RU107829U1 - Модульный электроприводной компрессорный агрегат - Google Patents

Модульный электроприводной компрессорный агрегат Download PDF

Info

Publication number
RU107829U1
RU107829U1 RU2011124617/28U RU2011124617U RU107829U1 RU 107829 U1 RU107829 U1 RU 107829U1 RU 2011124617/28 U RU2011124617/28 U RU 2011124617/28U RU 2011124617 U RU2011124617 U RU 2011124617U RU 107829 U1 RU107829 U1 RU 107829U1
Authority
RU
Russia
Prior art keywords
rotor
electric motor
unit
stator
sections
Prior art date
Application number
RU2011124617/28U
Other languages
English (en)
Inventor
Александр Васильевич Андрианов
Альберт Мингаязович Ахметзянов
Яхия Зиннатович Гузельбаев
Геннадий Павлович Страхов
Ибрагим Габдулхакович Хисамеев
Original Assignee
Закрытое акционерное общество "Научно-исследовательский и конструкторский институт центробежных и роторных компрессоров им. В.Б. Шнеппа"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Закрытое акционерное общество "Научно-исследовательский и конструкторский институт центробежных и роторных компрессоров им. В.Б. Шнеппа" filed Critical Закрытое акционерное общество "Научно-исследовательский и конструкторский институт центробежных и роторных компрессоров им. В.Б. Шнеппа"
Priority to RU2011124617/28U priority Critical patent/RU107829U1/ru
Application granted granted Critical
Publication of RU107829U1 publication Critical patent/RU107829U1/ru

Links

Abstract

1. Модульный электроприводной компрессорный агрегат, содержащий корпус, в котором установлены статор электродвигателя с многофазной обмоткой, неподвижные элементы проточных частей центробежных ступеней сжатия компрессора, крышки корпуса, в которых установлены статорные элементы подшипниковых опор системы магнитного подвеса ротора агрегата, и ротор агрегата, на валу которого установлены роторные элементы подшипниковых опор и роторные узлы центробежного компрессора и электродвигателя, отличающийся тем, что магнитопровод статора электродвигателя выполнен в виде секций, число которых соответствует числу ступеней сжатия компрессора, и между которыми установлены немагнитопроводящие неэлектропроводящие разделяющие цилиндры, причем обмотка статора является общей для всех секций и уложена в пазах секций магнитопровода и разделяющих цилиндров, каждый объединенный роторный узел центробежного компрессора и электродвигателя включает рабочее колесо центробежного компрессора, снаружи входной части которого расположена секция ротора электродвигателя, а для обеспечения магнитной связи секций статора и ротора электродвигателя агрегат снабжен расположенными между ними неподвижными цилиндрами, выполненными из неэлектропроводящего материала со встроенными магнитопроводами в виде тонких пакетов радиально ориентированных пластин электротехнической стали. ! 2. Агрегат по п.1, отличающийся тем, что внутри входной части рабочего колеса образованы направляющие каналы для подачи газа на вход рабочего колеса. ! 3. Агрегат по п.1, отличающийся тем, что секция ротора электродвигателя выполнена по типу ротора асинх

Description

Полезная модель относится к компрессорной технике и может быть использована в качестве агрегата для сжатия различных газов во многих отраслях промышленности, например, в качестве газоперекачивающего агрегата на линейных компрессорных станциях.
Известны компрессорные агрегаты, выполненные в виде многокорпусных конструкций (компрессорных корпусов сжатия, электродвигателей, мультипликаторов), объединенных с помощью различного типа трансмиссий в единый компрессорный агрегат (см, например, Шнепп В.Б. Конструкция и расчет центробежных компрессорных машин. - М.; Машиностроение. 1995 г.).
Недостатками известных агрегатов являются:
- большая металлоемкость агрегатов;
- необходимость применения вращающихся уплотнений;
- необходимость обеспечения точности центровки осей отдельных корпусов компрессора, электродвигателя, элементов трансмиссий и мультипликаторов;
- необходимость применения в агрегате мер взрывозащиты при компримировании взрывоопасных газов из-за неизбежных утечек газа через вращающиеся уплотнения;
- большая установочная площадь для размещения составных частей агрегата.
Известны конструкции компрессорных агрегатов, в которых электродвигатель и компрессорные ступени сжатия объединены в единую конструкцию, причем рабочие колеса центробежных ступеней сжатия устанавливаются консольно на концы ротора электродвигателя с одной или с двух сторон. Такая компоновка компрессорного агрегата получила название MOPICO (Motor Pipeline Compressor). В таких компрессорных агрегатах все вращающиеся элементы находятся в одном герметизированном корпусе, расположенном в среде технологического газа. (см., например, М.Брюне, И.Детомб. Применение активных магнитных подшипников в турбокомпрессорах и турбодетандерах газовой промышленности. Компрессорная техника и пневматика. №7, 2001 г.). Недостатками таких агрегатов являются:
- возможность установки максимум двух ступеней сжатия центробежного компрессора;
- работа обмоток электродвигателя в среде технологического газа, который может быть агрессивным и с высоким давлением.
Также известен центробежный компрессорный агрегат, имеющий двигатель, компрессор, содержащий ведомый вал с установленной на нем системой колес с лопатками, при этом система, образованная двигателем и компрессором, размещается в корпусе, который образован соединением его отдельных частей (см Патент RU 2333398, опубликован 10.09.2008).
Недостатками данного агрегата являются:
- наличие больших габаритов;
- большая металлоемкость агрегата;
- большая установочная площадь для размещения составных частей агрегата.
Технической задачей полезной модели является создание технологичной при изготовлении и сборке модульной конструкции компрессорного агрегата, совмещающей в едином корпусе элементы многоступенчатого центробежного компрессора и электродвигателя с возможностью разделения полостей компрессора и электрической обмотки статора электродвигателя.
Техническим результатом полезной модели является уменьшение массогабаритных характеристик, снижение металлоемкости агрегата, повышение эксплуатационной надежности компрессорного агрегата, снижение эксплуатационных затрат, снижение объемов работ при техобслуживании и ремонте, уменьшение числа контролируемых параметров.
Технический результат полезной модели достигается благодаря тому, что модульный электроприводной компрессорный агрегат содержит корпус, в котором установлены статор электродвигателя с многофазной обмоткой, неподвижные элементы проточных частей центробежных ступеней сжатия компрессора, крышки корпуса, в которых установлены статорные элементы подшипниковых опор системы магнитного подвеса ротора агрегата, и ротор агрегата, на валу которого установлены роторные элементы подшипниковых опор и роторные узлы центробежного компрессора и электродвигателя, при этом магнитопровод статора электродвигателя выполнен в виде секций, число которых соответствует числу степеней сжатия компрессора, и между которыми установлены немагнитопроводящие неэлектропроводящие разделяющие цилиндры, причем обмотка статора является общей для всех секций и уложена в пазах секций магнитопровода и разделяющих цилиндров, каждый объединенный роторный узел центробежного компрессора и электродвигателя включает рабочее колесо центробежного компрессора, снаружи входной части которого расположена секция ротора электродвигателя, а для обеспечения магнитной связи секций статора и ротора электродвигателя агрегат снабжен расположенными между ними неподвижными цилиндрами, выполненными из неэлектропроводящего материала со встроенными магнитопроводами в виде тонких пакетов радиально ориентированных пластин электротехнической стали.
Кроме того, внутри входной части рабочего колеса образованы направляющие каналы для подачи газа на вход рабочего колеса.
Кроме того, секция ротора электродвигателя выполнена по типу ротора асинхронного электродвигателя.
Полезная иодель поясняется чертежом, на фиг.1 которого представлена конструкция модульного компрессорного агрегата с тремя ступенями сжатия; на фиг.2 показано сечение агрегата А-А в плоскости секции электродвигателя.
Модульный электроприводной компрессорный агрегат содержит цилиндрический корпус 1, внутри которого установлен статор электродвигателя, состоящий из секций магнитопровода 2, число которых соответствует числу степеней сжатия компрессора, и установленных между ними разделяющих немагнитопроводящих неэлектропроводящих цилиндров 3, при этом статор также имеет общую многофазную обмотку 4, которая уложена в пазах (не показаны) секций магнитопровода 2 и разделяющих цилиндров 3. Для обеспечения магнитной связи секций статора и ротора 10 электродвигателя агрегат снабжен неподвижными магнитопроводящими цилиндрами 5, которые расположены коаксиально магнитопроводам 2 между секциями статора и ротора 10. Каждый магнитопроводящий цилиндр 5 выполнен из неферромагнитного неэлектропроводящего материала, в который встроены магнитопроводы в виде тонких пакетов пластин 18 электротехнической стали, радиально ориентированные в направлении результирующего магнитного поля статора, причем плоскость пакетов пластин 18 перпендикулярна направлению движения вращающегося магнитного поля, создаваемого многофазной обмоткой 4 статора электродвигателя. Между магнитопроводящими цилиндрами 5 установлены в виде секций неподвижные элементы 6 проточных частей центробежных ступеней сжатия компрессора (диффузор, обратный направляющий аппарат, кольцевая камера). На торцах корпуса 1 закреплены крышки 7, в которых установлены статорные элементы 8 и 9 соответственно радиальных и осевой электромагнитных опор системы активного магнитного подвеса (САМП) ротора 10, а также вспомогательные (страховочные) шарикоподшипники 11. На валу 16 ротора 10 установлены в виде секций объединенные роторные узлы центробежного компрессора и электродвигателя, а также роторные элементы 12 и 13 соответственно радиальных и осевой электромагнитных опор САМП. Объединенные роторные узлы центробежного компрессора и электродвигателя включают входную часть 14 рабочего колеса 15 центробежного компрессора (ЦК), снаружи которой расположена секция ротора 10 электродвигателя, например, по типу ротора асинхронного электродвигателя, и само рабочее колесо 15 ЦК (фиг.1). Входная часть 14 рабочего колеса 15 с внутренней стороны выполнена с направляющими каналами 17 (фиг.2), по которым газ поступает на вход рабочего колеса 15 ЦК.
Работу агрегата рассмотрим на примере исполнения секций электродвигателя по типу асинхронного с обмоткой ротора в виде беличьей клетки. Первым этапом включения в работу агрегата является включение САМП, представляющей собой пятиканальную систему автоматической стабилизации ротора 10 относительно оси корпуса 1 агрегата. При включении САМП активизируются радиальные опоры 8, 12 и осевая опора 9, 13, в результате действия которых вал 16 ротора 10 стабилизируется относительно оси корпуса 1 агрегата без механического контакта с неподвижными элементами агрегата. На втором этапе включения в работу многофазная обмотка 4 статора электродвигателя запитывается от частотного преобразователя или от многофазной, например, трехфазной, сети переменного тока. В секциях магнитопровода 2 статора образуется вращающееся магнитное поле возбуждения, которое в каждый момент времени замыкается через тонкие пластины 18 электротехнической стали магнитопроводящего цилиндра 5 и магнитопровод ротора 10. Так как магнитное поле статора вращается, то в зазоре между ротором 10 и магнитопроводящим цилиндром 5 образуется также вращающееся магнитное поле, которое индуцирует в стержнях обмотки ротора 10 электродвижущие силы (ЭДС), вызывающие протекание в стержнях обмотки электрических токов, которые, взаимодействуя с вращающимся магнитным полем, образуют вращающий момент, приводящий в движение ротор 10. Компримируемый газ поступает со стороны всасывания, проходит через секции центробежных компрессорных ступеней сжатия и поступает на сторону нагнетания (направление протекания газа на фиг.1 показано стрелками слева направо).
Для уменьшения магнитных потерь в статоре электродвигателя предусмотрены разделяющие цилиндры 3, выполненные из немагнитопроводящего неэлектропроводящего материала. С целью экономии обмоточных материалов за счет сокращения лобовых частей многофазная обмотка 4 статора выполнена общей для всех секций электродвигателя. В приведенной конструкции агрегата предусмотрено разделение с помощью уплотняющих прокладок полости, в которой располагаются обмотки электродвигателя, с рабочей полостью компрессора. Эта особенность важна для мощных агрегатов, в которых используются высоковольтные обмотки и требуется организация системы охлаждения статора электродвигателя.
В конструкции агрегата может быть применен электродвигатель другого типа, например, синхронный двигатель или бесколлекторный двигатель постоянного тока, при этом конструкция агрегата принципиально не изменяется, а отличаться варианты будут только аппаратурой управления электродвигателем.
Таким образом, благодаря выполнению статора электродвигателя в виде секций, соответствующих числу ступеней сжатия компрессора, разделенных неферромагнитными неэлектропроводящими цилиндрами 3, с общей многофазной обмоткой 4, исполнению рабочих колес 15 вала 16 ротора 10 с выходной частью, внутри которой образованы направляющие каналы 18 для подачи газа на вход центробежного колеса, а на внешней части расположена секция ротора 10 электродвигателя, причем магнитная связь секций статора и ротора 10 электродвигателя осуществляется за счет введения неподвижных магнитопроводящих цилиндров 5, выполненных из неферромагнитного неэлектропроводящего материала со встроенными магнитопроводами в виде тонких пакетов пластин 18 электротехнической стали, получена возможность создания в едином корпусе 1 многоступенчатых компрессорных агрегатов, достаточно технологичных при изготовлении и сборке, позволяющих обеспечить герметичность рабочей полости компрессорной части агрегата и полости, в которой располагаются обмотки электродвигателя.

Claims (3)

1. Модульный электроприводной компрессорный агрегат, содержащий корпус, в котором установлены статор электродвигателя с многофазной обмоткой, неподвижные элементы проточных частей центробежных ступеней сжатия компрессора, крышки корпуса, в которых установлены статорные элементы подшипниковых опор системы магнитного подвеса ротора агрегата, и ротор агрегата, на валу которого установлены роторные элементы подшипниковых опор и роторные узлы центробежного компрессора и электродвигателя, отличающийся тем, что магнитопровод статора электродвигателя выполнен в виде секций, число которых соответствует числу ступеней сжатия компрессора, и между которыми установлены немагнитопроводящие неэлектропроводящие разделяющие цилиндры, причем обмотка статора является общей для всех секций и уложена в пазах секций магнитопровода и разделяющих цилиндров, каждый объединенный роторный узел центробежного компрессора и электродвигателя включает рабочее колесо центробежного компрессора, снаружи входной части которого расположена секция ротора электродвигателя, а для обеспечения магнитной связи секций статора и ротора электродвигателя агрегат снабжен расположенными между ними неподвижными цилиндрами, выполненными из неэлектропроводящего материала со встроенными магнитопроводами в виде тонких пакетов радиально ориентированных пластин электротехнической стали.
2. Агрегат по п.1, отличающийся тем, что внутри входной части рабочего колеса образованы направляющие каналы для подачи газа на вход рабочего колеса.
3. Агрегат по п.1, отличающийся тем, что секция ротора электродвигателя выполнена по типу ротора асинхронного электродвигателя.
Figure 00000001
RU2011124617/28U 2011-06-17 2011-06-17 Модульный электроприводной компрессорный агрегат RU107829U1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2011124617/28U RU107829U1 (ru) 2011-06-17 2011-06-17 Модульный электроприводной компрессорный агрегат

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2011124617/28U RU107829U1 (ru) 2011-06-17 2011-06-17 Модульный электроприводной компрессорный агрегат

Publications (1)

Publication Number Publication Date
RU107829U1 true RU107829U1 (ru) 2011-08-27

Family

ID=44757107

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2011124617/28U RU107829U1 (ru) 2011-06-17 2011-06-17 Модульный электроприводной компрессорный агрегат

Country Status (1)

Country Link
RU (1) RU107829U1 (ru)

Similar Documents

Publication Publication Date Title
US6761542B2 (en) Multishaft electric motor and positive-displacement pump combined with such multishaft electric motor
US7573165B2 (en) Compressor and driving motor assembly
AU2007202510B2 (en) Methods and apparatus for using an electrical machine to transport fluids through a pipeline
US7772736B2 (en) Permanent magnet synchronous motor, rotor of the same, and compressor using the same
EP2879278A1 (en) Versatile cooling housing for an electrical motor
CN204465284U (zh) 一种隔爆型三相异步电动机
JP2007181305A (ja) 永久磁石式同期電動機及びこれを用いた圧縮機
RU2461738C1 (ru) Модульный электроприводной компрессорный агрегат
RU2150609C1 (ru) Центробежный компрессорный агрегат и электродвигатель
RU107829U1 (ru) Модульный электроприводной компрессорный агрегат
JPH1162877A (ja) モータ内蔵型ターボ機械
CN114142656A (zh) 一种高压隔爆型低速永磁直驱电动机
RU2813017C1 (ru) Буровой насосный агрегат
US20220049709A1 (en) Lubrication-free centrifugal compressor
RU2736232C1 (ru) Блок из двигателя и генератора для гибридной силовой установки самолета
CN215817867U (zh) 一种三相自启动永磁同步电机
CN217270897U (zh) 一种机电一体驱动内涵道多级轴流压缩腔转子式设备
KR102124389B1 (ko) 전기 기계 - 유체 기계 스탄체프 집합 세트
CN216356246U (zh) 一种高压隔爆型低速永磁直驱电动机
Wang et al. Flameproof permanent magnet inverter motor design based on Maxwell
JP2017108585A (ja) 電動過給圧縮機
UA99215C2 (ru) Центробежный асинхронный насос
RU36468U1 (ru) Многоступенчатый центробежный насос с магнитной осевой разгрузкой вала
RU106686U1 (ru) Центробежный компрессорный агрегат

Legal Events

Date Code Title Description
MM1K Utility model has become invalid (non-payment of fees)

Effective date: 20120618