой компрессор с электродинамическим приводом Download PDF

Info

Publication number
RU2005912C1
RU2005912C1 SU4734699A RU2005912C1 RU 2005912 C1 RU2005912 C1 RU 2005912C1 SU 4734699 A SU4734699 A SU 4734699A RU 2005912 C1 RU2005912 C1 RU 2005912C1
Authority
RU
Russia
Prior art keywords
piston
sensors
rods
cylinder
coils
Prior art date
Application number
Other languages
English (en)
Inventor
Валерий Измайлович Мулуянов
Original Assignee
Валерий Измайлович Мулуянов
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Валерий Измайлович Мулуянов filed Critical Валерий Измайлович Мулуянов
Priority to SU4734699 priority Critical patent/RU2005912C1/ru
Application granted granted Critical
Publication of RU2005912C1 publication Critical patent/RU2005912C1/ru

Links

Images

Landscapes

  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Compressor (AREA)

Abstract

Поршневой компрессор с электродинамическим приводом. Использование: в промышленных и бытовых компрессорных станциях. Сущность изобретения: в цилиндре установлен поршень. Привод содержит электромагнитные катушки, датчики положения поршня и устройство переключения напряжения в катушках, сообщенных с датчиками. Магнитопровод выполнен в виде шаровых наконечников, расположенных с охватом торцевых частей цилиндра. Стержни соединяют наконечники. Катушки навиты на стержни, подключены к устройству и создают разноименные полюса в наконечниках. Поршень выполнен из постоянных магнитов с одноименными полюсами на его торцах. Датчики выполнены в виде гильз с установленными в них поршеньками с штоками. На стенках гильз закреплены электроклеммы. Штоки взаимодействуют с поршнем. Поршеньки замыкают электроклеммы. Надпоршневые полости гидравлически сообщены между собой. Устройство подключено к датчикам электроклеммами. Устройство подвода и отвода смазки сообщено обратными клапанами с подпоршневой полостью датчиков. 2 з. п. ф-лы, 4 ил.

Description

Изобретение относится к свободно-поршневым компрессорам. Свободно-поршневые компрессоры являются составным элементом свободно-поршневых двигателей компрессоров.
Изобретение - СПЭМК, может быть использовано, как в промышленных, так и в бытовых холодильных установках, а также в качестве воздушного компрессора в промышленных и в бытовых компрессорных станциях.
В известном СПДК энергия, получаемая в цилиндре теплового двигателя при сгорании углеводородного топлива, расходуется частично на сжатие воздуха поршнями компрессора, соединенными с рабочими поршнями двигателя без промежуточных механизмов. Часть сжатого воздуха расходуется на газообмен в цилиндре двигателя, а большая часть сжатого воздуха поступает к потребителю. СПДК полностью уравновешены и могут монтироваться без тяжелых и сложных фундаментов. СПДК, строящиеся на различные давления воздуха (0,7-40 МПа), получили широкое распространение. Нормальное осуществление рабочего цикла в двигателях со свободно-движущимися поршнями возможно только при симметричном перемещении поршней обоих комплектов. Для обеспечения симметричного движения поршней используются специальные синхронизирующие механизмы, которые в отличие от кривошипно-шатунного механизма обычных двигателей внутреннего сгорания воспринимают не всю силу давления газов, а только разность давлений газов и сил, действующих на поршень двигателя и на поршень компрессора. Различие в силах, действующих на оба комплекта поршней, является следствием разного значения сил трения и утечек через поршневые уплотнения, которое компенсируется синхронизирующим механизмом и обеспечивает нормальный термодинамический процесс. СПДК, имеющий ряд положительных качеств по сравнению с дизель-компрессором, имеет и ряд отрицательных качеств, делающих невозможным применение СПДК в бытовых холодильных машинах (высокое шумообразование, применение углеводородного топлива и ГСМ, являющихся пожароопасными веществами), кроме того, двигатель - СПДК имеет более низкие экономические характеристики по сравнению с четырехтактным дизелем.
Указанные недостатки устранены в свободно-поршневых электромагнитных компрессорах, работающих с применением электроэнергии, преобразуемой в электромагнитное поле, которое совершает положительную работу всасывания и нагнетания газовой смеси.
Известный электродинамический компрессор имеет цилиндр с поршнем, датчики положения поршня и катушки электромагнитов, охватывающих боковую поверхность цилиндра, систему смазки с маслоотстойником и с отверстиями для залива масла, а также с пробкой в отстойнике для замены масла и удаления механических примесей.
Улучшение условий смазки с удалением механических примесей делает работу электромагнитного герметичного компрессора, более надежной, а вследствие уменьшения потерь на трение, и более экономичной. Улучшение условий смазки и удаление механических примесей достигается тем, что кольца имеют в верхней части вырезы, а по периметру - маслораспределительные осевые отверстия.
В электромагнитном герметичном компрессоре, имеющем катушки электромагнитов намотанные на стенки цилиндра и систему смазки, которую можно считать пассивной, есть определенные недостатки, предопределенные положением обмоток электромагнитов, а также заключенные в пассивной системе смазки.
Положение обмоток электромагнитов при работе компрессора не дает возможности получить сравнительно однородный магнитный поток, т. к. магнитный поток будет рассеиваться при удалении от полюса электромагнита и будет уплотняться при приближении к полюсу. Поэтому при таком расположении обмоток электромагнитов будут возникать дополнительные потери энергии магнитного потока, что в свою очередь отрицательно влияет на общий КПД компрессора.
Пассивная система смазки, применяемая в электромагнитном герметичном компрессоре, не дает возможность избавиться от мех. примесей, обладающих нулевой плавучестью в смазывающей среде, отрицательное влияние этих примесей на абразивный износ поверхностей поршня и цилиндра несомненно.
Пассивная система смазки не позволяет применить в системе смазки компрессора теплообменные элементы и блок фильтрующих элементов.
Целью изобретения является устранение указанных недостатков и повышение КПД за счет применения электромагнитной системы с ясновыраженными полюсами, а также улучшение системы смазки и охлаждения за счет применения циркуляционной системы смазки и охлаждения.
Указанная цель достигается тем, что СПЭМК, имеющий электродинамический привод, цилиндр, поршень, установленный в цилиндре, и привод, включающий электромагнитные катушки, датчики положения поршня и устройство переключения направления тока в обмотках электромагнитов, сообщенное с датчиками, снабжен магнитопроводом, выполненным в виде шаровых наконечников, расположенных с охватом торцевых частей цилиндра и стержней, соединяющих наконечники, при этом катушки навиты на стержни и подключены к устройству переключения направления тока в катушках электромагнитов с возможностью создания разноименных полюсов в противоположных наконечниках, поршень выполнен из постоянных магнитов, обращенных одноименными полюсами навстречу друг другу, т. е. поршень имеет в верхнем и в нижнем основаниях одноименные полюса.
С целью повышения надежности путем упрощения конструкции датчики выполнены в виде гильз. Гильзы, не обладающие электропроводными свойствами, имеют закрепленные на стенках электроклеммы, а внутри гильз установлены поршеньки со штоками, штоки установлены так, что имеют возможность взаимодействовать с поршнем компрессора, а поршеньки установлены с возможностью замыкания электроклемм, при этом надпоршневые полости гидравлически сообщены между собой, а устройство переключения направления тока, подключено к датчикам посредством электроклемм. СПЭМК снабжен системой циркуляционной смазки.
Циркуляция смазки в компрессоре осуществляется с помощью гидропоршеньков, посредством невозвратных (обратных) клапанов, взаимодействующих с подпоршневой полостью датчиков, дающих команду (эл. сигнал) катушкам соленоидов переключателя направления тока в обмотках электромагнитов компpессора.
На фиг. 1 изображен СПЭМК, вид спереди; на фиг. 2 - то же, вид сверху; на фиг. 3 - разрез А-А на фиг. 1; на фиг. 4 - электросхема электромагнитного переключателя направления движения тока в обмотках электромагнитов - СПЭМК.
СПЭМК содержит: 1 - гидромагистраль с жидкостью (минеральное масло или другая жидкость, не обладающая электропроводными свойствами) - эта жидкость связывает поршень 5 и поршень 25 (поршни 5 и 25 выполнены из латуни или другого электропроводного материала, а штоки этих поршеньков - шток 6 и шток 22 могут быть выполнены из материала, не обладающего электропроводными свойствами (керамика пластмассы и т. д. ). Поршень и шток могут соединяться с помощью резьбового соединения. Поршень и шток могут быть полностью изготовлены из керамики, если на боковую поверхность поршня одето с натягом медное или латунное кольцо, соответствующее внутреннему диаметру гидроцилиндра.
2, 3, 27, 28 - электроконтакты, изолированные от корпуса магнитной головки 8 (магнитная головка может быть изготовлена из листовой трансформаторной стали или из феррита).
Магнитная головка 8 напрессована в нагретом состоянии ни цилиндр 21 (цилиндр может быть изготовлен из керамики, из латуни, бронзы или другого металла или сплава).
4 - магнитопровод, выполненный из листовой трансформаторной стали или из феррита. Магнитопровод 4, состоящий из двух полуколец, прижимается к магнитным головкам 8 с помощью резьбового соединения, которое находится с двух сторон в ферритовых сердечниках электромагнитов 11.
Клапанная плита 9 с взаимодействующими клапанами может быть изготовлена из феррита или из пермалоя или другого металла, обладающего магнитными свойствами. Клапанные плиты 9 наложены в верхнем и нижнем основании цилиндра, с цилиндром и с магнитной головкой они могут быть соединены с помощью напрессовки или с помощью резьбового соединения.
12, 19 - невозвратный нагнетательный клапан смазочной магистрали, 18 - невозвратный всасывающий клапан смазочной магистрали, 15 - масляная форсунка (распыляющая смазочно-охлаждающую жидкость), 16 - всасывающе-фильтрующая полость смазочной магистрали.
Свободный поршень состоит из четырех основных частей: из двух магнитов 10 и 20, имеющих центральное резьбовое отверстие, среднего цилиндрического поршня 17, изготовленного из материала со слабовыраженными магнитными свойствами, имеющего в центральной части резьбовое отверстие такого же диаметра как и диаметры магнитных поршней, стяжной резьбовой шпильки, соответствующей диаметру и общей высоте поршня.
Постоянные цилиндрические магниты обращены навстречу друг к другу одноименными полюсами.
49 - переключатель направления тока электромагнитной системы СПЭМК, который является составным элементом СПЭМ, 23 и 24 - контакты электромагнитов 11, 29 - двухполюсный включатель, 30 - кольцевые токосъемники, соединенные с одним из полюсов двухполюсного включателя 29, 31 - кольцевой токосъемник, соединенный с другим полюсом двухполюсного включателя 29, 32 и 33 - электромагниты системы изменения направления тока в обмотках электромагнитов, 34 - токосъемники, имеющие плотный контакт с медными втулками (токоприемниками 41 и 42), 35 - керамический корпус переключателя направления тока 49, 36 и 37 - стальные стержни ферритовые стержни предназначенные для магнитного взаимодействия с электромагнитами 32 и 33, ферритовые стержни крепятся с токоприемниками pезьбового соединения, 39 - перемещающиеся кольцевые контакты, периодически соединяющие источник питания и обеспечивающие то или другое направление электрического тока в системе электромагнитов 11. 43 - проводник электрического тока, 45 - воздухоочистительный фильтр, 47 - нагнетательная магистраль, 48 - всасывающая магистраль, 49 - переключатель направления тока в обмотках электромагнитов компрессора, 50 и 51 - подпоршневые гидрополости, имеющие гидравлическую связь между собой, 52 - подпоршневая полость гидроцилиндра, 53 - источник постоянного тока.
В том случае, если двухполюсный концевой переключатель 29 включен, в эл. цепи обмоток электромагнитов 11 течет ток, происходит магнитное взаимодействие между магнитным поршнем 20 и электромагнитами 11 до тех пор, пока магнитный поршень 20 не переместит гидропоршень 5 (воздействуя на шток 6 гидропоршня 5) до того уровня, при котором контакты 2 и 3 соединятся поршнем 5 (медным или бронзовым). В эл. цепи электромагнита 32 потечет ток, вследствие чего возникает электромагнитное поле, которое, взаимодействуя со стальным стержнем 36, переместит его (стержень 36 притянется к индукционной катушке 32). Произойдет перемещение контактов 39 (+; -) и как следствие, произойдет переориентация магнитного поля электромагнитов 11.
Включение СПЭМК в работу производится контактным переключателем 29 (двухполюсный), который включается на контакты 23 и 24 системы питания электромагнитов 11; таким образом к источнику постоянного тока 53 включается нагрузка - электромагнитная система СПЭМК и система переключения направления эл. тока 49.
В тот момент, когда поршень 5 соединяет контакты 2 и 3, происходит перемещение (как было изложено выше) медных контактов 39 системы питания электромагнитов. Ток в обмотках электромагнитов СПЭМК изменяет направление, вместе с тем изменяется направление магнитного поля (происходит изменение полярности электромагнитов), т. е. положительный полюс магнитной головки взаимодействует с отрицательным полюсом постоянного магнитного поршня (в процессе этого взаимодействия поршень совершает работу - полезную работу сжатия газовой смеси). Изменившееся направление электротока изменяет и полярность магнитной головки 8, поэтому магнитная головка 8 получает (после перемены направления тока в обмотках электромагнитов) отрицательную полярность, т. е. такую же, как и полярность полюса постоянного магнита обращенного к ней поршня (свободного магнитного поршня). Известно, что одноименные полюса магнитов отталкиваются, а разноименные притягиваются, поэтому магнитный поршень начинает совершать движение, соответствующее полярности магнитной головки 8 в данный момент времени, т. е. изменившееся направление тока в обмотках электромагнитов 11 изменит и полярность магнитной головки 8 (она приобретает отрицательную магнитную полярность, т. е. такую же как и головка магнитного поршня). Таким образом поршень начнет противоположное движение, т. е. при взаимодействии отрицательного магнитного полюса магнитной головки 8 и отрицательного полюса магнитного поршня 20 поршень будет отталкиваться в процессе магнитного взаимодействия одноименных полюсов.
Одновременно противоположный полюс электромагнитов 11 имеет положительную полярность и в процессе взаимодействия со свободным магнитным поршнем, имеющим обращенный к нему отрицательный полюс постоянного магнита, начинает притягивать его к себе, совершая работу сжатия газовой смеси одновременно с другой стороны поршня, происходит всасывание газовой смеси через воздушный фильтр 45. Нагнетание воздуха (газовой смеси) производятся через нагнетательный коллектор 47 в воздухосборник 46.
Процесс продолжается до тех пор, пока поршень-магнит компрессора 20 не достигнет штока 22 и не переместит поршень 25 до изолированных контактов 27 и 28, находящихся в цилиндре 51. Поршень 25, соединяющий контакты 27 и 28, изготовлен из меди или бронзы. В момент соединения контактов 27 и 28 с поршнем 25 через обмотку электромагнита 33 потечет ток, появится магнитное поле, которое в процессе взаимодействия со стальным стержнем 37 переместит (притянет) его к себе, вместе с ним переместится контактная система 39 (+; -) источника питания 53 системы переключения направления тока 49. При перемещении контактов 39 (+; -) источника питания в системе электромагнитов произойдет изменение направления тока, изменится полярность электромагнитов 11, а вместе с ней (с изменением полярности электромагнитов 11) изменится и направление движения свободного магнитного поршня 20, процесс снова повторится.
Магнитный поршень СПЭМК состоит из двух постоянных магнитов 10 и 20, расположенных таким образом, что положительные полюсы постоянных магнитов имеют встречное направление. Между одноименными (положительными) полюсами постоянных магнитов 10 и 20 помещена керамическая или текстолитовая втулка 17, ослабляющая взаимное магнитное влияние положительных полюсов постоянных магнитов 10 и 20; постоянные магниты свободного поршня также представляют из себя втулку, имеющую внутри резьбовое отверстие, такое же, как у керамической втулки 17. Магнитный поршень соединен с помощью соединительной шпильки 14. Шпилька 14 изготовлена из алюминия или из бронзы, или из другого материала с ослабленными магнитными свойствами. Поршень может не иметь уплотнительных колец, т. к. стабильно сориентирован в пространстве, т. е. не испытывает влияния кривошипно-шатунного механизма (достаточно хорошо уравновешен).
Технико-экономическая или иная эффективность.
Наличие в СПЭМК электромагнитной системы с явно-выраженными полюсами, при взаимодействии с переключателем направления тока в обмотках электромагнитов, повышает КПД электродинамического компрессора из-за уменьшения потери энергии электромагнитного потока, возникающего между магнитными головками (наконечниками) во внутрицилиндровом пространстве компрессора.
Наличие датчиков, выполненных в виде гильз с установленными в них поршеньками со штопами и с закрепленными на стенках гильз клеммами, повышает надежность и упрощает конструкцию компрессора в совокупности с переключателем направления тока в обмотках электромагнитов.
Наличие циркуляционной системы смазки позволяет с помощью невозвратных клапанов производить во время работы более качественную смазку цилиндра и более эффективную фильтрацию смазочно-охлаждающей жидкости, циркулирующей в замкнутом объеме. (56) Авторское cвидетельство СССР N 960463, кл. F 04 B 35/04, 1980.

Claims (3)

1. ПОРШНЕВОЙ КОМПРЕССОР С ЭЛЕКТРОДИНАМИЧЕСКИМ ПРИВОДОМ, содержащий цилиндр, поршень, установленный в цилиндре, и привод, включающий электромагнитные катушки, датчики положения поршня и устройство переключения напряжения в катушках, сообщенное с датчиками, отличающийся тем, что, с целью повышения эффективности в работе путем усиления электромагнитных сил привода, он снабжен магнитопроводом, выполненным в виде шаровых наконечников, расположенных с охватом торцевых частей цилиндра, и стержней, соединяющих наконечники, при этом катушки навиты на стержни и подключены к устройству переключения напряжения с возможностью создания разноименных полюсов в наконечниках, а поршень выполнен из постоянных магнитов с одноименными полюсами на его торцах.
2. Компрессор по п. 1, отличающийся тем, что, с целью повышения надежности путем упрощения конструкции, датчики выполнены в виде гильз из неэлектропроводного материала с установленными в них поршеньками со штоками, причем на стенках гильз закреплены электроклеммы, штоки расположены с возможностью взаимодействия с поршнем, а поршеньки установлены с возможностью замыкания электроклемм, при этом надпоршневые полости гидравлически сообщены между собой, а устройство переключения подключено к датчикам посредством электроклемм.
3. Компрессор по п. 2, отличающийся тем, что он снабжен устройствами подвода и отвода смазки к цилиндру компрессора, при этом устройство подвода и отвода смазки сообщено посредством обратных клапанов с подпоршневой полостью датчиков.
SU4734699 1989-06-26 1989-06-26 Поршневой компрессор с электродинамическим приводом RU2005912C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SU4734699 RU2005912C1 (ru) 1989-06-26 1989-06-26 Поршневой компрессор с электродинамическим приводом

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SU4734699 RU2005912C1 (ru) 1989-06-26 1989-06-26 Поршневой компрессор с электродинамическим приводом

Publications (1)

Publication Number Publication Date
RU2005912C1 true RU2005912C1 (ru) 1994-01-15

Family

ID=21468468

Family Applications (1)

Application Number Title Priority Date Filing Date
SU4734699 RU2005912C1 (ru) 1989-06-26 1989-06-26 Поршневой компрессор с электродинамическим приводом

Country Status (1)

Country Link
RU (1) RU2005912C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2638891C2 (ru) * 2012-07-04 2017-12-18 Хегеншайдт-Мфд Гмбх Унд Ко. Кг Устройство для проверки колес железнодорожного подвижного состава

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2638891C2 (ru) * 2012-07-04 2017-12-18 Хегеншайдт-Мфд Гмбх Унд Ко. Кг Устройство для проверки колес железнодорожного подвижного состава

Similar Documents

Publication Publication Date Title
US5833211A (en) Magnetically-powered valve
RU2273086C2 (ru) Электрическая машина
US7076950B2 (en) Internal explosion engine and generator using non-combustible gases
US20150091395A1 (en) Electro-mechanical Reciprocating Magnetic Piston Engine
US3814550A (en) Motor arrangement and lubrication system for oscillatory compressor
US20150091479A1 (en) Electric Vehicle Propulsion System Using Magnetic Piston Engine
CN103155373A (zh) 磁致往复式马达和利用反向磁切换的过程
US20120119594A1 (en) Magnetically Charged Solenoid for Use in Magnetically Actuated Reciprocating Devices
US7334558B2 (en) Slide body internal combustion engine
RU2005912C1 (ru) Поршневой компрессор с электродинамическим приводом
US20130302181A1 (en) Zero emissions pneumatic-electric engine
WO2020218998A1 (en) Fuel-free, triggered magnetic vehicle and energy engine
RU2041393C1 (ru) Поршневой компрессор с электродинамическим приводом
CN210738983U (zh) 高频无杆耦合动力缸
RU2046966C1 (ru) Электрический генератор переменного тока
US20020146334A1 (en) Linear engine and housing for engine
RU198854U1 (ru) Линейный генератор электрической энергии на постоянных магнитах
CN105545366A (zh) 一种自由活塞式线性发电机
RU2792183C1 (ru) Компрессор на основе линейного двигателя
KR20090064999A (ko) 왕복이동장치
RU2658629C1 (ru) Электродвигатель-компрессор
KR20130134345A (ko) 전자기식 공기 압축기
SU1663715A1 (ru) Виброэлектродвигатель-компрессор
SU1686209A1 (ru) Тепловой поршневой двигатель
US4615661A (en) Magnetic pump