RU122970U1 - Подводный планер (варианты) - Google Patents

Подводный планер (варианты) Download PDF

Info

Publication number
RU122970U1
RU122970U1 RU2012118807/11U RU2012118807U RU122970U1 RU 122970 U1 RU122970 U1 RU 122970U1 RU 2012118807/11 U RU2012118807/11 U RU 2012118807/11U RU 2012118807 U RU2012118807 U RU 2012118807U RU 122970 U1 RU122970 U1 RU 122970U1
Authority
RU
Russia
Prior art keywords
consoles
rotation
wing
attack
angle
Prior art date
Application number
RU2012118807/11U
Other languages
English (en)
Inventor
Сергей Георгиевич Щеглов
Original Assignee
Федеральное государственное бюджетное учреждение науки Тихоокеанский океанологический институт им. В.И. Ильичева Дальневосточного отделения Российской академии наук (ТОИ ДВО РАН)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное учреждение науки Тихоокеанский океанологический институт им. В.И. Ильичева Дальневосточного отделения Российской академии наук (ТОИ ДВО РАН) filed Critical Федеральное государственное бюджетное учреждение науки Тихоокеанский океанологический институт им. В.И. Ильичева Дальневосточного отделения Российской академии наук (ТОИ ДВО РАН)
Priority to RU2012118807/11U priority Critical patent/RU122970U1/ru
Application granted granted Critical
Publication of RU122970U1 publication Critical patent/RU122970U1/ru

Links

Abstract

1. Подводный планер, состоящий из корпуса, крыла из двух шарнирно присоединенных к корпусу консолей, киля и системы изменения углов атаки консолей, а также с электронными системами сбора и передачи информации, управления движением планера, регулирования плавучести и изменения дифферента и крена, расположенными внутри корпуса, отличающийся тем, что консоли установлены на оси вращения, проходящей за центром давления крыла, а система изменения углов атаки консолей выполнена саморегулируемой в зависимости от скорости и направления набегающего потока и включает систему механического ограничения диапазона изменения углов поворота консолей и связанные с ней упругие элементы, регулирующие пропорционально вращательному моменту величины углов атаки крыла и имеющие жесткость, обеспечивающую угол атаки крыла ноль градусов при нахождении планера в покое.2. Подводный планер по п.1, отличающийся тем, что система механического ограничения диапазона изменения углов поворота консолей выполнена в виде двух противоположно расположенных на корпусе за передней кромкой каждой из консолей ограничителей ее вращения.3. Подводный планер по п.2, отличающийся тем, что упругие элементы одним концом жестко закреплены на задней или передней кромке корневой части соответствующей консоли, а их свободный конец расположен в установленном на корпусе фиксаторе с возможностью продольного скольжения.4. Подводный планер по п.2, отличающийся тем, что упругие элементы выполнены из двух частей, при этом один конец каждой из частей жестко закреплен на соответствующем ограничителе, а другой имеет возможность свободного скольжения по поверхнос�

Description

Полезная модель относится к судостроению, конкретно к автономным необитаемым подводным самоходным аппаратам - планерам-глайдерам для исследования водных акваторий.
На сегодняшний день выпускается несколько моделей планеров. Среди них наиболее известны Scarlet Knight, APEX производитель Teledyne Webb, Seaglider разработчик University of Washington, Spray разработчик Woods Hole Oceanographic Institution, Scripps Institution of Oceanography SeaExplorer производитель ACSA, ALBAC Kawaguchi Япония (http://en.wikipedia.org/wiki/Seaglider). Подводные планеры имеют различную форму корпуса от торпедообразной до удобообтекаемой и, как правило, жестко закрепленные крылья (симметричные или плоские) (IEEE Journal of oceanic engineering, vol.26, n.4, p.437-446, 2001).
Однако жесткое крепление крыльев, с начальным углом установки ноль градусов для создания одинаковых условий обтекания жидкости при планировании вверх и вниз (погружение и всплытие), приводит к увеличению коэффициента гидродинамического сопротивления корпуса, поскольку угол планирования не совпадает с продольной осью планера, так как угол атаки крыла задается дифферентом.
Известны подводные планеры с подвижным крылом, например, подводный планер по з. США №20090241826. Планер оборудован системой управления движением каждой из консолей крыла, обеспечивающей движение консолей крыла вверх, когда планер опускается вниз и вниз, когда планер идет вверх. Такая конструкция планера за счет V образности крыла приводит к увеличению поперечной устойчивости аппарата и дает возможность управления поворотом за счет удержания электромагнитом или другим устройством в противоположном положении одну из консолей.
Однако такая конструкция планера не позволяет уменьшить коэффициент гидродинамического сопротивления и не позволяет минимизировать угол планирования без увеличения лобового сопротивления и как следствие потери скорости.
Наиболее близким к заявляемому является подводный планер, корпус которого снабжен крылом из двух подвижных консолей и подвижным хвостовым оперением, которые приводятся в движение четырьмя двигателями. Планер оборудован электронными системами сбора и передачи информации, управления движением планера и движением консолей, системами регулирования плавучестью и изменения дифферента, расположенными внутри корпуса. Консоли и хвостовое оперение установлены на корпусе планера на оси по принципу горизонтальных рулей подводной лодки, то есть выполнены балансирными, для уменьшения величины вращающего момента, создаваемого электродвигателями при изменении углов атаки, с возможностью принудительного по заданной программе изменения угла атаки консолей и хвостового оперения, которое осуществляется двигателями. В авиации, когда ось вращения смещена назад по отношению к передней кромке, такое расположение оси вращения называют осевой компенсацией, для уменьшения шарнирного момента, (в.з. Японии №2007276609А).
Такая конструкция планера решает проблему высокой маневренности для выполнения сложных движений - крутые виражи, резкие торможения, остановки, погружение при сохранении горизонтального положения планера, что не могут выполнять планеры с неподвижным крылом.
Однако данная конструкция планера сложна и дорога, требует затрат энергии для работы двигателей, обеспечивающих повороты консолей и хвостового оперения, приводит к увеличению веса и размеров планера из-за установки дополнительных электроприводов (серводвигатели, редукторы), необходимости герметизации валов вращения оси, дополнительного программного обеспечения для системы управления движением консолей и оперения и, как следствие, к уменьшению веса полезной нагрузки и автономности аппарата. Кроме того, из-за увеличения плотности внутренней компоновки планера увеличивается диапазон изменения силы плавучести, что требует увеличения времени и затрат энергии на изменение силы плавучести. Применение дополнительных электромеханических устройств увеличивает шумы оборудования, что ведет к повышению вероятности обнаружения планера и вносит помехи при гидроакустических исследованиях. Выполнение крыла из двух лежащих в одной плоскости консолей снижает поперечную устойчивость планера.
Задача полезной модели - упрощение конструкции планера, снижение шума и энергозатрат, увеличение автономности и полезной нагрузки планера при тех же массогабаритных характеристиках, улучшение гидродинамических характеристик, что достигается минимизацией коэффициента лобового сопротивления корпуса планера за счет автоматического изменения угла атаки в зависимости от величины скорости и направления набегающего потока.
Поставленная задача решается подводным планером, состоящим из корпуса, крыла из двух шарнирно присоединенных к корпусу консолей, киля и системы изменения углов атаки консолей, а также электронными системами сбора и передачи информации, управления движением планера, регулирования плавучестью и изменения дифферента и крена, расположенными внутри корпуса, при этом консоли установлены на оси, проходящей за центром давления крыла, а система изменения углов атаки консолей выполнена саморегулируемой в зависимости от скорости и направления набегающего потока и включает механическую систему ограничения диапазона изменения углов поворота консолей и связанные с ней упругие элементы, регулирующие пропорционально вращательному моменту изменение величины углов атаки крыла и имеющие жесткость, обеспечивающую угол атаки крыла ноль градусов при нахождении планера в покое.
Поставленная задача решается также подводным планером, состоящим из корпуса, крыла из двух подвижно присоединенных к корпусу консолей, киля и системы изменения углов атаки консолей, а также электронными системами сбора и передачи информации, управления движением планера, регулирования плавучестью и изменения дифферента и крена, расположенными внутри корпуса, при этом консоли установлены на оси вращения, проходящей за центром давления крыла, а системы изменения углов атаки консолей и соединения консолей с корпусом планера объединены путем установки на осях вращения консолей ротационных демпферов с двусторонним демпфирующим действием и ограниченным углом вращения
В данном варианте подводного планера функцию упругого элемента выполняет жидкость демпфера, а диапазон изменения угла атаки определяется углом вращения оси демпфера.
Предлагаемые конструкции плавера с установкой консолей на оси вращения, проходящей за центром давления крыла и системой саморегуляции углов атаки крыла в зависимости от скорости и направления набегающего потока обеспечивает изменение угла атаки крыла в зависимости от изменения величины и направления гидроаэродинамической силы и обеспечивает условия, при которых направление движения планера всегда совпадает с продольной осью симметрии корпуса, то есть достигается минимизация угла планирования и коэффициента лобового сопротивления планера без дополнительных энергозатрат, снижение шумовых помех и увеличение автономности, полезной нагрузки планера, горизонтальной скорости и длины цикла движения при тех же массогабаритных характеристиках.
Установка консолей на оси вращения, проходящей за центром давления крыла приводит к увеличению вращающего (шарнирного) момента, необходимого для поворота консолей при изменении величины скорости и направления набегающего потока.
Система механического ограничения диапазона изменения углов поворота консолей может быть выполнена различными путями, например, в виде двух противоположно расположенных на поверхности корпуса ограничителей (упоров) поворота каждой из консолей или, если консоли закреплены на одной оси вращения, ограничить угол поворота можно установив ограничители внутри корпуса; система может быть реализована и путем выполнения шарнирного соединения консолей с корпусом с использованием шарниров с ограниченным углом вращения. В зависимости от выбранной системы ограничения диапазона изменения углов поворота консолей изменяется и размещение связанного с ней упругого элемента, регулирующего изменения величины углов атаки, при этом жесткость упругого элемента, обеспечивающая нулевой угол атаки крыла при нахождении планера в покое, может быть рассчитана по известным закономерностям (С.Д.Пономарев, Л.Е.Андреева. Расчет упругих элементов машин и приборов. 1980 г) или подобрана экспериментальным путем.
Возможен вариант реализации системы саморегулирования углов атаки, при котором ограничители используют для крепления упругих элементов, например в виде пружин различного вида и конструкции: плоских, витых, пружин растяжения и других.
Возможен вариант, при котором упругий элемент выполнен в виде одной или двух зеркально установленных пружин кручения на оси шарниров.
В качестве упругого элемента, в зависимости от места его установки и характера работы (изгиб, растяжение, сжатие), может выступать, например, плоская пружина или пружины кручения, растяжения, сжатия или торсион. От выбора типа упругого элемента зависит выбор материала для его изготовления, например, металл, пластик, резина и другие.
Сущность изобретения приведена на Фиг.1-3.
На Фиг.1 (а-г) представлено несколько возможных схем систем саморегулирования угла атаки консоли при установке ограничителей угла поворота на поверхности корпуса планера и различных вариантах размещения упругих элементов, где 1 - консоль, 2 - ось вращения (крепления) консоли, 3 - ограничители угла поворота, 4 - упругий элемент, 5 - корпус, 6 - фиксатор-стопор для упругого элемента.
На Фиг.2 - представлена схема системы саморегулирования угла атаки крыла при установке ограничителей угла поворота и упругого элемента внутри корпуса планера на общей оси вращения консолей, где 7 - втулка.
На Фиг.3 представлена схема движения планера с неподвижным (д) и крылом с системой регулирования угла атаки крыла (е).
При закреплении ограничителей 3 на поверхности корпуса 5 (Фиг.1а-г), они устанавливаются за передней кромкой консоли 1, угол поворота определяется их расстоянием от продольной оси планера и равен углу оптимального качества для применяемого крыла.
Консоли крыла в свою очередь могут быть установлены как на одной оси 2, проходящей через корпус, так и на двух независимых осях.
Установка же упругого элемента может быть выполнена различными способами, каждый из которых обеспечивает выполнение им своей функции - регулирование угла атаки крыла от величины давления набегающего потока. Например,
- упругий элемент 4 (пружина, работающая на изгиб) одним концом жестко закреплен на задней (Фиг.1а) или передней кромке корневой части консоли, а его свободный конец зафиксирован на корпусе с возможностью свободного продольного (горизонтального) перемещения (скольжения) в фиксаторе, так как при изгибе упругого элемента происходит его удлинение;
- упругий элемент 4 может быть выполнен из двух частей, при этом один конец каждой из частей жестко закреплен на соответствующем ограничителе 3, а другой имеет возможность свободного скольжения по поверхности консоли 1 (Фиг.1б).
- упругий элемент 4 может быть выполнен V-образным, центральная часть которого жестко закреплена на передней кромке корневой части консоли 1, а свободные концы расположены касательно между ограничителями 3 угла поворота консоли и поверхностями консоли 1 (Фиг.1в);
- упругий элемент выполнен в виде пружины растяжения и закреплен между ограничителями и поверхностями крыла (Фиг.1г);
- при размещении консолей 1 на одной оси, упругий элемент 4 одним концом жестко закреплен по центру оси 2, а его свободный конец зафиксирован с возможностью продольного скольжения, при этом ограничители изменения диапазона угла поворота могут располагаться как на поверхности корпуса, так и внутри него.
При установке ограничителей угла поворота и упругого элемента внутри корпуса планера на общей оси 2 вращения консолей ось 2 герметизируется от внешней среды сальниками, осевое перемещения фиксируется втулками 7, выполненными в виде цилиндрических секторов с центральным углом равным диапазону поворота консолей 1 и ограничителей (стопоров) 3 установленных на внутренней части корпуса в секторе вращения втулок или двух стопоров на каждой из внутренней сторон корпуса и двух рьиагов между стопорами установленных на оси 2. По центру оси 2 закреплен рычаг (на фиг.2 не показан), к концу которого крепится подвижно одним концом упругий элемент 4 (витая пружина растяжения, эластичная резина), а другой конец закреплен к корпусу на фиксаторе 6. В случае применения упругих элементов работающих на изгиб крепление к рычагу должно быть жестким (неподвижным), а второй конец имел возможность перемещаться в своей плоскости (Фиг.2).
Выполнение ограничителей в виде электромагнитных защелок позволит задействовать консоли в процессе поворотов, что уменьшит радиус поворота.
Для увеличения поперечной устойчивости планера целесообразно использовать шаровые шарниры для крепления консолей к корпусу, что позволит изменять V-образность крыла в зависимости от планирования вверх или вниз.
Перечисленные выше примеры реализации системы саморегулирования углов атаки крыла подводного планера в зависимости от скорости и направления набегающего потока с использованием механической системы ограничения углов поворота консолей не являются исчерпывающими и конкретный выбор будет определяться исходя из выбранных материалов для изготовления планера, формы и размеров корпуса, профиля и размеров крыла т.д. и от поставленных научных задач.
Движение планера заявляемой конструкции осуществляется следующим образом (Фиг.3е). Первоначально планер находится на плаву на поверхности воды и за счет вычисленной или подобранной экспериментально жесткости упругих элементов 4 его крыло находится с нулевым углом установки (атаки). По команде системы управления планер любыми известными способами изменяет плавучесть на отрицательную, дифферент на нос и начинается погружение. При погружения возникает сила сопротивления набегающего потока на нижние плоскости консолей и, так как ось вращения смещена к задней кромке консолей, возникает вращающий момент, который, преодолевая сопротивление упругих элементов 4, поворачивает консоли 1 на угол пропорционально силе давления набегающего потока, что приводит к увеличению угла атаки и, как следствие, увеличению подъемной силы крыла и горизонтальному движению. Дальнейшее изменение (уменьшение) плавучести и смещение центра тяжести планера приведут к ускорению движения. При достижении максимальной скорости планирования, ограниченной гидродинамическим сопротивлением планера, вращающий момент поворачивает крыло на оптимальный угол атаки для установленного крыла, то есть на угол атаки оптимального качества крыла, заданный верхним ограничителем, чем и достигается оптимальный режим планирования (минимальная скорость снижения). При достижении заданной глубины планирования с системы управления поступает команда на смену тангажа (дифферента) и плавучести на противоположные по знаку. Так как процесс смены плавучести происходит постепенно, то так же постепенно происходит и замедление планирования. Давление набегающего потока воды падает и под действием упругих элементов плавно уменьшается угол атаки и подъемная сила крыла. Планер с дифферентом на корму начинает всплывать, набегающий поток воды давит на верхнюю плоскость крыла и преодолевая сопротивления упругих элементов (или демпфера) разворачивает крыло на отрицательный угол атаки, что вызывает инверсию точки приложения подъемной силы крыла и планер начнет планировать вверх опираясь уже на верхнюю плоскость крыла. При увеличении силы плавучести увеличится вращающий (шарнирный) момент на крыле и в зависимости от увеличения скорости всплытия пропорционально увеличивается угол атаки крыла. При достижении заданной глубины всплытия процесс повторяется, если это задано программой.
В случае второго варианта подводного планера, его конструкция включает корпус, крыло, установленное на оси вращения, проходящей за центром давления и состоящее из двух консолей, киль, а также электронные системы сбора и передачи информации, управления движением планера, регулирования плавучестью и изменения дифферента и крена, расположенными внутри корпуса. Консоли соединены с корпусом посредством ротационных демпферов с двусторонним демпфирующим действием и ограниченным углом вращения, величину которого выбирают исходя из угла атаки крыла при движении подводного планера.
Ротационный демпфер с ограниченным углом вращения является промышленно выпускаемой продукцией (http://www.bibus.ru/ru/produkty-reshenija/pnevmatika/tekhnologii-tormozhenija/rotacionnye-dempfery/; http://bibus.com.ua/prod/21; http://bibus.com.ua/tmp/ACE_Kat_2006_engl.pdf;).
Демпфер состоит из герметичного цилиндрического корпуса (статора) с внутренними наплывами на стенках, которые являются упорами для статора, обеспечивающими заданный угол поворота консолей, равный углу атаки, образуя при этом рабочие камеры. Ротор включает две пластины в продольной оси вала. Пространство между ротором и статором заполнено жидкостью. Жидкость проталкивается из одной камеры в другую с помощью движения ротора через регулирующие отверстия, находящиеся либо в пластинах либо в зазорах между ротором и статором либо другим приемлемым способом. Момент демпфирования определен вязкостью жидкости и размером перепускных отверстий, что позволяет плавно изменять угол атаки в зависимости от величины потока.
Движение планера с объединенной системой изменения углов атаки консолей и соединения консолей за счет устаноновки на оси вращения консолей ротационного демпфера с двусторонним демпфирующим действием и ограниченным углом вращения осуществляется следующим образом (Фиг.3е). Первоначально планер находится на плаву на поверхности воды и его крыло находится в безразличном состоянии. По команде системы управления планер любыми известными способами изменяет плавучесть на отрицательную и начинает погружение. При погружения возникает сила сопротивления набегающего потока на нижние плоскости консолей и, так как ось вращения смещена к задней кромке консолей, возникает вращающий (шарнирный) момент, который поворачивает консоли на угол атаки, заданный углом поворота в демпфера, при котором достигается оптимальное качество установленного крыла. Одновременно с изменением плавучести по команде изменяют дифферент на нос иначе планер начнет горизонтально двигаться задом (хвостом вперед), что приводит к переходу вертикального движения в горизонтальное за счет подъемной силы крыла, увеличению угла атаки и, как следствие, увеличению подъемной силы крыла. Дальнейшее изменение (уменьшение) плавучести и смещение центра тяжести планера приведут к ускорению движения. При достижении максимальной скорости планирования, ограниченной гидродинамическим сопротивлением планера, вращающий момент поворачивает крыло на оптимальный угол атаки для установленного крыла, то есть на угол атаки оптимального качества крыла, заданный углом поворота в демпфере, чем и достигается оптимальный режим планирования (минимальная скорость снижения) и плавность изменения. При достижении заданной глубины планирования с системы управления поступает команда на смену тангажа (дифферента) и плавучести на противоположные по знаку. Так как процесс смены плавучести происходит постепенно, то так же постепенно происходит и замедление планирования. Планер с дифферентом на корму начинает всплывать, набегающий поток воды давит на верхнюю плоскость крыла и преодолевая сопротивления жидкости в демпфере разворачивает крыло на отрицательный угол атаки, что вызывает инверсию точки приложения подъемной силы крыла и планер начнет планировать вверх опираясь уже на верхнюю плоскость крыла. При увеличении силы плавучести увеличится вращающий (шарнирный) момент на крыле и в зависимости от увеличения скорости всплытия пропорционально увеличивается угол атаки крыла. При достижении заданной глубины всплытия процесс повторяется, если это задано программой.
Таким образом, система саморегулирования угла атаки позволяет минимизировать угол планирования и коэффициент лобового сопротивления аппарата, то есть обеспечить планирование с минимально возможным гидродинамическим сопротивлением, в результате чего достигается максимально возможная скорость планирования при минимальной вертикальной скорости снижения, следовательно, увеличивается горизонтальная скорость и длина цикла при одинаковых с прототипом массогабаритных характеристиках (Фиг.3д), но с большей полезной нагрузкой и автономностью.
Предлагаемые конструкции подводного планера, обеспечивающие минимизацию угла планирования и коэффициента лобового сопротивления планера без дополнительных энергозатрат позволят достичь снижения шумовых помех и увеличение автономности и полезной нагрузки планера, горизонтальной скорости и длины цикла при тех же массогабаритных характеристиках, что и прототипа, значительно упрощает сборку планера, позволяет снизить стоимость.

Claims (9)

1. Подводный планер, состоящий из корпуса, крыла из двух шарнирно присоединенных к корпусу консолей, киля и системы изменения углов атаки консолей, а также с электронными системами сбора и передачи информации, управления движением планера, регулирования плавучести и изменения дифферента и крена, расположенными внутри корпуса, отличающийся тем, что консоли установлены на оси вращения, проходящей за центром давления крыла, а система изменения углов атаки консолей выполнена саморегулируемой в зависимости от скорости и направления набегающего потока и включает систему механического ограничения диапазона изменения углов поворота консолей и связанные с ней упругие элементы, регулирующие пропорционально вращательному моменту величины углов атаки крыла и имеющие жесткость, обеспечивающую угол атаки крыла ноль градусов при нахождении планера в покое.
2. Подводный планер по п.1, отличающийся тем, что система механического ограничения диапазона изменения углов поворота консолей выполнена в виде двух противоположно расположенных на корпусе за передней кромкой каждой из консолей ограничителей ее вращения.
3. Подводный планер по п.2, отличающийся тем, что упругие элементы одним концом жестко закреплены на задней или передней кромке корневой части соответствующей консоли, а их свободный конец расположен в установленном на корпусе фиксаторе с возможностью продольного скольжения.
4. Подводный планер по п.2, отличающийся тем, что упругие элементы выполнены из двух частей, при этом один конец каждой из частей жестко закреплен на соответствующем ограничителе, а другой имеет возможность свободного скольжения по поверхности консоли.
5. Подводный планер по п.2, отличающийся тем, что упругие элементы выполнены V-образными, центральная часть жестко закреплена на передней кромке корневой части соответствующей консоли, а свободные концы расположены касательно между ограничителями угла поворота и поверхностями консоли.
6. Подводный планер по п.2, отличающийся тем, что упругий элемент выполнен в виде одной или двух зеркально установленных пружин кручения на оси шарниров, соединяющих консоли с корпусом.
7. Подводный планер по п.1, отличающийся тем, что консоли установлены на общей оси вращения, система механического ограничения диапазона изменения углов поворота консолей включает установленные на оси втулки с цилиндрическим сектором, равным диапазону изменения углов поворота консолей, и ограничители, установленные на внутренней части корпуса в секторе вращения втулок, а упругий элемент выполнен или в виде пружины растяжения, одним концом закрепленной на оси, а другим на фиксаторе, расположенном на корпусе, или в виде плоской пружины, один конец которой жестко закреплен по центру оси, а другой установлен с возможностью продольного перемещения в фиксаторе.
8. Подводный планер по п.1, отличающийся тем, что для крепления консолей к корпусу используют шаровой шарнир.
9. Подводный планер, состоящий из корпуса, крыла из двух подвижно присоединенных к корпусу консолей, киля и системы изменения углов атаки консолей, а также с электронными системами сбора и передачи информации, управления движением планера, регулирования плавучести и изменения дифферента и крена, расположенными внутри корпуса, отличающийся тем, что консоли установлены на оси вращения, проходящей за центром давления крыла, а системы изменения углов атаки консолей и соединения консолей с корпусом планера объединены путем установки на оси вращения консолей ротационного демпфера с двусторонним демпфирующим действием и ограниченным углом вращения.
Figure 00000001
RU2012118807/11U 2012-05-04 2012-05-04 Подводный планер (варианты) RU122970U1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2012118807/11U RU122970U1 (ru) 2012-05-04 2012-05-04 Подводный планер (варианты)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2012118807/11U RU122970U1 (ru) 2012-05-04 2012-05-04 Подводный планер (варианты)

Publications (1)

Publication Number Publication Date
RU122970U1 true RU122970U1 (ru) 2012-12-20

Family

ID=49256834

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2012118807/11U RU122970U1 (ru) 2012-05-04 2012-05-04 Подводный планер (варианты)

Country Status (1)

Country Link
RU (1) RU122970U1 (ru)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2600038C1 (ru) * 2015-05-12 2016-10-20 Федеральное государственное казенное военное образовательное учреждение высшего профессионального образования "Военный учебно-научный центр Военно-Морского Флота "Военно-морская академия имени Адмирала Флота Советского Союза Н.Г. Кузнецова" Способ дистанционного минирования
CN106394838A (zh) * 2016-10-14 2017-02-15 中国船舶科学研究中心(中国船舶重工集团公司第七0二研究所) 潜水器下潜上浮速度的调节装置
CN106871779A (zh) * 2017-02-27 2017-06-20 中国科学院自动化研究所 微型水下鳍面攻角传感器
CN113126633A (zh) * 2019-12-30 2021-07-16 中国科学院沈阳自动化研究所 一种轻型长航程auv的零攻角定深航行控制方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2600038C1 (ru) * 2015-05-12 2016-10-20 Федеральное государственное казенное военное образовательное учреждение высшего профессионального образования "Военный учебно-научный центр Военно-Морского Флота "Военно-морская академия имени Адмирала Флота Советского Союза Н.Г. Кузнецова" Способ дистанционного минирования
CN106394838A (zh) * 2016-10-14 2017-02-15 中国船舶科学研究中心(中国船舶重工集团公司第七0二研究所) 潜水器下潜上浮速度的调节装置
CN106871779A (zh) * 2017-02-27 2017-06-20 中国科学院自动化研究所 微型水下鳍面攻角传感器
CN106871779B (zh) * 2017-02-27 2019-10-15 中国科学院自动化研究所 微型水下鳍面攻角传感器
CN113126633A (zh) * 2019-12-30 2021-07-16 中国科学院沈阳自动化研究所 一种轻型长航程auv的零攻角定深航行控制方法
CN113126633B (zh) * 2019-12-30 2022-05-06 中国科学院沈阳自动化研究所 一种轻型长航程auv的零攻角定深航行控制方法

Similar Documents

Publication Publication Date Title
RU2490164C1 (ru) Подводный планер (варианты)
Yang et al. Dynamic modeling and motion control strategy for deep-sea hybrid-driven underwater gliders considering hull deformation and seawater density variation
CN111301079B (zh) 一种跨介质海空两栖无人机
RU122970U1 (ru) Подводный планер (варианты)
Huang et al. Hydrodynamic analysis and motion simulation of fin and propeller driven manta ray robot
Kadiyam et al. Conceptual design of a hybrid propulsion underwater robotic vehicle with different propulsion systems for ocean observations
CN108357656B (zh) 油囊与推进器混合控制rov水下悬停及定深控制装置
CN107544258B (zh) 自主型水下航行器自适应反演控制方法
JP2008543647A (ja) 多重環境機関
CN103818526A (zh) 一种带推进器的水面平台
US9022738B1 (en) Marine propulsion-and-control system implementing articulated variable-pitch propellers
JP2013123988A (ja) 水中推進体
Geder et al. Maneuvering performance of a four-fin bio-inspired UUV
Xia et al. Maneuverability analysis of thrust vectoring ducted propeller with deflector
Du et al. Numerical simulations for predicting wave force effects on dynamic and motion characteristics of blended winged-body underwater glider
Joo A controller comprising tail wing control of a hybrid autonomous underwater vehicle for use as an underwater glider
RU124245U1 (ru) Подводный планер (варианты)
JP2020050315A (ja) 羽ばたき動作機構及び羽ばたき動作機構の使用方法、並びに、羽ばたき動作機構を用いた推進装置
Steenson et al. Control of an AUV from thruster actuated hover to control surface actuated flight
Isa et al. Dynamic modeling and characteristics estimation for USM underwater glider
Zou et al. Design and implementation of a gliding cross-domain vehicle
Wang et al. Analysis of the hydrodynamic performance of a water-air amphibious trans-medium hexacopter
Liu et al. Influence of the camber trailing-edge wings on the motion performance of underwater gliders
MC et al. Numerical study on hydrodynamic performance of shallow underwater glider platform
CN109080801A (zh) 一种基于串列翼驱动的混合动力型水下滑翔机

Legal Events

Date Code Title Description
MG1K Anticipatory lapse of a utility model patent in case of granting an identical utility model

Ref document number: 2012118812

Country of ref document: RU

Effective date: 20130820