RU183278U1 - Устройство для нейрохирургической аспирации со спектроскопическим и электрофизиологическим контролем - Google Patents

Устройство для нейрохирургической аспирации со спектроскопическим и электрофизиологическим контролем Download PDF

Info

Publication number
RU183278U1
RU183278U1 RU2017146579U RU2017146579U RU183278U1 RU 183278 U1 RU183278 U1 RU 183278U1 RU 2017146579 U RU2017146579 U RU 2017146579U RU 2017146579 U RU2017146579 U RU 2017146579U RU 183278 U1 RU183278 U1 RU 183278U1
Authority
RU
Russia
Prior art keywords
radiation
fiber
neurosurgical
light source
aspiration
Prior art date
Application number
RU2017146579U
Other languages
English (en)
Inventor
Виктор Борисович Лощенов
Татьяна Александровна Савельева
Владимир Владимирович Волков
Кирилл Геннадиевич Линьков
Александр Викторович Бородкин
Александр Александрович Потапов
Сергей Алексеевич Горяйнов
Анна Анатольевна Огурцова
Томас Крёбер
Александер Допельштайн
Original Assignee
Федеральное государственное бюджетное учреждение науки Институт общей физики им. А.М. Прохорова Российской академии наук (ИОФ РАН)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное учреждение науки Институт общей физики им. А.М. Прохорова Российской академии наук (ИОФ РАН) filed Critical Федеральное государственное бюджетное учреждение науки Институт общей физики им. А.М. Прохорова Российской академии наук (ИОФ РАН)
Priority to RU2017146579U priority Critical patent/RU183278U1/ru
Application granted granted Critical
Publication of RU183278U1 publication Critical patent/RU183278U1/ru

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/4887Locating particular structures in or on the body
    • A61B5/489Blood vessels
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Medical Informatics (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Vascular Medicine (AREA)
  • Biophysics (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

Устройство относится к области медицинской техники, а именно к устройствам для проведения интраоперационной навигации с использованием методов оптической спектроскопии и нейрофизиологической стимуляции. Устройство содержит спектрометр, включающий полихроматор с волоконно-оптическим вводом излучения, блок регистрации с фотоприемником и программно-аппаратный модуль, узкополосный световой источник для возбуждения флуоресценции и световой источник широкополосного излучения для регистрации спектров диффузного отражения для определения степени злокачественности исследуемых тканей одновременно по нескольким параметрам для повышения точности определения границ опухоли, волоконно-оптический зонд, рабочая часть которого выполнена в одном корпусе с канюлей нейрохирургического аспиратора и может быть использована в качестве монополярного стимулятора для системы интраоперационного нейромониторинга. Устройство обеспечивает повышение точности спектроскопической диагностики в зоне нейрохирургической аспирации, а также повышает качество работы хирурга.

Description

Описание полезной модели
Полезная модель относится к области медицинской техники, а именно к устройствам для проведения интраоперационной навигации с использованием методов оптической спектроскопии и нейрофизиологической стимуляции.
Спектроскопический анализ биологических сред позволяет определять как структурные изменения тканей, так и их метаболическую активность, не повреждая сами ткани. Методы спектроскопического анализа, такие как флуоресцентная спектроскопия и спектроскопия диффузного отражения, отличаются высокой скоростью, значительной чувствительностью и хорошим пространственным разрешением, что приобретает особое значение в микрохирургии и в нейроонкологии. В современной клинической практике активно применяются различные методы интраоперационной диагностики, одним из которых является флуоресцентная навигация [А.А. Потапов, С.А. Горяйнов, В.А. Охлопков и др. [Клинические рекомендации по использованию интраоперационной флуоресцентной диагностики в хирургии опухолей головного мозга]. Журнал «Вопросы нейрохирургии» имени Н.Н. Бурденко. 2015; 79(5): 91-101] с использованием в качестве опухолевого маркера протопорфирина IX (Пп IX). Значительную диагностическую ценность представляют и такие параметры как уровень кровенаполнения и оксигенации гемоглобина в сосудах опухоли и в окружающей ткани [А.А. Потапов, С.А. Горяйнов, В.Б. Лощенов и др. [Интраоперационная комбинированная спектроскопия (оптическая биопсия) глиом головного мозга]. Журнал «Вопросы нейрохирургии» имени Н.Н. Бурденко. 2013; 77(2): 3-10]. В то время как для оценки концентрации опухолевого маркера Пп IX используется метод флуоресцентной спектроскопии (с использованием лазерного возбуждающего излучения), для оценки степени кровенаполнения и оксигенации гемоглобина необходимо производить анализ диффузно отраженного тканью излучения в широком спектральном диапазоне.
На данный момент в клинической практике интраоперационная спектроскопическая диагностика осуществляется последовательно - сначала происходит регистрация спектров флуоресценции, а затем регистрация спектров диффузного отражения - с использованием одного оптоволоконного устройства [Pablo A. Vald'es et al., Combined fluorescence and reflectance spectroscopy for in vivo quantification of cancer biomarkers in low- and high-grade glioma surgery, Journal of Biomedical Optics, November 2011, 16(11)]. Недостатком этого подхода является невозможность однозначно сопоставить область, где проводится регистрация спектров флуоресценции, и область, где проводится регистрация спектров диффузного отражения.
Известным устройством, относящимся к системам для определения границ опухоли с помощью флуоресцентной диагностики и наиболее близким к предлагаемой полезной модели является спектральное устройство для контроля и мониторинга процесса фотодинамической терапии, описанное в патенте РФ №2169590 (МПК A61N 5/06, от 27.06.2001). Устройство содержит спектрометр, включающий полихроматор с волоконно-оптическим вводом излучения, в котором установлен специальный фильтр, ослабляющий интенсивность рассеянного излучения лазера, блок регистрации и программно-аппаратный компьютерный модуль, лазер и широкополосный источник света, оснащенные устройствами ввода излучения в световод, волоконно-оптический зонд, включающий световод для доставки лазерного излучения, световод для доставки широкополосного излучения и приемный световод.
Недостатком описанного устройства является невозможность однозначно сопоставить область анализа спектроскопического зонда и область работы канюли аспиратора ввиду поочередного использования сначала устройства для спектроскопического анализа и затем устройства для удаления участков опухоли.
Известно устройство для осуществления удаления опухолей мозга с выделением границ опухоли флуоресцентной диагностикой с одновременной коагуляцией и аспирацией, описанное в патенте РФ №2510248 (МПК А61В 17/3205, от 23.04.2012). Устройство включает сапфировый зонд с продольными каналами, в которых размещены оптические волокна, одни из которых предназначены для подачи излучения, возбуждающего флуоресценцию и коагулирующего излучения в зону деструкции ткани от присоединенных источников излучения, другие предназначены для передачи излучения флуоресценции на средство, регистрирующее это излучение. Сапфировый зонд также имеет открытый канал для аспирации, соединенный с аспиратором посредством шланга. Одним из недостатков этого устройства является его форма (цилиндр), поскольку в поле зрения нейрохирургического микроскопа попадает не только дистальная часть зонда, но и рукоятка вместе с рукой хирурга, что сужает обзор операционной зоны и существенно ограничивает подвижность инструмента в операционном поле. При этом материал, из которого изготовлено устройство (сапфир), не позволяет изготавливать зонды иной формы.
Задачей настоящего технического решения является создание устройства, которое обеспечивает повышение точности спектроскопической диагностики в зоне нейрохирургической аспирации, а также повышает качество работы хирурга.
Поставленная задача решается тем, что предложенное устройство для нейрохирургической аспирации со спектроскопическим и электрофизиологическим контролем, содержащее спектрометр, источники оптического излучения и волоконно-оптический зонд, содержит рабочую часть волоконно-оптического зонда, выполненную как наконечник нейрохирургического аспиратора, что позволяет проводить спектроскопический анализ в области, совпадающей с областью аспирации тканей.
Также задача решается тем, что предложенное устройство содержит как узкополосный световой источник для возбуждения флуоресценции, так и световой источник широкополосного излучения для регистрации спектров диффузного отражения, что позволяет определять степень злокачественности исследуемых тканей одновременно по нескольким параметрам : накопление Пп IX, концентрация гемоглобина, степень оксигенации гемоглобина, оптическая плотность тканей, для повышения точности определения границ опухоли.
Также задача решается тем, что предложенное устройство изготовлено из проводящего материала и выполняет функцию монополярного стимулятора для системы интраоперационного нейромониторинга, что позволяет определять функциональность нервных тканей в исследуемой области во избежание повреждения функционально-значимых нервных тканей.
Также задача решается тем, что предложенное устройство имеет форму, позволяющую наблюдать в поле зрения нейрохирургического микроскопа только дистальный конец рабочей части, что обеспечивает максимально возможный обзор операционного поля и свободу манипуляций хирурга.
Работа устройства поясняется на фиг. 1 и фиг. 2.
На Фиг. 1 приведена блок-схема предлагаемого устройства, где:
1 - спектрометр;
2 - полихроматор;
3 - волоконно-оптический ввод;
4 - фильтр;
5 - блок регистрации;
6 - вычислительный модуль;
7 - источник узкополосного светового излучения;
8 - устройство ввода излучения;
9 - фильтр;
10 - источник широкополосного светового излучения;
11 - устройство ввода излучения;
12 - фильтр;
13 - рабочая часть волоконно-оптического зонда;
14 - световод для доставки узкополосного излучения;
15 - световод для доставки широкополосного излучения;
16 - приемный световод;
17 - канал для приемного световода;
18 - канал для аспирации;
19 - канал для световода узкополосного светового излучения;
20 - канал для световода широкополосного светового излучения;
21 - разъем для соединения с системой нейромониторинга.
На фиг. 2 приведен эскиз рабочей части предлагаемого устройства.
На фиг. 3 показаны рабочая часть и оптоволоконный зонд устройства для нейрохирургической аспирации со спектроскопическим и электрофизиологическим контролем в двух вариантах исполнения: слева - с одним осветительным каналом и одним приемным, справа - с двумя осветительными каналами и одним приемным.
На фиг. 4 приведены результаты апробации разработанного устройства на оптических фантомах.
Предлагаемое устройство содержит (Фиг. 1) спектрометр (1), включающий полихроматор (2) с волоконно-оптическим вводом излучения (3), в котором установлен фильтр (4), ослабляющий интенсивность рассеянного излучения узкополосного источника, блок регистрации (5) и вычислительный модуль (6), узкополосный источник излучения (7) и широкополосный источник света (10), оснащенные устройствами ввода излучения в световоды (8, 11) и фильтрами (9, 12), волоконно-оптический зонд с рабочей частью (13), включающий один или несколько световодов для доставки узко полосного излучения (14), один или несколько световодов для доставки широкополосного излучения (15) и один или несколько приемных световодов (16), рабочая часть волоконно-оптического зонда (13) содержит канал для приемного световода (17), канал для аспирации (18), канал для световода узкополосного излучения (19), канал для световода широкополосного излучения (20), разъем для соединения с системой нейромониторинга (21).
Предлагаемое устройство работает следующим образом. Выходящее из узкополосного источника света (7) излучение проходит через полосовой светофильтр (9), подавляющий паразитное излучение в спектральных диапазонах регистрации флуоресцентного излучения и сигнала диффузного отражения. Выходящее из широкополосного источника света (10) излучение проходит через краевой/полосно-пропускающий фильтр (12), подавляющий паразитное излучение в спектральном диапазоне возбуждения и регистрации флуоресцентного излучения. Подвергшееся фильтрации узкополосное и широкополосное излучение подается по разным каналам (14, 15) на дистальный конец рабочей части волоконно-оптического зонда (13). Рабочая часть волоконно-оптического зонда (13) выполнена как наконечник нейрохирургического аспиратора, содержащий каналы для световодов (17, 19, 20) и канал для аспирации (18), а также контакт для подключения к системе нейромониторинга (21). Оптические волокна расположены на торце рабочей части волоконно-оптического зонда в соответствии с оптимальной для конкретного использования схемой освещения и регистрации излучения.
Излучение, подвергшееся взаимодействию с биологической тканью в зоне аспирации, подается на вход спектрометра (1) посредством волоконно-оптического ввода (3), на проксимальном конце которого приемные волокна формируют линию. При этом узкополосное излучение подвергается ослаблению за счет использования полосового ослабляющего фильтра (4) для реализации возможности регистрации флуоресцентного и возбуждающего его узкополосного излучения в одном динамическом диапазоне. Излучение подвергается в полихроматоре (2) разложению в спектр, после чего поступает в блок регистрации (5). Данные из блока регистрации поступают в вычислительный модуль (6), где подвергаются обработке для определения физиологических параметров на основании анализа регистрируемых спектральных зависимостей. Полученная информация позволяет формировать рекомендации для регулировки скорости/мощности аспирации тканей. Спектроскопические характеристики дают информацию о степени озлокачествления тканей, в то время как данные нейромониторинга свидетельствуют об их функциональной целостности, что позволяет избежать удаления здоровых тканей и сохранения злокачественных.
На Фиг. 2 приведен эскиз рабочей части волоконно-оптического зонда.
На Фиг. 3 приведен внешний вид волоконно-оптического зонда в различных исполнениях.
Предложенное устройство было апробировано на образцах биологических тканей, полученных при удалении глиальной опухоли ex vivo (спектральные зависимости приведены на Фиг. 4). По результатам апробации показана способность одновременной регистрации спектральных зависимостей от биологических тканей, проведения нейромониторинга и аспирации тканей.
Таким образом, устройство обеспечивает одновременность спектроскопического анализа тканей с их аспирацией и нейромониторингом, что приводит к повышению точности спектроскопической диагностики в зоне нейрохирургической аспирации, а также повышает качество работы хирурга.

Claims (2)

1. Устройство для проведения спектроскопического анализа биологических тканей, содержащее волоконно-оптический зонд, спектрометр, включающий полихроматор с волоконно-оптическим вводом излучения, блок регистрации с фотоприемником и программно-аппаратный модуль, узкополосный световой источник для возбуждения флуоресценции и световой источник широкополосного излучения для регистрации спектров диффузного отражения для определения степени злокачественности исследуемых тканей одновременно по нескольким параметрам для повышения точности определения границ опухоли, отличающееся тем, что рабочая часть устройства выполнена в одном корпусе с канюлей нейрохирургического аспиратора.
2. Устройство по п. 1, отличающееся тем, что рабочая часть устройства выполнена из металла и используется в качестве монополярного стимулятора для системы интраоперационного нейромониторинга.
RU2017146579U 2017-12-28 2017-12-28 Устройство для нейрохирургической аспирации со спектроскопическим и электрофизиологическим контролем RU183278U1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2017146579U RU183278U1 (ru) 2017-12-28 2017-12-28 Устройство для нейрохирургической аспирации со спектроскопическим и электрофизиологическим контролем

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2017146579U RU183278U1 (ru) 2017-12-28 2017-12-28 Устройство для нейрохирургической аспирации со спектроскопическим и электрофизиологическим контролем

Publications (1)

Publication Number Publication Date
RU183278U1 true RU183278U1 (ru) 2018-09-17

Family

ID=63580757

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017146579U RU183278U1 (ru) 2017-12-28 2017-12-28 Устройство для нейрохирургической аспирации со спектроскопическим и электрофизиологическим контролем

Country Status (1)

Country Link
RU (1) RU183278U1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2767895C1 (ru) * 2021-05-13 2022-03-22 Владимир Игоревич Федоренко Оптико-хирургическое устройство для обнаружения и распознавания нейроваскулярных структур в объёме биологической ткани
WO2022190076A1 (en) * 2021-03-12 2022-09-15 Stryker European Operations Limited Neurosurgical methods and systems for detecting and removing tumorous tissue

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2213966C1 (ru) * 2002-04-16 2003-10-10 Оренбургская государственная медицинская академия Способ определения положения серийных гистотопографических срезов при топографическом исследовании анатомического объекта
WO2007115402A1 (en) * 2006-04-07 2007-10-18 Société De Commercialisation Des Produits De La Recherche Appliquée Socpra Sciences Et Génie S.E.C. Integrated cement delivery system for bone augmentation procedures and methods
WO2013052963A1 (en) * 2011-10-07 2013-04-11 Nico Corporation Tissue removal device with adjustable delivery sleeve for neurosurgical and spinal surgery applications
EP2967347A1 (en) * 2013-03-15 2016-01-20 Synaptive Medical (Barbados) Inc. Intramodal synchronization of surgical data
US20160100853A1 (en) * 2014-10-09 2016-04-14 Elwha Llc Systems and Devices for Cutting Tissue
US20170173275A1 (en) * 2014-06-25 2017-06-22 Massachusetts Institute Of Technology Optical sensor for needle-tip tissue identification and diagnosis

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2213966C1 (ru) * 2002-04-16 2003-10-10 Оренбургская государственная медицинская академия Способ определения положения серийных гистотопографических срезов при топографическом исследовании анатомического объекта
WO2007115402A1 (en) * 2006-04-07 2007-10-18 Société De Commercialisation Des Produits De La Recherche Appliquée Socpra Sciences Et Génie S.E.C. Integrated cement delivery system for bone augmentation procedures and methods
WO2013052963A1 (en) * 2011-10-07 2013-04-11 Nico Corporation Tissue removal device with adjustable delivery sleeve for neurosurgical and spinal surgery applications
EP2967347A1 (en) * 2013-03-15 2016-01-20 Synaptive Medical (Barbados) Inc. Intramodal synchronization of surgical data
US20170173275A1 (en) * 2014-06-25 2017-06-22 Massachusetts Institute Of Technology Optical sensor for needle-tip tissue identification and diagnosis
US20160100853A1 (en) * 2014-10-09 2016-04-14 Elwha Llc Systems and Devices for Cutting Tissue

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022190076A1 (en) * 2021-03-12 2022-09-15 Stryker European Operations Limited Neurosurgical methods and systems for detecting and removing tumorous tissue
RU2767895C1 (ru) * 2021-05-13 2022-03-22 Владимир Игоревич Федоренко Оптико-хирургическое устройство для обнаружения и распознавания нейроваскулярных структур в объёме биологической ткани

Similar Documents

Publication Publication Date Title
US20200155004A1 (en) Device, system and method for quantifying fluorescence and optical properties
US8649849B2 (en) Optical methods to intraoperatively detect positive prostate and kidney cancer margins
US9226731B2 (en) Optically guided needle biopsy system using multi-modal spectroscopy in combination with a transrectal ultrasound probe
US9820655B2 (en) Systems and methods for spectral analysis of a tissue mass using an instrument, an optical probe, and a Monte Carlo or a diffusion algorithm
US9179985B2 (en) Biopsy guidance by electromagnetic tracking and photonic needle
EP2725967B1 (en) An apparatus for optical analysis of an associated tissue sample
US6567690B2 (en) Method and apparatus for probe localization in brain matter
US6594518B1 (en) Device and method for classification of tissue
US20170173275A1 (en) Optical sensor for needle-tip tissue identification and diagnosis
US20090326385A1 (en) Obtaining optical tissue properties
EP2793706B1 (en) Biopsy device with integrated optical spectroscopy guidance
WO2001050955A1 (en) Improved endoscopic imaging and treatment of anatomic structures
Borisova et al. Optical biopsy of human skin-A tool for cutaneous tumours' diagnosis
RU2639037C2 (ru) Биопсийная игла с большим межволоконным расстоянием на наконечнике
RU183278U1 (ru) Устройство для нейрохирургической аспирации со спектроскопическим и электрофизиологическим контролем
US20040006274A1 (en) Method and apparatus for probe localization in brain matter
Zahra Technological advancements to reduce the influence of absorption and scattering on the optical imaging
RU2529629C1 (ru) Устройство для биопсии паренхиматозных органов с одновременным спектроскопическим контролем
Orlova et al. Algorithm for recognition of vascular structures in the biotissue volume
RU2709830C1 (ru) Устройство флуоресцентно-отражательной спектроскопии для диагностики очаговых и диффузных новообразований при проведении тонкоигольной пункционно-аспирационной биопсии
RU2510248C2 (ru) Способ удаления опухолей мозга с выделением границ опухоли флуоресцентной диагностикой с одновременной коагуляцией и аспирацией и устройство для его осуществления
Wårdell Optical Monitoring Techniques for Navigation during Stereotactic Neurosurgery.
RU2767895C1 (ru) Оптико-хирургическое устройство для обнаружения и распознавания нейроваскулярных структур в объёме биологической ткани
RU2804287C2 (ru) Способ регистрации и обработки данных оптической биопсии в динамическом режиме
US20180042485A1 (en) Intraoperative guidance system for tumor surgery

Legal Events

Date Code Title Description
QB9K Licence granted or registered (utility model)

Free format text: LICENCE FORMERLY AGREED ON 20190320

Effective date: 20190320