RU146405U1 - HEAT ELECTRIC STATION - Google Patents

HEAT ELECTRIC STATION Download PDF

Info

Publication number
RU146405U1
RU146405U1 RU2014118383/06U RU2014118383U RU146405U1 RU 146405 U1 RU146405 U1 RU 146405U1 RU 2014118383/06 U RU2014118383/06 U RU 2014118383/06U RU 2014118383 U RU2014118383 U RU 2014118383U RU 146405 U1 RU146405 U1 RU 146405U1
Authority
RU
Russia
Prior art keywords
steam turbine
heated medium
oil
condenser
condensate pump
Prior art date
Application number
RU2014118383/06U
Other languages
Russian (ru)
Inventor
Айрат Маратович Гафуров
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Казанский государственный энергетический университет" (ФГБОУ ВПО "КГЭУ")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Казанский государственный энергетический университет" (ФГБОУ ВПО "КГЭУ") filed Critical Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Казанский государственный энергетический университет" (ФГБОУ ВПО "КГЭУ")
Priority to RU2014118383/06U priority Critical patent/RU146405U1/en
Application granted granted Critical
Publication of RU146405U1 publication Critical patent/RU146405U1/en

Links

Images

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

1. Тепловая электрическая станция, включающая последовательно соединенные паровую турбину, конденсатор паровой турбины и конденсатный насос конденсатора паровой турбины, основной электрогенератор, соединенный с паровой турбиной, которая соединена по греющей среде с верхним и нижним сетевыми подогревателями, которые между собой соединены по нагреваемой среде, а также систему маслоснабжения подшипников паровой турбины, содержащую последовательно соединенные по греющей среде сливной трубопровод, маслобак, маслонасос и маслоохладитель, выход которого по нагреваемой среде соединен с напорным трубопроводом, отличающаяся тем, что в нее введен тепловой двигатель с замкнутым контуром циркуляции, работающий по органическому циклу Ренкина, при этом замкнутый контур циркуляции теплового двигателя выполнен в виде контура с низкокипящим рабочим телом, содержащим последовательно соединенные турбодетандер с электрогенератором, конденсатор воздушного охлаждения и конденсатный насос, причем выход конденсатного насоса соединен по нагреваемой среде с входом маслоохладителя, выход которого соединен по нагреваемой среде с входом нижнего сетевого подогревателя, а выход верхнего сетевого подогревателя соединен по нагреваемой среде с входом турбодетандера, образуя замкнутый контур охлаждения.2. Тепловая электрическая станция по п. 1, отличающаяся тем, что в качестве низкокипящего рабочего тела используют сжиженный углекислый газ CO.1. Thermal power station, including a series-connected steam turbine, a steam turbine condenser and a condensate pump of a steam turbine condenser, a main electric generator connected to a steam turbine, which is connected through a heating medium to the upper and lower network heaters, which are interconnected via a heated medium, and also an oil supply system for bearings of a steam turbine containing a drain pipe, an oil tank, an oil pump and an oil cooler connected in series through a heating medium the outlet of which is connected via a heated medium to a pressure pipe, characterized in that a closed-loop heat engine operating on the organic Rankine cycle is introduced into it, while the closed loop of the heat engine circulation is made in the form of a loop with a low boiling fluid containing serially connected a turboexpander with an electric generator, an air-cooled condenser and a condensate pump, the output of the condensate pump being connected via a heated medium to the inlet of the oil cooler, the stroke of which is connected via a heated medium to the input of the lower network heater, and the output of the upper network heater is connected by a heated medium to the input of the turboexpander, forming a closed cooling circuit. 2. The thermal power plant according to claim 1, characterized in that liquefied carbon dioxide CO is used as a low-boiling working fluid.

Description

Полезная модель относится к области энергетики и может быть использована на тепловых электрических станциях (ТЭС) при утилизации низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины и утилизации низкопотенциальной теплоты пара отопительных отборов из паровой турбины для дополнительной выработки электрической энергии.The utility model relates to the field of energy and can be used at thermal power plants (TPPs) for the utilization of low-grade heat from the oil supply system of bearings of a steam turbine and the utilization of low-grade heat from steam of heating taps from a steam turbine for additional generation of electric energy.

Прототипом является тепловая электрическая станция, содержащая теплофикационную турбину с отопительными отборами пара, подающий и обратный трубопроводы теплосети, сетевые подогреватели, включенные по нагреваемой среде между подающим и обратным трубопроводами теплосети и подключенные по греющей среде к отопительным отборам, теплонасосную установку с испарителем, включенным в обратный трубопровод теплосети, и конденсатором, при этом конденсатор теплонасосной установки включен в подающий трубопровод теплосети после сетевых подогревателей, а также систему маслоснабжения подшипников паровой турбины, содержащую последовательно соединенные по греющей среде сливной трубопровод, маслобак, маслонасос и маслоохладитель, выход которого по нагреваемой среде соединен с напорным трубопроводом (патент RU №2269014, МПК F01K 17/02, 27.01.2006).The prototype is a thermal power plant containing a cogeneration turbine with heating steam extraction, supply and return pipelines of the heating network, network heaters connected via a heated medium between the supply and return pipelines of the heating network and connected via heating medium to the heating selection, heat pump installation with an evaporator included in the return the heating pipeline, and a condenser, while the condenser of the heat pump installation is included in the supply pipe of the heating network after heating Ateliers, as well as an oil supply system for bearings of a steam turbine, containing a drain pipe, an oil tank, an oil pump and an oil cooler connected in series through a heating medium, the outlet of which is connected to a pressure pipe via a heated medium (patent RU No. 2269014, IPC F01K 17/02, 01/27/2006) .

Основным недостатком прототипа является то, что утилизацию низкопотенциальной теплоты пара отопительных отборов из паровой турбины осуществляют в целях выработки дополнительной тепловой энергии, а не для дополнительной выработки электрической энергии.The main disadvantage of the prototype is that the utilization of low-grade heat of the steam from the heating taps from the steam turbine is carried out in order to generate additional thermal energy, and not for additional generation of electric energy.

Кроме этого, недостатком прототипа является относительно низкий коэффициент полезного действия ТЭС по выработке электрической энергии, обусловленный затратами электрической мощности на привод теплонасосной установки, а также из-за отсутствия утилизации низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины для дополнительной выработки электроэнергии.In addition, the disadvantage of the prototype is the relatively low efficiency of TPPs for the generation of electric energy, due to the cost of electric power to drive the heat pump installation, and also due to the lack of utilization of low-grade heat of the oil supply system of the steam turbine bearings for additional power generation.

Задачей полезной модели является повышение коэффициента полезного действия ТЭС за счет утилизации низкопотенциальной теплоты пара отопительных отборов из паровой турбины и утилизации низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины для дополнительной выработки электрической энергии.The objective of the utility model is to increase the efficiency of TPPs by utilizing low-grade heat of steam from heating steam from a steam turbine and utilizing low-grade heat from the oil supply system of bearings of a steam turbine to generate additional electric energy.

Технический результат достигается тем, что в тепловую электрическую станцию, включающую последовательно соединенные паровую турбину, конденсатор паровой турбины и конденсатный насос конденсатора паровой турбины, основной электрогенератор, соединенный с паровой турбиной, которая соединена по греющей среде с верхним и нижним сетевыми подогревателями, которые между собой соединены по нагреваемой среде, а также систему маслоснабжения подшипников паровой турбины, содержащую последовательно соединенные по греющей среде сливной трубопровод, маслобак, маслонасос и маслоохладитель, выход которого по нагреваемой среде соединен с напорным трубопроводом, согласно настоящей полезной модели, введен тепловой двигатель с замкнутым контуром циркуляции, работающий по органическому циклу Ренкина, при этом замкнутый контур циркуляции теплового двигателя выполнен в виде контура с низкокипящим рабочим телом, содержащим последовательно соединенные турбодетандер с электрогенератором, конденсатор воздушного охлаждения и конденсатный насос, причем выход конденсатного насоса соединен по нагреваемой среде с входом маслоохладителя, выход которого соединен по нагреваемой среде с входом нижнего сетевого подогревателя, а выход верхнего сетевого подогревателя соединен по нагреваемой среде с входом турбодетандера, образуя замкнутый контур охлаждения.The technical result is achieved by the fact that in a thermal power station comprising a series-connected steam turbine, a steam turbine condenser and a condensate pump of a steam turbine condenser, a main electric generator connected to a steam turbine, which is connected via heating medium to the upper and lower network heaters, which are interconnected connected to the heated medium, as well as the oil supply system for bearings of the steam turbine, containing a drain pipe connected in series through the heating medium water, an oil tank, an oil pump and an oil cooler, the outlet of which is connected to a pressure pipe through a heated medium, according to this utility model, a closed-circuit heat engine is introduced that operates on the Rankine organic cycle, while the closed loop of the heat engine is designed as a low-boiling circuit a working fluid containing a turboexpander with an electric generator in series, an air-cooled condenser and a condensate pump, the output of the condensate pump being connected ene of heating medium to the input of the oil cooler, the output of which is connected by a heating medium inlet of the lower heater power and the output power of the upper heater is connected by a heating medium entering the turboexpander, thus forming a closed cooling circuit.

В качестве низкокипящего рабочего тела используют сжиженный углекислый газ CO2.As a low-boiling working fluid, liquefied carbon dioxide CO 2 is used .

Таким образом, технический результат достигается за счет утилизации низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины и утилизации низкопотенциальной теплоты пара отопительных отборов из паровой турбины для дополнительной выработки электрической энергии, которые осуществляют путем последовательного нагрева, соответственно, в маслоохладителе и сетевых подогревателях низкокипящего рабочего тела (сжиженного углекислого газа CO2) теплового двигателя с замкнутым контуром циркуляции, работающего по органическому циклу Ренкина.Thus, the technical result is achieved by utilizing the low potential heat of the oil supply system of the steam turbine bearings and utilizing the low potential heat of the steam from the heating steam extraction from the steam turbine to additionally generate electric energy, which is carried out by sequential heating, respectively, in the oil cooler and network heaters of the low-boiling working fluid (liquefied carbon dioxide CO 2 ) closed-loop heat engine to the Rankine cycle.

Сущность полезной модели поясняется чертежом, на котором представлена предлагаемая тепловая электрическая станция, имеющая тепловой двигатель с воздушным охлаждением и сетевые подогреватели.The essence of the utility model is illustrated by the drawing, which shows the proposed thermal power plant having an air-cooled heat engine and network heaters.

На чертеже цифрами обозначены:In the drawing, the numbers indicate:

1 - паровая турбина,1 - steam turbine,

2 - конденсатор паровой турбины,2 - condenser of a steam turbine,

3 - конденсатный насос конденсатора паровой турбины,3 - condensate pump condenser of a steam turbine,

4 - основной электрогенератор,4 - the main generator

5 - тепловой двигатель с замкнутым контуром циркуляции,5 - heat engine with a closed circuit,

6 - турбодетандер,6 - turboexpander,

7 - электрогенератор,7 - electric generator,

8 - конденсатор воздушного охлаждения,8 - air-cooled condenser,

9 - конденсатный насос,9 - condensate pump,

10 - верхний сетевой подогреватель,10 - upper network heater,

11 - нижний сетевой подогреватель,11 - lower network heater,

12 - система маслоснабжения подшипников паровой турбины,12 - oil supply system for bearings of a steam turbine,

13 - сливной трубопровод,13 - drain pipe

14 - маслобак,14 - oil tank

15 - маслонасос,15 - oil pump,

16 - маслоохладитель,16 - oil cooler

17 - напорный трубопровод.17 - pressure pipe.

Тепловая электрическая станция включает последовательно соединенные паровую турбину 1, конденсатор 2 паровой турбины и конденсатный насос 3 конденсатора паровой турбины, основной электрогенератор 4, соединенный с паровой турбиной 1, которая соединена по греющей среде с верхним 10 и нижним 11 сетевыми подогревателями, которые между собой соединены по нагреваемой среде, а также систему 12 маслоснабжения подшипников паровой турбины 1, содержащую последовательно соединенные по греющей среде сливной трубопровод 13, маслобак 14, маслонасос 15 и маслоохладитель 16, выход которого по нагреваемой среде соединен с напорным трубопроводом 17.The thermal power plant includes a series-connected steam turbine 1, a steam turbine condenser 2 and a condenser pump 3 of a steam turbine condenser, a main electric generator 4 connected to a steam turbine 1, which is connected via heating medium to the upper 10 and lower 11 network heaters, which are interconnected on a heated medium, as well as a system 12 of oil supply for bearings of a steam turbine 1, comprising a drain pipe 13, an oil tank 14, an oil pump 15 and oil, connected in series through a heating medium cooler 16, the output of which is connected via a heated medium to a pressure pipe 17.

Отличием предлагаемой тепловой электрической станции является то, что в нее введен тепловой двигатель 5 с замкнутым контуром циркуляции, работающий по органическому циклу Ренкина.The difference of the proposed thermal power plant is that it introduced a heat engine 5 with a closed loop, operating on the organic Rankine cycle.

Замкнутый контур циркуляции теплового двигателя 5 выполнен в виде контура с низкокипящим рабочим телом, содержащим последовательно соединенные турбодетандер 6 с электрогенератором 7, конденсатор 8 воздушного охлаждения и конденсатный насос 9, причем выход конденсатного насоса 9 соединен по нагреваемой среде с входом маслоохладителя 16, выход которого соединен по нагреваемой среде с входом нижнего сетевого подогревателя 11, а выход верхнего сетевого подогревателя 10 соединен по нагреваемой среде с входом турбодетандера 6, образуя замкнутый контур охлаждения.The closed circulation circuit of the heat engine 5 is made in the form of a circuit with a low-boiling working fluid containing a turboexpander 6 connected in series with an electric generator 7, an air-cooled condenser 8 and a condensate pump 9, the output of the condensate pump 9 being connected via a heated medium to the input of the oil cooler 16, the output of which is connected on the heated medium with the input of the lower network heater 11, and the output of the upper network heater 10 is connected on the heated medium with the input of the turbo expander 6, forming a closed cooling circuit.

В качестве низкокипящего рабочего тела используют сжиженный углекислый газ CO2.As a low-boiling working fluid, liquefied carbon dioxide CO 2 is used .

Предлагаемая тепловая электрическая станция работает следующим образом.The proposed thermal power plant operates as follows.

Отработавший пар, поступающий из паровой турбины 1 в паровое пространство конденсатора 2, конденсируется на поверхности конденсаторных трубок. При этом образующийся конденсат с помощью конденсатного насоса 3 конденсатора паровой турбины направляют в систему регенерации. Мощность паровой турбины 1 передается соединенному на одном валу основному электрогенератору 4.The exhaust steam coming from the steam turbine 1 into the steam space of the condenser 2 is condensed on the surface of the condenser tubes. In this case, the condensate formed is sent via a condensate pump 3 of the steam turbine condenser to the regeneration system. The power of the steam turbine 1 is transmitted to the main generator 4 connected to one shaft.

Преобразование низкопотенциальной тепловой энергии системы 12 маслоснабжения подшипников паровой турбины 1 и низкопотенциальной тепловой энергии пара отопительных отборов из паровой турбины 1, в механическую и, далее, в электрическую происходит в замкнутом контуре циркуляции теплового двигателя 5, работающего по органическому циклу Ренкина.The conversion of low-grade thermal energy of the oil supply system 12 of the bearings of the steam turbine 1 and low-grade thermal energy of the steam from the heating taps from the steam turbine 1 into mechanical and, further, into electrical energy occurs in a closed circuit of the heat engine 5 operating on the organic Rankine cycle.

Весь процесс начинается с сжатия в конденсатном насосе 9 сжиженного углекислого газа CO2, который направляют на нагрев в маслоохладитель 16, куда поступает нагретое масло системы 12 маслоснабжения подшипников паровой турбины 1. При этом температура нагретого масла в маслоохладителе 16 может варьироваться в интервале от 318,15 К до 348,15 К.The whole process begins with the compression in the condensate pump 9 of liquefied carbon dioxide CO 2 , which is sent for heating to the oil cooler 16, where the heated oil of the oil supply system 12 of the steam turbine bearings 1 enters. In this case, the temperature of the heated oil in the oil cooler 16 can vary from 318, 15 K to 348.15 K.

В процессе теплообмена нагретого масла с сжиженным углекислым газом CO2 в маслоохладителе 16, происходит нагрев сжиженного углекислого газа CO2 до критической температуры 304,13 К при сверхкритическом давлении от 7,4 МПа до 25 МПа, и далее его направляют на нагрев и испарение в нижний сетевой подогреватель 11, куда поступает пар отопительного отбора из паровой турбины 1 при температуре около 365 К.In the process of heat exchange of a heated oil with liquefied carbon dioxide CO 2 in an oil cooler 16, liquefied carbon dioxide CO 2 is heated to a critical temperature of 304.13 K at a supercritical pressure of 7.4 MPa to 25 MPa, and then it is sent for heating and evaporation to the lower network heater 11, where the heating steam from the steam turbine 1 enters at a temperature of about 365 K.

Пар, поступающий из отопительного отбора паровой турбины 1 в паровое пространство нижнего сетевого подогревателя 11, конденсируется на поверхности подогреваемых трубок, внутри которых протекает сжиженный углекислый газ CO2.The steam coming from the heating selection of the steam turbine 1 into the steam space of the lower network heater 11 condenses on the surface of the heated tubes, inside which the liquefied carbon dioxide CO 2 flows.

В процессе конденсации пара отопительного отбора в нижнем сетевом подогревателе 11 паровой турбины 1, происходит нагрев сжиженного углекислого газа CO2 свыше критической температуры 304,13 К при котором происходит его интенсивное испарение, при сверхкритическом давлении от 7,4 МПа до 25 МПа. После нижнего сетевого подогревателя 11 газообразный углекислый газ CO2 направляют на перегрев в верхний сетевой подогреватель 10, куда поступает пар отопительного отбора из паровой турбины 1 при температуре около 400 К.In the process of condensation of heating steam in the lower network heater 11 of the steam turbine 1, liquefied carbon dioxide CO 2 is heated above a critical temperature of 304.13 K at which it evaporates intensively, at supercritical pressure from 7.4 MPa to 25 MPa. After the lower network heater 11, gaseous carbon dioxide CO 2 is sent for overheating to the upper network heater 10, where the heating steam from the steam turbine 1 enters at a temperature of about 400 K.

Пар, поступающий из отопительного отбора паровой турбины 1 в паровое пространство верхнего сетевого подогревателя 10, конденсируется на поверхности подогреваемых трубок, внутри которых протекает газообразный углекислый газ CO2.The steam coming from the heating selection of the steam turbine 1 into the steam space of the upper network heater 10 condenses on the surface of the heated tubes, inside which gaseous carbon dioxide CO 2 flows.

В процессе конденсации пара отопительного отбора в верхнем сетевом подогревателе 10 паровой турбины 1, происходит перегрев газообразного углекислого газа CO2 до сверхкритической температуры от 304,13 К до 390 К при сверхкритическом давлении от 7,4 МПа до 25 МПа, который направляют на расширение в турбодетандер 6.In the process of condensation of heating selection steam in the upper network heater 10 of the steam turbine 1, the gaseous carbon dioxide CO 2 overheats to a supercritical temperature of 304.13 K to 390 K at a supercritical pressure of 7.4 MPa to 25 MPa, which is directed to expand into turbo expander 6.

Процесс настроен таким образом, что в турбодетандере 6 не происходит конденсации углекислого газа CO2 в ходе срабатывания теплоперепада. Мощность турбодетандера 6 передается соединенному на одном валу электрогенератору 7. На выходе из турбодетандера 6 углекислый газ CO2 имеет температуру около 288 К с влажностью не превышающей 12%.The process is configured in such a way that carbon dioxide CO 2 does not condense in the turboexpander 6 during the operation of the heat transfer. The power of the turboexpander 6 is transferred to an electric generator 7 connected to one shaft. At the outlet of the turboexpander 6, carbon dioxide CO 2 has a temperature of about 288 K with a humidity not exceeding 12%.

Далее, при снижении температуры углекислого газа CO2, происходит его сжижение в конденсаторе 8 воздушного охлаждения, охлаждаемого воздухом окружающей среды в температурном диапазоне от 223,15 К до 283,15 К.Further, with a decrease in the temperature of carbon dioxide CO 2 , it is liquefied in an air-cooled condenser 8 cooled by ambient air in the temperature range from 223.15 K to 283.15 K.

После конденсатора 8 воздушного охлаждения в сжиженном состоянии углекислый газ CO2 направляют для сжатия в конденсатный насос 9 теплового двигателя 5.After the condenser 8 of air cooling in a liquefied state, carbon dioxide CO 2 is sent for compression to the condensate pump 9 of the heat engine 5.

Далее органический цикл Ренкина на основе низкокипящего рабочего тела повторяется.Further, the organic Rankine cycle based on a low-boiling working fluid is repeated.

Для решения проблемы излишнего потребления пресной воды настоящая полезная модель позволяет осуществить воздушное охлаждение теплового двигателя 5. Применение конденсатора 8 воздушного охлаждения позволяет его эксплуатировать в условиях холодного климата со средней температурой воздуха в наиболее холодный период не ниже 218 К. Конденсатор 8 воздушного охлаждения имеет более длительный срок службы по сравнению с конденсатором водяного охлаждения из-за меньшего загрязнения и коррозии наружной поверхности теплообмена.To solve the problem of excessive fresh water consumption, this utility model allows air cooling of the heat engine 5. The use of air-cooled condenser 8 allows it to be operated in cold climates with an average air temperature in the coldest period of at least 218 K. The air-cooled condenser 8 has a longer service life compared to a water-cooled condenser due to less pollution and corrosion of the outer surface of the heat exchange.

Claims (2)

1. Тепловая электрическая станция, включающая последовательно соединенные паровую турбину, конденсатор паровой турбины и конденсатный насос конденсатора паровой турбины, основной электрогенератор, соединенный с паровой турбиной, которая соединена по греющей среде с верхним и нижним сетевыми подогревателями, которые между собой соединены по нагреваемой среде, а также систему маслоснабжения подшипников паровой турбины, содержащую последовательно соединенные по греющей среде сливной трубопровод, маслобак, маслонасос и маслоохладитель, выход которого по нагреваемой среде соединен с напорным трубопроводом, отличающаяся тем, что в нее введен тепловой двигатель с замкнутым контуром циркуляции, работающий по органическому циклу Ренкина, при этом замкнутый контур циркуляции теплового двигателя выполнен в виде контура с низкокипящим рабочим телом, содержащим последовательно соединенные турбодетандер с электрогенератором, конденсатор воздушного охлаждения и конденсатный насос, причем выход конденсатного насоса соединен по нагреваемой среде с входом маслоохладителя, выход которого соединен по нагреваемой среде с входом нижнего сетевого подогревателя, а выход верхнего сетевого подогревателя соединен по нагреваемой среде с входом турбодетандера, образуя замкнутый контур охлаждения.1. Thermal power station, including a series-connected steam turbine, a steam turbine condenser and a condensate pump of a steam turbine condenser, a main electric generator connected to a steam turbine, which is connected through a heating medium to the upper and lower network heaters, which are interconnected via a heated medium, and also an oil supply system for bearings of a steam turbine containing a drain pipe, an oil tank, an oil pump and an oil cooler connected in series through a heating medium the outlet of which is connected via a heated medium to a pressure pipe, characterized in that a closed-loop heat engine operating on the organic Rankine cycle is introduced into it, while the closed loop of the heat engine circulation is made in the form of a loop with a low boiling fluid containing serially connected a turboexpander with an electric generator, an air-cooled condenser and a condensate pump, the output of the condensate pump being connected via a heated medium to the inlet of the oil cooler, the stroke of which is connected via a heated medium to the input of the lower network heater, and the output of the upper network heater is connected by a heated medium to the input of the turboexpander, forming a closed cooling circuit. 2. Тепловая электрическая станция по п. 1, отличающаяся тем, что в качестве низкокипящего рабочего тела используют сжиженный углекислый газ CO2.
Figure 00000001
2. Thermal power station according to claim 1, characterized in that as a low-boiling working fluid use liquefied carbon dioxide CO 2 .
Figure 00000001
RU2014118383/06U 2014-05-06 2014-05-06 HEAT ELECTRIC STATION RU146405U1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2014118383/06U RU146405U1 (en) 2014-05-06 2014-05-06 HEAT ELECTRIC STATION

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2014118383/06U RU146405U1 (en) 2014-05-06 2014-05-06 HEAT ELECTRIC STATION

Publications (1)

Publication Number Publication Date
RU146405U1 true RU146405U1 (en) 2014-10-10

Family

ID=53383587

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2014118383/06U RU146405U1 (en) 2014-05-06 2014-05-06 HEAT ELECTRIC STATION

Country Status (1)

Country Link
RU (1) RU146405U1 (en)

Similar Documents

Publication Publication Date Title
RU145195U1 (en) HEAT ELECTRIC STATION
RU146405U1 (en) HEAT ELECTRIC STATION
RU146400U1 (en) HEAT ELECTRIC STATION
RU145828U1 (en) HEAT ELECTRIC STATION
RU146387U1 (en) HEAT ELECTRIC STATION
RU145226U1 (en) HEAT ELECTRIC STATION
RU146406U1 (en) HEAT ELECTRIC STATION
RU145196U1 (en) HEAT ELECTRIC STATION
RU144945U1 (en) HEAT ELECTRIC STATION
RU145232U1 (en) HEAT ELECTRIC STATION
RU145767U1 (en) HEAT ELECTRIC STATION
RU145806U1 (en) HEAT ELECTRIC STATION
RU146403U1 (en) HEAT ELECTRIC STATION
RU146349U1 (en) HEAT ELECTRIC STATION
RU145218U1 (en) HEAT ELECTRIC STATION
RU145808U1 (en) HEAT ELECTRIC STATION
RU145223U1 (en) HEAT ELECTRIC STATION
RU145809U1 (en) HEAT ELECTRIC STATION
RU144948U1 (en) HEAT ELECTRIC STATION
RU146404U1 (en) HEAT ELECTRIC STATION
RU145723U1 (en) HEAT ELECTRIC STATION
RU145227U1 (en) HEAT ELECTRIC STATION
RU145211U1 (en) HEAT ELECTRIC STATION
RU144935U1 (en) HEAT ELECTRIC STATION
RU146339U1 (en) HEAT ELECTRIC STATION

Legal Events

Date Code Title Description
MM1K Utility model has become invalid (non-payment of fees)

Effective date: 20150507