RU162545U1 - POSITIONING ERROR DEVICE FOR PTZ CAMERA - Google Patents

POSITIONING ERROR DEVICE FOR PTZ CAMERA Download PDF

Info

Publication number
RU162545U1
RU162545U1 RU2015129265/07U RU2015129265U RU162545U1 RU 162545 U1 RU162545 U1 RU 162545U1 RU 2015129265/07 U RU2015129265/07 U RU 2015129265/07U RU 2015129265 U RU2015129265 U RU 2015129265U RU 162545 U1 RU162545 U1 RU 162545U1
Authority
RU
Russia
Prior art keywords
camera
unit
positioning
target position
tilt
Prior art date
Application number
RU2015129265/07U
Other languages
Russian (ru)
Inventor
Иван Сергеевич Шишалов
Андрей Викторович Филимонов
Original Assignee
Общество с ограниченной ответственностью "ДиСиКон" (ООО "ДСК")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество с ограниченной ответственностью "ДиСиКон" (ООО "ДСК") filed Critical Общество с ограниченной ответственностью "ДиСиКон" (ООО "ДСК")
Priority to RU2015129265/07U priority Critical patent/RU162545U1/en
Application granted granted Critical
Publication of RU162545U1 publication Critical patent/RU162545U1/en

Links

Images

Abstract

Данное техническое решение относится к области видеонаблюдения, в частности к видеонаблюдению с использованием поворотных (PTZ) камер. Устройство уменьшения ошибки позиционирования для PTZ камеры, содержащее блок определения промежуточных позиций камеры, с возможностью записи и хранения координат промежуточных позиций камеры, блок последовательного поворота PTZ-камеры, выполненный с возможностью поворота через промежуточные точки, блок получения целевой позиции камеры, блок управления, причем блок управления соединен с блоком получения целевой позиции камеры, выход которого подключен к входу блока определения промежуточных позиций камеры, который подключен к входу блока управления, вход которого подключен к выходу блока последовательного поворота PTZ-камеры. Техническим результатом является уменьшение ошибки позиционирования камеры и увеличение повторяемости позиционирования. This technical solution relates to the field of video surveillance, in particular to video surveillance using PTZ cameras. A device for reducing positioning errors for a PTZ camera, comprising a unit for determining intermediate positions of the camera, with the ability to record and store coordinates of intermediate positions of the camera, a sequential rotation unit of a PTZ camera configured to rotate through intermediate points, a unit for obtaining a target position of the camera, a control unit, the control unit is connected to the unit for obtaining the target position of the camera, the output of which is connected to the input of the unit for determining the intermediate positions of the camera, which is connected to the input of the unit control window, the input of which is connected to the output of the sequential rotation unit of the PTZ camera. The technical result is to reduce the camera positioning error and increase the repeatability of positioning.

Description

ОБЛАСТЬ ТЕХНИКИFIELD OF TECHNOLOGY

Данное техническое решение относится к области видеонаблюдения, в частности к видеонаблюдению с использованием поворотных (PTZ) камер.This technical solution relates to the field of video surveillance, in particular to video surveillance using PTZ cameras.

ПРЕДШЕСТВУЮЩИЙ УРОВЕНЬ ТЕХНИКИBACKGROUND OF THE INVENTION

В настоящее время для видеонаблюдения за большими территориями используются ставшие повсеместно распространенными поворотные камеры (PTZ), представляющие собой устройство, которое поддерживает удаленное управление направлением взгляда и зумом. PTZ-камеры активно используются при проведении видеоконференций, являясь необходимым атрибутом конференц-зала или переговорной комнаты, при построении охранных систем и других систем видеонаблюдения. Вследствие их большой распространенности на данный момент, модельный ряд камер достаточно обширен, камеры обладают различными характеристиками и стоимостью.Currently, PTZ cameras are widely used to monitor large areas. They are a device that supports remote control of viewing direction and zoom. PTZ cameras are actively used in video conferencing, being a necessary attribute of a conference room or meeting room, when building security systems and other video surveillance systems. Due to their high prevalence at the moment, the range of cameras is quite extensive, cameras have different characteristics and cost.

При использовании поворотной камеры для видеонаблюдения важной характеристикой ее функционирования является ошибка позиционирования камеры, зависит от степени износа механизма, его начальной точности, калибровки камеры.When using a PTZ camera for video surveillance, an important characteristic of its functioning is the camera positioning error, it depends on the degree of wear of the mechanism, its initial accuracy, and camera calibration.

Из уровня техники известна статья [1], в которой описываются подходы, которые применяются в решении поставленной задачи.The prior art article is known [1], which describes the approaches that are used in solving the problem.

Синха и Поллефейс предложили устройство позиционирования для PTZ-камер [2], в котором камера сначала калибруется на малом зуме, а затем внутренние параметры камеры рассчитываются при увеличении зума. Так как калибровка осуществляется дискретно от одного значения зума кдругому, применяют кусочно-линейную интерполяцию для вычисления внутренних параметров. Использование данного способа обеспечивает потребность в большом количестве шагов калибровки для смягчения шума, что значительно увеличивает время работы.Sinha and Polleface proposed a positioning device for PTZ cameras [2], in which the camera is first calibrated at low zoom, and then the internal parameters of the camera are calculated with increasing zoom. Since calibration is performed discretely from one zoom value to another, piecewise linear interpolation is used to calculate the internal parameters. Using this method provides the need for a large number of calibration steps to mitigate noise, which significantly increases the operating time.

СУЩНОСТЬESSENCE

Данное техническое решение направлено на устранение недостатков, свойственных решениям, известным из уровня техники.This technical solution is aimed at eliminating the disadvantages inherent in solutions known from the prior art.

Техническим результатом является уменьшение ошибки и увеличение повторяемости позиционирования.The technical result is to reduce errors and increase the repeatability of positioning.

Данный технический результат достигается за счет использования промежуточных точек позиционирования, которые уменьшают эффект инерции и «перелета» необходимой позиции. При уменьшении ошибки позиционирования повышается точность позиционирования.This technical result is achieved through the use of intermediate positioning points, which reduce the effect of inertia and "flight" of the required position. By reducing the positioning error, the positioning accuracy is improved.

Еще одним техническим результатом является повторяемость результатов позиционирования. В итоге ошибка позиционирования становится систематической и одинаковой.Another technical result is the repeatability of positioning results. As a result, the positioning error becomes systematic and the same.

Устройство уменьшения ошибки позиционирования для PTZ камеры, содержащее блок определения промежуточных позиций камеры, с возможностью записи и хранения координат промежуточных позиций камеры, блок последовательного поворота PTZ-камеры, выполненный с возможностью поворота через промежуточные точки блок получения целевой позиции камеры, блок управления, причем блок управления соединен с блоком получения целевой позиции камеры, выход которого подключен к входу блока определения промежуточных позиций камеры, который подключен к входу блока управления, вход которого подключен к выходу блока последовательного поворота PTZ-камеры.A device for reducing positioning errors for a PTZ camera, comprising a unit for determining intermediate positions of the camera, with the ability to record and store coordinates of intermediate positions of the camera, a sequential rotation unit of a PTZ camera configured to rotate through intermediate points a unit for obtaining a target position of the camera, a control unit, the control is connected to the unit for obtaining the target position of the camera, the output of which is connected to the input of the unit for determining the intermediate positions of the camera, which is connected to the input of the unit Single control, whose input is connected to the output block sequential rotation PTZ-camera.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙBRIEF DESCRIPTION OF THE DRAWINGS

Признаки и преимущества настоящего технического решения станут очевидными из приводимого ниже подробного описания и прилагаемых чертежей, на которых:The signs and advantages of this technical solution will become apparent from the following detailed description and the accompanying drawings, in which:

На Фиг. 1 - приведена блок-схема устройства;In FIG. 1 - shows a block diagram of a device;

ПОДРОБНОЕ РАСКРЫТИЕ ТЕХНИЧЕСКОГО РЕШЕНИЯDETAILED DISCLOSURE OF TECHNICAL SOLUTION

Ниже будут описаны понятия и определения, необходимые для подробного раскрытия осуществляемого технического решения.Below will be described the concepts and definitions necessary for the detailed disclosure of the ongoing technical solution.

Панорамный угол (угол прецессии, Pan) - один из углов Эйлера, описывающий поворот объекта вокруг оси Z (более подробно в источнике [9]). Данный угол соответствует повороту объекта в собственной горизонтальной плоскости.A panoramic angle (precession angle, Pan) is one of the Euler angles that describes the rotation of an object around the Z axis (for more details, see [9]). This angle corresponds to the rotation of the object in its own horizontal plane.

Угол наклона (угол нутации, Tilt) - один из углов Эйлера, описывающий поворот объекта вокруг оси Y (более подробно в источнике [9]). Данный угол соответствует повороту объекта в собственной вертикальной плоскости.The angle of inclination (nutation angle, Tilt) is one of the Euler angles that describes the rotation of an object around the Y axis (for more details, see [9]). This angle corresponds to the rotation of the object in its own vertical plane.

Ошибка позиционирования - разница между целевой позицией камеры и фактическим положением камеры после позиционирования в целевую позицию. Выражается двумя углами: панорамным (соответствующим разнице между панорамными углами фактической и целевой позиции) и углом наклона (соответствующим разнице между углами наклона фактической и целевой позиции).Positioning error - the difference between the target position of the camera and the actual position of the camera after positioning in the target position. It is expressed by two angles: panoramic (corresponding to the difference between the panoramic angles of the actual and target position) and the angle of inclination (corresponding to the difference between the angle of inclination of the actual and target position).

Повторяемость результата - характеристика, отражающая вероятность повторения результата эксперимента при соблюдении определенного набора начальных условий.Repeatability of a result is a characteristic that reflects the probability of a repetition of the result of an experiment subject to a certain set of initial conditions.

Повторяемость результата позиционирования - характеристика, отражающая вероятность достижения одних и тех же величин ошибки позиционирования при сохранении целевой позиции камеры и изменении исходной позиции.The repeatability of the positioning result is a characteristic that reflects the probability of achieving the same values of the positioning error while maintaining the target position of the camera and changing the initial position.

В стандартном режиме позиционирования, при необходимости повернуть камеру, блок управления 101 (Фиг. 1) посылает блоку последовательного поворота PTZ-камеры 103 команду поворота из исходной позиции в целевую позицию:In the standard positioning mode, if necessary, rotate the camera, the control unit 101 (Fig. 1) sends the sequential rotation unit of the PTZ camera 103 a rotation command from the starting position to the target position:

Figure 00000002
Figure 00000002

Где Pos1(Pan1;Tilt1) - исходная позиция камеры, которая характеризуется панорамным углом Pan1 и углом наклона Tilt1, PosD1(PanD+PanEr1; TiltD+TiltEr1) - позиция камеры при движении камеры из точки 1 в целевую позицию, она отличается от требуемой целевой позиции PosD(PanD; TiltD) на величину ошибки позиционирования.Where Pos 1 (Pan 1 ; Tilt 1 ) is the initial position of the camera, which is characterized by the panoramic angle Pan 1 and the angle of inclination Tilt 1 , Pos D1 (Pan D + Pan Er1 ; Tilt D + Tilt Er1 ) is the camera position when the camera moves from a point 1 to the target position, it differs from the required target position Pos D (Pan D ; Tilt D ) by the value of the positioning error.

При этом поворот в ту же целевую позицию из другого исходного положения в общем случае приводит к другим ошибкам позиционирования:In this case, turning to the same target position from a different starting position generally leads to other positioning errors:

Figure 00000003
Figure 00000003

Pos2(Pan2;Tilt2) - вторая начальная позиция ориентации камеры, отличающаяся от первой значениями панорамного угла и угла наклона, PosD2(PanD+PanEr2;TiltD+TiltEr2) - ориентация камеры при приходе в целевую позицию из исходной позиции 2, с другими значениями ошибки по панорамному углу и углу наклона. Получившаяся позиция так же отличается от требуемого целевого направления обзора камеры.Pos 2 (Pan 2 ; Tilt 2 ) - the second initial position of the camera orientation, different from the first values of the panoramic angle and tilt angle, Pos D2 (Pan D + Pan Er2 ; Tilt D + Tilt Er2 ) - the orientation of the camera when it comes to the target position from starting position 2, with other error values for the panoramic angle and angle of inclination. The resulting position also differs from the desired target direction of the camera view.

При таком подходе разброс значений PanEr; TiltEr может достигать существенных значений, причем для камер с различными механизмами поворота ошибка будет составлять от 0,05 градуса до 0,5 градусов. Различные механизмы поворота описаны в [4].With this approach, the scatter of Pan Er values; Tilt Er can reach significant values, and for cameras with different rotation mechanisms, the error will be from 0.05 degrees to 0.5 degrees. Various rotation mechanisms are described in [4].

В данном техническом решении предлагается введение, по крайней мере, одной дополнительной позиции через которую проходит камера перед достижением целевой позиции, позволяющее уменьшить ошибку позиционирования:This technical solution proposes the introduction of at least one additional position through which the camera passes before reaching the target position, which allows to reduce the positioning error:

Figure 00000004
Figure 00000004

Аналогично предыдущему:Similar to the previous one:

Pos1(Pan1; Tilt1) - первая исходная позиция.Pos 1 (Pan 1 ; Tilt 1 ) - the first starting position.

PosInt1(PanInt+PanEr1; TiltInt+TiltEr1) - промежуточная позиция с собственной ошибкой позиционирования при перепозиционировании из первой исходной позиции.Pos Int1 (Pan Int + Pan Er1 ; Tilt Int + Tilt Er1 ) - an intermediate position with its own positioning error when repositioning from the first starting position.

PosD1(PanD+PanMEr1; TiltD+TiltMEr1) - конечная (целевая) позиция при перепозиционировании из промежуточной позиции.Pos D1 (Pan D + Pan MEr1 ; Tilt D + Tilt MEr1 ) - the final (target) position when repositioning from an intermediate position.

Pos2(Pan2; Tilt2) - вторая исходная позиция, отличающаяся от первой исходной позиции.Pos 2 (Pan 2 ; Tilt 2 ) - second starting position, different from the first starting position.

PoSInt2(PanInt+PanEr2; TiltInt+TiltEr2) - промежуточная позиция с собственной ошибкой позиционирования при перепозиционировании из второй исходной позиции.PoS Int2 (Pan Int + Pan Er2 ; Tilt Int + Tilt Er2 ) - an intermediate position with its own positioning error when repositioning from the second initial position.

PosD2(PanD+PanMEr2; TiltD+TiltMEr2) - конечная позиция при приходе из промежуточной позиции.Pos D2 (Pan D + Pan MEr2 ; Tilt D + Tilt MEr2 ) - the end position when coming from an intermediate position.

Т.к. в конечную точку PTZ-камера позиционируется из промежуточной точки, координаты которой в двух описываемых маршрутах движения могут отличаться не более, чем на ошибку позиционирования (от 0,05 до 0,5 градуса), конечная ошибка PanMEr; TiltMEr будет существенно меньше, и для камер с точностью позиционирования 0,05 градуса может составлять уже около 0,01 градуса.Because The PTZ camera is positioned at the end point from an intermediate point, the coordinates of which in the two described movement routes can differ by no more than a positioning error (from 0.05 to 0.5 degrees), the final error is Pan MEr ; Tilt MEr will be significantly smaller, and for cameras with a positioning accuracy of 0.05 degrees, it can already be about 0.01 degrees.

Необходимый эффект достигается ценой некоторой потери времени, необходимого на промежуточное позиционирование и контроль установки поворотного механизма в промежуточную позицию. Однако для многих задач точность, которая достигается за счет уменьшения ошибки позиционирования, является приоритетным фактором. Кроме того, современные камеры обладают очень большой скоростью позиционирования, что сводит временные затраты на дополнительное позиционирование к минимуму.The necessary effect is achieved at the cost of some loss of time required for intermediate positioning and control of the installation of the rotary mechanism in the intermediate position. However, for many tasks, accuracy, which is achieved by reducing positioning error, is a priority. In addition, modern cameras have a very high positioning speed, which reduces the time spent on additional positioning to a minimum.

Согласно Фиг. 1, устройство для реализации технического решения включает в себя блок управления 101. Блок управления 101 может быть сконфигурировано как клиент, сервер, мобильное устройство или любое другое вычислительное устройство, которое взаимодействует с данными в системе совместной работы. В самой базовой конфигурации блок управления 101, как правило, включает в себя, по меньшей мере, один процессор и блок хранения данных. В зависимости от точной конфигурации и типа вычислительного устройства системная память может быть энергозависимой (например, оперативное запоминающее устройство (ОЗУ, RAM)), энергонезависимой (например, постоянное запоминающее устройство (ПЗУ, ROM)) или некоторой их комбинацией. Блок хранения данных, как правило, включает в себя одну или более прикладных программ и может включать в себя данные программ.According to FIG. 1, a device for implementing a technical solution includes a control unit 101. The control unit 101 may be configured as a client, server, mobile device or any other computing device that interacts with data in a collaboration system. In the most basic configuration, the control unit 101 typically includes at least one processor and a data storage unit. Depending on the exact configuration and type of computing device, system memory can be volatile (e.g., random access memory (RAM)), non-volatile (e.g. read only memory (ROM)), or some combination thereof. The data storage unit typically includes one or more application programs and may include program data.

Функциональное взаимодействие блоков происходит следующим образом:The functional interaction of the blocks is as follows:

блок управления 101 получает целевую позицию поворота PTZ-камеры с блока получения целевой позиции камеры 104;the control unit 101 obtains the target rotation position of the PTZ camera from the block to obtain the target position of the camera 104;

Под целевой позицией понимается позиция камеры, задаваемая программой управления камерой или оператором. Таким образом, целевая позиция поворота PTZ-камеры передается блоку управления 101 из блока получения целевой позиции камеры 104. Сущность технического решения не зависит от способа получения целевой позиции.The target position is understood as the camera position defined by the camera control program or the operator. Thus, the target rotation position of the PTZ camera is transmitted to the control unit 101 from the unit for obtaining the target position of the camera 104. The essence of the technical solution does not depend on the method of obtaining the target position.

блок управления 101 отправляет блоку определения промежуточных позиций 102 команду на определение, по крайней мере, одной промежуточной позиции камеры и ее координат на основе данных о целевой позиции поворота камеры;the control unit 101 sends a command to the intermediate position determination unit 102 to determine at least one intermediate position of the camera and its coordinates based on the target rotation position of the camera;

Промежуточные позиции и их координаты блок определения промежуточных позиций 102 определяет путем проведения тестирования устройства, либо на основании представлений об конфигурации поворотного механизма камеры. При проведении тестирования для получения оптимальных параметров промежуточных точек могут использоваться алгоритмы глобальной оптимизации [6, 7, 8].Intermediate positions and their coordinates are determined by the intermediate position determination unit 102 by testing the device, or based on ideas about the configuration of the camera rotary mechanism. During testing, to obtain optimal parameters of intermediate points, global optimization algorithms can be used [6, 7, 8].

Промежуточные позиции могут быть определены через абсолютные координаты или через относительные координаты.Intermediate positions can be defined through absolute coordinates or through relative coordinates.

Количество промежуточных позиций зависит от требуемой скорости и точности позиционирования. Чем выше требуется скорость позиционирования, тем меньше должно быть промежуточных точек позиционирования, при этом, в некоторых случаях может быть достаточно одной промежуточной точки позиционирования. Также из общих соображений очевидно, что увеличение количества промежуточных точек сверх определенного предела не приведет к увеличению точности позиционирования.The number of intermediate positions depends on the required speed and positioning accuracy. The higher the positioning speed is required, the less intermediate positioning points should be, and in some cases one intermediate positioning point may be sufficient. It is also obvious from general considerations that increasing the number of intermediate points beyond a certain limit will not increase the accuracy of positioning.

Скорость и точность позиционирования могут задаваться заранее в зависимости от конкретного способа применения камеры.Speed and positioning accuracy can be set in advance, depending on the specific application of the camera.

В некоторых вариантах определения промежуточных точек строят автоматическую процедуру вычисления получаемой точности позиционирования при заданной скорости и наоборот, получаемой скорости позиционирования при необходимой точности.In some embodiments, the definition of intermediate points build an automatic procedure for calculating the resulting positioning accuracy at a given speed and vice versa, the resulting positioning speed at the required accuracy.

В частном случае, тестирование с целью определения промежуточных позиций может происходить следующим образом:In a particular case, testing to determine intermediate positions can occur as follows:

1. Блок управления 101 отправляет команду блоку получения целевой позиции камеры 104 определить целевую позицию камеры случайным образом.1. The control unit 101 sends a command to the unit to obtain the target position of the camera 104 to determine the target position of the camera at random.

2. Затем блок управления 101 направляет блоку последовательного поворота PTZ-камеры 103 команду на перемещение в произвольную точку, затем сразу направляет команду возвращения блоку получения целевой позиции камеры 104 в целевую позицию по определенному алгоритму позиционирования, проводя замер точности и скорости позиционирования.2. Then, the control unit 101 sends the sequential rotation block to the PTZ camera 103 a command to move to an arbitrary point, then immediately sends the command to return to the block to obtain the target position of the camera 104 to the target position according to a specific positioning algorithm, measuring accuracy and positioning speed.

3. После чего блок управления 101 изменяет алгоритм позиционирования и снова проводит измерения точности позиционирования.3. After that, the control unit 101 changes the positioning algorithm and again takes measurements of positioning accuracy.

При изменении алгоритма позиционирования подразумевается как выбор другого алгоритма, так и настройка текущего действующего.When changing the positioning algorithm, it implies both the choice of another algorithm and the setting of the current one.

При этом могут использоваться различные стратегии изменения алгоритма позиционирования, в том числе наиболее простые. Приведем пример простой стратегии определения алгоритма позиционирования: блок управления 101 выбирает одну промежуточную позицию, отличающуюся от целевой по панорамному углу и углу наклона на величину А. Затем при помощи алгоритма глобальной оптимизации [6, 7, 8] для одномерной функции выбирают такое значение А, которое соответствует минимальной ошибке позиционирования.In this case, various strategies for changing the positioning algorithm can be used, including the simplest ones. Let us give an example of a simple strategy for determining a positioning algorithm: the control unit 101 selects one intermediate position that differs from the target by the panoramic angle and angle of inclination by A. Then, using the global optimization algorithm [6, 7, 8], for the one-dimensional function, choose this value A, which corresponds to a minimum positioning error.

Для определения ошибки позиционирования могут использоваться алгоритмы компьютерного зрения, например, реализующие выделение опорных точек на двух кадрах и определение смещения опорных точек между кадрами. Поиск опорных точек может быть произведен, как указано в источнике информации [5]. В частном случае, могут использоваться два изображения - первое, полученное в целевой точке в начальный момент времени, и второе, полученное в целевой позиции после позиционирования из промежуточной позиции. Далее эти изображения сравниваются, и определяется ошибка позиционирования.To determine the positioning error, computer vision algorithms can be used, for example, which implement the selection of control points on two frames and the determination of the displacement of control points between frames. The search for reference points can be performed as indicated in the information source [5]. In the particular case, two images can be used - the first obtained at the target point at the initial moment of time, and the second obtained at the target position after positioning from an intermediate position. Next, these images are compared and a positioning error is determined.

блок управления 101 направляет команду блоку последовательного поворота PTZ-камеры 103 на последовательный поворот в целевую позицию через вышеупомянутые промежуточные позиции.the control unit 101 sends the command to the sequential rotation unit of the PTZ camera 103 to sequentially rotate to the target position through the aforementioned intermediate positions.

После получения целевой позиции и вычисления набора промежуточных позиций, блок управления 101 направляет команду блоку последовательного поворота PTZ-камеры 103 на последовательный поворот в целевую позицию через первую промежуточную позицию, затем, при ее наличии, во вторую, и так далее. Последним шагом будет поворот камеры в целевую позицию.After receiving the target position and calculating a set of intermediate positions, the control unit 101 sends the command to the sequential rotation unit of the PTZ camera 103 to sequentially rotate to the target position through the first intermediate position, then, if there is one, to the second, and so on. The final step is to rotate the camera to the target position.

Блок управления 101 может иметь дополнительные особенности или функциональные возможности. Например, блок управления 101 может также включать в себя дополнительные модули хранения данных (съемные и несъемные), такие как, например, магнитные диски, оптические диски или лента. Компьютерные носители данных могут включать в себя энергозависимые и энергонезависимые, съемные и несъемные носители, реализованные любым способом или при помощи любой технологии для хранения информации, такой как машиночитаемые инструкции, структуры данных, программные модули или другие данные. Блок управления 101 является примером компьютерных носителей данных. Компьютерные носители данных включают в себя, но не в ограничительном смысле, оперативное запоминающее устройство (ОЗУ), постоянное запоминающее устройство (ПЗУ), электрически стираемое программируемое ПЗУ (EEPROM), флэш-память или память, выполненную по другой технологии, ПЗУ на компакт-диске (CD-ROM), универсальные цифровые диски (DVD) или другие оптические запоминающие устройства, магнитные кассеты, магнитные ленты, хранилища на магнитных дисках или другие магнитные запоминающие устройства, или любую другую среду, которая может быть использована для хранения желаемой информации и к которой может получить доступ блок управления 101.The control unit 101 may have additional features or functionality. For example, the control unit 101 may also include additional data storage modules (removable and non-removable), such as, for example, magnetic disks, optical disks, or tape. Computer storage media may include volatile and non-volatile, removable and non-removable media implemented in any way or using any technology for storing information, such as machine-readable instructions, data structures, program modules or other data. The control unit 101 is an example of computer storage media. Computer storage media includes, but is not limited to, random access memory (RAM), read-only memory (ROM), electrically erasable programmable read-only memory (EEPROM), flash memory or other memory technology, compact ROM a disc (CD-ROM), universal digital disks (DVDs) or other optical storage devices, magnetic tapes, magnetic tapes, magnetic disk storage or other magnetic storage devices, or any other medium that may be used on to store the desired information and which can be accessed by the control unit 101.

Блок управления 101 содержит коммуникационные соединения, которые позволяют устройству связываться с другими вычислительными устройствами. Коммуникационное соединение является примером коммуникационной среды. Как правило, коммуникационная среда может быть реализована при помощи машиночитаемых инструкций, структур данных, программных модулей или других данных в модулированном информационном сигнале, таком как несущая волна, или в другом транспортном механизме, и включает в себя любую среду доставки информации. Термин «модулированный информационный сигнал» означает сигнал, одна или более из его характеристик изменены или установлены таким образом, чтобы закодировать информацию в этом сигнале. Для примера, но без ограничения, коммуникационные среды включают в себя проводные среды, такие как проводная сеть или прямое проводное соединение. Термин «машиночитаемый носитель», как употребляется в этом документе, включает в себя как носители данных, так и коммуникационные среды.The control unit 101 contains communication connections that allow the device to communicate with other computing devices. Communication connection is an example of a communication environment. Typically, a communication medium can be implemented using computer-readable instructions, data structures, program modules or other data in a modulated information signal, such as a carrier wave, or in another transport mechanism, and includes any information delivery medium. The term "modulated information signal" means a signal, one or more of its characteristics are changed or set in such a way as to encode information in this signal. By way of example, but without limitation, communication media include wired media such as a wired network or a direct wired connection. The term “machine-readable medium”, as used herein, includes both storage media and communication media.

Элементы данного устройства находятся в конструктивном единстве и функциональной взаимосвязи, а их совместное использование приводит к созданию нового устройства с новой функцией. Таким образом, конструкция выполняется в жесткой конструкции, все блоки которой связаны, в любом исполнении, не влияющим на сущность технического решения.Elements of this device are in constructive unity and functional relationship, and their joint use leads to the creation of a new device with a new function. Thus, the design is performed in a rigid structure, all the blocks of which are connected, in any design, without affecting the essence of the technical solution.

Блоки, используемые в устройстве, могут быть реализованы с помощью электронных компонент, используемых для создания цифровых интегральных схем. Не ограничиваюсь, могут быть использоваться микросхемы, логика работы которых определяется при изготовлении, или программируемые логические интегральные схемы (ПЛИС), логика работы которых задается посредством программирования. Для программирования используются программаторы и отладочные среды, позволяющие задать желаемую структуру цифрового устройства в виде принципиальной электрической схемы или программы на специальных языках описания аппаратуры: Verilog, VHDL, AHDL и др. Альтернативой ПЛИС являются: программируемые логические контроллеры (ПЛК), базовые матричные кристаллы (БМК), требующие заводского производственного процесса для программирования; ASIC - специализированные заказные большие интегральные схемы (БИС), которые при мелкосерийном и единичном производстве существенно дороже.The blocks used in the device can be implemented using electronic components used to create digital integrated circuits. Not limited to, can be used microcircuits, the logic of which is determined during manufacture, or programmable logic integrated circuits (FPGA), the logic of which is set by programming. For programming, programmers and debugging environments are used that allow you to specify the desired structure of a digital device in the form of a circuit diagram or a program in special equipment description languages: Verilog, VHDL, AHDL, etc. Alternative FPGAs are: programmable logic controllers (PLCs), base matrix crystals ( BMK) requiring a factory production process for programming; ASIC - specialized custom large integrated circuits (LSI), which are much more expensive in small-scale and single-unit production.

Также блоки могут быть реализованы с помощью постоянных запоминающих устройств (см. Лебедев О.Н. Микросхемы памяти и их применение. - М.: Радио и связь, 1990. - 160 с.; Большие интегральные схемы запоминающих устройств: Справочник / А.Ю. Горденов и др. - М.: Радио и связь, 1990. - 288 с.).Blocks can also be implemented using read-only memory devices (see O. Lebedev. Memory chips and their application. - M.: Radio and communications, 1990. - 160 p .; Large integrated circuits of memory devices: Reference / A.Yu. Gordenov et al. - M.: Radio and Communications, 1990. - 288 p.).

Таким образом, реализация всех используемых блоков достигается стандартными средствами, базирующимися на классических принципах реализации основ вычислительной техники.Thus, the implementation of all used blocks is achieved by standard means based on the classical principles of implementing the foundations of computer technology.

ПРИМЕРЫ РЕАЛИЗАЦИИEXAMPLES OF IMPLEMENTATION

Пусть имеется модель камеры, допускающая возможность позиционирования с различными скоростями. При этом известно, что в силу инерционности механизма, попытка позиционирования камеры в точку (Pan, Tilt) приводит к позиционированию в точку (Pan+Perr, Tilt+Terr), где (Perr, Terr) - ошибка позиционирования, величина которой зависит от скорости движения камеры в точку позиционирования, а направление зависит от вектора движения, которым обладала камера в момент достижения целевой позиции. Таким образом, позиционирование с максимальной скоростью приводит к появлению ошибки максимальной величины. Направление ошибки так же непредсказуемо, поскольку зависит от позиции, в которой камера находилась до начала позиционирования. Позиционирование с малой скоростью уменьшило бы ошибку, но многократно увеличило бы время позиционирования в случае, если начальная позиция камеры и целевая позиция существенно отличаются. В ходе тестирования возможностей поворотного механизма камеры выяснилось, что для достижения минимальной ошибки позиционирования достаточно определить одну промежуточную точку, отличающуюся от целевой позиции на один градус по панорамному углу и углу наклона и осуществлять движение из промежуточной позиции в целевую с минимальной скоростью. При этом увеличение расстояния между целевой позицией и промежуточной не приводит к уменьшению ошибки, но, естественно, приводит к увеличению времени позиционирования. В то же время, дальнейшее сокращение расстояния приводит к увеличению ошибки позиционирования. Таким образом, расстояние в один градус по двум углам является оптимальным с точки зрения уменьшения ошибки позиционирования.Let there be a camera model that allows positioning at different speeds. It is also known that due to the inertia of the mechanism, an attempt to position the camera at a point (Pan, Tilt) leads to positioning at a point (Pan + Perr, Tilt + Terr), where (Perr, Terr) is a positioning error, the magnitude of which depends on the speed the camera’s movement to the positioning point, and the direction depends on the motion vector that the camera possessed when it reached the target position. Thus, positioning at maximum speed results in a maximum error. The direction of the error is also unpredictable, because it depends on the position in which the camera was before the start of positioning. Positioning at a low speed would reduce the error, but would significantly increase the positioning time if the initial position of the camera and the target position are significantly different. During testing the capabilities of the camera’s rotary mechanism, it turned out that in order to achieve the minimum positioning error, it is enough to determine one intermediate point that differs from the target position by one degree in the panoramic angle and angle of inclination and move from the intermediate position to the target one with a minimum speed. Moreover, an increase in the distance between the target position and the intermediate one does not lead to a decrease in the error, but, of course, leads to an increase in the positioning time. At the same time, a further reduction in distance leads to an increase in positioning error. Thus, a distance of one degree at two angles is optimal in terms of reducing positioning errors.

Далее рассматривается пример реализации технического решения, в котором присутствует одна промежуточная точка (Pan - 1°, Tilt - 1°).The following is an example of the implementation of a technical solution in which there is one intermediate point (Pan - 1 °, Tilt - 1 °).

Определение промежуточной позиции (Pan - 1°, Tilt - 1°) дано в абсолютных координатах камеры, но также может быть определено в относительных координатах. При этом, если исходная позиция камеры была (Pисх, Tисх), то относительная позиция промежуточной точки будет (Pan - 1 - Рисх, Tilt - 1 - Тисх) и будет соответствовать смещению, на которое подлежит повернуть камеру для достижения промежуточной позиции. Аналогично, координаты целевой позиции относительно промежуточной позиции будут (1,1).The definition of the intermediate position (Pan - 1 °, Tilt - 1 °) is given in the absolute coordinates of the camera, but can also be determined in relative coordinates. At the same time, if the initial position of the camera was (Pxx, Txx), then the relative position of the intermediate point will be (Pan - 1 - Figx, Tilt - 1 - Txx) and will correspond to the offset by which the camera should be rotated to reach the intermediate position. Similarly, the coordinates of the target position relative to the intermediate position will be (1,1).

Предварительно, получают целевую позицию (Pan, Tilt). Далее определяют одну промежуточную позицию (Pan - 1°, Tilt - 1°), после чего поворачивают камеру с максимальной скоростью из исходной позиции в промежуточную. Из промежуточной позиции поворачивают камеру в целевую позицию с минимальной скоростью.Previously, get the target position (Pan, Tilt). Next, one intermediate position is determined (Pan - 1 °, Tilt - 1 °), after which the camera is rotated at maximum speed from the initial position to the intermediate. From the intermediate position, turn the camera to the target position with minimal speed.

Результатом такой последовательности действий будет уменьшение ошибки позиционирования в целевой точке, поскольку движение в нее осуществлялось с минимальной скоростью. При этом время позиционирования вырастет несущественно, поскольку с минимальной скоростью камера двигалась лишь короткий промежуток траектории позиционирования, а именно путь в один градус по панорамному углу и углу наклона. Кроме того, направление уменьшенной ошибки будет одинаковым, поскольку вектор движения камеры в момент достижения целевой позиции будет одним и тем же, что позволит перевести ошибку в разряд систематических, учесть и таким образом полностью нивелировать.The result of this sequence of actions will be a reduction in positioning error at the target point, since the movement into it was carried out at a minimum speed. At the same time, the positioning time will increase insignificantly, since with a minimum speed the camera moved only a short interval of the positioning trajectory, namely, the path of one degree along the panoramic angle and tilt angle. In addition, the direction of the reduced error will be the same, since the camera’s vector of movement at the moment of reaching the target position will be the same, which will allow translating the error into a systematic category, taking into account and thus completely leveling.

В примере реализации с двумя промежуточными точками предварительно получают целевую позицию, после чего определяют две промежуточные позиции. Первая позиция (Pan - 1°, Tilt - 1°), вторая позиция (Pan, Tilt - 1°). Затем осуществляют позиционирование в первую промежуточную позицию с максимальной скоростью, после чего происходит позиционирование во вторую промежуточную позицию с минимальной скоростью. В итоге осуществляют позиционирование в целевую позицию с минимальной скоростью.In an example implementation with two intermediate points, the target position is first obtained, after which two intermediate positions are determined. The first position (Pan - 1 °, Tilt - 1 °), the second position (Pan, Tilt - 1 °). Then they are positioned in the first intermediate position with maximum speed, after which they are positioned in the second intermediate position with minimum speed. As a result, they are positioned at the target position with minimal speed.

Специалисту в данном уровне техники, очевидно, что технический результат достигается при использовании одной промежуточной точки. При увеличении количества промежуточных точек, ошибка позиционирования уменьшается.One skilled in the art will appreciate that a technical result is achieved using one intermediate point. As the number of intermediate points increases, the positioning error decreases.

Кроме технического результата, описанного для способа с одной промежуточной точкой, данное устройство имеет результатом дальнейшее уменьшение ошибки позиционирования, связанное с тем, что на двух последних шагах движение осуществляется только по одному из углов и отсутствует ошибка, связанная с неточной синхронизацией приводов механизма позиционирования, осуществляющих движение по каждому из углов.In addition to the technical result described for the method with one intermediate point, this device results in a further reduction in positioning error due to the fact that in the last two steps the movement is carried out only in one of the angles and there is no error associated with inaccurate synchronization of the positioning mechanism drives movement along each of the corners.

Настоящее подробное описание составлено с приведением различных не имеющих ограничительного и исчерпывающего характера вариантов осуществления. В то же время, специалистам, имеющим средний уровень компетентности в рассматриваемой области техники, очевидно, что различные замены, модификации или сочетания любых раскрытых здесь вариантов осуществления (в том числе частично) могут быть воспроизведены в пределах объема настоящего технического решения. Таким образом, подразумевается и понимается, что настоящее описание технического решения включает дополнительные варианты осуществления, суть которых не изложена здесь в явно выраженной форме. Такие варианты осуществления могут быть получены путем, например, сочетания, модификации или преобразования каких-либо действий, компонентов, элементов, свойств, аспектов, характеристик, ограничений и пр., относящихся к приведенным здесь и не имеющим ограничительного характера вариантам осуществления.The present detailed description is made up of various non-limiting and exhaustive embodiments. At the same time, for specialists having an average level of competence in the considered field of technology, it is obvious that various replacements, modifications or combinations of any of the embodiments disclosed herein (including partially) can be reproduced within the scope of this technical solution. Thus, it is understood and understood that the present description of the technical solution includes additional embodiments, the essence of which is not set forth here in an explicit form. Such embodiments may be obtained, for example, by combining, modifying, or transforming any actions, components, elements, properties, aspects, characteristics, limitations, etc., related to the embodiments presented herein and not being restrictive.

ИСПОЛЬЗУЕМЫЕ ИСТОЧНИКИUSED SOURCES

1. «Keeping a Pan-Tilt-Zoom Camera Calibrated)), авторы: Ziyan Wu, Richard J. Radke, опубликовано: IEEE Trans. Pattern Anal. Mach. Intell. - 2013.1. “Keeping a Pan-Tilt-Zoom Camera Calibrated)), authors: Ziyan Wu, Richard J. Radke, published: IEEE Trans. Pattern Anal. Mach. Intell - 2013.

2. S.N. Sinha and M. Pollefeys. Pan-tilt-zoom camera calibration and high-resolution mosaic generation. Computer Vision and Image Understanding, 103(3): 170-183, Sept. 2006.2. S.N. Sinha and M. Pollefeys. Pan-tilt-zoom camera calibration and high-resolution mosaic generation. Computer Vision and Image Understanding, 103 (3): 170-183, Sept. 2006.

3. M. Sarkis, C. Senft, and K. Diepold. Calibrating an Automatic Zoom Camera With Moving Least Squares. IEEE Transactions on Automation Science and Engineering, 6(3): 492-503, July 2009.3. M. Sarkis, C. Senft, and K. Diepold. Calibrating an Automatic Zoom Camera With Moving Least Squares. IEEE Transactions on Automation Science and Engineering, 6 (3): 492-503, July 2009.

4. Интернет-ресурс: http://www.aktivsb.ru/article-info1052.html4. Internet resource: http://www.aktivsb.ru/article-info1052.html

5. Компьютерное зрение современный подход Computer Vision: А Modern Approach Авторы: Дэвид А. Форсайт, Жан Понс Переводчики: А. Назаренко, И. Дорошенко Языки: Русский Издательство: Вильяме ISBN 5-8459-0542-7, 0-13-085198-1; 2004 г.5. Computer vision, a modern approach Computer Vision: A Modern Approach Authors: David A. Forsyth, Jean Pons Translators: A. Nazarenko, I. Doroshenko Languages: Russian Publisher: William ISBN 5-8459-0542-7, 0-13-085198 -one; 2004 year

6. Стронгин Р.Г. Численные методы в многоэкстремальных задачах. "Оптимизация и исследование операций", Главная редакция физико-математической литературы издательства "Наука", М., 1978, 240 стр.6. Strongin R.G. Numerical methods in multiextremal problems. "Optimization and investigation of operations", The main edition of the physical and mathematical literature of the publishing house "Science", M., 1978, 240 pp.

7. Пападимитриу X., Стайглиц К. Комбинаторная оптимизация: Алгоритмы и сложность. М.: Мир, 19857. Papadimitriou X., Steiglitz K. Combinatorial optimization: Algorithms and complexity. M .: Mir, 1985

8. Батищев Д.И. Генетические алгоритмы решения экстремальных задач. Под ред. Львовича Я.Е.: Учеб. пособие. Воронеж, 1995, 64 с.8. Batishchev D.I. Genetic algorithms for solving extreme problems. Ed. Lvovich Ya.E .: Textbook. allowance. Voronezh, 1995, 64 p.

9. Интернет-ресурс: https://ru.wikipedia.org/wiki/Углы_Эйлера9. Internet resource: https://ru.wikipedia.org/wiki/Euler's Angles

Claims (1)

Устройство уменьшения ошибки позиционирования для PTZ камеры, содержащее блок определения промежуточных позиций камеры, с возможностью записи и хранения координат промежуточных позиций камеры, блок последовательного поворота PTZ-камеры, выполненный с возможностью поворота через промежуточные точки, блок получения целевой позиции камеры, блок управления, причем блок управления соединен с блоком получения целевой позиции камеры, выход которого подключен к входу блока определения промежуточных позиций камеры, который подключен к входу блока управления, вход которого подключен к выходу блока последовательного поворота PTZ-камеры.
Figure 00000001
A device for reducing positioning errors for a PTZ camera, comprising a unit for determining intermediate positions of the camera, with the ability to record and store coordinates of intermediate positions of the camera, a sequential rotation unit of a PTZ camera configured to rotate through intermediate points, a unit for obtaining a target position of the camera, a control unit, the control unit is connected to the unit for obtaining the target position of the camera, the output of which is connected to the input of the unit for determining the intermediate positions of the camera, which is connected to the input of the unit control window, the input of which is connected to the output of the sequential rotation unit of the PTZ camera.
Figure 00000001
RU2015129265/07U 2015-07-17 2015-07-17 POSITIONING ERROR DEVICE FOR PTZ CAMERA RU162545U1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2015129265/07U RU162545U1 (en) 2015-07-17 2015-07-17 POSITIONING ERROR DEVICE FOR PTZ CAMERA

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2015129265/07U RU162545U1 (en) 2015-07-17 2015-07-17 POSITIONING ERROR DEVICE FOR PTZ CAMERA

Publications (1)

Publication Number Publication Date
RU162545U1 true RU162545U1 (en) 2016-06-20

Family

ID=56132371

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015129265/07U RU162545U1 (en) 2015-07-17 2015-07-17 POSITIONING ERROR DEVICE FOR PTZ CAMERA

Country Status (1)

Country Link
RU (1) RU162545U1 (en)

Similar Documents

Publication Publication Date Title
US11295472B2 (en) Positioning method, positioning apparatus, positioning system, storage medium, and method for constructing offline map database
Scaramuzza et al. Visual-inertial odometry of aerial robots
CN110689585B (en) Multi-phase external parameter combined calibration method, device, equipment and medium
WO2019205299A1 (en) Vision measurement system structure parameter calibration and affine coordinate system construction method and system
CN109461190B (en) Measurement data processing device and measurement data processing method
US20160225191A1 (en) Head mounted display calibration
CN111445533B (en) Binocular camera calibration method, device, equipment and medium
JP6977921B2 (en) Mapping method, image collection processing system and positioning method
WO2019201022A1 (en) Radar data compensation method for mobile robot, device, and storage medium
US8391542B2 (en) Method for estimating the pose of a PTZ camera
WO2020253260A1 (en) Time synchronization processing method, electronic apparatus, and storage medium
US10976158B2 (en) Device and method to locate a measurement point with an image capture device
CN113194263B (en) Gun and ball linkage control method and device, computer equipment and storage medium
US20140375795A1 (en) Determination of a measurement error
RU162545U1 (en) POSITIONING ERROR DEVICE FOR PTZ CAMERA
CN109657198B (en) Robot calibration method and device and computer readable storage medium
KR20220058846A (en) Robot positioning method and apparatus, apparatus, storage medium
US11310423B2 (en) Image capturing method and image capturing apparatus
CN113029037B (en) Method, apparatus, computer device and readable storage medium for measuring contour of object
WO2016195533A1 (en) Device for reducing ptz camera positioning error
WO2017014669A1 (en) Positioning error reduction device for a ptz camera
RU161620U1 (en) PTZ CAMERA POSITIONING ERROR DEVICE
RU2584816C1 (en) Method and system for reducing positioning error of ptz chamber
US20220394182A1 (en) Method for optimizing privacy mask of camera with panning and tilting control and imaging device with privacy mask optimization applied
Omidalizarandi et al. Robust external calibration of terrestrial laser scanner and digital camera for structural monitoring

Legal Events

Date Code Title Description
MM1K Utility model has become invalid (non-payment of fees)

Effective date: 20160829

NF1K Reinstatement of utility model

Effective date: 20170608