RU127446U1 - Пуля бронебойная - Google Patents

Пуля бронебойная Download PDF

Info

Publication number
RU127446U1
RU127446U1 RU2012147315/11U RU2012147315U RU127446U1 RU 127446 U1 RU127446 U1 RU 127446U1 RU 2012147315/11 U RU2012147315/11 U RU 2012147315/11U RU 2012147315 U RU2012147315 U RU 2012147315U RU 127446 U1 RU127446 U1 RU 127446U1
Authority
RU
Russia
Prior art keywords
core
bullet
diameter
head
armor
Prior art date
Application number
RU2012147315/11U
Other languages
English (en)
Inventor
Валерий Сергеевич Фадеев
Юрий Леонидович Чигрин
Олег Викторович Штанов
Юрий Васильевич Ободовский
Николай Михайлович Паладин
Владимир Григорьевич Михеев
Виктор Иванович Щитов
Олег Викторович Довгаль
Галина Егоровна Голяева
Сергей Александрович Колесников
Олег Викторович Кислюк
Original Assignee
Общество с ограниченной ответственностью "ТехКомплект"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество с ограниченной ответственностью "ТехКомплект" filed Critical Общество с ограниченной ответственностью "ТехКомплект"
Priority to RU2012147315/11U priority Critical patent/RU127446U1/ru
Application granted granted Critical
Publication of RU127446U1 publication Critical patent/RU127446U1/ru

Links

Images

Landscapes

  • Drilling Tools (AREA)

Abstract

1. Пуля бронебойная, содержащая оболочку, твердосплавный сердечник, имеющий головную и хвостовую части, и свинцовую рубашку, длина сердечника равна (2,21-3,48)d, при этом твердый сплав сердечника содержит карбид вольфрама по массе 85-96%, имеет твердость HRA не ниже 85.0 единиц, предел прочности на изгиб не менее 2000 МПа, головная часть сердечника выполнена конусообразной формы, длина которой равна (0,58-3,70)d, хвостовая часть имеет форму цилиндра или усеченного конуса или соединенных между собой цилиндра и усеченного конуса, причем меньший диаметр усеченного конуса равен (0,71-0,86)d, больший диаметр усеченного конуса хвостовика равен диаметру цилиндра и диаметру головной части сердечника и равен (0,72-0,86)d, а длина цилиндра хвостовика равна (0,01-3,58)d, где d - диаметр калибра пули, поверхность сердечника полностью или частично имеет шероховатость не выше Ra 1,6, а масса сердечника равна 34-62% массы пули, отличающаяся тем, что головная часть сердечника имеет контактную площадку, диаметр которой равен (0,018-0,25)d, где d - диаметр калибра пули.2. Пуля по п.1, отличающаяся тем, что твердый сплав имеет предел прочности на сжатие не менее 4000 МПа.3. Пуля по п.1, отличающаяся тем, что твердый сплав имеет коэффициент интенсивности напряжений Кне ниже 8 МПа м.4. Пуля по п.1, отличающаяся тем, что хвостовая часть сердечника имеет фаску или радиус закругления до 0,15d.5. Пуля по п.1, отличающаяся тем, что хвостовая часть сердечника и/или головная часть имеет покрытие, выполненное одним из физических или химических методов осаждения металлов.

Description

Полезная модель относится к боеприпасам, в частности к пулям автоматным и винтовочным, имеющим сердечник из твердого сплава с высоким пробивным и запреградным действием.
Наиболее близкой по технической сущности и достигаемому результату к предлагаемой пуле является бронебойная пуля, содержащая оболочку, твердосплавный сердечник, имеющий головную и хвостовую части, и свинцовую рубашку, головная часть твердосплавного сердечника выполнена заостренной, длина сердечника равна (2,21-3,48)d, при этом твердый сплав сердечника содержит карбид вольфрама по массе 85-96%, имеет твердость HRA не ниже 85.0 единиц, предел прочности на изгиб не менее 2000 МПа, головная часть сердечника выполнена конусообразной формы, длина которой равна (0,58-3,70)d, хвостовая часть имеет форму цилиндра, или усеченного конуса, или соединенных между собой цилиндра и усеченного конуса, причем меньший диаметр усеченного конуса равен (0,71-0,86)d, больший диаметр усеченного конуса хвостовика равен диаметру цилиндра и диаметру головной части сердечника и равен (0,72-0,86)d, а длина цилиндра хвостовика равна (0,01-3,58)d, где d - диаметр калибра пули, поверхность сердечника полностью или частично имеет шероховатость не выше Ra 1,6, а масса сердечника равна 34-62% массы пули. Кроме этого твердый сплав имеет предел прочности на сжатие не менее 4000 МПа, коэффициент интенсивности напряжений K1C не ниже 8 МПа м1/2, конусообразная форма головной части сердечника образована прямой линией и/или дугой окружности с радиусом, равным (0,31-10,28)d, являющейся дугой сопряжения между линией, образующей конус, и линией, образующей цилиндрическую часть хвостовика, при этом длина части конуса, образованная дугой окружности, равна (0,01-3,70)d, конусообразная форма головной части сердечника имеет радиус закругления остроконечной части не более 0,3 мм, а хвостовая часть сердечника, и/или головная часть имеет покрытие, выполненное одним из физических или химических методов осаждения металлов. (RU 2438096).
Недостатком известного решения является недостаточная запреградная пробивная способность сердечника пули при пробитии им металлической брони при увеличении калибра, при этом сердечник остается не разрушенным. С увеличением калибра пули увеличивается и общая длина сердечника и время прохождения сердечником преграды. Остроконечный сердечник со скругленным острием конуса до 0,3 мм разрушает металлическую броню по механизму прокола с образованием отверстия за счет расплавления металла. При таком механизме разрушения металлической брони сердечник остается целым, но значительно снижается его запреградная скорость. Это обусловлено тем, что механизм пробития металлической брони проколом с образование отверстия за счет расплавления металла является энергоемким, практически вся кинетическая энергия сердечника при его соударении с броней расходуется на нагрев места соударения.
В основу полезной модели поставлена задача повышения поражения живой силы, расположенной в легкобронированной военной технике и открыто расположенной в бронежилетах.
В процессе решения поставленной задачи достигается технический результат, заключающийся в сохранении сердечником достаточной энергии для убойного действия при пробитии металлической брони и увеличения запреградного поражающего воздействия пули осколочными фрагментами брони образованными сердечником при выходе из брони.
Указанный технический результат достигается заявляемой пулей бронебойной, содержащей оболочку, твердосплавный сердечник, имеющий головную и хвостовую части, и свинцовую рубашку, длина сердечника равна (2,21-3,48)d, при этом твердый сплав сердечника содержит карбид вольфрама по массе 85-96%, имеет твердость HRA не ниже 85.0 единиц, предел прочности на изгиб не менее 2000 МПа, головная часть сердечника выполнена конусообразной формы, длина которой равна (0,58-3,70)d, хвостовая часть имеет форму цилиндра, или усеченного конуса, или соединенных между собой цилиндра и усеченного конуса, причем меньший диаметр усеченного конуса равен (0,71-0,86)d, больший диаметр усеченного конуса хвостовика равен диаметру цилиндра и диаметру головной части сердечника и равен (0,72-0,86)d, а длина цилиндра хвостовика равна (0,01-3,58)d, где d - диаметр калибра пули, поверхность сердечника полностью или частично имеет шероховатость не выше Ra 1,6, а масса сердечника равна 34-62% массы пули при этом головная часть сердечника имеет контактную площадку, диаметр которой равен (0,018-0,250d. Кроме этого твердый сплав имеет предел прочности на сжатие не менее 4000 МПа, коэффициент интенсивности напряжений К1C не ниже 8 МПа м1/2, хвостовая часть сердечника имеет фаску или радиус закругления до 0,15d, a хвостовая часть сердечника и/или головная часть имеет покрытие, выполненное одним из физических или химических методов осаждения металлов.
В предлагаемой конструкции пули бронебойной снижение непроизводительных затрат энергии достигается за счет оптимизации формы вершины головной части сердечника, оптимизации хвостовой части сердечника, массы и материала сердечника.
Уменьшение длины сердечника менее 2,36 калибра снижает его массу и снижает пробивное действие из-за уменьшения удельного давления на преграду.
Увеличение длины сердечника более 3,48 калибра снижает пробивное действие из-за уменьшения его устойчивости.
Оценка материала по микроструктуре позволяет проводить оптимизацию материала для сердечника пули бронебойной, обладающего максимальной пробивной способностью. Выполнение сердечника из твердого сплава с содержанием карбида вольфрама по массе 85-96%, имеющего твердость HRA не ниже 85,0 единиц, предел прочности на изгиб не менее 2000 МПа, предел прочности на сжатие не менее 4000 МПа и коэффициент интенсивности напряжений К не ниже 8 МПа м1/2, позволяет в месте контакта с преградой выдерживать высокие контактные нагрузки в момент соударения. Кроме этого важную роль в механизмах разрушения играют поверхностные дефекты, которые появляются в процессе изготовления сердечника. Устранение дефектного слоя сердечника, доведение его поверхности до шероховатости Ra 1,6 и ниже, позволит значительно повысить его пробивную способность за счет исключения зарождения и развития поверхностных микротрещин. Дополнительная механическая обработка позволит повысить точность изготовления сердечника, уменьшить разброс его по весу, оптимизировать геометрические параметры, что, в конечном счете, улучшает кучность и увеличивает дальность поражения в целом.
Изготовление сердечника в виде тела вращения, соединенных между собой конусообразной головной части, длина которой равна (0,58-3,70)d, хвостовой части в форме цилиндра, или усеченного конуса, или соединенных между собой цилиндра и усеченного конуса, причем меньший диаметр усеченного конуса равен (0,71-0,86)d, больший диаметр усеченного конуса хвостовой части равен диаметру цилиндра и диаметру головной части сердечника и равен (0,72-0,86)d, а длина цилиндра хвостовика равна (0,01-3,58)d, хвостовая часть сердечника имеет фаску или радиус закругления до 0,15d, где d - диаметр калибр пули, позволяет снизить хрупкое разрушение сердечников при пробитии брони. Оптимизация физико-механических свойств твердосплавного материала, из которого изготовляется сердечник с оптимальной макро и микроструктурой позволяют сердечнику выдерживать высокие контактные нагрузки в момент соударения с броней.
В точке контакта происходит значительное повышение температуры, и давления за короткий промежуток времени. Экспериментально установлено, что в месте контакта появляются области, с сильно локализованной пластической деформацией, называемые плоскостями адиабатического сдвига (ПАС), в окрестностях которых концентрируется тепло. Быстрое деформирование металла приводит к локализованному нагреву контакта и катастрофическому разрушению брони в виде плавления. Выполняя контактную площадку на головной конусообразной части сердечника, диаметр которой равен (0.018-0,25)d, где d - калибр пули, мы получаем стабильные результаты по пробитию брони, так как каждый раз повторяется один и тот же механизм пробития с образованию ПАС в первой стадии пробития брони и хрупким разрушение тыльной стороны бронеплиты во второй стадии пробития плиты. При реализации такого механизма пробития не происходит хрупкого разрушения сердечника, он сохраняет свою форму а, реализация менее энергоемкого, хрупкого разрушения, сохраняет его кинетическую энергию, а, следовательно, запреградное поражающее действие пули бронебойной.
Остроконечный сердечник со скругленным острием конуса до 0,3 мм разрушает металлическую броню по механизму прокола с образованием отверстия за счет расплавления металла. При таком механизме разрушения сердечник остается целым, но при этом его запреградная скорость значительно снижается. При недостаточной скорости соударения сердечника с поверхностью брони, энергии не хватает, что бы расплавить металл и сердечник может остаться в броне. На фиг.1 показано (фото для эксперта) когда сердечник со скругленным острием конуса до 0.3 мм (прототип), только наполовину выходит из бронеплиты. Недостаток обусловлен неоптимальным соотношением геометрических параметров острия сердечника. Авторами предлагаемого технического решения установлено, что возможно реализация механизма разрушения брони, когда на первом этапе внедрения сердечника в броню реализуется энергоемкий механизм пробития проколом с расплавлением металла и на втором этапе прохождения сердечником брони, когда сердечник выходит и брони с реализацией механизма разрушения менее энергоемкого, а именно хрупкого разрушения тыльной стороны. Такой смешанный механизм пробития брони, по мнению авторов, реализуется при наличии у сердечника в головной части контактной площадки, диаметр которой равен (0.018-0,25)d, где d - диаметр калибра пули, это подтверждают экспериментальные данные при фрактографическом исследовании внутренней поверхности пулевого отверстия в броне. Механизм хрупкого разрушения тыльной стороны брони реализуется сердечниками, имеющими контактную площадку в головной части сердечника. Наличие такой площадки большого размера может привести к разрушению самого сердечника. Проведенные исследования показали, что при наличии контактной площадки, диаметр которой равен (0.018-0,25)d, где d - диаметр калибра пули, внутренняя поверхность пулевого отверстие имеет различные зоны по отражательной способности на входном и выходном кратерах отверстия, тогда как внутренняя поверхности пулевого отверстия сердечником образованная сердечником прототипа практически не имеет такого четкого разделения. Отличие заключается в характерной зоне на выходе из отверстия (фиг 2. фото для эксперта). В первом случае (прототип) зона, в которой происходит откол частиц на выходе очень маленькая, и имеются отогнутые по ходу движения сердечника лепестки из металла брони. При этом лепестки не имеют зон долома и хрупкого разрушения у основания отгиба. Совсем другой механизм разрушения наблюдается при пробитии брони сердечником, у которого имеется контактная площадка в головной части. В данном случае, на выходе из отверстия, практически отсутствуют части брони в виде лепестков. Отчетлива, видна зона отрыва кусочков брони на выходе из отверстия. Наблюдаются зоны разрушения отрывом, характерные для хрупкого разрушения. При наличии контактной площадки в головной части сердечника, при пробитии брони реализуется смешанный механизм разрушения брони. Первый этап - внедрение сердечника в броню, у остроконечного сердечника и сердечника с контактной площадкой идентичны, реализуются энергоемкие механизмы пробития проколом с расплавлением металла. При дальнейшем внедрения сердечника с контактной площадкой, контактная площадка впереди себя формирует кольцевые трещины с образованием так называемых конусов Герца (Каркашадзе Г.Г. Механическое разрушение горных пород: Учеб. пособие для вузов. - М.: Издательство Московского государственного горного университета. 2004. - стр.136-137). Нагрузка внутри конуса Герца возрастает и под площадкой сердечника формируется опережающее ядро уплотнения - зона всестороннего сжатия. В ядре сжатия материал брони испытывает напряжения многократно, на один-два порядка превышающие базовую прочностную характеристику - предел прочности при одноосном сжатии. Ядро уплотнения накапливает потенциальную энергию деформаций. В момент выхода концентрических трещин на поверхность образуется выходной кратер, потенциальная энергия деформаций переходит в кинетическую энергию фрагментов брони, вызывая их отрыв, фрагментацию и разлет с большой скоростью, до 100 м/с. После завершения акта освобождения выходной зоны от фрагментов разрушения, сердечник продолжает движении за преградой брони с большой скоростью.
На фигуре 3 представлена конструкция заявляемой пули бронебойной.
Пуля бронебойная состоит из твердосплавного сердечника 1, имеющего головную 1.1 и хвостовую 1.2 части, свинцовой рубашки 2 и оболочки 3, головная часть сердечника имеет контактную площадку, диаметр D3 которой равен D3=(0,018-0,25)d. Головная часть 1.1 состоит из конуса 1.1.1, образованного прямой линией, и конусообразной части 1.1.2, образованной частью окружности. Хвостовая часть 1.2 состоит или из цилиндра 1.2.1, или из усеченного конуса 1.2.2, или цилиндра 1.2.1 и усеченного конуса 1.2.2, соединенных между собой, имеет фаску или радиус закругления до 0,15d. Соотношения конструктивных параметров пули определены в зависимости от калибра. Длина l0 сердечника 1 равна l0=(2,21-3,48)d, длина головной части l1 сердечника 1.1 равна l1=(0,58-3,70)d, l2 - длина части сердечника 1.1.1, образованная радиусом окружности R1, равным R1=(0,31-10,28)d, длина l2 равна l2=(0,01-3,70)d, длина цилиндрической части l3 хвостовой сердечника 1.2.1 равна l3=(0,01-3,58)d. Больший диаметр D1 усеченного конуса хвостовика равен диаметру цилиндра и диаметру головной части сердечника и равен D1=(0,72-0,86)d, меньший диаметр D2 усеченного конуса равен D2=(0,71-0,86)d. Поверхности сердечника полностью или частично, либо головная часть, либо хвостовая часть, дополнительно шлифуются до шероховатость не выше Ra 1,6. Хвостовая часть сердечника и/или головная часть имеет покрытие, выполненное одним из физических или химических методов осаждения металлов.
Сердечник изготавливали из вольфрамокобальтовых порошков с содержанием карбида вольфрама 92% по массе и кобальта 8% по массе. Плотность после прессования заготовок равнялась 8,4+0,05 г/см2. Спекание проводили в две стадии: предварительное - с целью удаления пластификатора в водородной атмосфере и окончательное вакуумно-компрессионное в печи VKPgr 50/90/50 фирмы Degussa.
Для подтверждения высокого запреградного поражающего действия предлагаемой пули бронебойной проводили сравнительные стрельбы с бронебойными патронами калибра 7,62 с твердосплавным сердечником изготовленным по прототипу. В качестве пробиваемого материала использовалась бронеплита марки 2П толщиной 10 мм на удалении 200 метров. Запреградное действие пули оценивали по пробитию пакета сосновых досок толщиной 25 мм расположенному сразу за броней. Определяли глубину проникновения сердечника в пакет из досок и количеству осколков прошедших одну доску.
В таблице предоставлены результаты сравнительных испытаний.
Таблица.
Тип пули Процент пробития бронеплиты от зачетного % попаданий Количество пробитых досок/Количество осколочных повреждений
200 м 250 м 300 м 200 м 250 м 300 м
Прототип. Твердосплавной сердечник, коническая головная часть с закруглением 0.33 мм. 100% 100% 10% 4/1-2 4/0-1 1/0
Предлагаемое техническое решение. Твердосплавной сердечник, коническая головная часть имеет контактную площадку, диаметр которой равен (0.018-0,25)d где d - калибр пули 100% 100% 30% 6/4-6 5-6/3-5 2-3/3-4
Как видно из результатов эксперимента, предлагаемая пуля бронебойная с сердечником имеющим контактную площадку, диаметр которой равен (0.018-0,25)d где d - диаметр калибра пули имеет более высокую запреградную скорость (количество пробитых досок больше) и количество значимых повреждений осколками бронеплиты по сравнению с прототипом. Таким образом, совокупность всех указанных в формуле соотношений конструктивных параметров пули бронебойной обеспечивает более высокие характеристики по пробивному действию. Данные соотношения и полученные данные по механизму разрушения металлической брони могут быть использованы для создания пуль различного калибра.
Проведенная оптимизация массы сердечника, геометрических параметров сердечника в зависимости от калибра пули и физико-механических свойств материала сердечника, с учетом проведенных исследований механизма разрушения сердечника, анализом существующих теорий разрушения преграды при внедрении в них объектов с высокой скоростью позволили создать пулю бронебойную, значительно превышающую аналоги и прототип по степени пробития бронебойной плиты и бронежилета.

Claims (5)

1. Пуля бронебойная, содержащая оболочку, твердосплавный сердечник, имеющий головную и хвостовую части, и свинцовую рубашку, длина сердечника равна (2,21-3,48)d, при этом твердый сплав сердечника содержит карбид вольфрама по массе 85-96%, имеет твердость HRA не ниже 85.0 единиц, предел прочности на изгиб не менее 2000 МПа, головная часть сердечника выполнена конусообразной формы, длина которой равна (0,58-3,70)d, хвостовая часть имеет форму цилиндра или усеченного конуса или соединенных между собой цилиндра и усеченного конуса, причем меньший диаметр усеченного конуса равен (0,71-0,86)d, больший диаметр усеченного конуса хвостовика равен диаметру цилиндра и диаметру головной части сердечника и равен (0,72-0,86)d, а длина цилиндра хвостовика равна (0,01-3,58)d, где d - диаметр калибра пули, поверхность сердечника полностью или частично имеет шероховатость не выше Ra 1,6, а масса сердечника равна 34-62% массы пули, отличающаяся тем, что головная часть сердечника имеет контактную площадку, диаметр которой равен (0,018-0,25)d, где d - диаметр калибра пули.
2. Пуля по п.1, отличающаяся тем, что твердый сплав имеет предел прочности на сжатие не менее 4000 МПа.
3. Пуля по п.1, отличающаяся тем, что твердый сплав имеет коэффициент интенсивности напряжений К не ниже 8 МПа м1/2.
4. Пуля по п.1, отличающаяся тем, что хвостовая часть сердечника имеет фаску или радиус закругления до 0,15d.
5. Пуля по п.1, отличающаяся тем, что хвостовая часть сердечника и/или головная часть имеет покрытие, выполненное одним из физических или химических методов осаждения металлов.
Figure 00000001
RU2012147315/11U 2012-11-07 2012-11-07 Пуля бронебойная RU127446U1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2012147315/11U RU127446U1 (ru) 2012-11-07 2012-11-07 Пуля бронебойная

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2012147315/11U RU127446U1 (ru) 2012-11-07 2012-11-07 Пуля бронебойная

Publications (1)

Publication Number Publication Date
RU127446U1 true RU127446U1 (ru) 2013-04-27

Family

ID=49154219

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2012147315/11U RU127446U1 (ru) 2012-11-07 2012-11-07 Пуля бронебойная

Country Status (1)

Country Link
RU (1) RU127446U1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU170528U1 (ru) * 2016-04-14 2017-04-27 Общество с ограниченной ответственностью "РОМБ" (ООО "РОМБ") Пуля для снайперского патрона

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU170528U1 (ru) * 2016-04-14 2017-04-27 Общество с ограниченной ответственностью "РОМБ" (ООО "РОМБ") Пуля для снайперского патрона

Similar Documents

Publication Publication Date Title
Chen et al. Experimental research on the long rod penetration of tungsten-fiber/Zr-based metallic glass matrix composite into Q235 steel target
RU170524U1 (ru) Сердечник бронебойной пули
US10323918B2 (en) Auto-segmenting spherical projectile
RU126449U1 (ru) Патрон бронебойный
RU112390U1 (ru) Сердечник бронебойной пули
RU190914U1 (ru) Патрон с твердосплавным сердечником для стрелкового оружия
RU2473042C1 (ru) Сердечник бронебойной пули
RU193315U1 (ru) Пуля для стрелкового оружия с твердосплавным сердечником
Hu et al. Experimental study on the penetration effect of ceramics composite projectile on ceramic/A3 steel compound targets
RU170528U1 (ru) Пуля для снайперского патрона
RU127446U1 (ru) Пуля бронебойная
US8580188B2 (en) Method for producing a penetrator
RU178911U1 (ru) Сердечник бронебойной пули
RU2502943C1 (ru) Сердечник бронебойной пули
RU130687U1 (ru) Сердечник бронебойной пули с головной конической частью оживальной формы
RU126818U1 (ru) Сердечник бронебойной пули
EP3514479B1 (de) Mehrzweckgeschoss
EP3002542B1 (de) Vorrichtung zur kontrollierten splitterbildung mittels temperaturaktivierbarer kerbladungen
RU2502944C1 (ru) Пуля бронебойная
RU128307U1 (ru) Патрон бронебойный с оживальной головной частью сердечника
RU2502945C1 (ru) Патрон бронебойный
RU190920U1 (ru) Сердечник для стрелкового оружия из твердого сплава
RU2438096C1 (ru) Бронебойная пуля
RU130686U1 (ru) Пуля бронебойная с оживальной головной частью сердечника
RU191061U1 (ru) Твердосплавной сердечник для стрелкового оружия

Legal Events

Date Code Title Description
MM1K Utility model has become invalid (non-payment of fees)

Effective date: 20151108