RU2005788C1 - Rna-fragment of potato x-virus intended for foreign gene translation - Google Patents

Rna-fragment of potato x-virus intended for foreign gene translation Download PDF

Info

Publication number
RU2005788C1
RU2005788C1 SU4950052A RU2005788C1 RU 2005788 C1 RU2005788 C1 RU 2005788C1 SU 4950052 A SU4950052 A SU 4950052A RU 2005788 C1 RU2005788 C1 RU 2005788C1
Authority
RU
Russia
Prior art keywords
rna
fragment
potato
translation
gene translation
Prior art date
Application number
Other languages
Russian (ru)
Inventor
С.Ю. Морозов
Н.А. Мирошниченко
И.Г. Атабеков
Original Assignee
Институт иммунобиотехнологии
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Институт иммунобиотехнологии filed Critical Институт иммунобиотехнологии
Priority to SU4950052 priority Critical patent/RU2005788C1/en
Priority to PCT/US1992/005403 priority patent/WO1993003138A1/en
Priority to AU23055/92A priority patent/AU2305592A/en
Application granted granted Critical
Publication of RU2005788C1 publication Critical patent/RU2005788C1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/005Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/67General methods for enhancing the expression
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8216Methods for controlling, regulating or enhancing expression of transgenes in plant cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2770/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
    • C12N2770/00011Details
    • C12N2770/40011Tymoviridae
    • C12N2770/40022New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Cell Biology (AREA)
  • Virology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

FIELD: biotechnology. SUBSTANCE: method involves preparing of RNA-fragment of potato X-virus showing a broad spectrum action with regard to activation of gene translation for enhanced efficacy of foreign proteins synthesis in transgenic plants and animals. EFFECT: preparing of RNA-fragment indicated above. 1 dwg, 1 tbl

Description

Изобретение относится к биотехнологии, в частности к генетической инженерии растений, и представляет собой фрагмент РНК Х-вируса картофеля, содержащий 5l -нетранслируемую область генома и обладающий способностью усиливать трансляцию чужеродных генов в эукариотических системах.The invention relates to biotechnology, in particular to the genetic engineering of plants, and is a fragment of the potato X-virus RNA, containing a 5 l -translated region of the genome and having the ability to enhance the translation of foreign genes in eukaryotic systems.

Известен фрагмент геномной РНК вируса табачной мозаики (ВТМ) длиной 70 нуклеотидов (5l-нетранслируемая последовательность, или ω -последовательность), являющийся одним из наиболее эффективных усилителей трансляции генов.A known fragment of the genomic RNA of the tobacco mosaic virus (TMV) with a length of 70 nucleotides (5 l untranslated sequence, or ω sequence), which is one of the most effective amplifiers for gene translation.

К недостаткам прототипа можно отнести следующее: описанный фрагмент РНК ВТМ эффективно усиливает трансляцию чужеродных генов не только в растительных, но и в бактериальных клетках, что может иметь нежелательные последствия в ходе генно-инженерных работ по трансформации растений, в частности это может вызывать преждевременный лизис бактериальных клеток из-за отравления их токсичными чужеродными белками. The disadvantages of the prototype include the following: the described TMV RNA fragment effectively enhances the translation of foreign genes not only in plant cells, but also in bacterial cells, which can have undesirable consequences during genetic engineering work on plant transformation, in particular, this can cause premature lysis of bacterial cells due to poisoning by toxic foreign proteins.

Целью изобретения является получение фрагмента РНК Х-вируса картофеля, обладающего широким спектром действия в отношении активации трансляции генов для повышения эффективности синтеза чужеродных белков в трансгенных растениях и животных. The aim of the invention is to obtain a fragment of the potato X-virus RNA having a wide spectrum of activity with respect to activation of gene translation to increase the efficiency of the synthesis of foreign proteins in transgenic plants and animals.

Для достижения поставленной цели сконструирован транскрипционный вектор на основе плазмиды pTZ19, в котором гены неомицин фосфотрансферазы 1 (НФТ 1) из транспозона Tn903 находился под контролем химически синтезированного фрагмента, несущего αβ -лидер и инициаторный кодон 5l-проксимального гена РНК ХВК ( αβ-НФТ 1 конструкция). В контрольной конструкции КМ) гену НФТ 1 предшествовала нетранслируемая последовательность, представляющая собой модифицированный полилинкер плазмиды pTZ19. После линеаризации плазмид с помощью РНК-полимеразы бактериофага Т7 были получены соответствующие транскрипты. Их лидерные последовательности представлены на чертеже.To achieve this goal, a transcription vector based on the pTZ19 plasmid was constructed in which the neomycin phosphotransferase 1 (NFT 1) genes from the Tn903 transposon were controlled by a chemically synthesized fragment carrying the αβ leader and the 5 c proximal initiator codon of the 5 l proximal CVK RNA gene (αβ NTP 1 design). In the control construct KM), the NFT 1 gene was preceded by an untranslated sequence representing a modified polylinker of plasmid pTZ19. After linearization of the plasmids using RNA polymerase of the bacteriophage T7, the corresponding transcripts were obtained. Their leader sequences are shown in the drawing.

Для доказательства действия полученного фрагмента РНК некэпированные транскрипты обеих плазмид транслировали в бесклеточных белоксинтезирующих системах из ретикулоцитов кролика, клеток асцитной карциномы Кребс-2 согласно и зародышей пшеницы. [35S] -меченные продукты трансляции анализировали электрофорезом в полиакриламидном геле в присутствии додецилсульфата натрия. Гель высушивали, экспонировали и оценивали количественно продукты трансляции сканированием автографов с помощью лазерного денситометра 2202 фирмы LKB. Наличие αβ -последовательности усиливало трансляцию гена НФТ1 в 30-40 раз в лизате ретикулоцитов кролика, в 10-14 раз в системе из клеток Кребс-2 и в 6-8 раз в экстрактах из зародышей пшеницы (таблица). Плазмиды, содержащие αβ -лидер и маркерный ген, получают следующим образом: по 5 нг олигодезоксирибонуклеотидов, содержащих целевую последовательность и комплементарную ей последовательность, отжигают в 10 мкл буфера, который содержит 40 мМ Трис-НС1, рН 7,5; 6 мМ MgCl2 и 1 мМ АТР при 56оС в течение 2 ч. Олигодезоксирибонуклеотиды синтезируют на автоматическом синтезаторе фирмы Applied Biosystems (США). После отжига к смеси олигодезоксирибонуклеотидов добавляют 200 нг плазмиды pTZ19, содержащей ген НФТ 1 (препарат фирмы Pharmacia, Швеция). В реакционную смесь добавляют 1 ед. ДНК-лигазы фага Т4. Лигирование проводят при 10оС в течение 12 ч. После лигирования полученным препаратом трансформируют клетки E. coli и выделяют из трансформантов рекомбинантные плазмиды. Ниже приведена первичная структура лидерных районов транскриптов αβ -НФТ1 и КМ.To prove the effect of the obtained RNA fragment, uncaptized transcripts of both plasmids were translated in cell-free protein synthesizing systems from rabbit reticulocytes, Krebs-2 ascites carcinoma cells according to and wheat germ. [ 35 S] -labeled translation products were analyzed by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. The gel was dried, exposed and quantified translation products by scanning autographs using a laser densitometer 2202 company LKB. The presence of the αβ sequence enhanced the translation of the NFT1 gene by 30–40 times in the rabbit reticulocyte lysate, 10–14 times in the system from Krebs-2 cells, and 6–8 times in extracts from wheat germ (table). Plasmids containing the αβ leader and marker gene are prepared as follows: 5 ng of oligodeoxyribonucleotides containing the target sequence and its complementary sequence are annealed in 10 μl of buffer, which contains 40 mM Tris-HCl, pH 7.5; 6 mM MgCl 2 and 1 mM ATP at 56 ° C for 2 hours. Oligodeoxyribonucleotides were synthesized on an automatic synthesizer of the firm Applied Biosystems (USA). After annealing, 200 ng of the plasmid pTZ19 containing the NFT 1 gene (drug from Pharmacia, Sweden) is added to the oligodeoxyribonucleotide mixture. 1 unit was added to the reaction mixture. Phage T4 DNA ligases. Ligation was carried out at 10 ° C for 12 hours. After ligation, preparation obtained transformed E. coli cells and isolated from the transformants, recombinant plasmid. The primary structure of leader regions of αβ -NFT1 and CM transcripts is presented below.

5l GAAAACUAAACCAUACACCAC-
CAACACAACCAAACCCACCAC
α -последовательность
GCCCAAUUGUUACACACCCGCUUGA- GAAAGCAAGUCUAACAA AUG-НФТ 1
β - последовательность
5 l GGGAAAGCUUGGAUGCCUGC-
CUGCAGGUGGACUCUAGAGGA-
UCCCCC AUG-НФТ1 Указанные выше плазмиды, содержащие αβ -лидер и маркерный ген транскрибируют следующим образом: транскрипционная смесь объемом 20 мкл содержит 40 мМ Трис-НCl, рН 7,5; 6 мМ MgCl2; 2 мМ спермидин; 10 мМ NaCl; 10 мМ дитиотреитол; по 1 мМ АТР, СТР, UTP и GTP; 20 ед. плацентарного ингибитора РНКаз и 1 мкг плазмидной ДНК. После добавления 10 ед. PНК-полимеразы бактериофага Т7 проводят инкубацию смеси при 37оС в течение 60 мин. После реакции транскрипты осаждают ночь при 4оС в присутствии 2 M LiCl. После центрифугирования осадок промывают 70% этанолом, высушивают и растворяют в стерильной воде. Трансляцию осуществляют в лизате ретикулоцитов кролика. Трансляционная смесь объемом 25 мкл содержит 10 мкл лизата: 20 мМ Нерев, рН 7,6; 1 мМ АТР; 200 мкМ GTP; 2,5 мМ ацетата магния; 100 мМ ацетат калия; 2 мМ дитиотрейтол; 15 мМ креатинфосфат; 1 мкг креатинфосфокиназа; 5 мМ сАМР; 2 мМ EGCTA; 3 мкг дрожжевой тРНК; по 125 мкМ аминокислот, исключая метионин; 800 мкCi/мл [35S] -метионин и 40 мкг/мл РНК-транскрипта. Реакционную смесь инкубируют 60 мин при 30оС. [35S] -меченные продукты трансляции анализируют электрофорезом в полиакриламидном геле в присутствии додецилсульфата натрия. Гель высушивают, экспонируют и оценивают количественно продукты трансляции сканированием автографов с помощью лазерного денситометра 2202 фирмы LKB. Усиление трансляции достигает 40 раз (см. таблица).
5 l GAAAACUAAACCAUACACCAC-
CAACACAACCAAACCCACCAC
α sequence
GCCCAAUUGUUACACACCCGCUUGA- GAAAGCAAGUCUAACAA AUG-NFT 1
β - sequence
5 l GGGAAAGCUUGGAUGCCUGC-
CUGCAGGUGGACUCUAGAGGA-
UCCCCC AUG-NFT1 The above plasmids containing the αβ leader and marker gene are transcribed as follows: a 20 μl transcription mixture contains 40 mM Tris-HCl, pH 7.5; 6 mM MgCl 2 ; 2 mM spermidine; 10 mM NaCl; 10 mM dithiothreitol; 1 mM ATP, CTP, UTP and GTP; 20 units placental RNase inhibitor and 1 μg of plasmid DNA. After adding 10 units. PNK bacteriophage T7 polymerase mixture is incubated at 37 ° C for 60 min. After the reaction, deposited transcripts overnight at 4 ° C in the presence of 2 M LiCl. After centrifugation, the precipitate is washed with 70% ethanol, dried and dissolved in sterile water. Translation is carried out in a rabbit reticulocyte lysate. A translation mixture with a volume of 25 μl contains 10 μl of lysate: 20 mM Nerev, pH 7.6; 1 mM ATP; 200 μM GTP; 2.5 mM magnesium acetate; 100 mM potassium acetate; 2 mM dithiothreitol; 15 mM creatine phosphate; 1 μg creatine phosphokinase; 5 mM cAMP; 2 mM EGCTA; 3 μg yeast tRNA; 125 μM amino acids excluding methionine; 800 μCi / ml [ 35 S] -methionine and 40 μg / ml RNA transcript. The reaction mixture was incubated 60 min at 30 ° C [35 S] -labelled translation products were analyzed by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. The gel is dried, exposed and quantified translation products by scanning autographs using a laser densitometer 2202 company LKB. Strengthening translation reaches 40 times (see table).

Таким образом, предлагаемое изобретение позволяет обеспечить эффективное усиление трансляции чужеродного (бактериального) гена в эукариотической белоксинтезирующей системе, т. е. предложенный фрагмент генома ХВК является трансляционным усилителем широкого спектра действия. (56) Доклады АН СССР. 1988, т. 300, N 3, с. 711-716.  Thus, the present invention allows for efficient amplification of the translation of a foreign (bacterial) gene in a eukaryotic protein synthesizing system, i.e., the proposed fragment of the PVA genome is a translational amplifier of a wide spectrum of action. (56) Reports of the USSR Academy of Sciences. 1988, vol. 300, No. 3, p. 711-716.

Claims (1)

ФРАГМЕНТ РНК X-ВИРУСА КАРТОФЕЛЯ, ПРЕДНАЗНАЧЕННЫЙ ДЛЯ УСИЛЕНИЯ ТРАНСЛЯЦИИ ЧУЖЕРОДНОГО ГЕНА, получен путем химического синтеза и имеет следующую нуклеотидную последовательность:
1 GAAAACUAAA CCAUACACCA CCAACACAAC CAAACCCACC ACGCCCAAUU
51 GUUACACACC CGCUUGAGAA AGCAAGUCUA ACAA.
POTATO X-VIRUS RNA Fragment, INTENDED TO STRENGTHEN ALIEN GENE TRANSLATION, obtained by chemical synthesis and has the following nucleotide sequence:
1 GAAAACUAAA CCAUACACCA CCAACACAAC CAAACCCACC ACGCCCAAUU
51 GUUACACACC CGCUUGAGAA AGCAAGUCUA ACAA.
SU4950052 1991-06-27 1991-06-27 Rna-fragment of potato x-virus intended for foreign gene translation RU2005788C1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
SU4950052 RU2005788C1 (en) 1991-06-27 1991-06-27 Rna-fragment of potato x-virus intended for foreign gene translation
PCT/US1992/005403 WO1993003138A1 (en) 1991-06-27 1992-06-26 A method for over-expressing nucleic acids using an enhancer sequence from potato virus x
AU23055/92A AU2305592A (en) 1991-06-27 1992-06-26 A method for over-expressing nucleic acids using an enhancer sequence from potato virus x

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SU4950052 RU2005788C1 (en) 1991-06-27 1991-06-27 Rna-fragment of potato x-virus intended for foreign gene translation

Publications (1)

Publication Number Publication Date
RU2005788C1 true RU2005788C1 (en) 1994-01-15

Family

ID=21581674

Family Applications (1)

Application Number Title Priority Date Filing Date
SU4950052 RU2005788C1 (en) 1991-06-27 1991-06-27 Rna-fragment of potato x-virus intended for foreign gene translation

Country Status (3)

Country Link
AU (1) AU2305592A (en)
RU (1) RU2005788C1 (en)
WO (1) WO1993003138A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1383372A4 (en) * 2001-04-06 2004-06-30 Scripps Research Inst Bioluminescent plants and methods of making same

Also Published As

Publication number Publication date
AU2305592A (en) 1993-03-02
WO1993003138A1 (en) 1993-02-18

Similar Documents

Publication Publication Date Title
Bujarski et al. Modulation of replication, aminoacylation and adenylation in vitro and infectivity in vivo of BMV RNAs containing deletions within the multifunctional 3′ end.
Svitkin et al. La autoantigen alleviates translational repression by the 5'leader sequence of the human immunodeficiency virus type 1 mRNA
US6140086A (en) Methods and compositions for cloning nucleic acid molecules
JP2002320497A (en) Method for protein expression starting from stabilized linear short dna in cell-free in vitro transcription/ translation system with exonuclease-containing lysate or in cellular system containing exonuclease
JPH06217776A (en) Synthetic production of one chain cdna stabilized in eucalyote by bacterium retron and product and use thereof
WO2019100456A1 (en) Method for regulating in vitro biosynthesis activity by knocking-out of nuclease system
Chiang et al. A mitochondrial retroplasmid integrates into mitochondrial DNA by a novel mechanism involving the synthesis of a hybrid cDNA and homologous recombination
JP4762481B2 (en) Design and construction of transcription template for cell-free protein synthesis and dilution batch method wheat germ cell-free protein synthesis method using the same
EP0562206B1 (en) Single-stranded DNA-RNA hybrid molecules and methods for their production
US5716803A (en) Recombinant protein production with reduced expression of selectable markers
HU205384B (en) Process for increased expressin of human interleukin-2 in mammal cells
US5990298A (en) CIS-acting cellular nucleic acid molecules
US6201115B1 (en) Amplifying sequences, vectors comprising these sequences and their uses in compositions for the expression of nucleotide sequences in transfected cells therapeutic and vaccine applications
RU2005788C1 (en) Rna-fragment of potato x-virus intended for foreign gene translation
US5780269A (en) Hybrid molecules
Chiang et al. The Mauriceville retroplasmid reverse transcriptase initiates cDNA synthesis de novo at the 3′ end of tRNAs
KR20220046693A (en) Enzymatic RNA Capping Methods
Rivera et al. Expression of bacteriophage M13 DNA in vivo. Localization of the transcription initiation and termination signal of the mRNA coding for the major capsid protein
JPH0678784A (en) Preparation of gene product
US5620849A (en) Methods and compositions for identifying inhibitors of papilloma virus replication
US7138515B2 (en) Translational activity-promoting higher-order structure
JP2002291491A (en) Rna-dna conjugate
US6610533B1 (en) Cold-shock regulatory elements, constructs thereof, and methods of use
EP1251168B1 (en) Method for improving the stability of linear DNA in cell-free in vitro transcription/translation systems
US5501970A (en) Nucleotide sequences coding for ribosome inactivating proteins