RU145198U1 - HEAT ELECTRIC STATION - Google Patents

HEAT ELECTRIC STATION Download PDF

Info

Publication number
RU145198U1
RU145198U1 RU2014113110/06U RU2014113110U RU145198U1 RU 145198 U1 RU145198 U1 RU 145198U1 RU 2014113110/06 U RU2014113110/06 U RU 2014113110/06U RU 2014113110 U RU2014113110 U RU 2014113110U RU 145198 U1 RU145198 U1 RU 145198U1
Authority
RU
Russia
Prior art keywords
steam turbine
condenser
heat exchanger
connected via
heated medium
Prior art date
Application number
RU2014113110/06U
Other languages
Russian (ru)
Inventor
Айрат Маратович Гафуров
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Казанский государственный энергетический университет" (ФГБОУ ВПО "КГЭУ")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Казанский государственный энергетический университет" (ФГБОУ ВПО "КГЭУ") filed Critical Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Казанский государственный энергетический университет" (ФГБОУ ВПО "КГЭУ")
Priority to RU2014113110/06U priority Critical patent/RU145198U1/en
Application granted granted Critical
Publication of RU145198U1 publication Critical patent/RU145198U1/en

Links

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

1. Тепловая электрическая станция, включающая последовательно соединенные паровую турбину, конденсатор паровой турбины и конденсатный насос конденсатора паровой турбины, а также основной электрогенератор, соединенный с паровой турбиной, которая соединена по греющей среде с верхним и нижним сетевыми подогревателями, включенными по нагреваемой среде между подающим и обратным трубопроводами сетевой воды, и теплообменник-охладитель сетевой воды, включенный по нагреваемой среде в обратный трубопровод сетевой воды перед нижним сетевым подогревателем, отличающаяся тем, что в нее введены конденсационная установка, содержащая последовательно соединенные паровую турбину с производственным отбором пара, имеющую электрогенератор, конденсатор паровой турбины с производственным отбором пара и конденсатный насос конденсатора паровой турбины с производственным отбором пара, а также тепловой двигатель с замкнутым контуром циркуляции, работающий по органическому циклу Ренкина, при этом замкнутый контур циркуляции теплового двигателя выполнен в виде контура с низкокипящим рабочим телом, содержащим турбодетандер с электрогенератором, теплообменник-рекуператор, конденсатор водяного и воздушного охлаждения, конденсатный насос, причем выход конденсатного насоса соединен по нагреваемой среде с входом теплообменника-рекуператора, который соединен по нагреваемой среде с входом теплообменника-охладителя сетевой воды, выход теплообменника-охладителя сетевой воды по нагреваемой среде соединен с входом конденсатора паровой турбины с производственным отбором пара, выход конденсатора паровой турбины с производст�1. Thermal power station, including a series-connected steam turbine, a steam turbine condenser and a condensate pump of a steam turbine condenser, as well as a main electric generator connected to a steam turbine, which is connected via a heating medium to the upper and lower network heaters connected via a heated medium between the supply and by return pipelines of network water, and a heat exchanger-cooler of network water connected via a heated medium to a return pipeline of network water in front of the lower network heater, characterized in that it introduced a condensing unit containing a series-connected steam turbine with production steam extraction, having an electric generator, a steam turbine condenser with production steam extraction and a condenser pump of a steam turbine condenser with production steam extraction, as well as a closed-circuit heat engine circulation, working on the organic Rankine cycle, while the closed circuit of the circulation of the heat engine is made in the form of a circuit with a low boiling slave body containing a turboexpander with an electric generator, a heat exchanger-recuperator, a condenser of water and air cooling, a condensate pump, and the output of the condensate pump is connected via a heated medium to the input of the heat exchanger-recuperator, which is connected via a heated medium to the input of the network water heat exchanger-cooler, the output of the heat exchanger of network water cooler through a heated medium is connected to the input of the steam turbine condenser with production steam extraction, the output of the steam turbine condenser is from

Description

Полезная модель относится к области энергетики и может быть использована на тепловых электрических станциях (ТЭС) при утилизации избыточной низкопотенциальной теплоты обратной сетевой воды и утилизации высокопотенциальной теплоты пара производственного отбора для дополнительной выработки электрической энергии.The utility model relates to the field of energy and can be used at thermal power plants (TPPs) for utilization of excess low-potential heat of return network water and utilization of high-potential heat of production steam for additional generation of electric energy.

Прототипом является тепловая электрическая станция, содержащая теплофикационную турбину с отопительными отборами пара, подающий и обратный трубопроводы теплосети, сетевые подогреватели, включенные по нагреваемой среде между подающим и обратным трубопроводами теплосети и подключенные по греющей среде к отопительным отборам, теплонасосную установку с испарителем, выполняющим функцию теплообменника-охладителя сетевой воды и включенным в обратный трубопровод теплосети, и конденсатором, при этом конденсатор теплонасосной установки включен в подающий трубопровод теплосети после сетевых подогревателей (патент RU №2269014, МПК F01K 17/02, 27.01.2006).The prototype is a thermal power station containing a cogeneration turbine with heating steam extraction, supply and return pipelines of the heating network, network heaters connected via the heated medium between the supply and return pipelines of the heating network and connected via heating medium to the heating selection, a heat pump installation with an evaporator acting as a heat exchanger - a network water cooler and a condenser included in the return pipe of the heating network, while the condenser of the heat pump installation closed in the supply pipe of the heating system after network heaters (patent RU No. 2269014, IPC F01K 17/02, 01/27/2006).

Основным недостатком прототипа является то, что утилизацию избыточной низкопотенциальной теплоты обратной сетевой воды осуществляют в целях выработки дополнительной тепловой энергии, а не для дополнительной выработки электрической энергии.The main disadvantage of the prototype is that the disposal of excess low potential heat return network water is carried out in order to generate additional thermal energy, and not for additional generation of electrical energy.

Кроме этого, недостатком прототипа является относительно низкий коэффициент полезного действия ТЭС по выработке электрической энергии, обусловленный затратами электрической мощности на привод теплонасосной установки.In addition, the disadvantage of the prototype is the relatively low efficiency of thermal power plants for the generation of electric energy, due to the cost of electric power to drive the heat pump installation.

Задачей полезной модели является повышение коэффициента полезного действия ТЭС за счет утилизации избыточной низкопотенциальной теплоты обратной сетевой воды для дополнительной выработки электрической энергии.The objective of the utility model is to increase the efficiency of TPPs by utilizing the excess low-grade heat of the return network water for additional generation of electric energy.

Технический результат достигается тем, что в тепловую электрическую станцию, включающую последовательно соединенные паровую турбину, конденсатор паровой турбины и конденсатный насос конденсатора паровой турбины, а также основной электрогенератор, соединенный с паровой турбиной, которая соединена по греющей среде с верхним и нижним сетевыми подогревателями, включенными по нагреваемой среде между подающим и обратным трубопроводами сетевой воды, и теплообменник-охладитель сетевой воды, включенный по нагреваемой среде в обратный трубопровод сетевой воды перед нижним сетевым подогревателем, согласно настоящей полезной модели, введены конденсационная установка, содержащая последовательно соединенные паровую турбину с производственным отбором пара, имеющую электрогенератор, конденсатор паровой турбины с производственным отбором пара и конденсатный насос конденсатора паровой турбины с производственным отбором пара, а также тепловой двигатель с замкнутым контуром циркуляции, работающий по органическому циклу Ренкина, при этом замкнутый контур циркуляции теплового двигателя выполнен в виде контура с низкокипящим рабочим телом, содержащим турбодетандер с электрогенератором, теплообменник-рекуператор, конденсатор водяного и воздушного охлаждения, конденсатный насос, причем выход конденсатного насоса соединен по нагреваемой среде с входом теплообменника-рекуператора, который соединен по нагреваемой среде с входом теплообменника-охладителя сетевой воды, выход теплообменника-охладителя сетевой воды по нагреваемой среде соединен с входом конденсатора паровой турбины с производственным отбором пара, выход конденсатора паровой турбины с производственным отбором пара соединен по нагреваемой среде с входом турбодетандера, выход которого соединен по греющей среде с теплообменником-рекуператором, выход теплообменника-рекуператора соединен по греющей среде с конденсатором водяного и воздушного охлаждения, выход которого соединен по нагреваемой среде с входом конденсатного насоса, образуя замкнутый контур охлаждения.The technical result is achieved by the fact that in a thermal power station including a series-connected steam turbine, a steam turbine condenser and a condensate pump of a steam turbine condenser, as well as a main electric generator connected to a steam turbine, which is connected via heating medium to the upper and lower network heaters included on the heated medium between the supply and return pipelines of the network water, and the heat exchanger-cooler of the network water, included on the heated medium in the return pipe the water supply line in front of the lower network heater, according to the present utility model, a condensing unit was introduced comprising a series-connected steam turbine with production steam extraction having an electric generator, a steam turbine condenser with production steam extraction and a condenser pump of a steam turbine condenser with production steam extraction, and closed-loop heat engine operating on the organic Rankine cycle, with a closed heat circulation loop the engine is made in the form of a circuit with a low boiling fluid containing a turboexpander with an electric generator, a heat exchanger-recuperator, a water and air cooling condenser, a condensate pump, and the output of the condensate pump is connected via a heated medium to the input of the heat exchanger-recuperator, which is connected via a heated medium to the input of the heat exchanger network water cooler, the outlet of the heat exchanger-cooler network water through a heated medium is connected to the condenser input of a steam turbine with production selection RA, the output of the condenser of a steam turbine with production steam extraction is connected via a heated medium to the input of a turbine expander, the output of which is connected via a heating medium to a heat exchanger-recuperator, the output of a heat exchanger-recuperator is connected via a heating medium to a condenser of water and air cooling, the output of which is connected via a heated medium with the inlet of the condensate pump, forming a closed cooling circuit.

В качестве низкокипящего рабочего тела используют сжиженный пропан C3H8.As a low-boiling working fluid, liquefied propane C 3 H 8 is used .

Таким образом, технический результат достигается за счет утилизации избыточной низкопотенциальной теплоты обратной сетевой воды и утилизации высокопотенциальной теплоты пара производственного отбора из паровой турбины с производственным отбором пара для дополнительной выработки электрической энергии, которые осуществляют путем последовательного нагрева, соответственно, в теплообменнике-охладителе сетевой воды и конденсаторе паровой турбины с производственным отбором пара, низкокипящего рабочего тела (сжиженного пропана C3H8) теплового двигателя с замкнутым контуром циркуляции, работающего по органическому циклу Ренкина.Thus, the technical result is achieved by utilizing the excess low potential heat of the return network water and utilizing the high potential heat of the production steam from a steam turbine with production steam extraction for additional generation of electric energy, which is carried out by sequential heating, respectively, in the heat exchanger-cooler of network water and the condenser of the steam turbine with productive steam extraction, low boiling working fluid (liquid c 3 H 8 propane) m pilaf engine with closed-loop circulation operation in the organic Rankine cycle.

Сущность полезной модели поясняется чертежом, на котором представлена предлагаемая тепловая электрическая станция, имеющая тепловой двигатель с водяным и воздушным охлаждением, теплообменником-рекуператором, теплообменник-охладитель сетевой воды, и конденсационную установку.The essence of the utility model is illustrated by the drawing, which shows the proposed thermal power plant having a heat engine with water and air cooling, a heat exchanger-recuperator, a heat exchanger-cooler network water, and a condensing unit.

На чертеже цифрами обозначены:In the drawing, the numbers indicate:

1 - паровая турбина,1 - steam turbine,

2 - конденсатор паровой турбины,2 - condenser of a steam turbine,

3 - конденсатный насос конденсатора паровой турбины,3 - condensate pump condenser of a steam turbine,

4 - основной электрогенератор,4 - the main generator

5 - тепловой двигатель с замкнутым контуром циркуляции,5 - heat engine with a closed circuit,

6 - турбодетандер,6 - turboexpander,

7 - электрогенератор,7 - electric generator,

8 - конденсатор водяного и воздушного охлаждения,8 - condenser water and air cooling,

9 - конденсатный насос,9 - condensate pump,

10 - верхний сетевой подогреватель,10 - upper network heater,

11 - нижний сетевой подогреватель,11 - lower network heater,

12 - подающий трубопровод сетевой воды,12 - supply pipe network water,

13 - обратный трубопровод сетевой воды,13 - return pipe network water,

14 - теплообменник-охладитель сетевой воды,14 - heat exchanger-cooler network water,

15 - конденсационная установка,15 - condensation installation,

16 - паровая турбина с производственным отбором пара,16 - steam turbine with production steam extraction,

17 - электрогенератор паровой турбины с производственным отбором пара,17 - an electric generator of a steam turbine with production steam extraction,

18 - конденсатор паровой турбины с производственным отбором пара,18 is a condenser of a steam turbine with production steam extraction,

19 - конденсатный насос конденсатора паровой турбины с производственным отбором пара,19 is a condensate pump of a condenser of a steam turbine with production steam extraction,

20 - теплообменник-рекуператор.20 - heat exchanger-recuperator.

Тепловая электрическая станция включает последовательно соединенные паровую турбину 1, конденсатор 2 паровой турбины и конденсатный насос 3 конденсатора паровой турбины, а также основной электрогенератор 4, соединенный с паровой турбиной 1, которая соединена по греющей среде с верхним 10 и нижним 11 сетевыми подогревателями, включенными по нагреваемой среде между подающим 12 и обратным 13 трубопроводами сетевой воды, и теплообменник-охладитель 14 сетевой воды, включенный по нагреваемой среде в обратный трубопровод 13 сетевой воды перед нижним сетевым подогревателем 11.The thermal power plant includes a series-connected steam turbine 1, a steam turbine condenser 2 and a condenser pump 3 of the steam turbine condenser, as well as a main electric generator 4 connected to the steam turbine 1, which is connected via heating medium to the upper 10 and lower 11 network heaters connected via heated medium between the supply 12 and return 13 piping of network water, and a heat exchanger-cooler 14 network water, included through the heated medium in the return pipe 13 of network water in front of the bottom network heater 11.

Отличием предлагаемой тепловой электрической станции является то, что в нее введены конденсационная установка 15 и тепловой двигатель 5 с замкнутым контуром циркуляции, работающий по органическому циклу Ренкина.The difference of the proposed thermal power station is that a condensing unit 15 and a heat engine 5 with a closed circulation loop, operating on the organic Rankine cycle, are introduced into it.

Конденсационная установка 15 содержит последовательно соединенные паровую турбину 16 с производственным отбором пара, имеющую электрогенератор 17, конденсатор 18 паровой турбины с производственным отбором пара и конденсатный насос 19 конденсатора паровой турбины с производственным отбором пара.The condensing unit 15 comprises a series-coupled steam turbine 16 with production steam having an electric generator 17, a steam turbine condenser 18 with production steam and a condensate pump 19 of the steam turbine condenser with production steam.

Замкнутый контур циркуляции теплового двигателя 5 выполнен в виде контура с низкокипящим рабочим телом, содержащим турбодетандер 6 с электрогенератором 7, теплообменник-рекуператор 20, конденсатор 8 водяного и воздушного охлаждения, конденсатный насос 9, причем выход конденсатного насоса 9 соединен по нагреваемой среде с входом теплообменника-рекуператора 20, который соединен по нагреваемой среде с входом теплообменника-охладителя 14 сетевой воды, выход теплообменника-охладителя 14 сетевой воды по нагреваемой среде соединен с входом конденсатора 18 паровой турбины с производственным отбором пара, выход конденсатора 18 паровой турбины с производственным отбором пара соединен по нагреваемой среде с входом турбодетандера 6, выход которого соединен по греющей среде с теплообменником-рекуператором 20, выход теплообменника-рекуператора 20 соединен по греющей среде с конденсатором 8 водяного и воздушного охлаждения, выход которого соединен по нагреваемой среде с входом конденсатного насоса 9, образуя замкнутый контур охлаждения.The closed circuit of the circulation of the heat engine 5 is made in the form of a circuit with a low boiling fluid containing a turboexpander 6 with an electric generator 7, a heat exchanger-recuperator 20, a condenser 8 of water and air cooling, a condensate pump 9, and the output of the condensate pump 9 is connected via a heated medium to the inlet of the heat exchanger a recuperator 20, which is connected via a heated medium to the input of the heat exchanger-cooler 14 of the network water, the output of the heat exchanger-cooler 14 of the network water is connected to the input of the condenser through the heated medium an ator 18 of a steam turbine with production steam extraction, the output of the condenser 18 of a steam turbine with production steam extraction is connected via a heated medium to the inlet of a turboexpander 6, the output of which is connected via a heating medium to a heat exchanger-recuperator 20, the output of a heat exchanger-recuperator 20 is connected via a heating medium to a condenser 8 water and air cooling, the output of which is connected via a heated medium to the inlet of the condensate pump 9, forming a closed cooling circuit.

Конденсатор 8 водяного и воздушного охлаждения состоит из конденсатора водяного охлаждения и конденсатора воздушного охлаждения (на чертеже условно не показаны схемы подключения конденсаторов между собой), которые могут как последовательно, так и параллельно охлаждать и сжижать газообразный пропан C3H8.The condenser 8 of water and air cooling consists of a water cooling condenser and an air cooling condenser (the diagram does not conditionally show the connection diagrams of the condensers), which can both sequentially and simultaneously cool and liquefy gaseous propane C 3 H 8 .

В качестве низкокипящего рабочего тела используют сжиженный пропан C3H8.As a low-boiling working fluid, liquefied propane C 3 H 8 is used .

Предлагаемая тепловая электрическая станция работает следующим образом.The proposed thermal power plant operates as follows.

Отработавший пар, поступающий из паровой турбины 1 в паровое пространство конденсатора 2, конденсируется на поверхности конденсаторных трубок. При этом образующийся конденсат с помощью конденсатного насоса 3 конденсатора паровой турбины направляют в систему регенерации. Мощность паровой турбины 1 передается соединенному на одном валу основному электрогенератору 4.The exhaust steam coming from the steam turbine 1 into the steam space of the condenser 2 is condensed on the surface of the condenser tubes. In this case, the condensate formed is sent via a condensate pump 3 of the steam turbine condenser to the regeneration system. The power of the steam turbine 1 is transmitted to the main generator 4 connected to one shaft.

Преобразование избыточной низкопотенциальной тепловой энергии обратной сетевой воды и высокопотенциальной тепловой энергии пара производственного отбора из паровой турбины 16, в механическую и, далее, в электрическую происходит в замкнутом контуре циркуляции теплового двигателя 5, работающего по органическому циклу Ренкина.The conversion of excess low-potential thermal energy from reverse network water and high-potential thermal energy from production steam from steam turbine 16 into mechanical and, further, into electric energy takes place in a closed loop of the heat engine 5 operating on the organic Rankine cycle.

Весь процесс начинается с сжатия в конденсатном насосе 9 сжиженного пропана C3H8, который последовательно направляют на нагрев в начале в теплообменник-рекуператор 20, куда поступает перегретый газообразный пропан C3H8 из турбодетандера 6, а затем в теплообменник-охладитель 14 сетевой воды, куда поступает обратная сетевая вода из обратного трубопровода 13. При этом температура обратной сетевой воды может варьироваться в интервале от 313,15 K до 343,15 K.The whole process begins with the compression in the condensate pump 9 of liquefied propane C 3 H 8 , which is subsequently sent for heating at the beginning to the heat exchanger-recuperator 20, where superheated gaseous propane C 3 H 8 from the turbine expander 6 enters, and then to the network heat exchanger-cooler 14 water, to which the return network water flows from the return pipeline 13. The temperature of the return network water can vary in the range from 313.15 K to 343.15 K.

В процессе теплообмена перегретого газообразного пропана C3H8 с сжиженным пропаном C3H8 в теплообменнике-рекуператоре 20, а также в процессе теплообмена обратной сетевой воды с сжиженным пропаном C3H8 в теплообменнике-охладителе 14 сетевой воды, происходит нагрев сжиженного пропана C3H8 в пределах критической температуры в интервале от 300 K до 338,15 K при сверхкритическом давлении от 4,2512 МПа до 8 МПа, и далее его направляют на испарение и перегрев в конденсатор 18 паровой турбины с производственным отбором пара, куда поступает пар производственного отбора из паровой турбины 16 при температуре около 573 K.In the process of heat exchange of superheated gaseous propane C 3 H 8 with liquefied propane C 3 H 8 in the heat exchanger-recuperator 20, as well as in the process of heat exchange of return network water with liquefied propane C 3 H 8 in the heat exchanger-cooler 14 of network water, liquefied propane is heated C 3 H 8 within the critical temperature range from 300 K to 338.15 K at supercritical pressure from 4.2512 MPa to 8 MPa, and then it is directed to evaporation and overheating in the condenser 18 of the steam turbine with production steam extraction, steam production th selection from the steam turbine 16 at a temperature of about 573 K.

Пар, поступающий из производственного отбора паровой турбины 16 в паровое пространство конденсатора 18, конденсируется на поверхности конденсаторных трубок, внутри которых протекает охлаждающая жидкость (сжиженный пропан C3H8). Мощность паровой турбины 16 передается соединенному на одном валу основному электрогенератору 17.The steam coming from the production selection of the steam turbine 16 into the steam space of the condenser 18 condenses on the surface of the condenser tubes, inside which coolant flows (liquefied propane C 3 H 8 ). The power of the steam turbine 16 is transmitted to the main electric generator 17 connected to one shaft.

Конденсация пара сопровождается выделением скрытой теплоты парообразования, которая отводится при помощи охлаждающей жидкости. Образующийся конденсат с помощью конденсатного насоса 19 конденсатора паровой турбины с производственным отбором пара направляют в систему регенерации.Steam condensation is accompanied by the release of latent heat of vaporization, which is removed using coolant. The condensate formed by means of a condensate pump 19 of a steam turbine condenser with production steam extraction is sent to the regeneration system.

В процессе конденсации пара производственного отбора в конденсаторе 18 паровой турбины, происходит нагрев сжиженного пропана C3H8 до критической температуры 369,89 K, с последующим его испарением и перегревом до сверхкритической температуры от 369,89 K до 420 K при сверхкритическом давлении от 4,2512 МПа до 8 МПа, который направляют в турбодетандер 6.During the condensation of production steam in the condenser 18 of the steam turbine, the liquefied propane C 3 H 8 is heated to a critical temperature of 369.89 K, followed by its evaporation and overheating to a supercritical temperature of 369.89 K to 420 K at a supercritical pressure of 4 , 2512 MPa to 8 MPa, which is sent to a turboexpander 6.

Процесс настроен таким образом, что в турбодетандере 6 не происходит конденсации газообразного пропана C3H8 в ходе срабатывания теплоперепада. Мощность турбодетандера 6 передается соединенному на одном валу электрогенератору 7. На выходе из турбодетандера 6 газообразный пропан C3H8, имеющий температуру перегретого газа около 288 K, направляют в теплообменник-рекуператор 20 для снижения температуры.The process is configured in such a way that condensation of gaseous propane C 3 H 8 does not occur in the operation of the heat transfer in the turbine expander 6. The power of the turboexpander 6 is transmitted to an electric generator 7 connected to one shaft. At the outlet of the turboexpander 6, gaseous propane C 3 H 8 having a superheated gas temperature of about 288 K is sent to the heat exchanger-recuperator 20 to reduce the temperature.

В теплообменнике-рекуператоре 20 в процессе отвода теплоты на нагрев сжиженного пропана C3H8 снижается нагрузка на конденсатор 8 и затраты мощности на привод циркуляционных насосов и вентиляторов.In the heat exchanger-recuperator 20, in the process of heat removal for heating liquefied propane C 3 H 8, the load on the condenser 8 and the power consumption for driving circulating pumps and fans are reduced.

Далее его температуру снижают и сжижают в конденсаторе 8 водяного и воздушного охлаждения, охлаждаемого технической водой окружающей среды в температурном диапазоне от 278,15 K до 283,15 K и воздухом окружающей среды в температурном диапазоне от 223,15 K до 283,15 K.Further, its temperature is reduced and liquefied in a condenser 8 of water and air cooling, cooled by ambient technical water in the temperature range from 278.15 K to 283.15 K and ambient air in the temperature range from 223.15 K to 283.15 K.

После конденсатора 8 водяного и воздушного охлаждения в сжиженном состоянии пропан C3H8 направляют для сжатия в конденсатный насос 9 теплового двигателя 5.After the condenser 8 of water and air cooling in a liquefied state, propane C 3 H 8 is sent for compression to the condensate pump 9 of the heat engine 5.

Далее органический цикл Ренкина на основе низкокипящего рабочего тела повторяется.Further, the organic Rankine cycle based on a low-boiling working fluid is repeated.

Использование конденсационной установки 15 позволяет повысить начальные параметры низкокипящего рабочего тела теплового двигателя с замкнутым контуром циркуляции до сверхкритических параметров, что приводит к увеличению теплоперепада на турбодетандере 6 и, как следствие, повышению коэффициента полезного действия ТЭС по выработке электрической энергии.The use of condensation unit 15 makes it possible to increase the initial parameters of the low-boiling working fluid of a heat engine with a closed circulation loop to supercritical parameters, which leads to an increase in heat drop on the turbine expander 6 and, as a result, an increase in the efficiency of TPPs for generating electric energy.

Применение конденсатора 8 водяного и воздушного охлаждения позволяет как последовательно, так и параллельно охлаждать и сжижать газообразный пропан C3H8. При последовательном охлаждении температуру газообразного пропана C3H8 снижают вначале в конденсаторе водяного охлаждения, а затем его сжижают в конденсаторе воздушного охлаждения.The use of condenser 8 of water and air cooling allows both sequentially and in parallel to cool and liquefy gaseous propane C 3 H 8 . With sequential cooling, the temperature of the propane gas C 3 H 8 is first reduced in a water-cooled condenser, and then it is liquefied in an air-cooled condenser.

При параллельном охлаждении газообразный пропан C3H8 разделяют на два потока: первый поток охлаждается и сжижается в конденсаторе водяного охлаждения, а второй поток в конденсаторе воздушного охлаждения, и в процессе смешения двух выходных потоков возможно регулирование температуры сжиженного пропана C3H8.In parallel cooling, gaseous propane C 3 H 8 is divided into two streams: the first stream is cooled and liquefied in a water-cooled condenser, and the second stream in an air-cooled condenser, and in the process of mixing the two output streams, it is possible to control the temperature of liquefied propane C 3 H 8 .

Применение воздуха в качестве теплоотводящей среды конденсатора 8 позволяет резко сократить расходы воды и улучшить экологический баланс естественных водоемов.The use of air as a heat sink medium of the condenser 8 can drastically reduce water consumption and improve the ecological balance of natural reservoirs.

Claims (2)

1. Тепловая электрическая станция, включающая последовательно соединенные паровую турбину, конденсатор паровой турбины и конденсатный насос конденсатора паровой турбины, а также основной электрогенератор, соединенный с паровой турбиной, которая соединена по греющей среде с верхним и нижним сетевыми подогревателями, включенными по нагреваемой среде между подающим и обратным трубопроводами сетевой воды, и теплообменник-охладитель сетевой воды, включенный по нагреваемой среде в обратный трубопровод сетевой воды перед нижним сетевым подогревателем, отличающаяся тем, что в нее введены конденсационная установка, содержащая последовательно соединенные паровую турбину с производственным отбором пара, имеющую электрогенератор, конденсатор паровой турбины с производственным отбором пара и конденсатный насос конденсатора паровой турбины с производственным отбором пара, а также тепловой двигатель с замкнутым контуром циркуляции, работающий по органическому циклу Ренкина, при этом замкнутый контур циркуляции теплового двигателя выполнен в виде контура с низкокипящим рабочим телом, содержащим турбодетандер с электрогенератором, теплообменник-рекуператор, конденсатор водяного и воздушного охлаждения, конденсатный насос, причем выход конденсатного насоса соединен по нагреваемой среде с входом теплообменника-рекуператора, который соединен по нагреваемой среде с входом теплообменника-охладителя сетевой воды, выход теплообменника-охладителя сетевой воды по нагреваемой среде соединен с входом конденсатора паровой турбины с производственным отбором пара, выход конденсатора паровой турбины с производственным отбором пара соединен по нагреваемой среде с входом турбодетандера, выход которого соединен по греющей среде с теплообменником-рекуператором, выход теплообменника-рекуператора соединен по греющей среде с конденсатором водяного и воздушного охлаждения, выход которого соединен по нагреваемой среде с входом конденсатного насоса, образуя замкнутый контур охлаждения.1. Thermal power station, including a series-connected steam turbine, a steam turbine condenser and a condensate pump of a steam turbine condenser, as well as a main electric generator connected to a steam turbine, which is connected via a heating medium to the upper and lower network heaters connected via a heated medium between the supply and by return pipelines of network water, and a heat exchanger-cooler of network water connected via a heated medium to a return pipeline of network water in front of the lower network heater, characterized in that it introduced a condensing unit containing a series-connected steam turbine with production steam extraction, having an electric generator, a steam turbine condenser with production steam extraction and a condenser pump of a steam turbine condenser with production steam extraction, as well as a closed-circuit heat engine circulation, working on the organic Rankine cycle, while the closed circuit of the circulation of the heat engine is made in the form of a circuit with a low boiling slave body containing a turboexpander with an electric generator, a heat exchanger-recuperator, a condenser of water and air cooling, a condensate pump, and the output of the condensate pump is connected via a heated medium to the input of the heat exchanger-recuperator, which is connected via a heated medium to the input of the heat exchanger-cooler network water, the output of the heat exchanger of network water cooler through a heated medium is connected to the input of the steam turbine condenser with production steam extraction, the output of the steam turbine condenser from the production The steam is connected through a heated medium to the inlet of a turboexpander, the output of which is connected through a heating medium to a heat exchanger-recuperator, the output of a heat exchanger-recuperator is connected via a heating medium to a water and air-cooled condenser, the output of which is connected through a heated medium to the inlet of a condensate pump, forming a closed cooling circuit. 2. Тепловая электрическая станция по п. 1, отличающаяся тем, что в качестве низкокипящего рабочего тела используют сжиженный пропан С3Н8.
Figure 00000001
2. Thermal power station under item 1, characterized in that as a low-boiling working fluid use liquefied propane C 3 H 8 .
Figure 00000001
RU2014113110/06U 2014-04-03 2014-04-03 HEAT ELECTRIC STATION RU145198U1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2014113110/06U RU145198U1 (en) 2014-04-03 2014-04-03 HEAT ELECTRIC STATION

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2014113110/06U RU145198U1 (en) 2014-04-03 2014-04-03 HEAT ELECTRIC STATION

Publications (1)

Publication Number Publication Date
RU145198U1 true RU145198U1 (en) 2014-09-10

Family

ID=51540720

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2014113110/06U RU145198U1 (en) 2014-04-03 2014-04-03 HEAT ELECTRIC STATION

Country Status (1)

Country Link
RU (1) RU145198U1 (en)

Similar Documents

Publication Publication Date Title
RU145200U1 (en) HEAT ELECTRIC STATION
RU145203U1 (en) HEAT ELECTRIC STATION
RU145194U1 (en) HEAT ELECTRIC STATION
RU145229U1 (en) HEAT ELECTRIC STATION
RU145195U1 (en) HEAT ELECTRIC STATION
RU145198U1 (en) HEAT ELECTRIC STATION
RU144937U1 (en) HEAT ELECTRIC STATION
RU145217U1 (en) HEAT ELECTRIC STATION
RU144950U1 (en) HEAT ELECTRIC STATION
RU145209U1 (en) HEAT ELECTRIC STATION
RU145826U1 (en) HEAT ELECTRIC STATION
RU145804U1 (en) HEAT ELECTRIC STATION
RU145193U1 (en) HEAT ELECTRIC STATION
RU146342U1 (en) HEAT ELECTRIC STATION
RU145766U1 (en) HEAT ELECTRIC STATION
RU145228U1 (en) HEAT ELECTRIC STATION
RU146392U1 (en) HEAT ELECTRIC STATION
RU145820U1 (en) HEAT ELECTRIC STATION
RU144955U1 (en) HEAT ELECTRIC STATION
RU145794U1 (en) HEAT ELECTRIC STATION
RU145764U1 (en) HEAT ELECTRIC STATION
RU146398U1 (en) HEAT ELECTRIC STATION
RU144932U1 (en) HEAT ELECTRIC STATION
RU144912U1 (en) HEAT ELECTRIC STATION
RU145215U1 (en) HEAT ELECTRIC STATION

Legal Events

Date Code Title Description
MM1K Utility model has become invalid (non-payment of fees)

Effective date: 20150404