RU2000108558A - METHOD FOR PRODUCING THERMAL ENERGY - Google Patents

METHOD FOR PRODUCING THERMAL ENERGY

Info

Publication number
RU2000108558A
RU2000108558A RU2000108558/06A RU2000108558A RU2000108558A RU 2000108558 A RU2000108558 A RU 2000108558A RU 2000108558/06 A RU2000108558/06 A RU 2000108558/06A RU 2000108558 A RU2000108558 A RU 2000108558A RU 2000108558 A RU2000108558 A RU 2000108558A
Authority
RU
Russia
Prior art keywords
cathode
anode
vacuum chamber
thermal energy
time period
Prior art date
Application number
RU2000108558/06A
Other languages
Russian (ru)
Other versions
RU2240612C2 (en
Inventor
Александр Борисович Карабут
Original Assignee
Зао "Самар+"
Filing date
Publication date
Application filed by Зао "Самар+" filed Critical Зао "Самар+"
Priority to RU2000108558/06A priority Critical patent/RU2240612C2/en
Priority claimed from RU2000108558/06A external-priority patent/RU2240612C2/en
Publication of RU2000108558A publication Critical patent/RU2000108558A/en
Application granted granted Critical
Publication of RU2240612C2 publication Critical patent/RU2240612C2/en

Links

Claims (6)

1. Способ выработки тепловой энергии, по которому размещают анод и катод друг против друга в вакуумной камере, отличающийся тем, что поддерживают внутренность вакуумной камеры в одной из атмосфер водорода, дейтерия, гелия и аргона, и формируют тлеющий разряд между анодом и катодом, одновременно допуская прохождение импульсного тока, имеющего форму прямоугольной волны, между анодом и катодом.1. The method of generating thermal energy by which the anode and cathode are placed against each other in a vacuum chamber, characterized in that they maintain the inside of the vacuum chamber in one of the atmospheres of hydrogen, deuterium, helium and argon, and form a glow discharge between the anode and cathode, simultaneously allowing the passage of a pulsed current having the shape of a square wave between the anode and cathode. 2. Способ по п. 1, отличающийся тем, что импульсный ток имеет коэффициент заполнения в диапазоне 0,05-0,5. 2. The method according to p. 1, characterized in that the pulse current has a duty ratio in the range of 0.05-0.5. 3. Способ по п. 1 или 2, отличающийся тем, что плотность катодного тока равна или превышает 1 мА/см2.3. The method according to p. 1 or 2, characterized in that the cathode current density is equal to or greater than 1 mA / cm 2 . 4. Способ по п. 1, 2 или 3, отличающийся тем, что крутой, скошенный приподнятый участок, имеющий пиковое значение тока, возникает непосредственно перед концом периода времени выдачи в каждой из форм прямоугольной волны импульсного тока. 4. The method according to p. 1, 2 or 3, characterized in that a steep, beveled raised section having a peak current value occurs immediately before the end of the time period for issuing a pulse current in each of the forms of a square wave. 5. Способ по п. 4, отличающийся тем, что импульсный ток уменьшают до уровня, равного или меньшего, чем 10% пикового значения тока в период времени 40 μсек или меньше от конца периода времени выдачи. 5. The method according to p. 4, characterized in that the pulse current is reduced to a level equal to or less than 10% of the peak current value in a time period of 40 μsec or less from the end of the output time period. 6. Способ выработки тепловой энергии, по которому анод и катод размещают друг против друга в вакуумной камере, отличающийся тем, что поддерживают внутренность вакуумной камеры в одной из атмосфер водорода, дейтерия, гелия и аргона, и формируют аномальный тлеющий разряд между анодом и катодом. 6. A method of generating thermal energy, in which the anode and cathode are placed against each other in a vacuum chamber, characterized in that they maintain the inside of the vacuum chamber in one of the atmospheres of hydrogen, deuterium, helium and argon, and form an abnormal glow discharge between the anode and cathode.
RU2000108558/06A 2000-04-03 2000-04-03 Thermal power generation process RU2240612C2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2000108558/06A RU2240612C2 (en) 2000-04-03 2000-04-03 Thermal power generation process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2000108558/06A RU2240612C2 (en) 2000-04-03 2000-04-03 Thermal power generation process

Publications (2)

Publication Number Publication Date
RU2000108558A true RU2000108558A (en) 2002-02-20
RU2240612C2 RU2240612C2 (en) 2004-11-20

Family

ID=34309678

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2000108558/06A RU2240612C2 (en) 2000-04-03 2000-04-03 Thermal power generation process

Country Status (1)

Country Link
RU (1) RU2240612C2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005099321A1 (en) * 2004-04-08 2005-10-20 Silin Vjacheslaw Volodymyrovic Method and device (variants) for producing high heat energy

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2638646C1 (en) * 2017-03-06 2017-12-15 Федеральное государственное бюджетное образовательное учреждение высшего образования "Чеченский государственный университет" Method for heat energy generation
CN112530606B (en) * 2020-11-11 2022-07-26 核工业西南物理研究院 Automatic impurity gas accelerated mixing system and gas accelerated mixing control method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005099321A1 (en) * 2004-04-08 2005-10-20 Silin Vjacheslaw Volodymyrovic Method and device (variants) for producing high heat energy

Similar Documents

Publication Publication Date Title
WO2005084087A3 (en) Methods and apparatus for generating high-density plasmas with ionizational instabilities
CN114420522B (en) High-energy ion source equipment
RU2000108558A (en) METHOD FOR PRODUCING THERMAL ENERGY
US4509176A (en) Longitudinal-discharge-pulse laser with preionization obtained by corona effect
ATE341186T1 (en) METHOD AND DEVICE FOR IMPACT COMPRESSING A SUBSTANCE AND PLASMA CATHODE THEREFOR
Sereda et al. High-power IR lasers operating on Xe I transitions
GB2065362A (en) Electron beam-switched discharge for rapidly pulsed lasers
Butler et al. Optimization of excitation channels in the discharge‐excited Sr+ recombination laser
McLucas et al. Discharge heated longitudinal Sr+ recombination laser
Schreiber Performance Status of the RF-gun based injector of the TESLA Test Facility Linac
Remnev et al. Matching a double forming line to explosive-emission diode
Niimi et al. Study of low current capillary discharge for compact Soft X‐ray laser
Tarasenko et al. About the formation of a barrier discharge in a KrCl excilamp
RU2003120867A (en) METHOD FOR EXCITING PULSE LASERS ON SELF-LIMITED TRANSITIONS OF METAL ATOMS OPERATING IN THE SELF-HEATING MODE AND A DEVICE FOR ITS IMPLEMENTATION
Soldatov et al. Excitation efficiency of working transitions in copper-vapor lasers
Yongpeng et al. Laser output and multiple pinches of plasma in capillary discharge
Borisov et al. Conditions for the excitation of a wide-aperture XeCl laser with an average output radiation power of 1 kW
Bokhan et al. OVERCOMING MECHANISMS OF PULSE REPETITION FREQUENCY LIMITATION IN LASERS ON ATOM AND ION RM TRANSITIONS
Batenin et al. Features of Copper Vapor Laser Emission Excited by Pulse-Periodic HF Discharge
Beaupere et al. High Efficiency Switchless Operation Of A 0.5 J UV Preionized Excimer Laser
RU2007003C1 (en) Gas laser
Lee et al. Soft X-ray spectra of optical-field ionized helium gas by a femtosecond Ti: sapphire laser
Yu et al. Experimental study on the surface discharge optical pumping source with high repetition mode
Chebotarev et al. Kinetics of the active medium of a He—Sr+ recombination laser: 2. Achievable energy characteristics
Ohzu et al. Experimental study of self-injection locking oscillator on copper vapor laser