RU140405U1 - Тепловая электрическая станция - Google Patents

Тепловая электрическая станция Download PDF

Info

Publication number
RU140405U1
RU140405U1 RU2013153822/06U RU2013153822U RU140405U1 RU 140405 U1 RU140405 U1 RU 140405U1 RU 2013153822/06 U RU2013153822/06 U RU 2013153822/06U RU 2013153822 U RU2013153822 U RU 2013153822U RU 140405 U1 RU140405 U1 RU 140405U1
Authority
RU
Russia
Prior art keywords
steam turbine
connected via
condenser
output
recuperator
Prior art date
Application number
RU2013153822/06U
Other languages
English (en)
Inventor
Айрат Маратович Гафуров
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Казанский государственный энергетический университет" (ФГБОУ ВПО "КГЭУ")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Казанский государственный энергетический университет" (ФГБОУ ВПО "КГЭУ") filed Critical Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Казанский государственный энергетический университет" (ФГБОУ ВПО "КГЭУ")
Priority to RU2013153822/06U priority Critical patent/RU140405U1/ru
Application granted granted Critical
Publication of RU140405U1 publication Critical patent/RU140405U1/ru

Links

Images

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

1. Тепловая электрическая станция, включающая последовательно соединенные паровую турбину, конденсатор паровой турбины и конденсатный насос конденсатора паровой турбины, а также основной электрогенератор, соединенный с паровой турбиной, отличающаяся тем, что в нее введен тепловой двигатель с замкнутым контуром циркуляции, работающий по органическому циклу Ренкина, при этом замкнутый контур циркуляции теплового двигателя выполнен в виде контура с низкокипящим рабочим телом, содержащим турбодетандер с электрогенератором, теплообменник-рекуператор, конденсатор водяного охлаждения и конденсатный насос, причем выход конденсатного насоса соединен по нагреваемой среде с входом теплообменника-рекуператора, который соединен по нагреваемой среде с входом конденсатора паровой турбины, выход которого соединен по нагреваемой среде с входом турбодетандера, выход которого соединен по греющей среде с теплообменником-рекуператором, выход теплообменника-рекуператора соединен по греющей среде с конденсатором водяного охлаждения, выход которого соединен по нагреваемой среде с входом конденсатного насоса, образуя замкнутый контур охлаждения.2. Тепловая электрическая станция по п.1, отличающаяся тем, что в качестве низкокипящего рабочего тела используют сжиженный пропан CH.

Description

Полезная модель относится к области энергетики и может быть использована на тепловых электрических станциях (ТЭС) для утилизации сбросной низкопотенциальной теплоты в конденсаторах паровых турбин ТЭС в зимний период времени.
Прототипом является тепловая электрическая станция, содержащая подающий и обратный трубопроводы сетевой воды, паровую турбину с отопительными отборами пара и конденсатором, к которому подключены напорный и сливной трубопроводы циркуляционной воды, сетевые подогреватели, включенные по нагреваемой среде между подающим и обратным трубопроводами сетевой воды и подключенные по греющей среде к отопительным отборам, теплонасосную установку, испаритель которой подключен по греющей среде к сливному трубопроводу циркуляционной воды, при этом конденсатор теплонасосной установки по нагреваемой среде включен в подающий трубопровод сетевой воды после сетевых подогревателей (патент RU №2268372, МПК F01K 17/02, 20.01.2006).
Основным недостатком прототипа является относительно низкий коэффициент полезного действия ТЭС по выработке электрической энергии из-за отсутствия полной утилизации сбросной скрытой теплоты парообразования в конденсаторе паровой турбины для дополнительной выработки электроэнергии, обусловленную наличием вторичного контура (теплонасосной установки). Кроме этого, недостатком является низкий ресурс и надежность работы конденсатора паровой турбины из-за использования технической (циркуляционной) воды, которая загрязняет конденсатор паровой турбины. Из-за повышенных тепловых выбросов циркуляционной воды в водоем-охладитель в зимний период времени нарушается его экосистема.
Задачей полезной модели является повышение коэффициента полезного действия ТЭС за счет полного использования сбросной низкопотенциальной теплоты для дополнительной выработки электрической энергии, повышение ресурса и надежности работы конденсатора паровой турбины и снижение тепловых выбросов в окружающую среду.
Технический результат достигается тем, что в тепловую электрическую станцию, включающую последовательно соединенные паровую турбину, конденсатор паровой турбины и конденсатный насос конденсатора паровой турбины, а также основной электрогенератор, соединенный с паровой турбиной, согласно настоящей полезной модели, введен тепловой двигатель с замкнутым контуром циркуляции, работающий по органическому циклу Ренкина, при этом замкнутый контур циркуляции теплового двигателя выполнен в виде контура с низкокипящим рабочим телом, содержащим турбодетандер с электрогенератором, теплообменник-рекуператор, конденсатор водяного охлаждения и конденсатный насос, причем выход конденсатного насоса соединен по нагреваемой среде с входом теплообменника-рекуператора, который соединен по нагреваемой среде с входом конденсатора паровой турбины, выход которого соединен по нагреваемой среде с входом турбодетандера, выход которого соединен по греющей среде с теплообменником-рекуператором, выход теплообменника-рекуператора соединен по греющей среде с конденсатором водяного охлаждения, выход которого соединен по нагреваемой среде с входом конденсатного насоса, образуя замкнутый контур охлаждения. В качестве низкокипящего рабочего тела используют сжиженный пропан C3H8.
Таким образом, технический результат достигается за счет полной утилизации сбросной низкопотенциальной теплоты (скрытой теплоты парообразования), которую осуществляют путем нагрева, в конденсаторе паровой турбины, низкокипящего рабочего тела (сжиженного пропана C3H8) теплового двигателя с замкнутым контуром циркуляции, работающего по органическому циклу Ренкина.
Сущность полезной модели поясняется чертежом, на котором представлена предлагаемая тепловая электрическая станция, имеющая тепловой двигатель с водяным охлаждением и теплообменником-рекуператором.
На чертеже цифрами обозначены:
1 - паровая турбина,
2 - конденсатор паровой турбины,
3 - конденсатный насос конденсатора паровой турбины,
4 - основной электрогенератор,
5 - тепловой двигатель с замкнутым контуром циркуляции,
6 - турбодетандер,
7 - электрогенератор,
8 - конденсатор водяного охлаждения,
9 - конденсатный насос,
10 - теплообменник-рекуператор.
Тепловая электрическая станция включает последовательно соединенные паровую турбину 1, конденсатор 2 паровой турбины и конденсатный насос 3 конденсатора паровой турбины, а также основной электрогенератор 4, соединенный с паровой турбиной 1.
Отличием предлагаемой тепловой электрической станции является то, что в нее введен тепловой двигатель 5 с замкнутым контуром циркуляции, работающий по органическому циклу Ренкина.
Замкнутый контур циркуляции теплового двигателя 5 выполнен в виде контура с низкокипящим рабочим телом, содержащим турбодетандер 6 с электрогенератором 7, теплообменник-рекуператор 10, конденсатор 8 водяного охлаждения и конденсатный насос 9, причем выход конденсатного насоса 9 соединен по нагреваемой среде с входом теплообменника-рекуператора 10, который соединен по нагреваемой среде с входом конденсатора 2 паровой турбины, выход которого соединен по нагреваемой среде с входом турбодетандера 6, выход которого соединен по греющей среде с теплообменником-рекуператором 10, выход теплообменника-рекуператора 10 соединен по греющей среде с конденсатором 8 водяного охлаждения, выход которого соединен по нагреваемой среде с входом конденсатного насоса 9, образуя замкнутый контур охлаждения.
В качестве низкокипящего рабочего тела используют сжиженный пропан C3H8.
Предлагаемая тепловая электрическая станция работает следующим образом.
Пар, поступающий из паровой турбины 1 в паровое пространство конденсатора 2, конденсируется на поверхности конденсаторных трубок, внутри которых протекает охлаждающая жидкость (сжиженный пропан C3H8). Мощность паровой турбины 1 передается соединенному на одном валу основному электрогенератору 4.
Конденсация пара сопровождается выделением скрытой теплоты парообразования, которая отводится при помощи охлаждающей жидкости. Образующийся конденсат с помощью конденсатного насоса 3 конденсатора паровой турбины направляют в систему регенерации.
Преобразование сбросной низкопотенциальной тепловой энергии отработавшего в турбине 1 пара в механическую и, далее, в электрическую происходит в замкнутом контуре циркуляции теплового двигателя 5, работающего по органическому циклу Ренкина. Весь процесс начинается с сжатия в конденсатном насосе 9 сжиженного пропана C3H8, который направляют на подогрев в теплообменник-рекуператор 10, а затем в конденсатор 2 паровой турбины, куда поступает отработавший в турбине 1 пар.
Температура кипения сжиженного пропана C3H8 сравнительна низка (298 К при давлении 0,948 МПа), поэтому в конденсаторе 2 паровой турбины он быстро испаряется и переходит в газообразное состояние, после чего, имея температуру перегретого газа, его направляют в турбодетандер 6.
Процесс настроен таким образом, что в турбодетандере 6 не происходит конденсации газообразного пропана C3H8 в ходе срабатывания теплоперепада. Мощность турбодетандера 6 передается соединенному на одном валу электрогенератору 7. На выходе из турбодетандера 6 газообразный пропан C3H8, имеющий температуру перегретого газа, направляют в теплообменник-рекуператор 10 для снижения температуры.
В теплообменнике-рекуператоре 10 в процессе отвода теплоты на нагрев сжиженного пропана C3H8 снижается нагрузка на конденсатор 8 и затраты мощности на привод циркуляционных насосов.
Далее его температуру снижают и сжижают в конденсаторе 8 водяного охлаждения, охлаждаемого технической водой окружающей среды при температуре 278,15 К.
После конденсатора 8 водяного охлаждения в сжиженном состоянии пропан C3H8 сжимают в конденсатном насосе 9 и направляют на подогрев в теплообменник-рекуператор 10, а затем на подогрев и испарение в конденсатор 2 паровой турбины.
Конденсатор 8 водяного охлаждения обладает большей эффективностью теплопередачи по сравнению с воздушным охлаждением и не требует больших площадей теплообменной поверхности. При этом затраты мощности на привод циркуляционных насосов конденсатора 8 водяного охлаждения меньше, чем на привод вентиляторов конденсатора воздушного охлаждения.

Claims (2)

1. Тепловая электрическая станция, включающая последовательно соединенные паровую турбину, конденсатор паровой турбины и конденсатный насос конденсатора паровой турбины, а также основной электрогенератор, соединенный с паровой турбиной, отличающаяся тем, что в нее введен тепловой двигатель с замкнутым контуром циркуляции, работающий по органическому циклу Ренкина, при этом замкнутый контур циркуляции теплового двигателя выполнен в виде контура с низкокипящим рабочим телом, содержащим турбодетандер с электрогенератором, теплообменник-рекуператор, конденсатор водяного охлаждения и конденсатный насос, причем выход конденсатного насоса соединен по нагреваемой среде с входом теплообменника-рекуператора, который соединен по нагреваемой среде с входом конденсатора паровой турбины, выход которого соединен по нагреваемой среде с входом турбодетандера, выход которого соединен по греющей среде с теплообменником-рекуператором, выход теплообменника-рекуператора соединен по греющей среде с конденсатором водяного охлаждения, выход которого соединен по нагреваемой среде с входом конденсатного насоса, образуя замкнутый контур охлаждения.
2. Тепловая электрическая станция по п.1, отличающаяся тем, что в качестве низкокипящего рабочего тела используют сжиженный пропан C3H8.
Figure 00000001
RU2013153822/06U 2013-12-04 2013-12-04 Тепловая электрическая станция RU140405U1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2013153822/06U RU140405U1 (ru) 2013-12-04 2013-12-04 Тепловая электрическая станция

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2013153822/06U RU140405U1 (ru) 2013-12-04 2013-12-04 Тепловая электрическая станция

Publications (1)

Publication Number Publication Date
RU140405U1 true RU140405U1 (ru) 2014-05-10

Family

ID=50630104

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013153822/06U RU140405U1 (ru) 2013-12-04 2013-12-04 Тепловая электрическая станция

Country Status (1)

Country Link
RU (1) RU140405U1 (ru)

Similar Documents

Publication Publication Date Title
RU140801U1 (ru) Тепловая электрическая станция
RU140428U1 (ru) Тепловая электрическая станция
RU145185U1 (ru) Тепловая электрическая станция
RU140405U1 (ru) Тепловая электрическая станция
RU140396U1 (ru) Тепловая электрическая станция
RU140381U1 (ru) Тепловая электрическая станция
RU140400U1 (ru) Тепловая электрическая станция
RU140796U1 (ru) Тепловая электрическая станция
RU140791U1 (ru) Тепловая электрическая станция
RU140394U1 (ru) Тепловая электрическая станция
RU144893U1 (ru) Тепловая электрическая станция
RU144883U1 (ru) Тепловая электрическая станция
RU140383U1 (ru) Тепловая электрическая станция
RU140797U1 (ru) Тепловая электрическая станция
RU145206U1 (ru) Тепловая электрическая станция
RU140403U1 (ru) Тепловая электрическая станция
RU140386U1 (ru) Тепловая электрическая станция
RU140385U1 (ru) Тепловая электрическая станция
RU144896U1 (ru) Тепловая электрическая станция
RU144957U1 (ru) Тепловая электрическая станция
RU140402U1 (ru) Тепловая электрическая станция
RU140392U1 (ru) Тепловая электрическая станция
RU140271U1 (ru) Тепловая электрическая станция
RU140431U1 (ru) Тепловая электрическая станция
RU144899U1 (ru) Тепловая электрическая станция

Legal Events

Date Code Title Description
MM1K Utility model has become invalid (non-payment of fees)

Effective date: 20141205