RU140387U1 - HEAT ELECTRIC STATION - Google Patents

HEAT ELECTRIC STATION Download PDF

Info

Publication number
RU140387U1
RU140387U1 RU2013154246/06U RU2013154246U RU140387U1 RU 140387 U1 RU140387 U1 RU 140387U1 RU 2013154246/06 U RU2013154246/06 U RU 2013154246/06U RU 2013154246 U RU2013154246 U RU 2013154246U RU 140387 U1 RU140387 U1 RU 140387U1
Authority
RU
Russia
Prior art keywords
steam turbine
condenser
steam
production
heated medium
Prior art date
Application number
RU2013154246/06U
Other languages
Russian (ru)
Inventor
Айрат Маратович Гафуров
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Казанский государственный энергетический университет" (ФГБОУ ВПО "КГЭУ")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Казанский государственный энергетический университет" (ФГБОУ ВПО "КГЭУ") filed Critical Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Казанский государственный энергетический университет" (ФГБОУ ВПО "КГЭУ")
Priority to RU2013154246/06U priority Critical patent/RU140387U1/en
Application granted granted Critical
Publication of RU140387U1 publication Critical patent/RU140387U1/en

Links

Images

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

1. Тепловая электрическая станция, включающая последовательно соединенные паровую турбину, конденсатор паровой турбины и конденсатный насос конденсатора паровой турбины, основной электрогенератор, соединенный с паровой турбиной, а также систему маслоснабжения подшипников паровой турбины, содержащую последовательно соединенные по греющей среде сливной трубопровод, маслобак, маслонасос и маслоохладитель, выход которого по нагреваемой среде соединен с напорным трубопроводом, отличающаяся тем, что в нее введены тепловой двигатель с замкнутым контуром циркуляции, работающий по органическому циклу Ренкина, и конденсационная установка, содержащая последовательно соединенные паровую турбину с производственным отбором пара, имеющую электрогенератор, конденсатор паровой турбины с производственным отбором пара и конденсатный насос конденсатора паровой турбины с производственным отбором пара, при этом замкнутый контур циркуляции теплового двигателя выполнен в виде контура с низкокипящим рабочим телом, содержащим последовательно соединенные турбодетандер с электрогенератором, конденсатор водяного и воздушного охлаждения, конденсатный насос, причем выход конденсатного насоса соединен по нагреваемой среде с входом конденсатора паровой турбины, выход которого соединен по нагреваемой среде с входом маслоохладителя, выход маслоохладителя соединен по нагреваемой среде с входом конденсатора паровой турбины с производственным отбором пара, выход конденсатора паровой турбины с производственным отбором пара соединен по нагреваемой среде с входом турбодетандера, образуя замкнутый контур охлаждения.2. Теп1. Thermal power station, including a series-connected steam turbine, a steam turbine condenser and a condensate pump of a steam turbine condenser, a main electric generator connected to a steam turbine, and a steam turbine bearing oil supply system containing a drain pipe, an oil tank, an oil pump, connected in series through a heating medium and an oil cooler, the outlet of which is connected via a heated medium to a pressure pipe, characterized in that a heat engine with with a closed circulation loop operating on the organic Rankine cycle and a condensing unit comprising a steam turbine with production steam extraction connected in series, having an electric generator, a steam turbine condenser with production steam extraction and a condenser pump of a steam turbine condenser with production steam extraction, and a closed circulation loop of the heat engine is made in the form of a circuit with a low-boiling working fluid containing a turboexpander with an electric generator connected in series an heater, a water and air cooling condenser, a condensate pump, wherein the condensate pump output is connected via a heated medium to the steam turbine condenser inlet, the output of which is connected via a heated medium to the oil cooler inlet, the oil cooler output is connected through a heated medium to the steam turbine condenser inlet with production steam extraction , the condenser output of a steam turbine with production steam extraction is connected through a heated medium to the inlet of the turboexpander, forming a closed cooling circuit. 2. Tep

Description

Полезная модель относится к области энергетики и может быть использована на тепловых электрических станциях (ТЭС) для утилизации сбросной низкопотенциальной теплоты в конденсаторах паровых турбин ТЭС, утилизации низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины и утилизации высокопотенциальной теплоты пара производственного отбора.The utility model relates to the field of energy and can be used at thermal power plants (TPPs) for utilization of low-grade waste heat in condensers of steam turbines of TPPs, utilization of low-grade heat of the oil supply system of steam turbine bearings and utilization of high-grade heat of production steam.

Прототипом является тепловая электрическая станция, содержащая подающий и обратный трубопроводы сетевой воды, паровую турбину с отопительными отборами пара и конденсатором, к которому подключены напорный и сливной трубопроводы циркуляционной воды, сетевые подогреватели, включенные по нагреваемой среде между подающим и обратным трубопроводами сетевой воды и подключенные по греющей среде к отопительным отборам, теплонасосную установку, испаритель которой подключен по греющей среде к сливному трубопроводу циркуляционной воды, конденсатор теилонасосной установки по нагреваемой среде включен в подающий трубопровод сетевой воды после сетевых подогревателей, а также систему маслоснабжения подшипников паровой турбины, содержащую последовательно соединенные по греющей среде сливной трубопровод, маслобак, маслонасос и маслоохладитель, выход которого по нагреваемой среде соединен с напорным трубопроводом (патент RU №2268372, МПК F01K 17/02, 20.01.2006).The prototype is a thermal power plant containing a supply and return piping of network water, a steam turbine with heating steam extraction and a condenser, to which pressure and drain pipelines of circulation water are connected, network heaters connected through a heated medium between the supply and return pipelines of network water and connected through heating medium to heating taps, heat pump installation, the evaporator of which is connected via heating medium to a drainage pipe of circulating water, The ator of the heat pump pump installation is included in the supply pipe of the network water after the network heaters, as well as the oil supply system for the steam turbine bearings, which contains a drain pipe, an oil tank, an oil pump and an oil cooler connected in series through the heating medium, the outlet of which is connected to the pressure pipe through the heated medium (patent RU No. 2268372, IPC F01K 17/02, 01.20.2006).

Основным недостатком прототипа является относительно низкий коэффициент полезного действия ТЭС по выработке электрической энергии из-за отсутствия полной утилизации сбросной скрытой теплоты парообразования в конденсаторе паровой турбины для дополнительной выработки электроэнергии, обусловленную наличием вторичного контура (теплонасосной установки), а также отсутствия утилизации низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины, для дополнительной выработки электроэнергии.The main disadvantage of the prototype is the relatively low efficiency of TPPs for generating electric energy due to the lack of complete utilization of the latent heat of vaporization in the steam turbine condenser for additional power generation due to the presence of a secondary circuit (heat pump installation), as well as the lack of utilization of low-grade heat of the oil supply system steam turbine bearings for additional power generation.

Кроме этого, недостатком является низкий ресурс и надежность работы конденсатора паровой турбины из-за использования технической (циркуляционной) воды, которая загрязняет конденсатор паровой турбины. Из-за повышенных тепловых выбросов циркуляционной воды в водоем-охладитель нарушается его экосистема.In addition, the disadvantage is the low resource and reliability of the condenser of the steam turbine due to the use of technical (circulating) water, which pollutes the condenser of the steam turbine. Due to the increased thermal emissions of the circulation water into the cooling pond, its ecosystem is disturbed.

Задачей полезной модели является повышение коэффициента полезного действия ТЭС за счет полного использования сбросной низкопотенциальной теплоты и утилизации низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины для дополнительной выработки электрической энергии, повышение ресурса и надежности работы конденсатора паровой турбины и снижение тепловых выбросов в окружающую среду.The objective of the utility model is to increase the efficiency of TPPs due to the full use of waste low-grade heat and utilization of low-grade heat from the oil supply system of steam turbine bearings for additional generation of electric energy, increase the service life and reliability of the steam turbine condenser and reduce thermal emissions into the environment.

Технический результат достигается тем, что в тепловую электрическую станцию, включающую последовательно соединенные паровую турбину, конденсатор паровой турбины и конденсатный насос конденсатора паровой турбины, основной электрогенератор, соединенный с паровой турбиной, а также систему маслоснабжения подшипников паровой турбины, содержащую последовательно соединенные по греющей среде сливной трубопровод, маслобак, маслонасос и маслоохладитель, выход которого по нагреваемой среде соединен с напорным трубопроводом, согласно настоящей полезной модели, введены тепловой двигатель с замкнутым контуром циркуляции, работающий по органическому циклу Ренкина, и конденсационная установка, содержащая последовательно соединенные паровую турбину с производственным отбором пара, имеющую электрогенератор, конденсатор паровой турбины с производственным отбором пара и конденсатный насос конденсатора паровой турбины с производственным отбором пара, при этом замкнутый контур циркуляции теплового двигателя выполнен в виде контура с низкокипящим рабочим телом, содержащим последовательно соединенные турбодетандер с электрогенератором, конденсатор водяного и воздушного охлаждения, конденсатный насос, причем выход конденсатного насоса соединен по нагреваемой среде с входом конденсатора паровой турбины, выход которого соединен по нагреваемой среде с входом маслоохладителя, выход маслоохладителя соединен по нагреваемой среде с входом конденсатора паровой турбины с производственным отбором пара, выход конденсатора паровой турбины с производственным отбором пара соединен по нагреваемой среде с входом турбодетандера, образуя замкнутый контур охлаждения. В качестве низкокипящего рабочего тела используют сжиженный углекислый газ CO2.The technical result is achieved by the fact that in a thermal power station comprising a series-connected steam turbine, a steam turbine condenser and a condensate pump of a steam turbine condenser, a main electric generator connected to a steam turbine, and also an oil supply system for bearings of a steam turbine containing a drain oil connected in series through a heating medium pipeline, oil tank, oil pump and oil cooler, the outlet of which is connected via a heated medium to a pressure pipe, according to the present of a useful model, a closed-circuit organic engine operating on the Rankine organic cycle was introduced, and a condensing unit containing a steam turbine with production steam extraction connected in series with an electric generator, a steam turbine condenser with production steam and a condenser pump of a steam turbine condenser with production steam extraction, while the closed circuit of the circulation of the heat engine is made in the form of a circuit with a low-boiling working fluid containing turbo expander coupled with an electric generator, a water and air cooling condenser, a condensate pump, the condensate pump output being connected through a heated medium to the steam turbine condenser inlet, the output of which is connected to a steam cooler inlet through a heated medium, the oil cooler output connected to a steam turbine condenser in with production steam extraction, the output of the steam turbine condenser with production steam extraction is connected via a heated medium to the turbo inlet expander, forming a closed cooling circuit. As a low-boiling working fluid, liquefied carbon dioxide CO 2 is used .

Таким образом, технический результат достигается за счет полной утилизации сбросной низкопотенциальной теплоты (скрытой теплоты парообразования), утилизации низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины и утилизации высокопотенциальной теплоты пара производственного отбора из паровой турбины с производственным отбором пара, которые осуществляют путем последовательного нагрева, соответственно, в конденсаторе паровой турбины, маслоохладителе и конденсаторе паровой турбины с производственным отбором пара, низкокипящего рабочего тела (сжиженного углекислого газа CO2) теплового двигателя с замкнутым контуром циркуляции, работающего по органическому циклу Ренкина.Thus, the technical result is achieved through the complete utilization of waste low-grade heat (latent heat of vaporization), the utilization of low-grade heat of the oil supply system of the steam turbine bearings, and the utilization of the high-grade heat of steam from production steam from a steam turbine with production steam extraction, which are carried out by sequential heating, respectively, in a steam turbine condenser, oil cooler and steam turbine condenser with production selection ohms of steam, a low-boiling working fluid (liquefied carbon dioxide CO 2 ) of a closed-circuit heat engine operating on the organic Rankine cycle.

Сущность полезной модели поясняется чертежом, на котором представлена предлагаемая тепловая электрическая станция, имеющая тепловой двигатель с водяным и воздушным охлаждением, конденсационную установку.The essence of the utility model is illustrated by the drawing, which shows the proposed thermal power plant having a heat engine with water and air cooling, a condensing unit.

На чертеже цифрами обозначены:In the drawing, the numbers indicate:

1 - паровая турбина,1 - steam turbine,

2 - конденсатор паровой турбины,2 - condenser of a steam turbine,

3 - конденсатный насос конденсатора паровой турбины,3 - condensate pump condenser of a steam turbine,

4 - основной электрогенератор,4 - the main generator

5 - тепловой двигатель с замкнутым контуром циркуляции,5 - heat engine with a closed circuit,

6 - турбодетандер,6 - turboexpander,

7 - электрогенератор,7 - electric generator,

8 - конденсатор водяного и воздушного охлаждения,8 - condenser water and air cooling,

9 - конденсатный насос,9 - condensate pump,

10 - система маслоснабжения подшипников паровой турбины,10 - oil supply system of bearings of a steam turbine,

11 - сливной трубопровод,11 - drain pipe

12 - маслобак,12 - oil tank

13 - маслонасос,13 - oil pump

14 - маслоохладитель,14 - oil cooler

15 - напорный трубопровод,15 - pressure pipe

16 - конденсационная установка,16 - condensation installation,

17 - паровая турбина с производственным отбором пара,17 - steam turbine with production steam extraction,

18 - электрогенератор паровой турбины с производственным отбором пара,18 - electric generator of a steam turbine with production steam extraction,

19 - конденсатор паровой турбины с производственным отбором пара,19 is a condenser of a steam turbine with production steam extraction,

20 - конденсатный насос конденсатора паровой турбины с производственным отбором пара.20 - condensate pump of a condenser of a steam turbine with production steam extraction.

Тепловая электрическая станция включает последовательно соединенные паровую турбину 1, конденсатор 2 паровой турбины и конденсатный насос 3 конденсатора паровой турбины, основной электрогенератор 4, соединенный с паровой турбиной 1, а также систему 10 маслоснабжения подшипников паровой турбины, содержащую последовательно соединенные по греющей среде сливной трубопровод 11, маслобак 12, маслонасос 13 и маслоохладитель 14, выход которого по нагреваемой среде соединен с напорным трубопроводом 15.The thermal power plant includes a steam turbine 1 connected in series, a steam turbine condenser 2 and a steam turbine condenser pump 3, a main electric generator 4 connected to the steam turbine 1, and a steam turbine bearing oil supply system 10 comprising a drain pipe 11 connected in series through a heating medium , an oil tank 12, an oil pump 13 and an oil cooler 14, the outlet of which is connected to a pressure pipe 15 via a heated medium.

Отличием предлагаемой тепловой электрической станции является то, что в нее введены тепловой двигатель 5 с замкнутым контуром циркуляции, работающий по органическому циклу Ренкина, и конденсационная установка 16.The difference of the proposed thermal power plant is that it introduced a heat engine 5 with a closed loop, operating on the organic Rankine cycle, and a condensing unit 16.

Конденсационная установка 16 содержит последовательно соединенные паровую турбину 17 с производственным отбором пара, имеющую электрогенератор 18, конденсатор 19 паровой турбины с производственным отбором пара и конденсатный насос 20 конденсатора паровой турбины с производственным отбором пара.The condensing unit 16 comprises a steam production turbine 17 connected in series with a steam production steam having an electric generator 18, a steam turbine condenser 19 with a steam production steam and a condensate pump 20 of a steam turbine condenser with a steam production steam.

Замкнутый контур циркуляции теплового двигателя 5 выполнен в виде контура с низкокипящим рабочим телом, содержащим последовательно соединенные турбодетандер 6 с электрогенератором 7, конденсатор 8 водяного и воздушного охлаждения, конденсатный насос 9, причем выход конденсатного насоса 9 соединен по нагреваемой среде с входом конденсатора 2 паровой турбины, выход которого соединен по нагреваемой среде с входом маслоохладителя 14, выход маслоохладителя 14 соединен по нагреваемой среде с входом конденсатора 19 паровой турбины с производственным отбором пара, выход конденсатора 19 паровой турбины с производственным отбором пара соединен по нагреваемой среде с входом турбодетандера 6, образуя замкнутый контур охлаждения.The closed circulation circuit of the heat engine 5 is made in the form of a circuit with a low-boiling working fluid containing a turboexpander 6 connected in series with an electric generator 7, a water and air cooling condenser 8, a condensate pump 9, the output of the condensate pump 9 being connected via a heated medium to the input of the steam turbine condenser 2 the output of which is connected via a heated medium to the input of the oil cooler 14, the output of the oil cooler 14 is connected via a heated medium to the input of the condenser 19 of the steam turbine with production nym steam extraction, the output capacitor 19 of the steam turbine with the production of steam extraction is connected with the heating medium inlet turbo expander 6, forming a closed cooling circuit.

Конденсатор 8 водяного и воздушного охлаждения состоит из конденсатора водяного охлаждения и конденсатора воздушного охлаждения (на чертеже условно не показаны схемы подключения конденсаторов между собой), которые могут как последовательно, так и параллельно охлаждать и сжижать углекислый газ СО2.The water and air cooling condenser 8 consists of a water cooling condenser and an air cooling condenser (the diagram does not show the connection diagrams of the condensers among themselves), which can both cool and liquefy carbon dioxide CO2 sequentially and in parallel.

В качестве низкокипящего рабочего тела используют сжиженный углекислый газ CO2.As a low-boiling working fluid, liquefied carbon dioxide CO 2 is used .

Предлагаемая тепловая электрическая станция работает следующим образом.The proposed thermal power plant operates as follows.

Пар, поступающий из паровой турбины 1 в паровое пространство конденсатора 2, конденсируется на поверхности конденсаторных трубок, внутри которых протекает охлаждающая жидкость (сжиженный углекислый газ CO2). Мощность паровой турбины 1 передается соединенному на одном валу основному электрогенератору 4.The steam coming from the steam turbine 1 into the steam space of the condenser 2 condenses on the surface of the condenser tubes, inside which coolant flows (liquefied carbon dioxide CO 2 ). The power of the steam turbine 1 is transmitted to the main electric generator 4 connected to one shaft.

Конденсация пара сопровождается выделением скрытой теплоты парообразования, которая отводится при помощи охлаждающей жидкости. Образующийся конденсат с помощью конденсатного насоса 3 конденсатора паровой турбины направляют в систему регенерации.Steam condensation is accompanied by the release of latent heat of vaporization, which is removed using coolant. The condensate formed by means of a condensate pump 3 of a steam turbine condenser is sent to a regeneration system.

Преобразование сбросной низкопотенциальной тепловой энергии, отработавшего в турбине 1 пара, а также низкопотенциальной тепловой энергии системы маслоснабжения подшипников паровой турбины 1 и высокопотенциальной тепловой энергии пара производственного отбора из паровой турбины 17, в механическую и, далее, в электрическую происходит в замкнутом контуре циркуляции теплового двигателя 5, работающего по органическому циклу Ренкина. Весь процесс начинается с сжатия в конденсатном насосе 9 сжиженного углекислого газа CO2, который последовательно направляют на подогрев в конденсатор 2 паровой турбины, куда поступает отработавший в турбине 1 пар, и в маслоохладитель 14, куда поступает нагретое масло системы маслоснабжения подшипников паровой турбины 1. В маслоохладителе 14 циркулирует масло, нагретое в подшипниках паровой турбины 1, с температурой в интервале от 318,15 К до 348,15 К.The conversion of waste low-potential heat energy spent in the turbine 1 steam, as well as low-potential heat energy of the oil supply system of bearings of the steam turbine 1 and high-potential heat energy of production steam from the steam turbine 17, into mechanical and, further, into electric energy occurs in a closed circuit of the heat engine 5, working on the organic Rankine cycle. The whole process begins with the compression in the condensate pump 9 of liquefied carbon dioxide CO 2 , which is sequentially sent for heating to the condenser 2 of the steam turbine, where the steam spent in the turbine 1 enters, and to the oil cooler 14, where the heated oil from the oil supply system of the steam turbine bearings 1 enters. Oil circulated in the oil cooler 14 is heated in the bearings of the steam turbine 1, with a temperature ranging from 318.15 K to 348.15 K.

В процессе конденсации отработавшего в турбине 1 пара в конденсаторе 2 паровой турбины и в процессе теплообмена нагретого масла с сжиженным углекислым газом CO2 в маслоохладителе 14, происходит нагрев сжиженного углекислого газа CO2 до критической температуры 304,13 К при сверхкритическом давлении от 7,4 МПа до 25 МПа, и далее его направляют на подогрев и испарение в конденсатор 19 паровой турбины с производственным отбором пара, куда поступает пар производственного отбора из паровой турбины 17 при температуре около 573 К.In the process of condensation of 1 steam spent in the turbine in the condenser 2 of the steam turbine and in the process of heat exchange of the heated oil with liquefied carbon dioxide CO 2 in the oil cooler 14, the liquefied carbon dioxide CO 2 is heated to a critical temperature of 304.13 K at a supercritical pressure of 7.4 MPa to 25 MPa, and then it is sent for heating and evaporation to the condenser 19 of the steam turbine with production steam extraction, where the production steam from the steam turbine 17 is supplied at a temperature of about 573 K.

Пар, поступающий из производственного отбора паровой турбины 17 в паровое пространство конденсатора 19, конденсируется на поверхности конденсаторных трубок, внутри которых протекает охлаждающая жидкость (сжиженный углекислый газ CO2). Мощность паровой турбины 17 передается соединенному на одном валу основному электрогенератору 18.The steam coming from the production selection of the steam turbine 17 into the vapor space of the condenser 19 is condensed on the surface of the condenser tubes, inside which coolant flows (liquefied carbon dioxide CO 2 ). The power of the steam turbine 17 is transmitted to the main electric generator 18 connected to one shaft.

Конденсация пара сопровождается выделением скрытой теплоты парообразования, которая отводится при помощи охлаждающей жидкости. Образующийся конденсат с помощью конденсатного насоса 20 конденсатора паровой турбины с производственным отбором пара направляют в систему регенерации.Steam condensation is accompanied by the release of latent heat of vaporization, which is removed using coolant. The resulting condensate is sent via a condensate pump 20 of a steam turbine condenser with production steam extraction to a regeneration system.

В процессе конденсации пара производственного отбора в конденсаторе 19 паровой турбины, происходит испарение сжиженного углекислого газа CO2 и дальнейший его перегрев до сверхкритической температуры от 304,13 К до 390 К при сверхкритическом давлении от 7,4 МПа до 25 МПа, который направляют в турбодетандер 6.In the process of condensation of production production steam in the condenser 19 of the steam turbine, the liquefied carbon dioxide CO 2 evaporates and then overheats to a supercritical temperature of 304.13 K to 390 K at a supercritical pressure of 7.4 MPa to 25 MPa, which is sent to a turbine expander 6.

Процесс настроен таким образом, что в турбодетандере 6 не происходит конденсации углекислого газа CO2 в ходе срабатывания теплоперепада. Мощность турбодетандера 6 передается соединенному на одном валу электрогенератору 7. На выходе из турбодетандера 6 углекислый газ CO2 имеет температуру около 288 К с влажностью не превышающей 12%.The process is configured in such a way that carbon dioxide CO 2 does not condense in the turboexpander 6 during the operation of the heat transfer. The power of the turboexpander 6 is transferred to an electric generator 7 connected to one shaft. At the outlet of the turboexpander 6, carbon dioxide CO 2 has a temperature of about 288 K with a humidity not exceeding 12%.

Далее его температуру снижают и сжижают в конденсаторе 8 водяного и воздушного охлаждения, охлаждаемого технической водой окружающей среды в температурном диапазоне от 278,15 К до 283,15 К и воздухом окружающей среды в температурном диапазоне от 223,15 К до 283,15 К.Further, its temperature is reduced and liquefied in a condenser 8 of water and air cooling, cooled by ambient technical water in the temperature range from 278.15 K to 283.15 K and ambient air in the temperature range from 223.15 K to 283.15 K.

После конденсатора 8 водяного и воздушного охлаждения в сжиженном состоянии углекислый газ CO2 сжимают в конденсатном насосе 9 и направляют на подогрев в конденсатор 2 паровой турбины.After the condenser 8 of water and air cooling in a liquefied state, carbon dioxide CO 2 is compressed in the condensate pump 9 and sent for heating to the condenser 2 of the steam turbine.

Использование конденсационной установки 16 позволяет повысить начальные параметры низкокипящего рабочего тела теплового двигателя с замкнутым контуром циркуляции до сверхкритических параметров, что приводит к увеличению теплоперепада на турбодетандере 6 и, как следствие, повышению коэффициента полезного действия ТЭС по выработке электрической энергии.The use of condensation unit 16 makes it possible to increase the initial parameters of the low-boiling working fluid of a heat engine with a closed circulation loop to supercritical parameters, which leads to an increase in heat drop on the turbine expander 6 and, as a result, an increase in the efficiency of TPPs for generating electric energy.

Применение конденсатора 8 водяного и воздушного охлаждения позволяет как последовательно, так и параллельно охлаждать и сжижать углекислый газ CO2. При последовательном охлаждении температуру углекислого газа CO2 снижают вначале в конденсаторе водяного охлаждения, а затем его сжижают в конденсаторе воздушного охлаждения. При параллельном охлаждении углекислый газ CO2 разделяют на два потока: первый поток охлаждается и сжижается в конденсаторе водяного охлаждения, а второй поток в конденсаторе воздушного охлаждения, и в процессе смешения двух выходных потоков возможно регулирование температуры сжиженного углекислого газа CO2.The use of condenser 8 of water and air cooling allows both sequentially and in parallel to cool and liquefy carbon dioxide CO 2 . With sequential cooling, the temperature of carbon dioxide CO 2 is first reduced in a water-cooled condenser, and then it is liquefied in an air-cooled condenser. In parallel cooling, carbon dioxide CO 2 is divided into two streams: the first stream is cooled and liquefied in a water-cooled condenser, and the second stream in an air-cooled condenser, and during the mixing of the two output streams, it is possible to control the temperature of the liquefied carbon dioxide CO 2 .

Применение воздуха в качестве теплоотводящей среды конденсатора 8 позволяет резко сократить расходы воды и улучшить экологический баланс естественных водоемов.The use of air as a heat sink medium of the condenser 8 can drastically reduce water consumption and improve the ecological balance of natural reservoirs.

Claims (2)

1. Тепловая электрическая станция, включающая последовательно соединенные паровую турбину, конденсатор паровой турбины и конденсатный насос конденсатора паровой турбины, основной электрогенератор, соединенный с паровой турбиной, а также систему маслоснабжения подшипников паровой турбины, содержащую последовательно соединенные по греющей среде сливной трубопровод, маслобак, маслонасос и маслоохладитель, выход которого по нагреваемой среде соединен с напорным трубопроводом, отличающаяся тем, что в нее введены тепловой двигатель с замкнутым контуром циркуляции, работающий по органическому циклу Ренкина, и конденсационная установка, содержащая последовательно соединенные паровую турбину с производственным отбором пара, имеющую электрогенератор, конденсатор паровой турбины с производственным отбором пара и конденсатный насос конденсатора паровой турбины с производственным отбором пара, при этом замкнутый контур циркуляции теплового двигателя выполнен в виде контура с низкокипящим рабочим телом, содержащим последовательно соединенные турбодетандер с электрогенератором, конденсатор водяного и воздушного охлаждения, конденсатный насос, причем выход конденсатного насоса соединен по нагреваемой среде с входом конденсатора паровой турбины, выход которого соединен по нагреваемой среде с входом маслоохладителя, выход маслоохладителя соединен по нагреваемой среде с входом конденсатора паровой турбины с производственным отбором пара, выход конденсатора паровой турбины с производственным отбором пара соединен по нагреваемой среде с входом турбодетандера, образуя замкнутый контур охлаждения.1. Thermal power station, including a series-connected steam turbine, a steam turbine condenser and a condensate pump of a steam turbine condenser, a main electric generator connected to a steam turbine, and a steam turbine bearing oil supply system containing a drain pipe, an oil tank, an oil pump, connected in series through a heating medium and an oil cooler, the outlet of which is connected via a heated medium to a pressure pipe, characterized in that a heat engine with with a closed circulation loop operating on the organic Rankine cycle and a condensing unit comprising a steam turbine with production steam extraction connected in series, having an electric generator, a steam turbine condenser with production steam extraction and a condenser pump of a steam turbine condenser with production steam extraction, and a closed circulation loop of the heat engine is made in the form of a circuit with a low-boiling working fluid containing a turboexpander with an electric generator connected in series a heater, a water and air cooling condenser, a condensate pump, the condensate pump output being connected via a heated medium to the inlet of a steam turbine condenser, the output of which is connected through a heated medium to an oil cooler inlet, the oil cooler output is connected through a heated medium to a steam turbine condenser inlet with production steam extraction , the condenser output of a steam turbine with production steam extraction is connected through a heated medium to the inlet of the turboexpander, forming a closed cooling circuit. 2. Тепловая электрическая станция по п. 1, отличающаяся тем, что в качестве низкокипящего рабочего тела используют сжиженный углекислый газ CO2. 2. Thermal power station according to claim 1, characterized in that as a low-boiling working fluid use liquefied carbon dioxide CO 2 .
RU2013154246/06U 2013-12-05 2013-12-05 HEAT ELECTRIC STATION RU140387U1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2013154246/06U RU140387U1 (en) 2013-12-05 2013-12-05 HEAT ELECTRIC STATION

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2013154246/06U RU140387U1 (en) 2013-12-05 2013-12-05 HEAT ELECTRIC STATION

Publications (1)

Publication Number Publication Date
RU140387U1 true RU140387U1 (en) 2014-05-10

Family

ID=50630086

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013154246/06U RU140387U1 (en) 2013-12-05 2013-12-05 HEAT ELECTRIC STATION

Country Status (1)

Country Link
RU (1) RU140387U1 (en)

Similar Documents

Publication Publication Date Title
RU140802U1 (en) HEAT ELECTRIC STATION
RU140881U1 (en) HEAT ELECTRIC STATION
RU140801U1 (en) HEAT ELECTRIC STATION
RU140428U1 (en) HEAT ELECTRIC STATION
RU140387U1 (en) HEAT ELECTRIC STATION
RU140412U1 (en) HEAT ELECTRIC STATION
RU140409U1 (en) HEAT ELECTRIC STATION
RU140413U1 (en) HEAT ELECTRIC STATION
RU140249U1 (en) HEAT ELECTRIC STATION
RU144877U1 (en) HEAT ELECTRIC STATION
RU144909U1 (en) HEAT ELECTRIC STATION
RU140410U1 (en) HEAT ELECTRIC STATION
RU140414U1 (en) HEAT ELECTRIC STATION
RU145708U1 (en) HEAT ELECTRIC STATION
RU140399U1 (en) HEAT ELECTRIC STATION
RU140383U1 (en) HEAT ELECTRIC STATION
RU140391U1 (en) HEAT ELECTRIC STATION
RU140784U1 (en) HEAT ELECTRIC STATION
RU140782U1 (en) HEAT ELECTRIC STATION
RU140388U1 (en) HEAT ELECTRIC STATION
RU140276U1 (en) HEAT ELECTRIC STATION
RU144912U1 (en) HEAT ELECTRIC STATION
RU144923U1 (en) HEAT ELECTRIC STATION
RU140252U1 (en) HEAT ELECTRIC STATION
RU140275U1 (en) HEAT ELECTRIC STATION

Legal Events

Date Code Title Description
MM1K Utility model has become invalid (non-payment of fees)

Effective date: 20141206