RU155172U1 - Быстрый детектор тепловых нейтронов - Google Patents

Быстрый детектор тепловых нейтронов Download PDF

Info

Publication number
RU155172U1
RU155172U1 RU2015117456/28U RU2015117456U RU155172U1 RU 155172 U1 RU155172 U1 RU 155172U1 RU 2015117456/28 U RU2015117456/28 U RU 2015117456/28U RU 2015117456 U RU2015117456 U RU 2015117456U RU 155172 U1 RU155172 U1 RU 155172U1
Authority
RU
Russia
Prior art keywords
neutron detector
neutron
scintillation
detector
signal
Prior art date
Application number
RU2015117456/28U
Other languages
English (en)
Inventor
Геннадий Иванович Бритвич
Михаил Юрьевич Костин
Владимир Николаевич Пелешко
Original Assignee
Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом"
Федеральное Государственное Бюджетное Учреждение Государственный Научный Центр Российской Федерации Институт Физики Высоких Энергий
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом", Федеральное Государственное Бюджетное Учреждение Государственный Научный Центр Российской Федерации Институт Физики Высоких Энергий filed Critical Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом"
Priority to RU2015117456/28U priority Critical patent/RU155172U1/ru
Application granted granted Critical
Publication of RU155172U1 publication Critical patent/RU155172U1/ru

Links

Images

Landscapes

  • Measurement Of Radiation (AREA)

Abstract

Быстрый детектор тепловых нейтронов, содержащий сцинтилляционный детектор тепловых нейтронов, помещенный в центр шарового полиэтиленового замедлителя, и соединенный оптическим контактом через прозрачный световод из оргстекла с ФЭУ, отличающийся тем, что сцинтилляционный детектор содержит стеклянный сцинтиллятор с добавкой изотопаLi с малым временем высвечивания и фронтальную электронику, которая состоит из усилителя сигналов, высоковольтного источника питания ФЭУ, формирователя выходных импульсов и выходных каскадов, работающую в счетной моде с формировкой токового сигнала одновибратором с временной константой <100 нс и обеспечивающую питание детектора нейтронов высоким напряжением, а также усиление и формирование сигнала с ФЭУ.

Description

Настоящая полезная модель относится к области регистрации нейтронного излучения с помощью сцинтилляционных детекторов и может быть использована для регистрации нейтронного излучения, в т.ч. импульсного, на ядерно-физических установках (ЯФУ), в физических экспериментах и системах радиационного контроля на ускорителях.
Для использования детекторов нейтронов в системах радиационного контроля ЯФУ необходимо соответствие дозовой зависимости чувствительности этих детекторов с энергетической зависимостью удельного амбиентного эквивалента дозы h∗(10) [ICRP Publication 74. Conversion Coefficients for use in Radiological Protection against External Radiation. Ann. ICRP 26. Oxford, Pergamon Press, 1996; Пелешко B.H., Савицкая E.H., Санников A.B. Оптимизация конструкции дозиметра нейтронов с расширенным диапазоном энергий для высокоэнергетических ускорителей. Препринт ИФВЭ 2014-4. - Протвино, 2014]. Этому соответствуют детекторы тепловых нейтронов, помещенные в центр шаровых полиэтиленовых замедлителей нейтронов диаметром ~254 мм.
В качестве детекторов тепловых нейтронов в центре шаровых полиэтиленовых замедлителей (как дозиметров нейтронов) обычно используются газоразрядные счетчики с наполнением 3He или BF3. Разрешающее время таких счетчиков находится в микросекундном диапазоне, поэтому они могут занижать дозу также из-за просчетов в условиях импульсных полей излучения и больших мощностей дозы за защитой ускорителей [Пелешко В.Н., Савицкая Е.Н., Санников А.В. Оптимизация конструкции дозиметра нейтронов с расширенным диапазоном энергий для высокоэнергетических ускорителей. Препринт ИФВЭ 2014-4. - Протвино, 2014].
Для измерения плотности потока тепловых нейтронов сцинтилляционным методом необходимы сцинтилляционные материалы, основными свойствами которых являются: повышенное сечение взаимодействия с тепловыми нейтронами; оптимальная длина волны излучения сцинтилляционной вспышки, согласующаяся со спектральной чувствительностью фотоприемника; высокий световыход сцинтилляций; небольшое время высвечивания.
В радиационных исследованиях и в дозиметрическом контроле для регистрации тепловых нейтронов широкое распространение получили различные сцинтилляционные среды, содержащие изотопы 6Li и 10B. В частности на практике длительное время успешно используются 61 л-стекло (время высвечивания ~75 нс), LiF/ZnS(Ag) - смесь (время высвечивания ~200 нс), органический 10B-содержащий сцинтиллятор (время высвечивания ~3 нс). Эти материалы коммерчески доступны [http://www.detectors.saint-gobain.com/ или G.I. Britvich et al., A neutron detector on the basis of a boron-containing plastic scintillator. Nucl. Instr. and Meth. In Phys. Res. A 550 (2005) 343-358.]; находясь в твердом агрегатном состоянии, обладают хорошими механическими свойствами и позволяют организацию простой системы светосбора на фотоумножители.
Известна сцинтилляционная композиция из трех параллельно-последовательно соединенных сцинтилляторов [Патент Российской Федерации №2143711], один из которых, выполненный на основе 6Li-силикатного стекла, чувствителен к тепловым нейтронам. Однако эффективность регистрации тепловых нейтронов таким сцинтиллятором, определяемая соответствующей композицией, невысокая.
Известен сцинтилляционный детектор быстрых и тепловых нейтронов, содержащий датчик, включающий сцинтиллятор на основе органического водородсодержащего пластика, чувствительного к быстрым нейтронам и стеклянный сцинтиллятор на основе 6Li-силикатного стекла, чувствительного к тепловым нейтронам, соединенного с фотоэлектронным умножителем и блоком электронной обработки сигналов, отличающийся тем, что сцинтилляторы выполнены в виде пластин с параллельными соприкасающимися гранями, оснащенные свинцовым коллиматором и размещенные в дополнительном полиэтиленовом накопителе тепловых нейтронов. [Патент Российской Федерации №2259573, 2005 г.]
Но рассмотренные детекторы нейтронов не подходят для размещения в центре полиэтиленовых замедлителей с условием соблюдения требуемой функции дозовой чувствительности.
Техническим результатом полезной модели является повышение эффективности регистрации импульсного нейтронного излучения за счет снижения мертвого времени детектора (менее 100 нс) за биологической защитой ЯФУ и уменьшение числа просчетов нейтронов в импульсном поле излучения.
Для разработки полезной модели быстрого детектора нейтронов было выбрано в качестве детектора тепловых нейтронов литиевое (6Li) стекло на основе анализа литературных данных и проведенных измерений как оптимальный вариант благодаря небольшому времени высвечивания (75 нс), высокой эффективности регистрации тепловых нейтронов и хорошей дискриминации γ-квантов. Использование в полезной модели полистирольного сцинтиллятора с добавкой 10B приводит к более худшей дискриминации γ-квантов.
Технический результат достигается тем, что сцинтилляционный детектор содержит стеклянный сцинтиллятор с добавкой изотопа 6Li, чувствительного к тепловым нейтронам и соединенного оптическим контактом через прозрачный световод из оргстекла с ФЭУ. Сам сцинтилляционный детектор помещается в центр шарового полиэтиленового замедлителя диаметром 254 мм. Выходной сигнал с фотоумножителя поступает на фронтальную электронику нейтронного детектора, которая состоит из усилителя сигналов, высоковольтного источника питания ФЭУ, формирователя выходных импульсов и выходных каскадов. Электроника работает в счетной моде с формировкой токового сигнала одновибратором с временной константой -100 нс и обеспечивает питание нейтронного детектора высоким напряжением, усиление и формирование сигнала с ФЭУ.
Внешний вид полезной модели приведен на фиг. 1. На фиг. 2 показана разработанная фронтальная электроника. На фиг. 3 и фиг. 4 показаны рабочие характеристики нейтронного детектора, полученные с помощью разработанной фронтальной электроники при использовании радионуклидных источников.
Из фиг. 3 видно, что сигнал с детектора по времени занимает ≤200 нс, что позволяет без просчетов регистрировать импульсное нейтронное излучение в пределах контрольных уровней (1.2 мбэр/час), установленных на рабочих местах на экспериментальных установках ИФВЭ [Положение об организации работ по обеспечению радиационной безопасности в ГНЦ ИФВЭ (Регламент РК и РБ - 2009) от 25 мая 2010 г.]. При импульсном характере работы ускорителя (400 циклов/час) доза 1.2 мбэр/час соответствует 3·10-6 бэр/цикл. Из анализа спектров нейтронов за биологической защитой ускорителя ИФВЭ [Е.А. Белогорлов, Г.И. Бритвич, Г.И. Крупный и др. Методические вопросы применения многошарового спектрометра Боннера в радиационных исследованиях на ускорителе ИФВЭ: Препринт ИФВЭ 85-3. - Серпухов, 1985], выбираем самую консервативную оценку коэффициента конверсии поток-доза κ~1.4·10-8 бэр·см2/нейтрон. (соответствует средней энергии Eср~5 МэВ спектра нейтронов), что дает оценку потока нейтронов F=214 нейтрон/см2, соответствующего контрольному уровню. Специально для нашего детектора нейтронов сделана оценка его чувствительности η (импульс/нейтрон·см-2) в зависимости от энергии нейтрона, откуда для Eср~5 МэВ величина η=1.12 импульс/нейтрон·см-2, что соответствует N=214×1.12=240 импульс/цикл. [В.Н. Пелешко, Е.Н. Савицкая, А.В. Санников. Оптимизация конструкции дозиметра нейтронов с расширенным диапазоном энергий для высокоэнергетических ускорителей. Препринт ИФВЭ 2014-4. - Протвино, 2014]
На фиг. 5. показана зависимость плотности потока тепловых нейтронов (с энергией ниже границы поглощения кадмием 0.2 эВ) в центре шарового полиэтиленового замедлителя диаметром 254 мм от времени замедления. Время нарастания τ1=2.2 µсек, время жизни τ=157 µсек. Число импульсов за время 300 µсек под кривой - 350 (~90% полного числа событий), максимальное число импульсов в интервале 1 µсек составляет 2.5 через 10 µсек после импульса нейтронного источника.
На начальном участке флюенс тепловых нейтронов достигает постоянного значения ~ через 10 µсек с τ1=2.2 µсек [К. Бекурц, К. Виртц. Нейтронная физика. М., Атомиздат, 1968.]; τ - параметр уменьшения числа тепловых нейтронов в центре шара за счет утечки и поглощения. Измерены значения τ для полиэталеновых шаров радиусами R=0.75 см, 3.0 см, 6.0 см и 8.5 см на импульсном источнике нейтронов с энергией 14 МэВ. Из анализа этих данных τ=3.97+16.8·R-0.375·R2 где R [cm], откуда для R=12.7 см значение τ=157 µсек. [T. Kosako, T. Nakamura and S. Iwai. Estimation of response functions of moderating type neutron detectors by the time-of-flight method combined with a lead pile. Nucl. Instr. and Meth. In Phys. Res. A235 (1985) 103-122] Нормируя площадь под кривой на величину 400 импульсов, получаем максимальную оценку скорости счет ~2.5 импульса в интервале 1 µсек, которые надежно регистрируются детектором, см. фиг. 4.
На фиг. 1 представлена фотография детектора с полиэтиленовым шаровым замедлителем, в конусной части которого размещен ФЭУ со световодом, сам сцинтиллятор на основе литиевого стекла размещается в центре шарового замедлителя, а в нижнем цилиндрическом корпусе размещена фронтальная электроника.
На фиг. 6 показано время высвечивания сцинтиллятора при возбуждении альфа частицами источника плутоний-238 (α) и бета частицами источника стронций 90-иттрий 90-(β). Обработка временных распределений для альфа и бета излучений дают ~ одинаковые значения:
- быстрая компонента высвечивания τ=21 нс (40%);
- медленная компонента высвечивания τ=71 нс (60%).
Амплитудные спектры сцинтиллятора на основе литиевого стекла в оптическом контакте с фотоумножителем (фиг. 6).
На фиг. 7 показаны спектры энерговыделений в сцинтилляторе (в электронном эквиваленте): 1 - на поверхности шара из полиэтилена ⌀170 мм с источником нейтронов Pu-Ве в центре шара; 2 - экран из кадмия, помещенный между шаром и сцинтиллятором.
На фиг. 8 показаны спектры энерговыделений в сцинтилляторе (в электронном эквиваленте): 1 - на поверхности шара из полиэтилена ⌀170 мм с источником нейтронов Pu-Ве в центре шара; 2 - гамма источник 60Co, помещенный перед сцинтиллятором; 3 - бета источник 90Sr+90Y, помещенный перед сцинтиллятором.

Claims (1)

  1. Быстрый детектор тепловых нейтронов, содержащий сцинтилляционный детектор тепловых нейтронов, помещенный в центр шарового полиэтиленового замедлителя, и соединенный оптическим контактом через прозрачный световод из оргстекла с ФЭУ, отличающийся тем, что сцинтилляционный детектор содержит стеклянный сцинтиллятор с добавкой изотопа 6Li с малым временем высвечивания и фронтальную электронику, которая состоит из усилителя сигналов, высоковольтного источника питания ФЭУ, формирователя выходных импульсов и выходных каскадов, работающую в счетной моде с формировкой токового сигнала одновибратором с временной константой <100 нс и обеспечивающую питание детектора нейтронов высоким напряжением, а также усиление и формирование сигнала с ФЭУ.
    Figure 00000001
RU2015117456/28U 2015-05-07 2015-05-07 Быстрый детектор тепловых нейтронов RU155172U1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2015117456/28U RU155172U1 (ru) 2015-05-07 2015-05-07 Быстрый детектор тепловых нейтронов

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2015117456/28U RU155172U1 (ru) 2015-05-07 2015-05-07 Быстрый детектор тепловых нейтронов

Publications (1)

Publication Number Publication Date
RU155172U1 true RU155172U1 (ru) 2015-09-27

Family

ID=54251102

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015117456/28U RU155172U1 (ru) 2015-05-07 2015-05-07 Быстрый детектор тепловых нейтронов

Country Status (1)

Country Link
RU (1) RU155172U1 (ru)

Similar Documents

Publication Publication Date Title
US9244178B2 (en) Method for determining the irradiation dose deposited in a scintillator by ionising radiation and associated device
CA2702961C (en) Fast neutron spectroscopy using neutron-induced charged particle reactions
Ishikawa et al. Development of Optical-fiber-based Neutron Detector Using Li-glass Scintillator for an Intense Neutron Field
Caracciolo et al. BeNEdiCTE (Boron Neutron Capture): a versatile gamma-ray detection module for boron neutron capture therapy
Stelson et al. Cross Section for the Be 9 (n, α) He 6 Reaction
US11163076B2 (en) Method for the detection of neutrons with scintillation detectors used for gamma ray spectroscopy
RU155172U1 (ru) Быстрый детектор тепловых нейтронов
Salisbury et al. Fe 54 (n, p),(n, α),(n, 2 n) Cross Sections
RU152877U1 (ru) Комбинированный спектрометр-монитор потока нейтронов
Stoykov et al. Use of Silicon Photomultipliers in ZnS: 6LiF scintillation neutron detectors: signal extraction in presence of high dark count rates
RU86323U1 (ru) Быстродействующий сцинтилляционный детектор нейтронного излучения
JP2012242369A (ja) 放射線検出器
Litvin et al. Scintillation neutron detectors based on solid-state photomultipliers and lightguides
Whitney et al. DPA-based fast neutron dosimeter for the space environment
Bachri et al. Analysis of Gamma Rays and Cosmic Muons with a Single Detector
RU2780688C1 (ru) Способ и устройство формирования спектральных характеристик измерительных каналов нейтронных детекторов
Foster et al. A compact neutron detector based on the use of a SiPM detector
RU2548048C1 (ru) Сцинтилляционный счетчик ионизирующего излучения
Ermis et al. A different way to determine the gamma-ray linear attenuation coefficients of materials
JP6823526B2 (ja) 放射線検出器および放射線の測定方法
RU2347241C1 (ru) Детектор для регистрации ионизирующих излучений
Alimkhanov et al. The neutron detector based on cerium doped 6Li-silicate glass
Horiuchi et al. A high-sensitivity neutron dosimeter using the coherent demodulation technique
Tancioni et al. Gamma dose rate monitoring using a Silicon Photomultiplier-based plastic scintillation detector
Gunaratna Mudiyanselage Improved scintillator design for thermal neutron detection