RO138006A2 - Polymeric support - medicament/essential oil for dressings to be used in treatment of bedsore wounds - Google Patents

Polymeric support - medicament/essential oil for dressings to be used in treatment of bedsore wounds Download PDF

Info

Publication number
RO138006A2
RO138006A2 ROA202200580A RO202200580A RO138006A2 RO 138006 A2 RO138006 A2 RO 138006A2 RO A202200580 A ROA202200580 A RO A202200580A RO 202200580 A RO202200580 A RO 202200580A RO 138006 A2 RO138006 A2 RO 138006A2
Authority
RO
Romania
Prior art keywords
dressings
essential oil
polymeric support
treatment
polymeric
Prior art date
Application number
ROA202200580A
Other languages
Romanian (ro)
Inventor
Aurora Antoniac
Elena Grosu
Vasile Iulian Antoniac
Daniela Gheorghita
Lia Mara Ditu
Violeta- Elena Jilcu
Robert Ciocoiu
Anca- Daniela Raiciu
Original Assignee
Universitatea Politehnica Din Bucureşti
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universitatea Politehnica Din Bucureşti filed Critical Universitatea Politehnica Din Bucureşti
Priority to ROA202200580A priority Critical patent/RO138006A2/en
Publication of RO138006A2 publication Critical patent/RO138006A2/en

Links

Landscapes

  • Medicinal Preparation (AREA)
  • Materials For Medical Uses (AREA)

Abstract

The invention relates to a polymeric support - medicament / essential oil to be used in dressings for treatment of bedsore wounds and to a process for preparing the same. According to the invention, the polymeric support comprises the following components, expressed as weight percentage: 40...80% poloxamer F127 or 20...75% polyvinyl alcohol (PVA) or 35...65% polyvinyl pyrrolidone or 30...70% alginate or 28...49% chitosan, in admixture with 2...10% caboxymethyl cellulose (CMC), chitin, hyaluronic acid, starch, gelatin, polylactic acid, polycaprolactone, plasticizer as glycerol or polyethylene glycol or citrate, vitamin A and E, stabilizers, such as zinc stearate, calcium stearate, emulsifiers, such as Tween 80, acacia gum, cross-linking agent, such as glutaraldehyde, Ag nanoparticles as active substances, antibiotic (tetracycline, gentamicin) and essential oils. The preparation process, as claimed by the invention, consists in preparing an antimicrobial polymeric formulation by introducing the essential oil or the tetracycline as the active pharmaceutical substance, either by physical mixing in the polymeric support, or by encapsulating the essential oil in micro capsules using the emulsion method and charging the micro capsules in the polymeric support.

Description

SUPORT POLIMERIC-MEDICAMENT/ULEI ESENȚIAL PENTRU PANSAMENTE UTILIZATE IN TRATAMENTUL PLĂGILOR DE TIP ESCAREPOLYMERIC SUPPORT-MEDICINE/ESSENTIAL OIL FOR DRESSINGS USED IN THE TREATMENT OF SCARA-TYPE WOUNDS

DESCRIEREDESCRIPTION

Prezenta invenție se refera la componentele suportului polimeric care poate fi incarcat cu medicamente sau uleiuri esențiale in scopul realizării unui dispozitiv medical tip pansament cu proprietăți de inhibare sau reducere a dezvoltării culturilor bacteriene, in timpul utilizării in contact cu zonele corpului uman afectate de leziuni deschise tip escare.The present invention refers to the components of the polymeric support that can be loaded with drugs or essential oils in order to create a dressing-type medical device with properties to inhibit or reduce the development of bacterial cultures, during use in contact with areas of the human body affected by open injuries such as bedsores.

In prezent, din cauza stresului si a alimentației inadecvate, sanatatea unui număr considerabil de oameni este grav afectata de bolile cardiovasculare si diabet, care in stadii avansate pot duce la complicatii de necontrolat. Apariția escarelor in cazul accidentului vascular cerebral sau ulcerelor de presiune datorate diabetului, la nivel mondial constituie a treia cea mai scumpa boala. Pacientii se confrunta cu o activitate fizica redusa, capacitatea redusa de a se hrăni, incontinenta urinara si fecala, precum si scăderea stării de conștienta. Nu in ultimul rând, escarele si ulcerele de presiune duc la dureri aproape insuportabile, mai ales la pacientii imobilizati. Ulcerele de presiune sau escarele sunt leziuni ale pielii care pot fi clasificate in tipurile 1, 2, 3, 4, in funcție de adancimea leziunii tisulare. Tipul 1 reprezintă stadiul cel mai puțin sever, iar tipul 4 reprezintă distrugerea completa a țesutului. Se estimează ca anual mortalitatea datorata complicațiilor acestor boli a crescut de 2-6 ori mai mult decât din cauza altor boli. Din aceste motive este important sa se gestioneze escarele si ulcerele de presiune, pentru a estima durata închiderii plăgii, deoarece multe răni nu se închid in timpul spitalizării. Prin urmare, controlând zona afectata a pielii, se pot obține informatii obiective si reproductibile, care pot oferi prognosticul de vindecare.Currently, due to stress and inadequate nutrition, the health of a considerable number of people is seriously affected by cardiovascular diseases and diabetes, which in advanced stages can lead to uncontrollable complications. The appearance of bedsores in the case of stroke or pressure ulcers due to diabetes is the third most expensive disease worldwide. Patients face reduced physical activity, reduced ability to feed, urinary and fecal incontinence, as well as decreased consciousness. Last but not least, bedsores and pressure ulcers lead to almost unbearable pain, especially in immobilized patients. Pressure ulcers or bedsores are skin injuries that can be classified into types 1, 2, 3, 4, depending on the depth of the tissue injury. Type 1 represents the least severe stage, and type 4 represents complete tissue destruction. It is estimated that annually the mortality due to the complications of these diseases increased 2-6 times more than due to other diseases. For these reasons it is important to manage bedsores and pressure ulcers in order to estimate the duration of wound closure, as many wounds do not close during hospitalization. Therefore, by controlling the affected area of the skin, objective and reproducible information can be obtained, which can provide the prognosis of healing.

Ulcerele de presiune reprezintă o problema de siguranța a pacientilor recunoscuta la nivel internațional, care se estimează ca afecteaza 2,5 milioane de oameni anual.Pressure ulcers are an internationally recognized patient safety problem, estimated to affect 2.5 million people annually.

Dezvoltarea ulcerelor de presiune la orice pacient este o complicație grava care are ca rezultat durere, scăderea calitatii vieții si cheltuieli semnificative atat de timp, cat si de bani pentru industria sanatatii. Cunoscute si sub denumirea de leziune de presiune, ulcere de decubit sau escare sunt o leziune localizata a pielii, țesutului subiacent sau ambelor, care apar de obicei peste o proeminenta osoasa, ca rezultat al presiunii sau presiunii in combinație cu efort de forfecare. Factorii de risc intrinseci pentru dezvoltarea ulcerelor de presiune includ înaintarea in varsta, alimentația deficitara, perfuzia si oxigenarea deficitara, in timp ce factorii de risc extrinseci includ umiditatea crescută, forfecarea si frecarea. Leziuni tisulare ireversibile pot aparea la un pacient vulnerabil cu o presiune neîntrerupta de pana la 30 de minute. In plus, contactul excesiv al pielii cu fluidele ii afecteaza funcția de bariera, provoacă macerarea si un risc crescut de apariție a ulcerelor de presiune.The development of pressure ulcers in any patient is a serious complication that results in pain, decreased quality of life, and significant costs of both time and money to the healthcare industry. Also known as a pressure ulcer, pressure ulcers or bedsores are a localized lesion of the skin, underlying tissue, or both, usually occurring over a bony prominence as a result of pressure or pressure in combination with shear stress. Intrinsic risk factors for the development of pressure ulcers include aging, poor nutrition, poor perfusion and oxygenation, while extrinsic risk factors include increased humidity, shear and friction. Irreversible tissue damage can occur in a vulnerable patient with continuous pressure for up to 30 minutes. In addition, excessive contact of the skin with fluids affects its barrier function, causes maceration and an increased risk of pressure ulcers.

Rata globala de prevalenta a ulcerelor de presiune variaza de la 8 % la 30 %, in funcție de factorii pacientului si de setarea tratamentului. Exista o serie de sisteme de descriere a cantitatii de leziuni tisulare, dar ulcerele de presiune sunt in general clasificate 1, 2, 3 si 4, in funcție de profunzimea leziunii tisulare, categoria/etapa 1 fiind cea mai puțin severa, iar categoria/etapa 4 indicând distrugerea completa a țesutului, asa cum este ilustrat in Tabelul 1. Majoritatea ulcerelor de presiune apar la nivelul sacrului sau călcâiului, dar ele apar frecvent si peste cot, sold, ischion, umăr, proces spinos, glezna, deget de la picior, cap sau fata.The overall prevalence rate of pressure ulcers varies from 8% to 30%, depending on patient factors and treatment setting. There are a number of systems for describing the amount of tissue damage, but pressure ulcers are generally classified as 1, 2, 3 and 4, depending on the depth of the tissue damage, with category/stage 1 being the least severe and category/stage 4 indicating complete tissue destruction, as illustrated in Table 1. Most pressure ulcers occur on the sacrum or heel, but they also frequently occur over the elbow, hip, ischium, shoulder, spinous process, ankle, toe, head or face.

Tabel 1. Sistemul de clasificare: National Pressure Ulcer Advisory Panel (NPUAP)ZEuropean Pressure Ulcer Advisory Panel (EPUAP) (2009)Table 1. Classification system: National Pressure Ulcer Advisory Panel (NPUAP)ZEuropean Pressure Ulcer Advisory Panel (EPUAP) (2009)

Stadiul escarei Stage of eschar Definiție Definition Stadiul 1 Stage 1 In acest stadiu, pielea este intacta, dar de culoare roșie, culoare care nu se estompează atunci când este îndepărtata presiunea. Zona afectata poate fi dureroasa si poate prezenta schimbări de duritate (mai ferma sau mai moale) sau temperatura (mai calda sau mai rece) in comparație cu zona înconjurătoare. At this stage, the skin is intact, but red in color, a color that does not fade when the pressure is removed. The affected area may be painful and may show changes in hardness (firmer or softer) or temperature (warmer or colder) compared to the surrounding area. Stadiul 2 Stage 2 In acest stadiu, stratul de suprafața al pielii este deteriorat, formandu-se o rana, superficiala. Aceste escare sunt adesea roșii sau roz. In acest stadiu, escara se poate prezenta si sub forma unei vezicule, intacte sau sparte, cu sau fara secretii, fara tesut mort. At this stage, the surface layer of the skin is damaged, forming a superficial wound. These bedsores are often red or pink. At this stage, the eschar can also appear in the form of a blister, intact or broken, with or without secretions, without dead tissue. Stadiul 3 Stage 3 In acest stadiu, rana este mai adanca, afecteaza dermul (cel de-al doilea strat al pielii) ajungând pana la tesutul adipos subcutanat. In acest stadiu poate aparea necroza (tesut mort de culoare neagra sau sub forma de crusta) si se pot forma si extensii subcutanate profunde ale rănii (denumite si buzunare). At this stage, the wound is deeper, it affects the dermis (the second layer of the skin) reaching the subcutaneous adipose tissue. In this stage, necrosis (black dead tissue or in the form of a crust) can appear and deep subcutaneous extensions of the wound (also called pockets) can form. Stadiul 4 Stage 4 In stadiul IV al escarei, rana se extinde pana la nivelul mușchilor sau chiar pana la os, acesta fiind vizibil sau palpabil direct. De regula, rana are secreție, este infectata si prezintă tesut necrozat (tesut mort, sub aspectul unei coji negre) din abundenta. Buzunarele interioare ale rănii sunt frecvent prezente in acest stadiu si exista o mare posibilitate de infecție cu risc de transmitere generala (sepsis). In stage IV of the eschar, the wound extends to the level of the muscles or even to the bone, which is visible or palpable directly. As a rule, the wound has a discharge, is infected and has an abundance of necrotic tissue (dead tissue, under the appearance of a black crust). Internal pockets of the wound are frequently present at this stage and there is a high possibility of infection with risk of general transmission (sepsis).

In prezent se cunosc numeroase exemple de pansamente utilizate pentru tratarea leziunilor cutanate, care vin in contact cu corpul uman pentru o perioada scurta de timp.Currently, there are numerous examples of dressings used to treat skin lesions, which come into contact with the human body for a short period of time.

Pe plan mondial sunt promovate si se comercializează numeroase si diverse pansamente pentru tratarea de ulcere de presiune. Dintre acestea, descriem mai jos tipurile importante de pansamente si proprietățile lor.Numerous and various dressings for the treatment of pressure ulcers are promoted and sold worldwide. Among these, we describe below the important types of dressings and their properties.

Pansamentele absorbante sunt aplicate direct pe rana si pot fi utilizate ca straturi absorbante secundare in gestionarea de răni puternic exudate. Exemplele includ Primapore (Smith & Nephew), Mepore (Molnlycke) si tifon absorbant de bumbac (BP 1988).Absorbent dressings are applied directly to the wound and can be used as secondary absorbent layers in the management of heavily exuding wounds. Examples include Primapore (Smith & Nephew), Mepore (Molnlycke) and absorbent cotton gauze (BP 1988).

Pansamentele cu alginat sunt tesaturi/fire foarte absorbante care se prezintă sub forma de alginat de calciu sau alginat de calciu si sodiu si pot fi combinate cu colagen. Alginatul formează un gel la contactul cu suprafața plăgii; acesta poate fi îndepărtat odata cu pansamentul sau clătit cu soluție salina sterila. Depunerea alginatului pe un tampon de viscoza secundar creste absorbția. Exemplele includ: Curasorb (Covidien), SeaSorb (Coloplast) si Sorbsan (Unomedical).Alginate dressings are highly absorbent fabrics/threads that are presented in the form of calcium alginate or calcium and sodium alginate and can be combined with collagen. Alginate forms a gel upon contact with the wound surface; it can be removed with the dressing or rinsed with sterile saline. Alginate deposition on a secondary viscose pad increases absorption. Examples include: Curasorb (Covidien), SeaSorb (Coloplast) and Sorbsan (Unomedical).

Pansamentele cu acțiune capilara constau dintr-un miez absorbant de fibre hidrofile tinute intre doua straturi de contact cu aderenta scăzută. Exemplele includ: Advadraw (Advancis) si Vacutex (Protex).Capillary action dressings consist of an absorbent core of hydrophilic fibers held between two contact layers with low adhesion. Examples include: Advadraw (Advancis) and Vacutex (Protex).

Filmele, de exemplu filmul permeabil si pansamentele cu membrana sunt permeabile la vapori de apa si oxigen, dar nu la apa sau microorganisme. Exemplele includ Tegaderm (3M) si OpSite (Smith &Nephew).Films, for example permeable film and membrane dressings, are permeable to water vapor and oxygen, but not to water or microorganisms. Examples include Tegaderm (3M) and OpSite (Smith & Nephew).

Pansamentele din spuma conțin spuma poliuretanica hidrofila si sunt concepute pentru a absorbi exudatul rănilor si a menține o rana umeda la suprafața. Exista o varietate de versiuni si unele includ materiale absorbante suplimentare, cum ar fi fibrele de viscoza si acrilat, sau particule de poliacrilat superabsorbant, care sunt acoperite cu silicon pentru îndepărtarea netraumatica. Exemplele includ: Allevyn (Smith &Nephew), Biatain (Coloplast), Tegaderm (3M), Askina Dressil Border (Braun).Foam dressings contain hydrophilic polyurethane foam and are designed to absorb wound exudate and maintain a moist wound surface. There are a variety of versions and some include additional absorbent materials, such as viscose and acrylate fibers, or superabsorbent polyacrylate particles, which are coated with silicone for non-traumatic removal. Examples include: Allevyn (Smith & Nephew), Biatain (Coloplast), Tegaderm (3M), Askina Dressil Border (Braun).

Pansamentele impregnate cu miere conțin miere de uz medical care are proprietăți antimicrobiene si antiinflamatoare si pot fi utilizate pentru răni acute sau cronice. Exemplele includ: Medihoney (Medihoney) si Activon Tulle (Advancis).Honey-impregnated dressings contain medicinal honey that has antimicrobial and anti-inflammatory properties and can be used for acute or chronic wounds. Examples include: Medihoney (Medihoney) and Activon Tulle (Advancis).

Pansamentele hidrocoloidale sunt de obicei compuse dintr-un absorbant, matrice hidrocoloidala, pe o pelicula sau spuma permeabila la vapori suport. Exemplele includ: Granuflex (ConvaTec) si NU DERM (Systagenix). Alternative fibroase care seamana cu alginatii si sunt neocluzive au mai fost dezvoltate: Aquacel (ConvaTec).Hydrocolloidal dressings are usually composed of an absorbent, hydrocolloidal matrix, on a vapor permeable film or foam support. Examples include: Granuflex (ConvaTec) and NU DERM (Systagenix). Fibrous alternatives that resemble alginates and are non-occlusive have also been developed: Aquacel (ConvaTec).

Pansamentele impregnate cu iod actioneaza ca un antiseptic pentru răni atunci când este expus la exudatele din răni. Exemplele includ lodoflex (Smith & Nephew) si lodozima (Insens).Iodine-impregnated dressings act as a wound antiseptic when exposed to wound exudates. Examples include lodoflex (Smith & Nephew) and lodozyme (Insens).

Pansamente cu aderenta scăzută, constau din tampoane de bumbac care sunt plasate direct in contact cu rănile. Acestea pot fi nemedicinale (de exemplu, pansament de tifon cu parafina, pansament salin de tifon) sau medicamentat (de exemplu, care conține povidona iod sau clorhexidina). Exemplele includ pansament de tifon cu parafina, pansament BP 1993 si Xeroform (Covidien) - un amestec de vaselina neaderent cu 3% tribromofenat de bismut pe tifon cu ochiuri fine.Dressings with low adhesion consist of cotton pads that are placed directly in contact with the wounds. These may be non-medicated (eg, paraffin gauze dressing, saline gauze dressing) or medicated (eg, containing povidone-iodine or chlorhexidine). Examples include paraffin gauze dressing, BP 1993 dressing, and Xeroform (Covidien)—a mixture of nonadherent petroleum jelly with 3% bismuth tribromophenate on fine mesh gauze.

Pansamentele care absorb mirosurile conțin cărbune si absorb mirosul rănilor. Deseori acest tip de pansament este utilizat împreuna cu un pansament secundar pentru a imbunatati absorbția. Un exemplu este CarboFLEX (ConvaTec), Askina Carbosorb.Odor-absorbing dressings contain charcoal and absorb the smell of wounds. Often this type of dressing is used together with a secondary dressing to improve absorption. An example is CarboFLEX (ConvaTec), Askina Carbosorb.

Alte pansamente antimicrobiene sunt compuse dintr-un tifon sau pansament slab aderent impregnat cu un unguent incarcat cu substanțe active antimirobiene (antibiotice, etc.) Exemplele includ: pansament de tifon cu clorhexidina (Smith & Nephew) si Cutimed Sorbact (BSN Medical).Other antimicrobial dressings consist of a gauze or loosely adherent dressing impregnated with an ointment loaded with antimicrobial actives (antibiotics, etc.). Examples include: chlorhexidine gauze dressing (Smith & Nephew) and Cutimed Sorbact (BSN Medical).

Pansamentele cu matrice care modulează proteaza modifica activitatea enzimelor proteolitice in rănile cronice. Exemplele includ: Promogran (Systagenix).Protease-modulating matrix dressings modify the activity of proteolytic enzymes in chronic wounds. Examples include: Promogran (Systagenix).

Pansamentele impregnate cu ioni de argint sunt folosite pentru a trata rănile infectate, întrucât se știe ca ionii de argint au proprietăți antimicrobiene. Se comercializează numeroase versiuni ale tipurilor de pansament cu argint (de exemplu, argint hidrocoloidal etc.). Exemple includ: Acticoat (Smith & Nephew), Urgosorb Silver (Urgo), Askina Calgitrol (Braun).Dressings impregnated with silver ions are used to treat infected wounds, as silver ions are known to have antimicrobial properties. Many versions of silver dressing types are marketed (eg, hydrocolloidal silver, etc.). Examples include: Acticoat (Smith & Nephew), Urgosorb Silver (Urgo), Askina Calgitrol (Braun).

Pansamentele polimerice moi sunt compuse dintr-un polimer siliconic moale depus pe un strat neaderent; acestea sunt absorbante moderate. Exemplele includ: Mepitel (Molnlycke) si Urgotul (Urgo); Mepilex Border Sacrum este un pansament din silicon moale, creat prin tehnologia Safetac®, alcătuit din cinci straturi, destinat prevenției si managementului plăgilor din zona sacrala; pansament HARTMANN RespoSorb din silicon 8x8cm.Soft polymer dressings are composed of a soft silicone polymer deposited on a non-adherent layer; they are moderately absorbent. Examples include: Mepitel (Molnlycke) and Urgotul (Urgo); Mepilex Border Sacrum is a soft silicone dressing, created by Safetac® technology, consisting of five layers, intended for the prevention and management of wounds in the sacral area; HARTMANN RespoSorb silicone dressing 8x8cm.

Utilizarea biopolimerilor pentru realizarea de pansamente antimicrobiene si progresele înregistrate pe piața industriei biomedicale au condus la noi provocări privind imbunatatirea continua a biocompatibilitatii si biofunctionalitatii lor. Pansamentele nu trebuie sa producă disconfortul pacientului prin modificări in tesutul cu care vin in contact, cum ar fi reacții trombogenice, alergice si toxice. De-a lungul timpului, au fost efectuate numeroase cercetări privind minimizarea acestor efecte nedorite.The use of biopolymers to make antimicrobial dressings and the progress made in the biomedical industry market have led to new challenges regarding the continuous improvement of their biocompatibility and biofunctionality. The dressings must not cause discomfort to the patient through changes in the tissue with which they come into contact, such as thrombogenic, allergic and toxic reactions. Over time, numerous researches have been carried out regarding the minimization of these unwanted effects.

Tratamentul rănilor infectate constituie o preocupare majora in asistenta medicala, întrucât aceste tipuri de afecțiuni creaza durere si suferința pacientilor in cauza. Complicațiile aparute pot fi foarte costisitoare datorita faptului ca se prelungește foarte mult șederea pacientilor in spital. Si totuși, tratamentul plăgilor deschise este limitat de numărul in creștere a tulpinilor bacteriilor rezistente la antibiotice. Ca atare prescripția de antibiotice este diminuata dar nu se renunța in totalitate la acest tip de tratament. Prin urmare, se adopta un tratament alternativ prin utilizarea pansamentelor încărcate cu principii active cu rol de stimularea creșterii țesuturilor si agenti antimicrobieni cum ar fi: uleiuri esențiale sau nanoparticule de argint.The treatment of infected wounds is a major concern in medical care, as these types of conditions create pain and suffering for the patients involved. The resulting complications can be very expensive due to the fact that the patients' stay in the hospital is greatly extended. And yet, the treatment of open wounds is limited by the growing number of antibiotic-resistant strains of bacteria. As such, the prescription of antibiotics is reduced, but this type of treatment is not completely abandoned. Therefore, an alternative treatment is adopted by using dressings loaded with active principles with the role of tissue growth stimulation and antimicrobial agents such as: essential oils or silver nanoparticles.

Astfel, brevetul relateaza despre încercările de combatere a infecțiilor din zona escarelor, prin utilizarea unor uleiuri esențiale sau substanțe active medicamentoase.Thus, the patent reports on attempts to combat infections in the area of pressure sores, by using essential oils or medicinal active substances.

Obiectivul invenției il constituie realizarea suportului polimeric pentru înglobare substanța activa tip medicament sau ulei esențial, ca parte componenta in pansamentele pentru tratamentul plăgilor de tip escare.The objective of the invention is the realization of the polymeric support for incorporating the active substance of the medicinal type or essential oil, as a component part in the dressings for the treatment of bedsore type wounds.

Cei mai răspândiți compuși atunci când se face referire la pansamentele funcționale pentru plăgi sunt agentii antimicrobieni. Acești agenti conferă proprietăți antimicrobiene pansamentelor si sunt impartiti in trei grupe: antibiotice (de exemplu: tetraciclină, gentamicina), materiale biologice naturale (de exemplu: uleiuri esențiale, miere) si nanoparticule (de exemplu: argint, aur). Biomaterialele naturale si sintetice sunt doua categorii principale de biomateriale utilizate pentru pansamentele rănilor. Cele mai frecvent întâlnite biomateriale naturale utilizate pentru pansamente sunt colagenul, acidul hialuronic, chitina, chitosanul, amidonul, gelatina si alginatul. Aceste tipuri de pansamente sunt mai bune in ceea ce privește biocompatibilitatea, activitatea antibacteriana, antioxidarea, hemostaza si promovarea vindecării. Caridade si colab. au dezvoltat membrane groase de sine statatoare realizate din pelicule multistrat de alginat si chitosan. Ei au ajuns la concluzia ca aceste membrane sunt biocompatibile si foarte stabile intr-un tampon fiziologic, oferind noi perspective pentru vindecarea rănilor si aplicațiile de inginerie tisulara. Cu toate acestea, pansamentele pe baza de polimeri sintetici pot oferi un spectru mai larg de proprietăți mecanice in comparație cu pansamentele naturale pentru răni. Acidul polilactic (PLA), policaprolactona (PCL) si polietilenglicolul (PEG) sunt exemple de polimeri sintetici care au fost studiati pe scara larga pentru aplicațiile de pansament pentru plăgi. Intr-un studiu dezvoltat de Bardania et al., noua strategie de utilizare a nanoparticulelor de argint sintetizate (AgNP) incorporate in nanofilmul PLA/PEG a aratat rezultate promițătoare. Nanoparticulele de argint biocompatibile au fost sintetizate folosind extract de Teucrium polium ca agent reducator, abordare care s-a dovedit a fi eficienta si rentabila. Nanofilmul a afișat proprietăți antimicrobiene si antioxidante promițătoare, avand un potențial puternic ca pansament pentru răni. Atât biomaterialele naturale, cat si cele sintetice au avantaje si dezavantaje si de aceea studiile de cercetare se concentrează acum pe combinarea diferitelor tipuri de polimeri pentru a imbunatati proprietățile de vindecare a rănilor, a controla biodegradarea si eliberarea medicamentelor. Amalraj si colab. a dezvoltat filme biocompozite prin incorporarea uleiului esențial de piper negru si ulei esențial de ghimbir in alcool polivinilic (PVA), guma arabica (GA) si chitosan (CS). Obținute prin metoda de turnare cu solvent, filmele biocompozite au prezentat proprietăți mecanice imbunatatite cu stabilitate la căldură imbunatatita, precum si activitate antibacteriana împotriva bacteriilor gram-pozitive si gram-negative.The most prevalent compounds when referring to functional wound dressings are antimicrobial agents. These agents give antimicrobial properties to dressings and are divided into three groups: antibiotics (for example: tetracycline, gentamicin), natural biological materials (for example: essential oils, honey) and nanoparticles (for example: silver, gold). Natural and synthetic biomaterials are two main categories of biomaterials used for wound dressings. The most common natural biomaterials used for dressings are collagen, hyaluronic acid, chitin, chitosan, starch, gelatin and alginate. These types of dressings are better in terms of biocompatibility, antibacterial activity, antioxidation, hemostasis and promotion of healing. Caridade et al. have developed thick self-standing membranes made of multilayer films of alginate and chitosan. They concluded that these membranes are biocompatible and very stable in a physiological buffer, offering new perspectives for wound healing and tissue engineering applications. However, dressings based on synthetic polymers can offer a wider spectrum of mechanical properties compared to natural wound dressings. Polylactic acid (PLA), polycaprolactone (PCL) and polyethylene glycol (PEG) are examples of synthetic polymers that have been extensively studied for wound dressing applications. In a study developed by Bardania et al., the new strategy of using synthesized silver nanoparticles (AgNP) incorporated in PLA/PEG nanofilm showed promising results. Biocompatible silver nanoparticles were synthesized using Teucrium polium extract as a reducing agent, an approach that proved to be efficient and cost-effective. The nanofilm displayed promising antimicrobial and antioxidant properties, having strong potential as a wound dressing. Both natural and synthetic biomaterials have advantages and disadvantages and therefore research studies are now focused on combining different types of polymers to improve wound healing properties, control biodegradation and drug release. Amalraj et al. developed biocomposite films by incorporating black pepper essential oil and ginger essential oil into polyvinyl alcohol (PVA), gum arabic (GA) and chitosan (CS). Obtained by the solvent casting method, the biocomposite films showed improved mechanical properties with improved heat stability, as well as antibacterial activity against gram-positive and gram-negative bacteria.

Biomaterialele pentru aplicațiile de vindecare a rănilor pot fi îmbogățite cu diferiti compuși bioactivi, uleiuri esențiale, care pot accelera procesul de regenerare. Pansamentele bioactive au capacitatea de a ceda substanțe active (antibiotice, peptide, medicamente, vitamine, /3 factori de creștere etc.) in mediul rănii pentru a imbunatati procesul de vindecare. Pansamentele interactioneaza direct cu zona plăgii, promovând procesul de regenerare. Aceste interacțiuni includ îndepărtarea exudatului excesiv, oferind un mediu umed in plăgi si prevenirea infecțiilor. Important este ca pansamentele interactive sunt favorabile pentru procesul de re-epitelizare datorita concentrației mai bune de oxigen si controlului pH-ului. Toate caracteristicile menționate ale pansamentelor optimizează procesul de regenerare a pielii.Biomaterials for wound healing applications can be enriched with various bioactive compounds, essential oils, which can accelerate the regeneration process. Bioactive dressings have the ability to release active substances (antibiotics, peptides, drugs, vitamins, /3 growth factors, etc.) into the wound environment to improve the healing process. The dressings interact directly with the wound area, promoting the regeneration process. These interactions include removing excessive exudate, providing a moist wound environment and preventing infection. Importantly, interactive dressings are favorable for the re-epithelialization process due to better oxygen concentration and pH control. All the mentioned characteristics of the dressings optimize the skin regeneration process.

Se cunosc dispozitive medicale sub forma de particule de microgel reticulabile, gonflabile cu apa, constând din proteine si biopolimeri pe baza de proteine, care sunt pseudoplastici, curg intr-un mediu apos sub forte de forfecare si acopera spatiile goale ale țesuturilor, organelor si rănilor. Particulele de microgel pot fi injectate, pulverizate, acoperite sau implantate si pot, de asemenea, sa înconjoare un tesut substitut, iar particulele de microgel se refera la particulele de microgel care se agregheaza ca un singur grup de microgel atunci când forțele de forfecare sunt îndepărtate. Particulele de microgel funcționează ca o matrice vascoelastica care susține creșterea, viabilitatea si proliferarea celulelor.Medical devices are known in the form of cross-linkable, water-swellable microgel particles, consisting of proteins and protein-based biopolymers, which are pseudoplastics, flow in an aqueous environment under shear forces and cover the empty spaces of tissues, organs and wounds . Microgel particles can be injected, sprayed, coated or implanted and can also surround a substitute tissue, and microgel particles refer to microgel particles that aggregate as a single microgel group when shear forces are removed . Microgel particles function as a viscoelastic matrix that supports cell growth, viability and proliferation.

Se cunoaște utilizarea uleiurilor esențiale si a substanțelor active medicamentoase pentru prevenirea si/sau tratarea infecțiilor cu 5. epidermitis, in special din proceduri medicale invazive, de exemplu inserarea cateterelor. De asemenea in brevetul respectiv se arata ca utilizarea clorhexidinei in combinație cu ulei esențial de eucalipt prezintă o activitate antimicrobiana surprinzător de buna împotriva bacteriilor S. epidermidis si a biofilmelor de S. Epidermidis. Se considera ca aceasta combinație este utila pentru prevenirea si /sau tratarea infecțiilor generate de bacteria S. Epidermidis, in special in proceduri medicale invazive de ex. inserarea cateterelor.The use of essential oils and medicinal active substances is known for the prevention and/or treatment of 5. epidermitis infections, especially from invasive medical procedures, for example the insertion of catheters. Also in the respective patent it is shown that the use of chlorhexidine in combination with eucalyptus essential oil shows a surprisingly good antimicrobial activity against S. epidermidis bacteria and S. Epidermidis biofilms. It is considered that this combination is useful for preventing and/or treating infections caused by S. Epidermidis bacteria, especially in invasive medical procedures, e.g. insertion of catheters.

Se cunoaște utilizarea uleiurilor esențiale in diferite compozitii pentru tratarea rănilor. Astfel brevetul CN 109745175 prezintă o metoda de preparare a pansamentului cu nanofibre. Metoda include etapele de amestecare si dizolvare a gelatinei, a unei soluții de acid acetic, a uleiului esențial de menta si a uleiului esențial de mușețel pentru a obține o soluție de filare. Brevetul CN 104784743 prezintă o metoda de preparare pentru pansamentul pe baza de chitosan aromatic si bacteriostatic. Metoda de preparare cuprinde următoarele etape: amestecarea uleiului esențial de arbore de ceai, a uleiului esențial de mentol si folium artemisiae argiyi in funcție de o anumita proporție pentru a obține un agent bacteriostatic aromat natural. Brevetul US 2011104243 prezintă o compoziție de consistenta unei paste realizata din substanțe naturale, pentru vindecarea tăieturilor, vanatailor, rănilor si altele asemenea de pe piele. Componentii sunt o pudra foarte fina de curcuma longa (turmeric), ulei esențial de lavanda si glicerol. Brevetul US 2015030708 prezintă compoziție pentru tratarea rănilor, rănilor, arsurilor si a altor țesuturi dermice traumatizate si leziuni ale pielii cuprinzând guma Boswellia, gel, rasina sau extract, ulei de arbore de ceai (ulei de Melaleuca), un gel de aloe, rasina, latex sau extract si ulei de lavanda. Compoziția poate fi incorporata intr-un dispozitiv medical, cum ar fi un pansament pentru răni sau un bandaj, sau formulata intr-un preparat topic cum ar fi un unguent, lotiune sau crema.The use of essential oils in different compositions for treating wounds is known. Thus, patent CN 109745175 presents a method of preparing the dressing with nanofibres. The method includes the steps of mixing and dissolving gelatin, an acetic acid solution, peppermint essential oil and chamomile essential oil to obtain a spinning solution. Patent CN 104784743 presents a preparation method for dressing based on aromatic and bacteriostatic chitosan. The preparation method includes the following steps: mixing tea tree essential oil, menthol essential oil and folium artemisiae argiyi according to a certain proportion to obtain a naturally aromatic bacteriostatic agent. US patent 2011104243 presents a composition of the consistency of a paste made from natural substances, for healing cuts, bruises, wounds and the like on the skin. The components are a very fine powder of curcuma longa (turmeric), lavender essential oil and glycerol. US Patent 2015030708 discloses a composition for treating wounds, sores, burns and other traumatized dermal tissue and skin lesions comprising Boswellia gum, gel, resin or extract, tea tree oil (Melaleuca oil), an aloe gel, resin, latex or extract and lavender oil. The composition can be incorporated into a medical device such as a wound dressing or bandage, or formulated into a topical preparation such as an ointment, lotion or cream.

Se cunoaște utilizarea plastifiantilor tip polietilen glicol, glicerol, citrati (de ex. poli (polietilenglicol citrat - co - N - isopropilacrilamida)) in compozitii polimerice pentru aplicatii in pansamente pentru tratarea diferitelor plăgi deschise. Patentul DE102004047115, (Method for producing a wound dressing) se refera la metode pentru producerea unui pansament, cu ajutorul carora se poate regla permeabilitatea pansamentului. Cu aceasta metoda, pot fi produse pansamente pentru o gama larga de aplicatii terapeutice.It is known to use polyethylene glycol, glycerol, citrate plasticizers (e.g. poly (polyethylene glycol citrate - co - N - isopropylacrylamide)) in polymer compositions for applications in dressings for the treatment of various open wounds. Patent DE102004047115, (Method for producing a wound dressing) refers to methods for producing a dressing, with the help of which the permeability of the dressing can be adjusted. With this method, dressings can be produced for a wide range of therapeutic applications.

Se cunosc utilizări ale uleiurilor esențiale ca agenti antimicrobieni pentru a fi utilizate in ingineria țesuturilor si vindecarea rănilor (tabelul 2).There are known uses of essential oils as antimicrobial agents for use in tissue engineering and wound healing (table 2).

Tabel 2. Diverse aplicatii ale uleiurilor esențialeTable 2. Various applications of essential oils

Uleiuri esențiale Essential oils Matrici polimerice Polymer matrices Utilizări applications Lavanda Lavender Poliuretan Polyurethane Ingineria țesuturilor osoase Bone tissue engineering Lavanda Π Lavender Π Policaprolactona /Polietilen glicol Polycaprolactone / Polyethylene glycol Tratarea leziunilor cutanate datorita proprietăților antimicrobiene, împotriva Staphylococcus aureus si Escherichia coli Treatment of skin lesions due to its antimicrobial properties, against Staphylococcus aureus and Escherichia coli Cimbru Thyme Fibroina de matase /Gelatina Silk fibroin / Gelatin Tratarea leziunilor cutanate datorita proprietarilor antimicrobiene, împotriva Staphylococcus aureus si Klebsiella pneumoniae. Treatment of skin lesions due to the antimicrobial properties, against Staphylococcus aureus and Klebsiella pneumoniae. Cimbru Thyme Policaprolactone /Polivinil alcool Polycaprolactone / Polyvinyl alcohol Tratarea rănilor si a suprafețelor care conțin microorganisme patogene Treatment of wounds and surfaces containing pathogenic microorganisms Cimbru Thyme Amidon de cartof Potato starch Proprietățile antioxidante ale uleiului menționai se datoreaza conținutului semnificativ de compuși fenolici The antioxidant properties of the mentioned oil are due to the significant content of phenolic compounds Scorțișoara Cinnamon Poliuretan Polyurethane Fibre antibacteriene, masti faciale si purificatoare de aer Antibacterial fibers, facial masks and air purifiers Scorțișoara Cinnamon Alcool polivinilic Polyvinyl alcohol Matrici biodegradabile/ ulei esențial de scorțișoara încapsulat in ciclodextrina prezintă proprietari excelente antimicrobiene împotriva Escherichia coli si Staphylococcus aureus. Biodegradable matrices/cinnamon essential oil encapsulated in cyclodextrin show excellent antimicrobial properties against Escherichia coli and Staphylococcus aureus. Scorțișoara Cinnamon Poliuretan Polyurethane Tratarea leziunilor cutanate datorita proprietarilor antimicrobiene, împotriva Staphylococcus aureus si Klebsiella pneumoniae. Treatment of skin lesions due to the antimicrobial properties, against Staphylococcus aureus and Klebsiella pneumoniae. Cinamaldehida Cinnamaldehyde Chitosan / polietilenoxid Chitosan / polyethylene oxide Elimina infecțiile cu Pseudomonas. Eliminates Pseudomonas infections. Scorțișoara Cinnamon Polivinil pirolidona Polyvinyl pyrrolidone Bune proprietari antibacteriene împotriva Staphylococcus aureus, Escherichia coli si Candida albicans Good antibacterial owners against Staphylococcus aureus, Escherichia coli and Candida albicans Arbore de ceai Tea tree Chitosan Chitosan Membrane cu continui de liposomi si ulei esențial încapsulat prezintă zona de inhibiție maxima împotriva Salmonella enteritidis si Salmonella typhimurium. Membranes with continuous liposomes and encapsulated essential oil show the maximum inhibition zone against Salmonella enteritidis and Salmonella typhimurium.

Prezenta invenție oferă soluții pentru obținerea unor dispozitive tip suport polimeric pentru înglobare substanțe active tip medicament sau ulei esențial ca parte componenta pentru pansamente utilizate in tratamentul plăgilor de tip escare, cu proprietăți antimicrobiene si de biocompatibilitate. Aceste caracteristici se intenționează a se păstră pe o perioada de depozitare pe termen lung a dispozitivelor. Se prezintă recepturi imbunatatite prin introducerea componentilor de uz medical tip: plastifianti biocompatibili, vitamine si substanțe active antimicrobiene tip antibiotice si uleiuri esențiale, alti aditivi. Pansamentele realizate in cadrul brevetului pot fi utilizate la tratamentul leziunilor cutanate deschise tip escare, ulcere de presiune, incizii, etc.The present invention offers solutions for obtaining polymeric support type devices for incorporating active substances such as medicine or essential oil as a component part for dressings used in the treatment of bedsore type wounds, with antimicrobial and biocompatibility properties. These characteristics are intended to be preserved over the long-term storage of the devices. Improved recipes are presented by introducing components for medical use such as: biocompatible plasticizers, vitamins and antimicrobial active substances such as antibiotics and essential oils, other additives. The dressings made under the patent can be used for the treatment of open skin lesions such as eschar, pressure ulcers, incisions, etc.

Procedeul de realizare a suportului polimeric consta in amestecarea in soluție a componentilor si oferă avantajul utilizării de materiale multiple care sa genereze proprietăți fizico-chimice si biologice superioare necesare in utilizarea corespunzătoare. De asemenea, amestecarea componentilor are loc eficient pana la omogenizarea completa a materialului nou obtinut.The process of making the polymer support consists of mixing the components in solution and offers the advantage of using multiple materials to generate superior physico-chemical and biological properties necessary for proper use. Also, the mixing of the components takes place effectively until the complete homogenization of the newly obtained material.

Conform invenției suportul polimeric pentru înglobarea substanțelor active poate fi compus dintr-un polimer hidrosolubil tip: poloxamer FI27 care poate fi utilizat in proporție de 40...80 % gr, sau polivinil alcool (PVA) care poate fi utilizat in proporție de 20 ...75 % gr, sau polivinil pirolidona (PVP) care poate fi utilizat in proporție de 35...65 % gr, sau alginat care poate fi utilizat in proporție de 30...70 % gr, sau chitosan care poate fi utilizat in proporție de 28...49 % gr, carboximetil celuloza (CMC) care poate fi utilizat in proporție de 2...10 % gr, chitin, acid hialuronic, amidon, gelatina, acid polilactic, policaprolactona, plastifiant tip glicerol, sau polietilen glycol, sau citrat, vitamine: vitamina A , vitamina E, stabilizatori tip stearat de zinc, stearat de calciu, emulgator tip Tween 80, guma Arabica, agent de reticulare tip glutaraldehida, substanțe active tip nanoparticule de argint, antibiotic (tetraciclină, gentamicina) si uleiuri esențiale.According to the invention, the polymeric support for encapsulating the active substances can be composed of a water-soluble polymer type: poloxamer FI27 which can be used in a proportion of 40...80% gr, or polyvinyl alcohol (PVA) which can be used in a proportion of 20. ..75% gr, or polyvinyl pyrrolidone (PVP) which can be used in a proportion of 35...65% gr, or alginate which can be used in a proportion of 30...70% gr, or chitosan which can be used in a proportion of 28...49% gr, carboxymethyl cellulose (CMC) which can be used in a proportion of 2...10% gr, chitin, hyaluronic acid, starch, gelatin, polylactic acid, polycaprolactone, glycerol-type plasticizer, or polyethylene glycol, or citrate, vitamins: vitamin A, vitamin E, stabilizers such as zinc stearate, calcium stearate, emulsifier type Tween 80, gum arabic, crosslinking agent such as glutaraldehyde, active substances such as silver nanoparticles, antibiotic (tetracycline, gentamicin ) and essential oils.

Scopul prezentei invenții este acela de a crea suport polimeric pentru înglobarea substanțelor active medicamentoase si uleiuri esențiale, cu proprietăți imbunatatite de biocompatibilitate, activitate antibacteriana, antioxidare, hemostaza si inițierea vindecării, ca parte integranta din pansamente pentru tratarea leziunilor deschise tip escare si ulcere de presiune.The purpose of the present invention is to create a polymeric support for encapsulating medicinal active substances and essential oils, with improved properties of biocompatibility, antibacterial activity, antioxidation, hemostasis and initiation of healing, as an integral part of dressings for the treatment of open wounds such as eschar and pressure ulcers .

Problema tehnica pe care o rezolva invenția se refera la obținerea suportului polimeric constituit din unele recepturi pe baza de polivinil alcool, polivinil pirolidona, carboximetil celuloza cu biocompatibilitate imbunatatita datorita utilizării plastifiantilor tip glicerol si polietilen glicol, care prezintă difuzie redusa prin masa polimerului, utilizării vitaminelor si utilizării substanțelor active medicamentoase si uleiurilor esențiale ca agenti antimicrobieni pentru împiedicarea aderentei si formarii de colonii ale microorganismelor din mediul biologic cu care vin in contact. In prezenta invenție uleiurile esențiale au fost introduse in suportul polimeric prin amestecare fizica cu materialul compoziției sau au fost încapsulate in alginat de sodiu si apoi au fost introduse in masa polimerica prin amestecare fizica. încapsularea uleiurilor esențiale a avut ca scop eliberarea controlata a acestora in mediul cu care vin in contact.The technical problem that the invention solves refers to obtaining the polymer support made up of some recipes based on polyvinyl alcohol, polyvinyl pyrrolidone, carboxymethyl cellulose with improved biocompatibility due to the use of plasticizers such as glycerol and polyethylene glycol, which shows reduced diffusion through the mass of the polymer, the use of vitamins and the use of medicinal active substances and essential oils as antimicrobial agents to prevent the adherence and formation of colonies of microorganisms from the biological environment with which they come into contact. In the present invention, the essential oils were introduced into the polymeric support by physical mixing with the material of the composition or were encapsulated in sodium alginate and then were introduced into the polymeric mass by physical mixing. the encapsulation of essential oils aimed at their controlled release into the environment they come into contact with.

Gradul de noutate il constituie realizarea a doua tipuri de suport polimeric:The degree of novelty is the creation of two types of polymeric support:

- suport polimeric in care substanțele active: tetraciclină, uleiuri esențiale au fost adaugate in masa materialului prin amestecare fizica- polymeric support in which the active substances: tetracycline, essential oils were added to the mass of the material by physical mixing

- suport polimeric in care au fost adaugate microcapsule cu ulei esențial si amestecate ușor cu masa materialului.- polymeric support in which microcapsules with essential oil were added and gently mixed with the mass of the material.

Recepturile realizate si studiate comparativ, au fost codificate El - E4, iar compozițiile lor sunt prezentate in tabelul 3:The recipes made and comparatively studied were coded El - E4, and their compositions are presented in table 3:

Tabel 3. Compozitii experimentale E1-E4Table 3. Experimental compositions E1-E4

Cod receptura/ Component Recipe code/ Component El [%1 He [%1 E2 [%1 E2 [%1 E3 [%] E3 [%] E4 [%] E4 [%] PVA PVA 25 25 23 2. 3 23 2. 3 23 2. 3 PVP PvP 15 15 10 10 16 16 10 10 Tween 80 Tween 80s + + CaCh - Agent de reticulare CaCh - Cross-linking agent + + CMC cc 2 2 2 2 2 2 2 2 Ulei esențial de pin Pine essential oil 12 12 12 12 Tetraciclină Tetracycline 7 7 Vitamina A Vitamin A 3 3 3 3 3 3 3 3 Vitamina E Vitamin E 2 2 2 2 2 2 2 2

Apa deionizata Deionized water 50 50 50 50 38,5 38.5 44,5 44.5 Glicerol Glycerol 2,5 2.5 2,5 2.5 3 3 3 3 Glutaraldehida Glutaraldehyde 0,5 0.5 0,5 0.5 0,5 0.5 0,5 0.5

+ reprezintă continui de materiale care nu intra in compoziția matricilor polimerice sau a capsulelor încărcate cu uleiuri esențiale+ represents continuous materials that are not included in the composition of polymer matrices or capsules loaded with essential oils

Suportul polimeric obtinut pe baza de biopolimeri, plastifianti, aditivi si substanțe active antimicrobiene este destinat fabricații de pansamente pentru tratarea leziunilor cutanate tip escare.The polymeric support obtained on the basis of biopolymers, plasticizers, additives and antimicrobial active substances is intended for the manufacture of dressings for the treatment of eschar-type skin lesions.

MOD DE LUCRUPROCEDURE

Realizarea suportului polimeric presupune parcurgerea următoarelor etape:The creation of the polymer support requires the following steps:

- cântărire materii prime pe balanța analitica;- weighing raw materials on the analytical balance;

- solubilizare polimeri PVA / PVP (40:60 % gr ...60/40 % gr) si CMC in apa deionizata prin amestecare cu agitator magnetic, la temperatura de 90 °C, turatie 500 rpm;- solubilization of PVA / PVP (40:60 % gr ...60/40 % gr) and CMC polymers in deionized water by mixing with a magnetic stirrer, at a temperature of 90 °C, speed 500 rpm;

- după dizolvarea completa se răcește amestecul la 40 °C si se adauga pe rând glicerol, PEG, vitamina A, vitamina E si se amesteca fizic pana omogenizare completa la temperatura camerei;- after complete dissolution, cool the mixture to 40 °C and add glycerol, PEG, vitamin A, vitamin E in turn and mix physically until complete homogenization at room temperature;

- după dezaerare se toama amestecul intr-o cutie Petri si se usucă intr-o etuva cu circulație de aer la 50 °C timp de 8 ore; filmul obtinut constituie proba martor;- after deaeration, pour the mixture into a Petri dish and dry it in an oven with air circulation at 50 °C for 8 hours; the obtained film constitutes the witness evidence;

- după dezaerare se introduce agentul antimicrobian (ex. tetraciclină dizolvata in apa deionizata sau ulei esențial, sau capsule cu ulei esențial)- after deaeration, the antimicrobial agent is introduced (e.g. tetracycline dissolved in deionized water or essential oil, or capsules with essential oil)

Recepturile obținute se toama fiecare in cate o cutie Petri si se lașa la uscat prin evaporarea apei intro etuva cu circulație de aer, la temperatura de 50 °C, timp de 8 ore. După uscare se desprind filmele formate si se prelevează mostre pentru analize.The obtained recipes were placed in a Petri dish and left to dry by evaporating the water in an oven with air circulation, at a temperature of 50 °C, for 8 hours. After drying, the formed films are detached and samples are taken for analysis.

Realizarea încapsulării uleiurilor esențiale prin metoda emulsiei presupune parcurgerea următoarelor etape:Realizing the encapsulation of essential oils by the emulsion method involves going through the following stages:

- realizarea emulsiei pe baza de ulei esențial si alcool etilic in proporție de 50:50, la care se adauga aditiv surfactant Tween 80 pentru stabilizarea emulsiei, intr-un pahar Berzelius prin amestecare cu amestecator TURAX la 23000 rpm timp de o jumătate de ora la temperatura camerei,- making the emulsion based on essential oil and ethyl alcohol in a ratio of 50:50, to which Tween 80 surfactant additive is added to stabilize the emulsion, in a Berzelius glass by mixing with a TURAX mixer at 23000 rpm for half an hour at room's temperature,

- realizarea unui amestec denumit MIX 1 prin dizolvarea polimerului alginat de sodiu 1 g in 100 ml apa distilata intr-un pahar Berzelius pe plita cu amestecare magnetica, la temperatura 60 °C, 700 rpm pana la finalizarea procesului,- making a mixture called MIX 1 by dissolving 1 g of sodium alginate polymer in 100 ml of distilled water in a Berzelius glass on a magnetic stirring plate, at a temperature of 60 °C, 700 rpm until the process is complete,

- realizarea unui amestec denumit MIX 2 prin amestecarea MIX 1 cu emulsia obtinuta al uleiului esențial, pe plita cu amestecare magnetica, la temperatura camerei, 700 rpm, timp de o jumătate de ora,- making a mixture called MIX 2 by mixing MIX 1 with the emulsion obtained of the essential oil, on the magnetic stirring plate, at room temperature, 700 rpm, for half an hour,

- prepararea agentului de reticulare prin dizolvarea a 30 g clorură de calciuin 100 ml apa distilata, intr-un pahar Berzelius de capacitate 200 ml, pe baie cu gheata, amestecare la 200 rpm, pana la dizolvare completa,- preparation of the cross-linking agent by dissolving 30 g of calcium chloride in 100 ml of distilled water, in a 200 ml capacity Berzelius glass, on an ice bath, mixing at 200 rpm, until complete dissolution,

- seringa se umple cu amestecul MIX 2 si se picura in paharul Berzelius cu soluție de clorură de calciu, in timp ce se amesteca cu agitator magnetic la turatia de 200 rpm,- the syringe is filled with the MIX 2 mixture and dripped into the Berzelius glass with calcium chloride solution, while mixing with a magnetic stirrer at 200 rpm,

- se formează microcapsule umplute cu ulei esențial, microcapsulele obținute se adauga in materialul suportului polimeric prin amestecare ușoara,- microcapsules filled with essential oil are formed, the obtained microcapsules are added to the polymer support material by gentle mixing,

- compoziția obtinuta se toama in cutie Petri pentru obținerea unui strat cu grosime uniforma,- the obtained composition is poured into a Petri dish to obtain a layer with a uniform thickness,

- se lașa la uscat prin evaporarea apei intr-o etuva cu circulație de aer, la temperatura de 50 °C, timp de 8 ore,- let it dry by evaporating the water in an oven with air circulation, at a temperature of 50 °C, for 8 hours,

- după uscare se desprinde filmul si se prelevează mostre pentru analize.- after drying, peel off the film and take samples for analysis.

Probele sunt analizate din punct de vedere al gradului de dizolvare, proprietăților de transmisie si proprietăților biologice. Proprietățile de biocompatibilitate sunt demonstrate prin teste de citotoxice. Testele antimicrobiene sunt efectuate conform EN ISO 22196, utilizând ca microorganisme de testare Staphylococcus aureus ATCC 25923, Enterococcus faecalis ATCC 29212, Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 27853.The samples are analyzed from the point of view of the degree of dissolution, transmission properties and biological properties. Biocompatibility properties are demonstrated by cytotoxicity tests. Antimicrobial tests are performed according to EN ISO 22196, using as test microorganisms Staphylococcus aureus ATCC 25923, Enterococcus faecalis ATCC 29212, Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 27853.

Evaluarea in vitro a citotoxicitatii recepturilor polimerice plastifiate inițiale si a celor cu aditiv antimicrobian se efectuează pe culturi celulare, utilizând tehnica de cultivare a celulelor in suspensie, cu mediu DME (Dulbecco's Medium Essential), cu conținut de 10 % ser bovin fetal. Viabilitatea celulelor este evaluata prin efectuarea testului MTT cu observarea aspectului morfologic al celulelor.The in vitro evaluation of the cytotoxicity of the initial plasticized polymer recipes and those with an antimicrobial additive is performed on cell cultures, using the technique of cultivating cells in suspension, with DME medium (Dulbecco's Medium Essential), containing 10% fetal bovine serum. The viability of the cells is evaluated by performing the MTT test and observing the morphological aspect of the cells.

EXEMPLUL 1EXAMPLE 1

Se realizează proba martor denumita El, conform modului de lucru prezentat mai sus si conținutul prezentat in tabelul 3. Se toama intr-o cutie Petri si se usucă in etuva cu circulație de aer la 50 °C timp de 8 ore. Se realizează o compoziție polimerica E2 prin introducerea unui gram de tetraciclină dizolvat in apa deionizata, intr-o compoziție identica cu El si se amesteca pana la omogenizare. Se toama intr-o cutie Petri si se usucă intr-o etuva cu circulație de aer la 50 °C timp de 8 ore. Filmele El si E2 obținute se analizeaza fizico-chimic si biologic.The control sample called El is made, according to the working method presented above and the content presented in table 3. It is placed in a Petri dish and dried in the oven with air circulation at 50 °C for 8 hours. A polymeric composition E2 is made by introducing one gram of tetracycline dissolved in deionized water, in a composition identical to El and mixing until homogenized. Place in a Petri dish and dry in an oven with air circulation at 50 °C for 8 hours. The El and E2 films obtained are analyzed physico-chemically and biologically.

EXEMPLUL 2EXAMPLE 2

Se realizează ca in exemplul 1 o proba martor EL Se realizează o compoziție polimerica E3 (conform tabelului 3), in care uleiul esențial de pin este introdus prin picurare si se amesteca pana la omogenizare. Se toama intr-o cutie Petri si se usucă intr-o etuva cu circulație de aer la 50 °C timp de 8 ore. Filmele El si E3 obținute se analizeaza fizico-chimic si biologic.It is made as in example 1 a control sample EL A polymer composition E3 is made (according to table 3), in which the essential pine oil is introduced drop by drop and mixed until homogenized. Place in a Petri dish and dry in an oven with air circulation at 50 °C for 8 hours. The El and E3 films obtained are analyzed physico-chemically and biologically.

EXEMPLUL 3EXAMPLE 3

Se realizează ca in exemplul 1 o proba martor EL Se realizează ca in exemplul 2 o proba denumita E4, in care uleiul esențial de pin este introdus încapsulat. Conform modului de lucru descris mai sus, se realizează microcapsule cu ulei de pin. Microcapsulele cu ulei esențial de pin se introduc in compoziția E4 si se amesteca ușor pana la omogenizare. Se toama intr-o cutie Petri si se usucă intr-o etuva cu circulație de aer la 50 °C timp de 8 ore. Filmele El si E4 obținute se analizeaza fizico-chimic si biologic.As in example 1, a control sample EL is made. As in example 2, a sample called E4 is made, in which the essential pine oil is introduced encapsulated. According to the work method described above, microcapsules are made with pine oil. The microcapsules with essential pine oil are inserted into the E4 composition and mixed gently until homogenized. Place in a Petri dish and dry in an oven with air circulation at 50 °C for 8 hours. The El and E4 films obtained are analyzed physico-chemically and biologically.

Testarea filmelor prelevate din probele El, E2, E3, E4, cuprinde:The testing of films taken from samples El, E2, E3, E4 includes:

Capacitatea de gonflareInflating capacity

Pentru a calcula gradul de gonflare al filmelor, din fiecare receptura au fost taiate probe sub forma de discuri cu diametru de 3 cm si au fost aduse la greutate constanta prin uscare. Probele uscate au fost imersate in continuare in apa deionizata la temperatura camerei (20 °C). Experimentele au fost efectuate in triplicat, iar măsurătorile au fost efectuate pana la masa constanta a probelor gonflate (2 pana la 5 ore). Deoarece timpul necesar pentru a ajunge la echilibru a fost foarte scurt, masa polimerului dizolvat a fost considerata neglijabila.To calculate the degree of swelling of the films, samples were cut from each recipe in the form of discs with a diameter of 3 cm and were brought to constant weight by drying. The dry samples were further immersed in deionized water at room temperature (20 °C). The experiments were performed in triplicate, and the measurements were performed until the constant mass of the inflated samples (2 to 5 hours). Since the time required to reach equilibrium was very short, the mass of dissolved polymer was considered negligible.

De asemenea, pentru a menține calculul simplu, s-a considerat cantitatea de principiu activ conținuta in probe si eliberata in mediul apos experimental ca fiind nesemnificativa in comparație cu cantitatea totala de apa care a fost absorbita. Gradul de gonflare (SD) a fost determinat cuAlso, to keep the calculation simple, the amount of active principle contained in the samples and released into the experimental aqueous environment was considered to be insignificant compared to the total amount of water that was absorbed. Swelling degree (SD) was determined with

ecuația (1), unde mi (g) este greutatea inițiala a probei si ms (g) reprezintă greutatea probei gonflate.equation (1), where mi (g) is the initial weight of the sample and m s (g) represents the weight of the inflated sample.

5Ό = x 100 mi (1)5Ό = x 100 mi (1)

Solubilitatea in apaSolubility in water

Măsurătorile de solubilitate in apa au fost efectuate in triplicat, in conformitate cu metoda lui Shen et al., cu unele modificări, după cum va fi detaliat. Probele de film cu dimensiuni (2x2 cm), uscate anterior la greutate constanta, au fost introduse in baloane conice care au continui aceeași cantitate masurata de apa deionizata (100 ml). Baloanele au fost tinute la temperatura camerei si agitate continuu timp de 24 de ore. Bucățile ramase nedizolvate de filme au fost îndepărtate din apa si apoi uscate din nou pana la greutate constanta.Water solubility measurements were performed in triplicate, according to the method of Shen et al., with some modifications, as will be detailed. The film samples with dimensions (2x2 cm), previously dried to constant weight, were introduced into conical flasks that contained the same measured amount of deionized water (100 ml). The flasks were kept at room temperature and stirred continuously for 24 hours. The remaining undissolved pieces of the films were removed from the water and then dried again to constant weight.

Solubilitatea in apa (WS) a materialelor compozite a fost calculata cu greutatea probei uscate inițiale, mi (g) si greutatea probei uscate nedizolvate, mf (g), folosind ecuația (2):The water solubility (WS) of the composite materials was calculated with the weight of the initial dry sample, mi (g) and the weight of the undissolved dry sample, mf (g), using equation (2):

m.: -Wlfm.: -Wlf

WS = —!---- x 100 mf (2)WS = — ! ---- x 100 m f (2)

Permeabilitatea la vapori de apaWater vapor permeability

Pentru fiecare proba de film, permeabilitatea la vapori de apa (WVP) se calculează utilizând ecuația (3), urmând metoda descrisa mai sus. Filmele sunt taiate sub forma de rondele cu diametru de 3 cm si etanșate pe pahare de polipropilena care conțin silicagel (0% RH). Paharele sunt apoi plasate intr-un desicator care conține apa distilata, la temperatura camerei (20 °C) si 95 % umiditate relativa, timp de sase zile. Camera desicatorului este echipata cu senzori de temperatura si umiditate relativa. Periodic, umiditatea absorbita este determinata gravimetric. Testul a fost efectuat in triplicat:For each film sample, the water vapor permeability (WVP) is calculated using equation (3), following the method described above. The films are cut in the form of rounds with a diameter of 3 cm and sealed on polypropylene cups containing silica gel (0% RH). The glasses are then placed in a desiccator containing distilled water, at room temperature (20 °C) and 95% relative humidity, for six days. The desiccator chamber is equipped with temperature and relative humidity sensors. Periodically, the absorbed moisture is determined gravimetrically. The test was performed in triplicate:

WVP=WVTR x δ/Δρ (3)WVP=WVTR x δ/Δρ (3)

Unde:Where:

- WVTR este permeabilitatea la vapori de apa (g m’2 zi1),- WVTR is water vapor permeability (g m' 2 day 1 ),

- δ este grosimea filmului (m),- δ is the film thickness (m),

- Δρ reprezintă diferența de presiune parțiala a vaporilor de apa pe cele doua parti ale acoperirilor (Pa).- Δρ represents the partial pressure difference of water vapor on the two sides of the coatings (Pa).

Rezultatele obținute pentru cele patru probe sunt prezentate in tabelul 4.The results obtained for the four samples are presented in table 4.

Solubilitatea in apa, este caracteristica filmelor biodegradabile si oferă beneficii potențiale. In mod ideal, viteza de vindecare a rănilor ar trebui sa fie egala cu cea de degradare a matricii polimerice. Toate filmele si-au pastrat forma originala in timpul experimentelor cu solubilitate in apa. Un pansament bun trebuie sa permită evaporarea exudatelor pentru a facilita procesul de vindecare si in același timp ar trebui sa prevină deshidratarea plăgii. Un WVTR mare va induce deshidratarea si aderenta pansamentului la suprafața plăgii, in timp ce un WVTR prea scăzut va determina acumularea exudatilor, permițând creșterea microbiana si infecția plăgii. Având in vedere valorile WVTR general acceptate in intervalul de 76-9360 g m’2 zi’1 in funcție de starea pielii si tipul plăgii si un interval specific de 904-1447 g m'2 zi'1, care caracterizează rănile cu exudate moderate, putem concluziona ca filmele noastre ar putea fi aplicate pe rănile cu exudate mici pana la moderate. Alti cercetători au determinat WVTR pentru PVA in diferite compozitii împreuna cu chitosan sau colagen, iar valorile obținute au fost mai mari decât compozițiile noastre. Se știe ca valorile scaazute ale WVP oferă un mediu de vindecare bun, prin menținerea conținutului optim de umiditate al materialelor de pansament. Valorile noastre obținute pentru WVP sunt mai mici decât cele raportate pentru filmele de hidrogel funcțional pe baza de caragenan de exemplu.Solubility in water is characteristic of biodegradable films and offers potential benefits. Ideally, the speed of wound healing should be equal to that of degradation of the polymer matrix. All the films kept their original shape during the water solubility experiments. A good dressing should allow the evaporation of exudates to facilitate the healing process and at the same time should prevent dehydration of the wound. A high WVTR will induce dehydration and adhesion of the dressing to the wound surface, while a WVTR that is too low will cause the accumulation of exudates, allowing microbial growth and wound infection. Considering the generally accepted WVTR values in the range of 76-9360 g m' 2 day' 1 depending on the condition of the skin and the type of wound and a specific range of 904-1447 g m' 2 day' 1 , which characterizes wounds with moderate exudates, we can concluded that our films could be applied to wounds with small to moderate exudates. Other researchers have determined the WVTR for PVA in different compositions together with chitosan or collagen, and the values obtained were higher than our compositions. Low WVP values are known to provide a good healing environment by maintaining optimal moisture content of dressing materials. Our obtained values for WVP are lower than those reported for carrageenan-based functional hydrogel films for example.

Tabel 4. Grosimea filmelor (δ), gradul de gonflare (SD), solubilitatea in apa (WS), viteza de transmitere a vaporilor de apa (WVTR), permeabilitatea la vaporii de apa a filmelor recepturilor polimerice (WVP)____________________Table 4. Film thickness (δ), degree of swelling (SD), solubility in water (WS), water vapor transmission rate (WVTR), water vapor permeability of polymer recipe films (WVP)____________________

Proba Sample δχ 103, (m) δχ 10 3 , (m) SD SD WS, (%) WS, (%) WVTR, (gm^zi1) WVTR, (gm^zi 1 ) WVP x IO10, (g m'1 s’1 Pa'1) WVP x IO 10 , (g m' 1 s' 1 Pa' 1 ) El He O,238±O,OO3 O.238±O.OO3 4,847±0,518 4.847±0.518 59,27±0,68 59.27±0.68 578,5±10,4 578.5±10.4 6,816±0,123 6.816±0.123 E2 E2 0,307±0,030 0.307±0.030 6,472±0,325 6.472±0.325 59,34±0,61 59.34±0.61 493,3±7,4 493.3±7.4 7,496±0,112 7.496±0.112 E3 E3 0,247±0,003 0.247±0.003 5,775±0,624 5.775±0.624 59,69±0,97 59.69±0.97 575,9±14,4 575.9±14.4 7,041 ±0,176 7.041 ±0.176 E4 E4 0,237±0,003 0.237±0.003 6,048±0,831 6.048±0.831 66,02±l,05 66.02±1.05 521,2±5,1 521.2±5.1 6,115±0,596 6.115±0.596

Teste de eficienta antimicrobianaAntimicrobial efficiency tests

Testele antimicrobiene au fost efectuate folosind tulpini standard de Staphylococcus aureus ATCC 25923, Enterococcus faecalis ATCC 29212, Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 27853, in conformitate cu „SREN 14885 -Dezinfectante si antiseptice chimice - Aplicarea standardelor europene pentru dezinfectante si antiseptice chimice”. Screeningul calitativ a fost realizat folosind o metoda de difuzie spot adaptata. Suspensiile microbiene, cu densitatea standard de 0,5 McFarland (corespunzător la 1,5x108 UFC/mL), au fost obținute din culturi bacteriene proaspete timp de 24-48 ore. Inoculurile microbiene au fost insamantate pe vase Petri care conțineau agar Muller Hinton (pentru tulpini bacteriene) sau agar Sabouraud, conform metodei de difuzie CLSI (Clinical Laboratory Standard Institute, 2022), iar probele de material steril, cu o suprafața de 1 cm2, au fost dispuse pe suprafața mediului inoculat si incubate timp de 20 ore, la 37 °C. Pentru a evalua activitatea antimicrobiana folosind metoda Viable Cell Count (VCC), materialele au fost imersate in 1 ml de mediu bulion adecvat, care a fost ulterior inoculat cu suspensie microbiana la o densitate finala de 1,5x105 UFC/ml. După 20 de ore de incubare la 37 °C, activitatea microbicidului a fost evaluata prin tehnica de microdilutie in serie de zece ori. Dilutiile in serie si numărările pe placi au fost efectuate in duplicat după inoculare si incubare la 37 °C timp de 24 de ore, coloniile microbiene au fost numărate si convertite in unitati formatoare de colonii per mililitru (CFU/mL). Fiecare test a fost efectuat in triplicat. Rezultatul este prezentat in figurile 1 - 4. Comparând cu proba martor de creștere (cultura de tulpina microbiana in stare normala) si proba martor (cultura tulpina microbiana in prezenta probei martor El), toate materialele testate au prezentat efect inhibitor, cu atenuarea drastica a valorilor logaritmice corespunzătoare CFU/mL.Antimicrobial tests were performed using standard strains of Staphylococcus aureus ATCC 25923, Enterococcus faecalis ATCC 29212, Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 27853, in accordance with "SREN 14885 - Chemical disinfectants and antiseptics - Application of European standards for chemical disinfectants and antiseptics" . The qualitative screening was performed using an adapted spot diffusion method. Microbial suspensions, with a standard density of 0.5 McFarland (corresponding to 1.5x10 8 CFU/mL), were obtained from fresh bacterial cultures for 24-48 hours. The microbial inoculums were seeded on Petri dishes containing Muller Hinton agar (for bacterial strains) or Sabouraud agar, according to the CLSI diffusion method (Clinical Laboratory Standard Institute, 2022), and the samples of sterile material, with an area of 1 cm 2 , were placed on the surface of the inoculated medium and incubated for 20 hours at 37 °C. To evaluate the antimicrobial activity using the Viable Cell Count (VCC) method, the materials were immersed in 1 ml of appropriate broth medium, which was later inoculated with microbial suspension at a final density of 1.5x10 5 CFU/ml. After 20 hours of incubation at 37 °C, the activity of the microbicide was evaluated by the ten-fold serial microdilution technique. Serial dilutions and plate counts were performed in duplicate after inoculation and incubation at 37 °C for 24 hours, microbial colonies were counted and converted to colony forming units per milliliter (CFU/mL). Each test was performed in triplicate. The result is presented in figures 1 - 4. Comparing with the growth control sample (microbial strain culture in normal condition) and the control sample (microbial strain culture in the presence of the control sample El), all the tested materials showed an inhibitory effect, with the drastic attenuation of logarithmic values corresponding to CFU/mL.

Excepția a fost observata pentru tulpina de Pseudomonas aeruginosa ATCC 27853 Gram negativ, confirmând rezultatele calitative privind rezistenta ridicata a acestei tulpini la activitatea inhibitoare a uleiurilor esențiale.The exception was observed for the strain of Pseudomonas aeruginosa ATCC 27853 Gram negative, confirming the qualitative results regarding the high resistance of this strain to the inhibitory activity of essential oils.

Analiza proprietăților de biocompatibilitate prin efectuarea testului MTTAnalysis of biocompatibility properties by performing the MTT test

Fibroblastele L929 (5x105 celule/godeu) au fost cultivate in mediu DMEM (Dulbecco's Modified Eagle Medium, Sigma-Aldrich) suplimentat cu 10% ser fetal bovin (Sigma - Aldrich) si 1% Pen/Strep (soluție de penicilina/streptomicina, Sigma Aldrich) timp de 24 de ore la 37 °C, 95% umiditate cu 5% CO2. Probele au fost co-cultivate cu fibroblastele timp de 24 de ore (37 °C, 95% umiditate, 5% CO2). Testul MTT [3-(4,5-dimetiltiazol-2-il)-2,5-difeniltetrazoliu bromura] a fost utilizat pentru a evalua viabilitatea si proliferarea celulelor in prezenta materialelor. Celulele au fost incubate timp de 4 ore cu reactiv MTT (Vybrant® MTT Cell Proliferation Assay Kit, V13154) la 37 °C, 95 % umiditate cu 5% CO2. După incubare, cristalele de formazan au fost solubilizate cu DMSO timp de 10 minute la temperatura camerei. Absorbanta a fost masurata la λ= 540 nm folosind aparatul Mulsiskan FC (Thermo Scientific). Morfologia celulara a fost evaluata folosind un microscop inversat Olympus 1X73 după 24 de ore de incubare cu biomaterialele. Conform figurii 5, probele E1-E4 nu au fost toxice si nu au dus la moartea celulelor, asa cum a aratat analiza microscopului cu contrast de faza.L929 fibroblasts (5x10 5 cells/well) were cultured in DMEM medium (Dulbecco's Modified Eagle Medium, Sigma-Aldrich) supplemented with 10% fetal bovine serum (Sigma-Aldrich) and 1% Pen/Strep (penicillin/streptomycin solution, Sigma Aldrich) for 24 h at 37 °C, 95% humidity with 5% CO2. Samples were co-cultured with fibroblasts for 24 hours (37 °C, 95% humidity, 5% CO2). The MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay was used to evaluate cell viability and proliferation in the presence of the materials. Cells were incubated for 4 hours with MTT reagent (Vybrant® MTT Cell Proliferation Assay Kit, V13154) at 37 °C, 95% humidity with 5% CO2. After incubation, the formazan crystals were solubilized with DMSO for 10 min at room temperature. The absorbance was measured at λ= 540 nm using the Mulsiskan FC device (Thermo Scientific). Cell morphology was assessed using an Olympus 1X73 inverted microscope after 24 hours of incubation with the biomaterials. According to Figure 5, samples E1-E4 were not toxic and did not lead to cell death, as shown by phase contrast microscope analysis.

Foarte important, nici una dintre probele evaluate nu a indus modificări semnificative in morfologia celulei.Very importantly, none of the evaluated samples induced significant changes in cell morphology.

BIBLIOGRAFIEBIBLIOGRAPHY

[1] Sistemul de clasificare: National Pressure Ulcer Advisory Panel (NPUAP)ZEuropean Pressure Ulcer Advisory Panel (EPUAP) (2009)[1] Classification system: National Pressure Ulcer Advisory Panel (NPUAP)ZEuropean Pressure Ulcer Advisory Panel (EPUAP) (2009)

[ 2] 10.1016/j.eurpolymj.2022.111293[ 2] 10.1016/j.eurpolymj.2022.111293

[3] Fan C, Xu Q, Hao R, Wang C, Que Y, Chen Y, Yang C, Chang J. Multi-functional wound dressings based on silicate bioactive materials. Biomaterials. 2022 Jun 28;287:121652. doi: 10.1016/j.biomaterials.2022.121652. Epub ahead of prinț. PMID: 35785753.[3] Fan C, Xu Q, Hao R, Wang C, Que Y, Chen Y, Yang C, Chang J. Multi-functional wound dressings based on silicate bioactive materials. Biomaterials. 2022 Jun 28;287:121652. doi: 10.1016/j.biomaterials.2022.121652. Epub ahead of prince. PMID: 35785753.

[4] Peng W, Li D, Dai K, Wang Y, Song P, Li H, Tang P, Zhang Z, Li Z, Zhou Y, Zhou C. Recent progress of collagen, chitosan, alginate and other hydrogels in skin repair and wound dressing applications. Int J Biol Macromoi. 2022 May 31,208:400-408. doi: 10.1016/j.ijbiomac.2022.03.002. Epub 2022 Mar 3. PMID: 35248609.[4] Peng W, Li D, Dai K, Wang Y, Song P, Li H, Tang P, Zhang Z, Li Z, Zhou Y, Zhou C. Recent progress of collagen, chitosan, alginate and other hydrogels in skin repair and wound dressing applications. Int J Biol Macromoi. 2022 May 31,208:400-408. two: 10.1016/j.ijbiomac.2022.03.002. Epub 2022 Mar 3. PMID: 35248609.

[5] Caridade, Sofia G.; Monge, Claire; Gilde, Flora; Boudou, Thomas; Mano, Joâo F.; Picart, Catherine (2013). Free-Standing Polyelectrolyte Membranes Made of Chitosan and Alginate. Biomacromolecules, 14(5), 1653—1660. doi :10.102 l/bm400314s[5] Caridade, Sofia G.; Monge, Claire; Gilde, Flora; Boudou, Thomas; Mano, Joâo F.; Picart, Catherine (2013). Free-Standing Polyelectrolyte Membranes Made of Chitosan and Alginate. Biomacromolecules, 14(5), 1653—1660. two :10.102 l/bm400314s

[6] X. Wang, J. Chang, C. Wu, Bioactive inorganic/organic nanocomposites for wound healing, Appl. Mater. Today 11 (2018) 308-319.[6] X. Wang, J. Chang, C. Wu, Bioactive inorganic/organic nanocomposites for wound healing, Appl. Mater. Today 11 (2018) 308-319.

[7] G. El Fawal, H. Hong, X. Mo, H. Wang, Fabrication of scaffold based on gelatin and polycaprolactone (PCL) for wound dressing application, J. Drug Delivery Sci. Technol. 63 (2021) 102501.[7] G. El Fawal, H. Hong, X. Mo, H. Wang, Fabrication of scaffold based on gelatin and polycaprolactone (PCL) for wound dressing application, J. Drug Delivery Sci. Technol. 63 (2021) 102501.

[8] T. Fan, R. Daniels, Preparation and Characterization of Electrospun Polylactic Acid (PLA) Fiber Loaded with Birch Bark Triterpene Extract for Wound Dressing, AAPS PharmSciTech 22 (2021) 1-9.[8] T. Fan, R. Daniels, Preparation and Characterization of Electrospun Polylactic Acid (PLA) Fiber Loaded with Birch Bark Triterpene Extract for Wound Dressing, AAPS PharmSciTech 22 (2021) 1-9.

[9] Bardania H, Mahmoudi R, Bagheri H, Salehpour Z, Fouani MH, Darabian B, Khoramrooz SS, Mousavizadeh A, Kowsari M, Moosavifard SE, Christiansen G, Javeshghani D, Alipour M, Akrami M. Facile preparation of a novei biogenic silver-loaded Nanofilm with intrinsic antibacterial and oxidant scavenging activities for wound healing. Sci Rep. 2020 Apr 9; 10(1 ):6129. doi: 10.1038/S41598-020-63032-5. PMID: 32273549; PMCID: PMC7145826.[9] Bardania H, Mahmoudi R, Bagheri H, Salehpour Z, Fouani MH, Darabian B, Khoramrooz SS, Mousavizadeh A, Kowsari M, Moosavifard SE, Christiansen G, Javeshghani D, Alipour M, Akrami M. Facile preparation of a novei biogenic silver-loaded Nanofilm with intrinsic antibacterial and oxidant scavenging activities for wound healing. Science Rep. 2020 Apr 9; 10(1):6129. two: 10.1038/S41598-020-63032-5. PMID: 32273549; PMCID: PMC7145826.

[10] J.G. Powers, C. Higham, K. Broussard, T.J. Phillips, Wound healing and treating wounds: Chronic wound care and management, J. Am. Acad. Dermatol. 74 (2016) 607-625.[10] J.G. Powers, C. Higham, K. Broussard, T.J. Phillips, Wound healing and treating wounds: Chronic wound care and management, J. Am. Acad. Dermatol. 74 (2016) 607-625.

[11] Amalraj A, Haponiuk JT, Thomas S, Gopi S. Preparation, characterization and antimicrobial activity of polyvinyl alcohol/gum arabic/chitosan composite films incorporated with black pepper essential oii and ginger essential oii. Int J Biol Macromol. 2020 May 15; 151:366-375. doi: 10.1016/j.ijbiomac.2020.02.176. Epub 2020 Feb 18. PMID: 32084477.[11] Amalraj A, Haponiuk JT, Thomas S, Gopi S. Preparation, characterization and antimicrobial activity of polyvinyl alcohol/gum arabic/chitosan composite films incorporated with black pepper essential oils and ginger essential oils. Int J Biol Macromol. 2020 May 15; 151:366-375. doi: 10.1016/j.ijbiomac.2020.02.176. Epub 2020 Feb 18. PMID: 32084477.

[12] Vladyslav Vivcharenko and Agata Przekora, Modifications of Wound Dressings with Bioactive Agents to Achieve Improved Pro-Healing Properties, Appl. Soi. 2021, 11, 4114. https://doi.org/10.3390/appl 1094114[12] Vladyslav Vivcharenko and Agata Przekora, Modifications of Wound Dressings with Bioactive Agents to Achieve Improved Pro-Healing Properties, Appl. Variety. 2021, 11, 4114. https://doi.org/10.3390/appl 1094114

[13] Brevet JP6930733B2, Pseudoplastic microgel matrix compositions and kits[13] Patent JP6930733B2, Pseudoplastic microgel matrix compositions and kits

[14] Brevet US 10,946,057 B2, Antiseptics[14] US Patent 10,946,057 B2, Antiseptics

[15] Brevet CN 109745175[15] Patent CN 109745175

[16] Brevet CN 104784743[16] Patent CN 104784743

[17] Brevet US 2011104243[17] US Patent 2011104243

[18] Brevet US 2015030708[18] US Patent 2015030708

[19] Brevet US 10,561,761[19] US Patent 10,561,761

[20] Brevet DE102004047115B3, Method for producing a wound dressing[20] Patent DE102004047115B3, Method for producing a wound dressing

[21] Anjum Hamid Rather, Taha UmairWani, Rumysa Saleem Khan, Bishweshwar Pant, Mira Park and Faheem A. Sheikh, Prospects of Polymeric Nanofibers Loaded with Essential Oils for Biomedical and Food-Packaging Applications, Int. J. Mol. Sci. 2021, 22, 4017. https://doi.org/10.3390/ijms22084017[21] Anjum Hamid Rather, Taha UmairWani, Rumysa Saleem Khan, Bishweshwar Pant, Mira Park and Faheem A. Sheikh, Prospects of Polymeric Nanofibers Loaded with Essential Oils for Biomedical and Food-Packaging Applications, Int. J. Mol. Sci. 2021, 22, 4017. https://doi.org/10.3390/ijms22084017

[22] X.L. Shen, J.M. Wu, Y. Chen, G. Zhao, Antimicrobial and physical properties of sweet potato starch fihns incorporated with potassium sorbate or chitosan, Food Hydrocoll. 24 (2010) 285-290. https://doi.Org/10.1016/j.foodhyd.2009.10.003.[22] X.L. Shen, J.M. Wu, Y. Chen, G. Zhao, Antimicrobial and physical properties of sweet potato starch fibers incorporated with potassium sorbate or chitosan, Food Hydrocoll. 24 (2010) 285-290. https://doi.Org/10.1016/j.foodhyd.2009.10.003.

[23] N. Limpan, T. Prodpran, S. Benjakul, S. Prasarpran, Properties of biodegradable blend fihns based on fish myofibrillar protein and polyvinyl alcohol as influenced by blend composition and pH level, J. Food Eng. 100 (2010) 85-92. https://doi.Org/10.1016/j.jfoodeng.2010.03.031.[23] N. Limpan, T. Prodpran, S. Benjakul, S. Prasarpran, Properties of biodegradable blend fihns based on fish myofibrillar protein and polyvinyl alcohol as influenced by blend composition and pH level, J. Food Eng. 100 (2010) 85-92. https://doi.Org/10.1016/j.jfoodeng.2010.03.031.

[24] J.F. Su, Z. Huang, Y.H. Zhao, X.Y. Yuan, X.Y. Wang, M. Li, Moisture sorption and water vapor permeability of soy protein isolate/poly(vinyl alcohol)/glycerol blend films, Ind. Crops Prod. 31 (2010) 266-276. https://doi.Org/10.1016/j.indcrop.2009.ll.010.[24] J.F. Su, Z. Huang, Y.H. Zhao, X.Y. Yuan, X.Y. Wang, M. Li, Moisture sorption and water vapor permeability of soy protein isolate/poly(vinyl alcohol)/glycerol blend films, Ind. Crops Prod. 31 (2010) 266-276. https://doi.Org/10.1016/j.indcrop.2009.ll.010.

[25] S. Abdollahi, Z. Raoufi, Journal of Drug Delivery Science and Technology Gelatin / Persian gum / bacterial nanocellulose composite films containing Frankincense essential oii and Teucrium polium extract as a novei and bactericidal wound dressing, J. Drug Deliv. Sci. Technol. 72 (2022) 103423. https://doi.Org/10.1016/j.jddst.2022.103423.[25] S. Abdollahi, Z. Raoufi, Journal of Drug Delivery Science and Technology Gelatin / Persian gum / bacterial nanocellulose composite films containing Frankincense essential oii and Teucrium polium extract as a novei and bactericidal wound dressing, J. Drug Deliv. Sci. Technol. 72 (2022) 103423. https://doi.Org/10.1016/j.jddst.2022.103423.

[26] L. Jaiswal, S. Shankar, J.W. Rhim, Carrageenan-based funcțional hydrogel film reinforced with sulfur nanoparticles and grapefruit seed extract for wound healing application, Carbohydr. Polym. 224 (2019) 115191. https://doi.Org/10.1016/j.carbpol.2019.115191.[26] L. Jaiswal, S. Shankar, J.W. Rhim, Carrageenan-based functional hydrogel film reinforced with sulfur nanoparticles and grapefruit seed extract for wound healing application, Carbohydr. Polym. 224 (2019) 115191. https://doi.Org/10.1016/j.carbpol.2019.115191.

[27] J. Amirian, Y. Zeng, M.I. Shekh, G. Sharma, F.J. Stadler, J. Song, B. Du, Y. Zhu, In-situ crosslinked hydrogel based on amidated pectin/oxidized chitosan as potențial wound dressing for skin repairing, Carbohydr. Polym. 251 (2021) 117005.[27] J. Amirian, Y. Zeng, M.I. Shekh, G. Sharma, F.J. Stadler, J. Song, B. Du, Y. Zhu, In-situ crosslinked hydrogel based on amidated pectin/oxidized chitosan as potential wound dressing for skin repairing, Carbohydr. Polym. 251 (2021) 117005.

https://d0i.0rg/l 0.1016/j .carbpol.2020.117005.https://d0i.0rg/l 0.1016/j .carbpol.2020.117005.

[28] M. Muchovă, L. Mtinster, Z. Capâkovâ, V. Mikulcovă, I. Kuritka, J. Vicha, Design of dialdehyde cellulose crosslinked poly(vinyl alcohol) hydrogels for transdermal drug delivery and wound dressings, Mater. Sci. Eng. C. 116 (2020) 111242.[28] M. Muchovă, L. Mtinster, Z. Capâkovâ, V. Mikulcovă, I. Kuritka, J. Vicha, Design of dialdehyde cellulose crosslinked poly(vinyl alcohol) hydrogels for transdermal drug delivery and wound dressings, Mater. Sci. Eng. C. 116 (2020) 111242.

https://doi.Org/10.1016/j.msec.2020.l 11242.https://doi.Org/10.1016/j.msec.2020.l 11242.

[29] A. Hashemi Doulabi, H. Mirzadeh, M. Imani, N. Samadi, Chitosan/polyethylene glycol fumarate blend film: Physical and antibacterial properties, Carbohydr. Polym. 92 (2013) 48-56. https://d0i.0rg/l 0.1016/j.carbpol.2012.09.002.[29] A. Hashemi Doulabi, H. Mirzadeh, M. Imani, N. Samadi, Chitosan/polyethylene glycol fumarate blend film: Physical and antibacterial properties, Carbohydr. Polym. 92 (2013) 48-56. https://d0i.0rg/l 0.1016/j.carbpol.2012.09.002.

[30] S. Koosehgol, M. Ebrahimian-Hosseinabadi, M. Alizadeh, A. Zamanian, Preparation and characterization of in situ chitosan/polyethylene glycol fumarate/thymol hydrogel as an effective wound dressing, Mater. Sci. Eng. C. 79 (2017) 66-75.[30] S. Koosehgol, M. Ebrahimian-Hosseinabadi, M. Alizadeh, A. Zamanian, Preparation and characterization of in situ chitosan/polyethylene glycol fumarate/thymol hydrogel as an effective wound dressing, Mater. Sci. Eng. C. 79 (2017) 66-75.

https://doi.org/! 0.1016/j .msec.2017.05.001.https://doi.org/! 0.1016/j .msec.2017.05.001.

Claims (4)

1. Recepturi polimerice biocompatibile, pe baza de PVA / PVP, CMC caracterizata prin aceea ca rezulta prin amestecare in soluție apoasa a componentilor conform tabelului 3 si modului de lucru prezentat, pentru obținerea probei martor.1. Biocompatible polymer recipes, based on PVA / PVP, CMC characterized by the fact that it results from mixing the components in an aqueous solution according to table 3 and the work method presented, to obtain the control sample. 2. Recepturi polimerice antimicrobiene, biocompatibile, pe baza de PVA / PVP, CMC, ca in revendicarea 1, pentru utilizarea ca suport polimeric in producerea pansamentelor de tratare escare, caracterizata prin aceea ca prezintă proprietari antimicrobiene, datorita utilizării substanței active medicamentoase tetraciclină.2. Antimicrobial, biocompatible polymeric recipes, based on PVA / PVP, CMC, as in claim 1, for use as a polymeric support in the production of dressings for the treatment of bedsores, characterized by the fact that they have antimicrobial properties, due to the use of the active medicinal substance tetracycline. 3. Procedeu de obținere a recepturii polimerice antimicrobiana si biocompatibila pentru utilizarea ca suport polimeric in producerea pansamentelor de tratare escare, definita in exemplul 2 caracterizata prin aceea ca, uleiul esențial este introdus prin amestecare fizica intr-o matrice polimerica conform revendicării 1.3. Process for obtaining the antimicrobial and biocompatible polymeric recipe for use as a polymeric support in the production of eschar treatment dressings, defined in example 2, characterized in that the essential oil is introduced by physical mixing in a polymeric matrix according to claim 1. 4. Procedeu de obținere a unei recepturi polimerice antimicrobiana si biocompatibila pentru pansamente de tratare escare, caracterizate prin aceea ca uleiul esențial este încapsulat in microcapsule prin metoda emulsiei, iar microcapsulele sunt încărcate intr-o matrice polimerica conform revendicării 1, pentru utilizare ca suport polimeric in producerea pansamentelor de tratare a escarelor.4. Process for obtaining an antimicrobial and biocompatible polymeric recipe for eschar treatment dressings, characterized in that the essential oil is encapsulated in microcapsules by the emulsion method, and the microcapsules are loaded into a polymeric matrix according to claim 1, for use as a polymeric support in the production of dressings for the treatment of bedsores.
ROA202200580A 2022-09-23 2022-09-23 Polymeric support - medicament/essential oil for dressings to be used in treatment of bedsore wounds RO138006A2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
ROA202200580A RO138006A2 (en) 2022-09-23 2022-09-23 Polymeric support - medicament/essential oil for dressings to be used in treatment of bedsore wounds

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
ROA202200580A RO138006A2 (en) 2022-09-23 2022-09-23 Polymeric support - medicament/essential oil for dressings to be used in treatment of bedsore wounds

Publications (1)

Publication Number Publication Date
RO138006A2 true RO138006A2 (en) 2024-03-29

Family

ID=90458817

Family Applications (1)

Application Number Title Priority Date Filing Date
ROA202200580A RO138006A2 (en) 2022-09-23 2022-09-23 Polymeric support - medicament/essential oil for dressings to be used in treatment of bedsore wounds

Country Status (1)

Country Link
RO (1) RO138006A2 (en)

Similar Documents

Publication Publication Date Title
Deng et al. A review of current advancements for wound healing: Biomaterial applications and medical devices
Rezvani Ghomi et al. Wound dressings: Current advances and future directions
Mir et al. Synthetic polymeric biomaterials for wound healing: a review
Gruppuso et al. Polymeric wound dressings, an insight into polysaccharide-based electrospun membranes
Boateng et al. Advanced therapeutic dressings for effective wound healing—a review
Tarusha et al. Alginate membranes loaded with hyaluronic acid and silver nanoparticles to foster tissue healing and to control bacterial contamination of non-healing wounds
Daunton et al. A history of materials and practices for wound management
Sweeney et al. A critical review of modern and emerging absorbent dressings used to treat exuding wounds
Martin et al. Current trends in the development of wound dressings, biomaterials and devices
EP3695855A1 (en) Alginate wound repair dressing and preparation method thereof
Li et al. Antibacterial strategies for wound dressing: preventing infection and stimulating healing
RU2422133C1 (en) Hydrophylic gel, method of its obtaining (versions), wound covering and based on it bandage means
CN101954117A (en) Hemostatic bacteriostatic biological dressing and preparation method thereof
CN107137748B (en) Core-shell electrostatic spinning chitosan nanofiber wound dressing and preparation method thereof
Gupta et al. Antimicrobial and release study of drug loaded PVA/PEO/CMC wound dressings
de Souza et al. Biopolymer-based films and membranes as wound dressings
Ahmed et al. Medicated multi-targeted alginate-based dressings for potential treatment of mixed bacterial-fungal infections in diabetic foot ulcers
Bülbül et al. Traditional and advanced wound dressings: physical characterization and desirable properties for wound healing
Shi et al. Recent progresses of collagen dressings for chronic skin wound healing
Thomas 12 Wound Dressings
Augustine et al. Role of wound dressings in the management of chronic and acute diabetic wounds
Sehgal et al. Drug delivery dressings
Ghaffari et al. Wound healing and nanotechnology: Opportunities and challenges
RO138006A2 (en) Polymeric support - medicament/essential oil for dressings to be used in treatment of bedsore wounds
Buyana et al. Antibiotics encapsulated scaffolds as potential wound dressings