RU144924U1 - HEAT ELECTRIC STATION - Google Patents

HEAT ELECTRIC STATION Download PDF

Info

Publication number
RU144924U1
RU144924U1 RU2014109163/06U RU2014109163U RU144924U1 RU 144924 U1 RU144924 U1 RU 144924U1 RU 2014109163/06 U RU2014109163/06 U RU 2014109163/06U RU 2014109163 U RU2014109163 U RU 2014109163U RU 144924 U1 RU144924 U1 RU 144924U1
Authority
RU
Russia
Prior art keywords
steam turbine
heated medium
heat exchanger
connected via
condenser
Prior art date
Application number
RU2014109163/06U
Other languages
Russian (ru)
Inventor
Айрат Маратович Гафуров
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Казанский государственный энергетический университет" (ФГБОУ ВПО "КГЭУ")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Казанский государственный энергетический университет" (ФГБОУ ВПО "КГЭУ") filed Critical Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Казанский государственный энергетический университет" (ФГБОУ ВПО "КГЭУ")
Priority to RU2014109163/06U priority Critical patent/RU144924U1/en
Application granted granted Critical
Publication of RU144924U1 publication Critical patent/RU144924U1/en

Links

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

1. Тепловая электрическая станция, включающая последовательно соединенные паровую турбину, конденсатор паровой турбины и конденсатный насос конденсатора паровой турбины, основной электрогенератор, соединенный с паровой турбиной, которая соединена по греющей среде с верхним и нижним сетевыми подогревателями, включенными по нагреваемой среде между подающим и обратным трубопроводами сетевой воды, а также систему маслоснабжения подшипников паровой турбины, содержащую последовательно соединенные по греющей среде сливной трубопровод, маслобак, маслонасос и маслоохладитель, выход которого по нагреваемой среде соединен с напорным трубопроводом, отличающаяся тем, что в нее введены теплообменник-охладитель сетевой воды, вход которого по нагреваемой среде соединен с обратным трубопроводом сетевой воды, а выход по нагреваемой среде - с нижним сетевым подогревателем, и тепловой двигатель с замкнутым контуром циркуляции, работающий по органическому циклу Ренкина, при этом замкнутый контур циркуляции теплового двигателя выполнен в виде контура с низкокипящим рабочим телом, содержащим турбодетандер с электрогенератором, теплообменник-рекуператор, конденсатор водяного охлаждения и конденсатный насос, причем выход конденсатного насоса соединен по нагреваемой среде с входом теплообменника-рекуператора, который соединен по нагреваемой среде с входом конденсатора паровой турбины, выход которого соединен по нагреваемой среде с входом маслоохладителя, выход маслоохладителя по нагреваемой среде соединен с входом теплообменника-охладителя сетевой воды, а выход теплообменника-охладителя сетевой воды по нагрева�1. Thermal power plant, including a series-connected steam turbine, a steam turbine condenser and a condensate pump of a steam turbine condenser, a main electric generator connected to a steam turbine, which is connected via a heating medium to the upper and lower network heaters, connected via a heated medium between the supply and return pipelines of network water, as well as the oil supply system for bearings of a steam turbine, containing a drain pipe in series connected over a heating medium, ma a slobak, an oil pump and an oil cooler, the outlet of which is connected via a heated medium to a pressure pipe, characterized in that a heat exchanger-cooler of network water is introduced into it, the input of which through a heated medium is connected to a return pipe of network water, and the outlet through a heated medium to a lower network a heater, and a closed-circuit heat engine operating on the organic Rankine cycle, while the closed heat engine circulation loop is made in the form of a circuit with a low boiling fluid, with holding a turboexpander with an electric generator, a heat exchanger-recuperator, a water cooling condenser and a condensate pump, the output of the condensate pump being connected via a heated medium to the input of a heat exchanger-recuperator, which is connected via a heated medium to the condenser input of a steam turbine, the output of which is connected via a heated medium to the oil cooler , the output of the oil cooler through the heated medium is connected to the input of the heat exchanger-cooler of the network water, and the output of the heat exchanger-cooler of the network water by heating

Description

Полезная модель относится к области энергетики и может быть использована на тепловых электрических станциях (ТЭС) для утилизации сбросной низкопотенциальной теплоты в конденсаторах паровых турбин ТЭС, утилизации низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины и утилизации избыточной низкопотенциальной теплоты обратной сетевой воды.The utility model relates to the field of energy and can be used at thermal power plants (TPPs) for utilization of low-grade waste heat in condensers of steam turbines of a TPP, utilization of low-grade heat of the oil supply system of steam turbine bearings and utilization of excess low-grade heat of return network water.

Прототипом является тепловая электрическая станция, содержащая подающий и обратный трубопроводы сетевой воды, паровую турбину с отопительными отборами пара и конденсатором, к которому подключены напорный и сливной трубопроводы циркуляционной воды, сетевые подогреватели, включенные по нагреваемой среде между подающим и обратным трубопроводами сетевой воды и подключенные по греющей среде к отопительным отборам, теплонасосную установку, испаритель которой подключен по греющей среде к сливному трубопроводу циркуляционной воды, конденсатор теплонасосной установки по нагреваемой среде включен в подающий трубопровод сетевой воды после сетевых подогревателей, а также систему маслоснабжения подшипников паровой турбины, содержащую последовательно соединенные по греющей среде сливной трубопровод, маслобак, маслонасос и маслоохладитель, выход которого по нагреваемой среде соединен с напорным трубопроводом (патент RU №2268372, МПК F01K 17/02, 20.01.2006).The prototype is a thermal power plant containing a supply and return piping of network water, a steam turbine with heating steam extraction and a condenser, to which pressure and drain pipelines of circulation water are connected, network heaters connected through a heated medium between the supply and return pipelines of network water and connected through heating medium to heating taps, heat pump installation, the evaporator of which is connected via heating medium to a drainage pipe of circulating water, The heat pump installation ator is connected to the heating water supply pipe after the network heaters, as well as to the steam turbine bearing oil supply system, which contains a drain pipe, an oil tank, an oil pump and an oil cooler connected in series through the heating medium, the outlet of which is connected to the pressure pipe through the heated medium (patent RU No. 2268372, IPC F01K 17/02, 01.20.2006).

Основным недостатком прототипа является относительно низкий коэффициент полезного действия ТЭС по выработке электрической энергии из-за отсутствия полной утилизации сбросной скрытой теплоты парообразования в конденсаторе паровой турбины, обусловленную наличием вторичного контура (теплонасосной установки), отсутствия утилизации низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины, а также отсутствия утилизации избыточной низкопотенциальной теплоты обратной сетевой воды, для дополнительной выработки электроэнергии. Кроме этого, недостатком является низкий ресурс и надежность работы конденсатора паровой турбины из-за использования технической (циркуляционной) воды, которая загрязняет конденсатор паровой турбины. Из-за повышенных тепловых выбросов циркуляционной воды в водоем-охладитель нарушается его экосистема.The main disadvantage of the prototype is the relatively low efficiency of thermal power plants for generating electric energy due to the lack of complete utilization of the latent latent heat of vaporization in the steam turbine condenser due to the presence of a secondary circuit (heat pump installation), the lack of utilization of low-grade heat from the oil supply system of the steam turbine bearings, and lack of utilization of excess low-grade heat of return network water, for additional generation of electric ktroenergii. In addition, the disadvantage is the low resource and reliability of the condenser of the steam turbine due to the use of technical (circulating) water, which pollutes the condenser of the steam turbine. Due to the increased thermal emissions of the circulation water into the cooling pond, its ecosystem is disturbed.

Задачей полезной модели является повышение коэффициента полезного действия ТЭС за счет полного использования сбросной низкопотенциальной теплоты, утилизации низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины и утилизации избыточной низкопотенциальной теплоты обратной сетевой воды для дополнительной выработки электрической энергии, повышение ресурса и надежности работы конденсатора паровой турбины и снижение тепловых выбросов в окружающую среду.The objective of the utility model is to increase the efficiency of TPPs due to the full use of waste low potential heat, utilization of low potential heat of the oil supply system of steam turbine bearings and utilization of excess low potential heat of return network water for additional generation of electric energy, increase the life and reliability of the steam turbine condenser and reduce heat emissions into the environment.

Технический результат достигается тем, что в тепловую электрическую станцию, включающую последовательно соединенные паровую турбину, конденсатор паровой турбины и конденсатный насос конденсатора паровой турбины, основной электрогенератор, соединенный с паровой турбиной, которая соединена по греющей среде с верхним и нижним сетевыми подогревателями, включенными по нагреваемой среде между подающим и обратным трубопроводами сетевой воды, а также систему маслоснабжения подшипников паровой турбины, содержащую последовательно соединенные по греющей среде сливной трубопровод, маслобак, маслонасос и маслоохладитель, выход которого по нагреваемой среде соединен с напорным трубопроводом, согласно настоящей полезной модели, введены теплообменник-охладитель сетевой воды, вход которого по нагреваемой среде соединен с обратным трубопроводом сетевой воды, а выход по нагреваемой среде - с нижним сетевым подогревателем, и тепловой двигатель с замкнутым контуром циркуляции, работающий по органическому циклу Ренкина, при этом замкнутый контур циркуляции теплового двигателя выполнен в виде контура с низкокипящим рабочим телом, содержащим турбодетандер с электрогенератором, теплообменник-рекуператор, конденсатор водяного охлаждения и конденсатный насос, причем выход конденсатного насоса соединен по нагреваемой среде с входом теплообменника-рекуператора, который соединен по нагреваемой среде с входом конденсатора паровой турбины, выход которого соединен по нагреваемой среде с входом маслоохладителя, выход маслоохладителя по нагреваемой среде соединен с входом теплообменника-охладителя сетевой воды, а выход теплообменника-охладителя сетевой воды по нагреваемой среде соединен с входом турбодетандера, выход которого соединен по греющей среде с теплообменником-рекуператором, выход теплообменника-рекуператора соединен по греющей среде с конденсатором водяного охлаждения, выход которого соединен по нагреваемой среде с входом конденсатного насоса, образуя замкнутый контур охлаждения.The technical result is achieved by the fact that in a thermal power station, including a series-connected steam turbine, a steam turbine condenser and a condensate pump of a steam turbine condenser, a main electric generator connected to a steam turbine, which is connected via a heating medium to the upper and lower network heaters connected via a heated the medium between the supply and return pipelines of the network water, as well as the oil supply system of bearings of the steam turbine, containing in series connected According to the present invention, a heat exchanger-cooler of network water is introduced, the inlet of which is connected via a heating medium to the return pipe of network water, and the outlet is supplied through a heating medium, a drain pipe, an oil tank, an oil pump and an oil cooler, the outlet of which is connected via a heated medium to a pressure pipeline a heated medium — with a lower network heater, and a closed-circuit heat engine operating on the organic Rankine cycle, while the closed-loop heat engine circulation it is filled in the form of a circuit with a low boiling fluid containing a turboexpander with an electric generator, a heat exchanger-recuperator, a water-cooled condenser and a condensate pump, the output of the condensate pump being connected via a heated medium to the input of the heat exchanger-recuperator, which is connected via a heated medium to the condenser input of a steam turbine, the outlet of which is connected via a heated medium to the inlet of the oil cooler, the outlet of the oil cooler through a heated medium is connected to the inlet of a heat exchanger-cooler of network water, and the outlet d of the heat exchanger-cooler of the network water through the heated medium is connected to the inlet of the turbine expander, the output of which is connected via the heating medium to the heat exchanger-recuperator, the output of the heat exchanger-recuperator is connected via the heating medium to the water-cooled condenser, the output of which is connected through the heated medium to the inlet of the condensate pump, forming closed loop cooling.

В качестве низкокипящего рабочего тела используют сжиженный пропан C3H8.As a low-boiling working fluid, liquefied propane C 3 H 8 is used .

Таким образом, технический результат достигается за счет полной утилизации сбросной низкопотенциальной теплоты (скрытой теплоты парообразования), утилизации низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины и утилизации избыточной низкопотенциальной теплоты обратной сетевой воды, которые осуществляют путем последовательного нагрева, соответственно, в конденсаторе паровой турбины, маслоохладителе и теплообменнике-охладителе сетевой воды, низкокипящего рабочего тела (сжиженного пропана C3H8) теплового двигателя с замкнутым контуром циркуляции, работающего по органическому циклу Ренкина.Thus, the technical result is achieved due to the complete utilization of waste low potential heat (latent heat of vaporization), utilization of low potential heat of the oil supply system of the steam turbine bearings and utilization of the excess low potential heat of the return network water, which is carried out by sequential heating, respectively, in the condenser of the steam turbine, oil cooler and heat exchanger-cooler network water, low-boiling working fluid (liquefied propane C 3 H 8 ) thermal closed-loop engine operating on the organic Rankine cycle.

Сущность полезной модели поясняется чертежом, на котором представлена предлагаемая тепловая электрическая станция, имеющая тепловой двигатель с водяным охлаждением, теплообменником-рекуператором, и теплообменник-охладитель сетевой воды.The essence of the utility model is illustrated by the drawing, which shows the proposed thermal power plant having a heat engine with water cooling, a heat exchanger-recuperator, and a heat exchanger-cooler network water.

На чертеже цифрами обозначены:In the drawing, the numbers indicate:

1 - паровая турбина,1 - steam turbine,

2 - конденсатор паровой турбины,2 - condenser of a steam turbine,

3 - конденсатный насос конденсатора паровой турбины,3 - condensate pump condenser of a steam turbine,

4 - основной электрогенератор,4 - the main generator

5 - тепловой двигатель с замкнутым контуром циркуляции,5 - heat engine with a closed circuit,

6 - турбодетандер,6 - turboexpander,

7 - электрогенератор,7 - electric generator,

8 - конденсатор водяного охлаждения,8 - condenser water cooling

9 - конденсатный насос,9 - condensate pump,

10 - верхний сетевой подогреватель,10 - upper network heater,

11 - нижний сетевой подогреватель,11 - lower network heater,

12 - подающий трубопровод сетевой воды,12 - supply pipe network water,

13 - обратный трубопровод сетевой воды,13 - return pipe network water,

14 - теплообменник-охладитель сетевой воды,14 - heat exchanger-cooler network water,

15 - система маслоснабжения подшипников паровой турбины,15 - oil supply system of bearings of a steam turbine,

16 - сливной трубопровод,16 - drain pipe

17 - маслобак,17 - oil tank

18 - маслонасос,18 - oil pump

19 - маслоохладитель,19 - oil cooler

20 - напорный трубопровод,20 - pressure pipe

21 - теплообменник-рекуператор.21 - heat exchanger-recuperator.

Тепловая электрическая станция включает последовательно соединенные паровую турбину 1, конденсатор 2 паровой турбины и конденсатный насос 3 конденсатора паровой турбины, основной электрогенератор 4, соединенный с паровой турбиной 1, которая соединена по греющей среде с верхним 10 и нижним 11 сетевыми подогревателями, включенными по нагреваемой среде между подающим 12 и обратным 13 трубопроводами сетевой воды, а также систему 15 маслоснабжения подшипников паровой турбины 1, содержащую последовательно соединенные по греющей среде сливной трубопровод 16, маслобак 17, маслонасос 18 и маслоохладитель 19, выход которого по нагреваемой среде соединен с напорным трубопроводом 20.The thermal power plant includes a series-connected steam turbine 1, a steam turbine condenser 2 and a condenser pump 3 of a steam turbine condenser, a main electric generator 4 connected to a steam turbine 1, which is connected via heating medium to the upper 10 and lower 11 network heaters connected via the heated medium between the supply 12 and return 13 pipelines of network water, as well as the oil supply system 15 for bearings of a steam turbine 1, comprising drain pipes connected in series through a heating medium wire 16, the oil tank 17, oil pump 18 and oil cooler 19, the output of the heated medium connected to the pressure line 20.

Отличием предлагаемой тепловой электрической станции является то, что в нее введены теплообменник-охладитель 14 сетевой воды и тепловой двигатель 5 с замкнутым контуром циркуляции, работающий по органическому циклу Ренкина. Вход теплообменника-охладителя 14 по нагреваемой среде соединен с обратным трубопроводом 13 сетевой воды. Выход теплообменника-охладителя 14 по нагреваемой среде соединен с нижним сетевым подогревателем 11. Замкнутый контур циркуляции теплового двигателя 5 выполнен в виде контура с низкокипящим рабочим телом, содержащим турбодетандер 6 с электрогенератором 7, теплообменник-рекуператор 21, конденсатор 8 водяного охлаждения и конденсатный насос 9, причем выход конденсатного насоса 9 соединен по нагреваемой среде с входом теплообменника-рекуператора 21, который соединен по нагреваемой среде с входом конденсатора 2 паровой турбины, выход которого соединен по нагреваемой среде с входом маслоохладителя 19, выход маслоохладителя 19 по нагреваемой среде соединен с входом теплообменника-охладителя 14 сетевой воды, а выход теплообменника-охладителя 14 сетевой воды по нагреваемой среде соединен с входом турбодетандера 6, выход которого соединен по греющей среде с теплообменником-рекуператором 21, выход теплообменника-рекуператора 21 соединен по греющей среде с конденсатором 8 водяного охлаждения, выход которого соединен по нагреваемой среде с входом конденсатного насоса 9, образуя замкнутый контур охлаждения.The difference of the proposed thermal power plant is that it introduced a heat exchanger-cooler 14 network water and a heat engine 5 with a closed loop, operating on the organic Rankine cycle. The input of the heat exchanger-cooler 14 through a heated medium is connected to the return pipe 13 of the network water. The output of the heat exchanger-cooler 14 through the heated medium is connected to the lower network heater 11. The closed circulation circuit of the heat engine 5 is made in the form of a circuit with a low-boiling working fluid containing a turboexpander 6 with an electric generator 7, a heat exchanger-recuperator 21, a water cooling condenser 8 and a condensate pump 9 moreover, the output of the condensate pump 9 is connected via a heated medium to the input of a heat exchanger-recuperator 21, which is connected via a heated medium to the input of a condenser 2 of a steam turbine, the output of which is it is single in the heated medium with the inlet of the oil cooler 19, the output of the oil cooler 19 in the heated medium is connected to the input of the heat exchanger-cooler 14 of the network water, and the output of the heat exchanger-cooler 14 of the network water in the heated medium is connected to the inlet of the turbine expander 6, the output of which is connected through the heating medium to the heat exchanger -recuperator 21, the output of the heat exchanger-recuperator 21 is connected via a heating medium to a water-cooled condenser 8, the output of which is connected via a heated medium to the inlet of the condensate pump 9, forming a closed Contours cooling.

В качестве низкокипящего рабочего тела используют сжиженный пропан C3H8.As a low-boiling working fluid, liquefied propane C 3 H 8 is used .

Предлагаемая тепловая электрическая станция работает следующим образом.The proposed thermal power plant operates as follows.

Пар, поступающий из паровой турбины 1 в паровое пространство конденсатора 2, конденсируется на поверхности конденсаторных трубок, внутри которых протекает охлаждающая жидкость (сжиженный пропан C3H8). Мощность паровой турбины 1 передается соединенному на одном валу основному электрогенератору 4.The steam coming from the steam turbine 1 into the steam space of the condenser 2 condenses on the surface of the condenser tubes, inside which coolant flows (liquefied propane C 3 H 8 ). The power of the steam turbine 1 is transmitted to the main electric generator 4 connected to one shaft.

Конденсация пара сопровождается выделением скрытой теплоты парообразования, которая отводится при помощи охлаждающей жидкости. Образующийся конденсат с помощью конденсатного насоса 3 конденсатора паровой турбины направляют в систему регенерации.Steam condensation is accompanied by the release of latent heat of vaporization, which is removed using coolant. The condensate formed by means of a condensate pump 3 of a steam turbine condenser is sent to a regeneration system.

Преобразование сбросной низкопотенциальной тепловой энергии, отработавшего в турбине 1 пара, и низкопотенциальной тепловой энергии системы 15 маслоснабжения подшипников паровой турбины 1, а также избыточной низкопотенциальной тепловой энергии обратной сетевой воды, в механическую и, далее, в электрическую происходит в замкнутом контуре циркуляции теплового двигателя 5, работающего по органическому циклу Ренкина. Весь процесс начинается с сжатия в конденсатном насосе 9 сжиженного пропана C3H8, который направляют на подогрев в теплообменник-рекуператор 21, а затем направляют на подогрев и испарение в конденсатор 2 паровой турбины, куда поступает отработавший в турбине 1 пар с температурой в интервале от 300 К до 313,15 К.The conversion of waste low-potential thermal energy spent in the turbine 1 steam and low-potential thermal energy of the oil supply system 15 of the bearings of the steam turbine 1, as well as excess low-potential thermal energy of the return network water, into mechanical and, further, into electrical energy occurs in a closed circuit of the heat engine 5 working on the organic Rankine cycle. The whole process begins with compression in a condensate pump 9 of liquefied propane C 3 H 8 , which is sent for heating to a heat exchanger-recuperator 21, and then sent for heating and evaporation to a condenser 2 of a steam turbine, where 1 steam spent in the turbine enters with a temperature in the range from 300 K to 313.15 K.

Температура кипения сжиженного пропана C3H8 сравнительна низка (293 К при давлении 0,833 МПа), поэтому в конденсаторе 2 паровой турбины он быстро испаряется и переходит в газообразное состояние.The boiling point of liquefied propane C 3 H 8 is relatively low (293 K at a pressure of 0.833 MPa), therefore, it quickly evaporates in the condenser 2 of the steam turbine and goes into a gaseous state.

Далее газообразный пропан C3H8 направляют на перегрев в начале в маслоохладитель 19, куда поступает нагретое масло системы 15 маслоснабжения подшипников паровой турбины 1, а затем в теплообменник-охладитель 14 сетевой воды, куда поступает обратная сетевая вода из обратного трубопровода 13. При этом температура нагретого масла и обратной сетевой воды может варьироваться в интервале от 313,15 К до 343,15 К.Next, gaseous propane C 3 H 8 is sent for overheating at the beginning to the oil cooler 19, where the heated oil of the oil supply system 15 of the bearings of the steam turbine 1 enters, and then to the heat exchanger-cooler 14 of the network water, to which the return network water from the return pipe 13 enters. the temperature of the heated oil and return network water can vary from 313.15 K to 343.15 K.

В процессе теплообмена нагретого масла и обратной сетевой воды с газообразным пропаном C3H8 происходит перегрев газообразного пропана C3H8 до температуры в интервале от 308,15 К до 333,15 К. После теплообменника-охладителя 14 перегретый газообразный пропан C3H8 направляют в турбодетандер 6.In the process of heat exchange of heated oil and reverse network water with gaseous propane C 3 H 8 , gaseous propane C 3 H 8 overheats to a temperature in the range from 308.15 K to 333.15 K. After heat exchanger-cooler 14, superheated gaseous propane C 3 H 8 sent to the turbo expander 6.

Процесс настроен таким образом, что в турбодетандере 6 не происходит конденсации газообразного пропана C3H8 в ходе срабатывания теплоперепада. Мощность турбодетандера 6 передается соединенному на одном валу электрогенератору 7. На выходе из турбодетандера 6 газообразный пропан C3H8, имеющий температуру перегретого газа около 288 К, направляют в теплообменник-рекуператор 21 для снижения температуры.The process is configured in such a way that condensation of gaseous propane C 3 H 8 does not occur in the operation of the heat transfer in the turbine expander 6. The power of the turboexpander 6 is transmitted to an electric generator 7 connected to one shaft. At the outlet of the turboexpander 6, gaseous propane C 3 H 8 having a superheated gas temperature of about 288 K is sent to a heat exchanger-recuperator 21 to reduce the temperature.

В теплообменнике-рекуператоре 21 в процессе отвода теплоты на нагрев сжиженного пропана С3Н8 снижается нагрузка на конденсатор 8 и затраты мощности на привод циркуляционных насосов.In the heat exchanger-recuperator 21, in the process of heat removal for heating liquefied propane C 3 H 8, the load on the condenser 8 and the power consumption for driving the circulation pumps are reduced.

Далее его температуру снижают и сжижают в конденсаторе 8 водяного охлаждения, охлаждаемого технической водой окружающей среды в температурном диапазоне от 278,15 К до 283,15 К.Next, its temperature is reduced and liquefied in a condenser 8 of water cooling, cooled by industrial ambient water in the temperature range from 278.15 K to 283.15 K.

После конденсатора 8 водяного охлаждения в сжиженном состоянии пропан C3H8 направляют для сжатия в конденсатный насос 9 теплового двигателя 5. Далее органический цикл Ренкина на основе низкокипящего рабочего тела повторяется.After the condenser 8 of water cooling in a liquefied state, propane C 3 H 8 is sent for compression to the condensate pump 9 of the heat engine 5. Next, the organic Rankine cycle based on a low boiling medium is repeated.

Конденсатор 8 водяного охлаждения обладает большей эффективностью теплопередачи по сравнению с воздушным охлаждением и не требует больших площадей теплообменной поверхности. При этом затраты мощности на привод циркуляционных насосов конденсатора 8 водяного охлаждения меньше, чем на привод вентиляторов конденсатора воздушного охлаждения.The condenser 8 water cooling has a higher heat transfer efficiency compared to air cooling and does not require large areas of the heat exchange surface. In this case, the power consumption for the drive of the circulation pumps of the water-cooled condenser 8 is less than for the drive of the fans of the air-cooled condenser.

Claims (2)

1. Тепловая электрическая станция, включающая последовательно соединенные паровую турбину, конденсатор паровой турбины и конденсатный насос конденсатора паровой турбины, основной электрогенератор, соединенный с паровой турбиной, которая соединена по греющей среде с верхним и нижним сетевыми подогревателями, включенными по нагреваемой среде между подающим и обратным трубопроводами сетевой воды, а также систему маслоснабжения подшипников паровой турбины, содержащую последовательно соединенные по греющей среде сливной трубопровод, маслобак, маслонасос и маслоохладитель, выход которого по нагреваемой среде соединен с напорным трубопроводом, отличающаяся тем, что в нее введены теплообменник-охладитель сетевой воды, вход которого по нагреваемой среде соединен с обратным трубопроводом сетевой воды, а выход по нагреваемой среде - с нижним сетевым подогревателем, и тепловой двигатель с замкнутым контуром циркуляции, работающий по органическому циклу Ренкина, при этом замкнутый контур циркуляции теплового двигателя выполнен в виде контура с низкокипящим рабочим телом, содержащим турбодетандер с электрогенератором, теплообменник-рекуператор, конденсатор водяного охлаждения и конденсатный насос, причем выход конденсатного насоса соединен по нагреваемой среде с входом теплообменника-рекуператора, который соединен по нагреваемой среде с входом конденсатора паровой турбины, выход которого соединен по нагреваемой среде с входом маслоохладителя, выход маслоохладителя по нагреваемой среде соединен с входом теплообменника-охладителя сетевой воды, а выход теплообменника-охладителя сетевой воды по нагреваемой среде соединен с входом турбодетандера, выход которого соединен по греющей среде с теплообменником-рекуператором, выход теплообменника-рекуператора соединен по греющей среде с конденсатором водяного охлаждения, выход которого соединен по нагреваемой среде с входом конденсатного насоса, образуя замкнутый контур охлаждения.1. Thermal power plant, including a series-connected steam turbine, a steam turbine condenser and a condensate pump of a steam turbine condenser, a main electric generator connected to a steam turbine, which is connected via a heating medium to the upper and lower network heaters, connected via a heated medium between the supply and return pipelines of network water, as well as the oil supply system for bearings of a steam turbine, containing a drain pipe in series connected over a heating medium, ma a slobak, an oil pump and an oil cooler, the outlet of which is connected via a heated medium to a pressure pipe, characterized in that a heat exchanger-cooler of network water is introduced into it, the input of which through a heated medium is connected to a return pipe of network water, and the outlet through a heated medium to a lower network a heater, and a closed-circuit heat engine operating on the organic Rankine cycle, while the closed heat engine circulation loop is made in the form of a circuit with a low boiling fluid, with holding a turboexpander with an electric generator, a heat exchanger-recuperator, a water cooling condenser and a condensate pump, the output of the condensate pump being connected via a heated medium to the input of a heat exchanger-recuperator, which is connected via a heated medium to the condenser input of a steam turbine, the output of which is connected via a heated medium to the oil cooler , the output of the oil cooler through the heated medium is connected to the input of the heat exchanger-cooler of the network water, and the output of the heat exchanger-cooler of the network water by heating my medium turboexpander connected to the input, the output of which is connected by a heating medium to the heat exchanger-recuperator, yield exchanger-recuperator is connected by a heating medium with a water-cooled condenser, the output of which is connected by a heating medium inlet of the condensate pump, forming a closed cooling circuit. 2. Тепловая электрическая станция по п.1, отличающаяся тем, что в качестве низкокипящего рабочего тела используют сжиженный пропан С3Н8.
Figure 00000001
2. Thermal power station according to claim 1, characterized in that as a low-boiling working fluid use liquefied propane C 3 H 8 .
Figure 00000001
RU2014109163/06U 2014-03-11 2014-03-11 HEAT ELECTRIC STATION RU144924U1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2014109163/06U RU144924U1 (en) 2014-03-11 2014-03-11 HEAT ELECTRIC STATION

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2014109163/06U RU144924U1 (en) 2014-03-11 2014-03-11 HEAT ELECTRIC STATION

Publications (1)

Publication Number Publication Date
RU144924U1 true RU144924U1 (en) 2014-09-10

Family

ID=51540448

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2014109163/06U RU144924U1 (en) 2014-03-11 2014-03-11 HEAT ELECTRIC STATION

Country Status (1)

Country Link
RU (1) RU144924U1 (en)

Similar Documents

Publication Publication Date Title
RU145190U1 (en) HEAT ELECTRIC STATION
RU145185U1 (en) HEAT ELECTRIC STATION
RU144911U1 (en) HEAT ELECTRIC STATION
RU144924U1 (en) HEAT ELECTRIC STATION
RU144920U1 (en) HEAT ELECTRIC STATION
RU144915U1 (en) HEAT ELECTRIC STATION
RU144922U1 (en) HEAT ELECTRIC STATION
RU144896U1 (en) HEAT ELECTRIC STATION
RU144893U1 (en) HEAT ELECTRIC STATION
RU144892U1 (en) HEAT ELECTRIC STATION
RU144963U1 (en) HEAT ELECTRIC STATION
RU140791U1 (en) HEAT ELECTRIC STATION
RU144933U1 (en) HEAT ELECTRIC STATION
RU144883U1 (en) HEAT ELECTRIC STATION
RU144926U1 (en) HEAT ELECTRIC STATION
RU144895U1 (en) HEAT ELECTRIC STATION
RU144957U1 (en) HEAT ELECTRIC STATION
RU144934U1 (en) HEAT ELECTRIC STATION
RU144889U1 (en) HEAT ELECTRIC STATION
RU145206U1 (en) HEAT ELECTRIC STATION
RU144899U1 (en) HEAT ELECTRIC STATION
RU144897U1 (en) HEAT ELECTRIC STATION
RU144961U1 (en) HEAT ELECTRIC STATION
RU144941U1 (en) HEAT ELECTRIC STATION
RU144879U1 (en) HEAT ELECTRIC STATION

Legal Events

Date Code Title Description
MM1K Utility model has become invalid (non-payment of fees)

Effective date: 20150312