RO137257A2 - Oxy-fluoro-nanocarbon sensitive layers for resistive detection of humidity - Google Patents
Oxy-fluoro-nanocarbon sensitive layers for resistive detection of humidity Download PDFInfo
- Publication number
- RO137257A2 RO137257A2 ROA202100394A RO202100394A RO137257A2 RO 137257 A2 RO137257 A2 RO 137257A2 RO A202100394 A ROA202100394 A RO A202100394A RO 202100394 A RO202100394 A RO 202100394A RO 137257 A2 RO137257 A2 RO 137257A2
- Authority
- RO
- Romania
- Prior art keywords
- cnhs
- cnos
- fact
- sensitive layer
- electrodes
- Prior art date
Links
Landscapes
- Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
Abstract
Description
Umiditatea este unul dintre parametrii fizici monitorizați cel mai frecvent și are o mare importanță în multiple domenii de activitate casnică și industrială precum controlul calității aerului în spații închise, meteorologie, industria prelucrării lemnului, transport (alimente, medicamente), industria farmaceutică, agricultură (silozuri, controlul umidității solului), industria chimică( uscătoare, purificarea gazelor chimice, cuptoare) industria auto (controlul umidității uleiului, linii de asamblare a motoarelor),industria electronică(plachete, cipuri), etc. [1-5]Alături de polielectroliți [6-9], oxizi metalici semiconductori[ 10-13], materiale nanocarbonice[14- 18], materialele fluorurate (polimeri, materiale nanocarbonice, minerale sintetice) au suscitat interesul în utilizarea lor ca straturi senzitive în monitorizarea umidității relative[19],Humidity is one of the most frequently monitored physical parameters and is of great importance in multiple areas of domestic and industrial activity such as indoor air quality control, meteorology, wood processing industry, transport (food, medicine), pharmaceutical industry, agriculture (silos , soil moisture control), chemical industry (dryers, chemical gas purification, furnaces) automotive industry (oil moisture control, engine assembly lines), electronic industry (plates, chips), etc. [1-5] Along with polyelectrolytes [6-9], semiconductor metal oxides [10-13], nanocarbon materials [14-18], fluorinated materials (polymers, nanocarbon materials, synthetic minerals) have raised interest in their use as layers sensitive in monitoring relative humidity[19],
Leng și colaboratorii publică un studiu[20, 21] privind utilizarea unui film hibrid de tipul oxid de grafenă modificat (MGO)/Nafion ca strat senzitiv în detecția umidității. Funcționalizarea materialului nanocarbonic hidrofil s-a realizat cu 1,6 diamino hexan în prezența unui agent de cuplare de tipul clorhidrat de l-(3-dimetilaminopropil)- 3etilcarbodiimidă. Evaluarea performanțelor senzorului de umiditate s-a realizat fie prin modularea spectrelor de impedanță pentru extragerea rezistenței de transfer a sarcinii (Ret), fie prin măsurarea impedanței sub o anumită frecvență.Atât grafena funcționalizată cu 1,6 diamino hexan, cât și compozitul acesteia cu Nafion prezintă o bună sensibilitate la RH în cadrul celor două metode de testare. Adăugarea Nafionului scade rezistența de transfer a sarcinii și crește sensibilitatea senzorului bazat pe MGO. Liniaritatea senzorului este îmbunătățită prin utilizarea nanocompozitului MGO/Nafion în comparație cu MGO.Leng et al publish a study[20, 21] on the use of a modified graphene oxide (MGO)/Nafion hybrid film as a sensitive layer in moisture detection. The functionalization of the hydrophilic nanocarbon material was carried out with 1,6 diamino hexane in the presence of a coupling agent of the type 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride. The performance evaluation of the humidity sensor was carried out either by modulating the impedance spectra to extract the charge transfer resistance (Ret), or by measuring the impedance below a certain frequency. Both graphene functionalized with 1,6 diamino hexane and its composite with Nafion present good sensitivity to RH in both test methods. The addition of Nafion decreases the charge transfer resistance and increases the sensitivity of the MGO-based sensor. The linearity of the sensor is improved by using MGO/Nafion nanocomposite compared to MGO.
Chen și colaboratorii[22] utilizează un nanocompozit de tipul nanotuburi de carbon /Nafion în detecția gravimetrică a umidității, utilizând un senzor de tipul QCM ( microbalantă cu cristal de cuart). Limita de detecție a acestui sistem de detectare a fost de aproximativ 15,76 ppmv. Stratul senzitiv CNT / Nafion a prezentat o sensibilitate excelentă, liniaritate și timp de recuperare mic (mai puțin de 5 s), la punctul de testare de 15,76 ppmv.Nanocompozitul de tipul TiO2/Nafion[23], teflonul modificat chimic[24], ftalocianinele de zinc asimetrice conținând grupări de tipul fluoro și alchinil[25] au fost utilizate ca straturi senzitive în detecția umidității.Chen et al[22] use a carbon nanotube/Nafion nanocomposite in the gravimetric detection of humidity, using a QCM (quartz crystal microbalance) sensor. The detection limit of this detection system was approximately 15.76 ppmv. The CNT / Nafion sensing layer exhibited excellent sensitivity, linearity and short recovery time (less than 5 s) at the test point of 15.76 ppmv. The TiO2/Nafion type nanocomposite[23], the chemically modified Teflon[24 ], asymmetric zinc phthalocyanines containing fluoro and alkynyl groups[25] were used as sensitive layers in moisture detection.
Brevetul de invenție US 4, 681, 855 cu titlul “ Humidity sensing and measurement employing halogenated organic polymer membranes ” ( Peter H. Huang) se referă la sinteza unei membrane polimerice fluorurate de tip Teflon pe care sunt grefate grupări de tip carboxilic și sulfonic într-un raport molar care poate varia de la 1: 100 până la 100:1. Membrana polimerică revendicată se poate utiliza ca strat senzitiv atât în designul unor senzori de tip conductiv, cât și ca parte componentă a unor structuri de tip optic sau gravimetric. în cazul utilizării unei detecții de tip conductiv, raportul optim grupări carboxilice/grupări sulfonice, în vederea obținerii unei conducții adecvate și a unui histerezis mic, este 1:2.US patent 4,681,855 with the title "Humidity sensing and measurement employing halogenated organic polymer membranes" (Peter H. Huang) refers to the synthesis of a Teflon-type fluorinated polymer membrane on which carboxylic and sulfonic groups are grafted in -a molar ratio that can vary from 1:100 to 100:1. The claimed polymeric membrane can be used as a sensitive layer both in the design of conductive sensors and as a component of optical or gravimetric structures. when using a conductive type detection, the optimal ratio of carboxyl groups/sulfonic groups, in order to obtain adequate conduction and low hysteresis, is 1:2.
Brevetul de invenție EP 3 211 408 Bl cu titlul „Relative humidity sensor and method” (Bogdan-Cătălin Serban, Mihai Brezeanu, Octavian Buiu, Cornel P. Cobianu) se referă la un senzor capacitiv de umiditate utilizând ca strat senzitiv un compozit de tipul polimer hidrofil/ filer hidrofob. Polimerul hidrofil selectat este celuloza acetat butirat (cu maseThe invention patent EP 3 211 408 Bl entitled "Relative humidity sensor and method" (Bogdan-Cătălin Serban, Mihai Brezeanu, Octavian Buiu, Cornel P. Cobianu) refers to a capacitive humidity sensor using as a sensitive layer a composite of the type hydrophilic polymer/hydrophobic filler. The selected hydrophilic polymer is cellulose acetate butyrate (with masses
moleculare cuprinse între 12.000 g/mol și 70.000 g/mol), în timp ce filerul hidrofob utilizat este un material fluorurat organic (Viton) sau anorganic (mică sintetică fluorurată). Prezența componentului fluorurat în stratul senzitiv (5-10% în procente masice) are rolul de a modula hidrofobicitatea, îmbunătățind performanța senzorului prin micșorarea histerezisului.molecular weights between 12,000 g/mol and 70,000 g/mol), while the hydrophobic filler used is an organic fluorinated material (Viton) or inorganic (small fluorinated synthetic). The presence of the fluorinated component in the sensitive layer (5-10% in mass percentage) has the role of modulating the hydrophobicity, improving the performance of the sensor by reducing the hysteresis.
Brevetul de invenție US 5, 045, 828 cu titlul „ Fluoropolymer humidity sensors”( B.M Kulwicki, R.T McGovern, T.C. Conlan) se referă la un senzor rezistiv de umiditate utilizând ca strat senzitiv Nafion în care protonii ( H+) sunt înlocuiți cu ioni de tipul NH4+ și Li+. Noul film sensibil la variația valorii umidității relative prezintă avantajul unei schimbări predictibile a parametrilor electrici, fără a avea o derivă semnificativă.US patent 5,045,828 entitled "Fluoropolymer humidity sensors" (BM Kulwicki, RT McGovern, TC Conlan) refers to a resistive humidity sensor using Nafion as a sensitive layer in which protons ( H + ) are replaced by ions of the NH 4+ and Li + type. The new relative humidity sensitive film has the advantage of a predictable change in electrical parameters without significant drift.
Pe de altă parte, nanohornurile carbonice oxidate, nanomateriale hidrofile cu suprafață specifică mare și conducție excelentă [26-28], au fost utilizate recent în monitorizarea umidității relative. Asfel, au fost raportați în literatură senzori rezistivi de umiditate care utilizează drept straturi senzitive nanohornuri carbonice oxidate[29], nanocompozite binare de tipul polivinilpirolidonă - nanohornuri carbonice oxidate[30, 31] sau nanocompozite ternare de tipul nanohornuri carbonice oxidate- polivinilpirolidonă- oxid de grafenă [32], nanohornuri carbonice oxidate- ZnO- PVP [33], nanohornuri carbonice oxidate- SnO2-PVP [34], în toate cazurile menționate mai sus, creșterea nivelului de umiditate relativă a condus la o creștere proporțională a valorii rezistenței măsurate.On the other hand, oxidized carbon nanotubes, hydrophilic nanomaterials with high specific surface area and excellent conductivity [26–28], have recently been used in relative humidity monitoring. Thus, resistive humidity sensors using oxidized carbon nanohorns[29], binary polyvinylpyrrolidone-oxidized carbon nanohorns[30, 31] or ternary nanocomposites of the oxidized carbon nanohorns-polyvinylpyrrolidone-oxide have been reported in the literature. graphene [32], oxidized carbon nanohorns- ZnO-PVP [33], oxidized carbon nanohorns- SnO 2 -PVP [34], in all cases mentioned above, the increase in the level of relative humidity led to a proportional increase in the measured resistance value .
Cererea de brevet de invenție RO 134261A2 cu titlul „Senzor chemirezistiv de umiditate pe bază de matrice nanocompozite conținând nanohornuri carbonice hidrofile” (Bogdan-Cătălin Șerban, Octavian Buiu, Cornel Cobianu, Viorel Avramescu, Ionela Cristina Pachiu, Octavian Narcis lonescu, Maria Roxana Marinescu) se referă la un senzor rezistiv de umiditate utilizând ca filme senzitive nanocompozite constituite din nanohornuri carbonice oxidate /carboximetilceluloza și nanohornuri carbonice oxidate /agaroza. Senzorul propus este constituit dintr-un substrat dielectric precum Lexan, electrozi (crom, aluminiu, cupru, etc.) și filmul sensibil la umiditate, depus prin metodele „ spin coating” sau „drop casting”.Patent application RO 134261A2 with the title "Chemiresistive humidity sensor based on nanocomposite matrices containing hydrophilic carbon nanohorns" (Bogdan-Cătălin Șerban, Octavian Buiu, Cornel Cobianu, Viorel Avramescu, Ionela Cristina Pachiu, Octavian Narcis lonescu, Maria Roxana Marinescu ) refers to a resistive humidity sensor using nanocomposite sensitive films consisting of oxidized carbon nanohorns /carboxymethylcellulose and oxidized carbon nanohorns /agarose. The proposed sensor is made up of a dielectric substrate such as Lexan, electrodes (chrome, aluminum, copper, etc.) and the moisture-sensitive film, deposited by the "spin coating" or "drop casting" methods.
Cererea de brevet de invenție RO 134263A2 cu titlul „Senzor chemirezistiv de umiditate pe bază de compozite nanocarbonice” (Bogdan-Cătălin Șerban, Octavian Buiu, Cornel Cobianu, Viorel Avramescu, Octavian Narcis lonescu, Maria Roxana Marinescu,) se referă la un senzor rezistiv de umiditate utilizând ca straturi senzitive materiale nanocompozite constituite din nanohornuri carbonice oxidate/polivinilpirolidonă (PVP) și nanohornuri carbonice oxidate/ alcool polivinilic (PVA).Senzorul propus este constituit dintr-un substrat dielectric precum sticla, PET, Kapton electrozi (aluminiu, cupru, crom, etc.) și filmul sensibil la umiditate, depus prin metodele electrospinning (electrofilare), spin coating, drop casting.The invention patent application RO 134263A2 with the title "Chemiresistive humidity sensor based on nanocarbon composites" (Bogdan-Cătălin Șerban, Octavian Buiu, Cornel Cobianu, Viorel Avramescu, Octavian Narcis lonescu, Maria Roxana Marinescu) refers to a resistive sensor humidity using as sensitive layers nanocomposite materials consisting of oxidized carbon nanohorns/polyvinylpyrrolidone (PVP) and oxidized carbon nanohorns/polyvinyl alcohol (PVA). The proposed sensor is made of a dielectric substrate such as glass, PET, Kapton electrodes (aluminum, copper, chrome, etc.) and the film sensitive to humidity, deposited by the methods of electrospinning (electrospinning), spin coating, drop casting.
Nu în ultimul rând, nanocepele (“carbon nano-onions”- CNOs), materiale nanocarbonice constituite din straturi grafitice cvasi-sferice sau de formă poliedrică [35], se utilizează în designul senzorilor chimici [ 36,37],Last but not least, carbon nano-onions (CNOs), nanocarbon materials consisting of quasi-spherical or polyhedral graphitic layers [35], are used in the design of chemical sensors [36,37],
Brevetul de invenție EP2154520B1 cu titlul “Gas sensor, gas measuring system using the gas sensor, and gas detection method” (Yasuhiko Kasama, Kenji Omote, Kuniyoshi Yokoo, Yuzo Mizobuchi, Haruna Oizumi, Morihiko Saida, Hiroyuki Sagami, Kazuaki Mizokami, Takeo Furukawa, Yasuhiko Kasama, Kenji Omote, Kuniyoshi Yokoo, Yuzo Mizobuchi, Haruna Oizumi Morihiko Saida, Hiroyuki Sagami, Kazuaki Mizokami, Takeo Furukawa) se referă la un senzor rezistiv de gaze in care stratul senzitiv poate fi constituit dintr-un material nanocarbonic precum nanocepe, nanotuburi de carbon, fulerene, Conductivitatea stratului senzitiv variază proporțional cu concentrația gazului ce urmează a fi analizat.Invention patent EP2154520B1 with the title "Gas sensor, gas measuring system using the gas sensor, and gas detection method" (Yasuhiko Kasama, Kenji Omote, Kuniyoshi Yokoo, Yuzo Mizobuchi, Haruna Oizumi, Morihiko Saida, Hiroyuki Sagami, Kazuaki Mizokami, Takeo Furukawa , Yasuhiko Kasama, Kenji Omote, Kuniyoshi Yokoo, Yuzo Mizobuchi, Haruna Oizumi Morihiko Saida, Hiroyuki Sagami, Kazuaki Mizokami, Takeo Furukawa) refers to a resistive gas sensor in which the sensitive layer can be made of a nanocarbon material such as nanoonions, carbon nanotubes, fullerenes, The conductivity of the sensitive layer varies proportionally with the concentration of the gas to be analyzed.
Straturile senzitive descrise în această invenție, care pot fi utilizate pentru obținerea unor senzori rezistivi de umiditate relativă, sunt nanohornuri carbonice oxifluorurate (notate generic ox-CNHs-F, Fig.l), materiale nanocarbonice de tip ceapă oxifluorurate ( notate generic ox-CNOs-F, Fig.2), precum și nanocompozite binare de tipul ox-CNHs-F/ox-CNOsF Din punct de vedere al principiului de detecție, rezistența stratului senzitiv variază cu nivelul umidității relative.The sensitive layers described in this invention, which can be used to obtain resistive relative humidity sensors, are oxyfluorinated carbon nanohorns (generically labeled ox-CNHs-F, Fig.l), oxyfluorinated onion-type nanocarbon materials (generically labeled ox-CNOs -F, Fig.2), as well as binary ox-CNHs-F/ox-CNOsF type nanocomposites From the point of view of the detection principle, the resistance of the sensitive layer varies with the level of relative humidity.
Utilizarea ca straturi senzitive a ox-CNHs-F, ox-CNOs-F, precum si a nanocompozitelor binare de tipul ox-CNHs-F/ ox-CNOs-F câteva avantaje semnificative:The use as sensitive layers of ox-CNHs-F, ox-CNOs-F, as well as binary nanocomposites of the type ox-CNHs-F/ ox-CNOs-F several significant advantages:
- prezența funcțiunilor oxigenate, generate prin tratamentul în plasmă de Ar-O2, asigură un grad de hidrofil icitate necesar interacției cu apa;- the presence of oxygenated functions, generated by the Ar-O 2 plasma treatment, ensures a degree of hydrophilicity necessary for interaction with water;
- atomii de fluor, prin efectul atrăgător de electroni, cresc numărul de purtători atât în nanohornuri carbonice, cât și în materialele nanocarbonice de tip ceapă. Cum în ambele structuri nanocarbonice conducția se realizează prin goluri ( purtători de tip p), senzitivitatea materialului pentru moleculele de apă crește;- fluorine atoms, through the electron-attracting effect, increase the number of carriers both in carbon nanohorns and in onion-type nanocarbon materials. As in both nanocarbonic structures conduction is achieved through gaps (p-type carriers), the material's sensitivity to water molecules increases;
- prezența atomilor de fluor micșorează histerezisul prin efectul lor hidrofob;- the presence of fluorine atoms reduces the hysteresis through their hydrophobic effect;
- datorită electronegativității mărite, atomii de fluor cresc polaritatea suprafeței materialului nanocarbonic, creând dipoli temporari care facilitează interacția cu moleculele de apă.- due to the increased electronegativity, the fluorine atoms increase the polarity of the surface of the nanocarbon material, creating temporary dipoles that facilitate the interaction with water molecules.
- stabilitate chimică și termică;- chemical and thermal stability;
- proprietăți mecanice superioare;- superior mechanical properties;
- detecție la temperatura camerei;- detection at room temperature;
Funcționalizarea materialelor nanocarbonice în plasmă de F2-N2/ si Ar-O2 are avantajul (prin varierea tipului de plasmă, a timpului de expunere, precum și a puterii acesteia) că poate asigura un raport optim C:F: O, conferind sincron o senzitivitate corespunzătoare precum și o micșorare a histerezisului.The functionalization of nanocarbon materials in plasma of F 2 -N 2 / and Ar-O 2 has the advantage (by varying the type of plasma, the exposure time, as well as its power) that it can ensure an optimal C:F:O ratio, giving synchronously a corresponding sensitivity as well as a decrease in hysteresis.
Substratul senzorului este realizat din Si/SiO2 si are o dimensiune de 5 mm, electrozii fiind constituiti din aur. Lățimea electrozilor este de aproximativ 200 microni, cu o separare de 6 mm între ele. Ei pot fi liniari (Fig.3) sau pot avea o configurație interdigitată (Fig.4). Capacitatea de monitorizare a umidității relative este investigată prin aplicarea unui curent constant între cei doi electrozi și măsurarea tensiunii la diferite valori ale nivelului de umiditate relativă la care este expus stratul senzitiv de tipul ox-CNHs-F, ox-CNOs-F și nanocompozite binare de tipul ox-CNHs-F/ox-CNOs-F.The sensor substrate is made of Si/SiO 2 and has a size of 5 mm, the electrodes being made of gold. The width of the electrodes is about 200 microns, with a separation of 6 mm between them. They can be linear (Fig.3) or have an interdigitated configuration (Fig.4). The relative humidity monitoring capability is investigated by applying a constant current between the two electrodes and measuring the voltage at different values of the relative humidity level to which the sensitive layer of ox-CNHs-F, ox-CNOs-F and binary nanocomposites is exposed of the ox-CNHs-F/ox-CNOs-F type.
în cele ce urmează se prezintă etapele necesare pentru obținerea straturilor senzitive la umiditate relativă,precum și pentru obținerea senzorilor rezistivi de umiditate relativă.In the following, the necessary steps are presented for obtaining relative humidity sensitive layers, as well as for obtaining relative humidity resistive sensors.
Exemplul 1Example 1
Etapele necesare obținerii stratului senzitiv constituit din ox-CNOs-F sunt următoarele:The necessary steps to obtain the sensitive layer made of ox-CNOs-F are the following:
1) Materiale nanocarbonice de tip ceapă (CNOs) se sintetizează din nanodiamant, prin tratament termic la 1650°C, în atmosferă de heliu.1) Onion-type nanocarbon materials (CNOs) are synthesized from nanodiamond, by thermal treatment at 1650°C, in a helium atmosphere.
2) Sinteza materialelor nanocarbonice fluorurate de tip ceapă ( CNOs-F) se realizează prin tratament în plasmă de F2 și N2( amestec echimolecular) la o presiune de 0,5 bari, în reactor de nichel, la temperatura camerei. Timpul de injecție este de 4 minute, timpul de expunere variind între 1 și 3 minute.2) The synthesis of fluorinated onion-type nanocarbon materials (CNOs-F) is carried out by plasma treatment of F 2 and N 2 (equimolecular mixture) at a pressure of 0.5 bar, in a nickel reactor, at room temperature. The injection time is 4 minutes, the exposure time varying between 1 and 3 minutes.
3) Oxidarea CNOs-F se realizează prin tratament în plasma de Ar-Οτ ( amestec volumetric 2/1), în tub de cuart, la o presiune de 3 torr, la temperatura camerei. Timpul de injecție este de 5 minute, timpul de expunere variind între 2 și 4 minute.3) CNOs-F oxidation is carried out by treatment in Ar-Οτ plasma (volumetric mixture 2/1), in a quartz tube, at a pressure of 3 torr, at room temperature. The injection time is 5 minutes, the exposure time varying between 2 and 4 minutes.
4) Dispersia de ox-CNOs-F se prepară prin dizolvarea a 2 mg de ox-CNOs-F în 5 mL alcool izopropilic, sub agitare magnetică timp de 30 minute, la temperatura camerei.4) The dispersion of ox-CNOs-F is prepared by dissolving 2 mg of ox-CNOs-F in 5 mL of isopropyl alcohol, under magnetic stirring for 30 minutes, at room temperature.
5) Dispersia obținută se depune prin metodadrop casting utilizând un substrat de Si/SiO2 cu electrozi liniari sau cu electrozi interdigitați (după ce în prealabil s-a realizat mascarea zonei de contacte).5) The obtained dispersion is deposited by the drop casting method using a Si/SiO 2 substrate with linear electrodes or with interdigitated electrodes (after masking the contact area beforehand).
6) Stratul senzitiv obținut se supune unui tratament termic la 90°C, timp de două ore ,în vid.6) The sensitive layer obtained is subjected to a heat treatment at 90°C, for two hours, in a vacuum.
Exemplul 2Example 2
Etapele necesare obținerii stratului senzitiv constituit din ox-CNOs-F sunt următoarele:The necessary steps to obtain the sensitive layer made of ox-CNOs-F are the following:
1) Materiale nanocarbonice de tip ceapă (CNOs) se sintetizează din nanodiamant, prin tratament termic la 1650°C, în atmosferă de heliu.1) Onion-type nanocarbon materials (CNOs) are synthesized from nanodiamond, by thermal treatment at 1650°C, in a helium atmosphere.
2) Sinteza materialelor nanocarbonice oxidate de tip ceapă ( οχ-CNOs) se realizează prin tratament în plasma de Ar-O2 ( amestec volumetric 2/1), în tub de cuart, la o presiune de 3 torr, la temperatura camerei. Timpul de injecție este de 5 minute, timpul de expunere variind între 2 și 4 minute.2) The synthesis of onion-type oxidized nanocarbon materials (οχ-CNOs) is carried out by treatment in Ar-O 2 plasma (volumetric mixture 2/1), in a quartz tube, at a pressure of 3 torr, at room temperature. The injection time is 5 minutes, the exposure time varying between 2 and 4 minutes.
3) Fluorurarea ox- CNOs se realizează prin tratament tratament în plasmă de F2 și N2( amestec echimolecular) la o presiune de 0,5 bari, în reactor de nichel, la temperatura camerei .Timpul de injecție este de 4 minute, timpul de expunere variind între 1 și 3 minute.3) Ox-CNOs fluorination is carried out by plasma treatment of F 2 and N 2 (equimolecular mixture) at a pressure of 0.5 bar, in a nickel reactor, at room temperature. The injection time is 4 minutes, the time of exposure varying between 1 and 3 minutes.
4) Dispersia de ox-CNOs-F se prepară prin dizolvarea a 2 mg de ox-CNOs-F în 5 mL alcool izopropilic, sub agitare magnetică timp de 30 minute, la temperatura camerei.4) The dispersion of ox-CNOs-F is prepared by dissolving 2 mg of ox-CNOs-F in 5 mL of isopropyl alcohol, under magnetic stirring for 30 minutes, at room temperature.
5) Dispersia obținută se depune prin metodadrop casting utilizând un substrat de Si/SiO2 cu electrozi liniari sau cu electrozi interdigitați (după ce în prealabil s-a realizat mascarea zonei de contacte).5) The obtained dispersion is deposited by the drop casting method using a Si/SiO 2 substrate with linear electrodes or with interdigitated electrodes (after masking the contact area beforehand).
6) Stratul senzitiv obținut se supune unui tratament termic la 90°C, timp de două ore , în vid6) The sensitive layer obtained is subjected to a heat treatment at 90°C, for two hours, in a vacuum
Exemplul 3Example 3
Etapele necesare obținerii stratului senzitiv οχ-CNHs-F sunt următoarele:The necessary steps to obtain the sensitive layer οχ-CNHs-F are the following:
l)Sinteza CNHs-F se realizează prin tratament în plasmă de F2 si N2( amestec echimolecular) la o presiune de 0,5 bari, în reactor de nichel, la temperatura camerei. Timpul de injecție este de 4 minute, timpul de expunere variind între 2 și 4 minute.l) The synthesis of CNHs-F is carried out by plasma treatment of F 2 and N 2 (equimolecular mixture) at a pressure of 0.5 bar, in a nickel reactor, at room temperature. The injection time is 4 minutes, the exposure time varying between 2 and 4 minutes.
2)Oxidarea CNHs-F se realizează prin tratament în plasmă de Ar/O2 ( amestec volumetric 2/1), în tub de cuart, la o presiune de 3 torr, la temperatura camerei. Timpul de injecție este de 5 minute, timpul de expunere variind între 2 și 4 minute.2) The oxidation of CNHs-F is carried out by plasma treatment of Ar/O 2 (volumetric mixture 2/1), in a quartz tube, at a pressure of 3 torr, at room temperature. The injection time is 5 minutes, the exposure time varying between 2 and 4 minutes.
3)Dispersia οχ-CNHs-F se prepară prin dizolvarea a 1 mg de CNHs-F în 3 mL alcool izopropilic, sub agitare magnetică timp de trei ore, la temperatura camerei.3) The οχ-CNHs-F dispersion is prepared by dissolving 1 mg of CNHs-F in 3 mL of isopropyl alcohol, under magnetic stirring for three hours, at room temperature.
4)Dispersia obținută se depune prin metodadrop casting utilizând un substrat de Si/SiO2cu electrozi liniari sau cu electrozi interdigitați (după ce în prealabil s-a realizat mascarea zonei de contacte).4) The obtained dispersion is deposited by the drop casting method using a Si/SiO 2 substrate with linear electrodes or with interdigitated electrodes (after masking the contact area beforehand).
5) Stratul senzitiv obținut se supune unui tratament termic la 90°C, timp de două ore, în vid.5) The sensitive layer obtained is subjected to a thermal treatment at 90°C, for two hours, in a vacuum.
Exemplul 4Example 4
Etapele necesare obținerii stratului senzitiv οχ-CNHs-F sunt următoarele:The necessary steps to obtain the sensitive layer οχ-CNHs-F are the following:
l)Sinteza ox- CNHs se realizează prin tratament în plasmă de Ar-O2 ( amestec volumetric 2/1), în tub de cuart, la o presiune de 3 torr, la temperatura camerei. Timpul de injecție este de 5 minute, timpul de expunere variind între 2 și 4 minute.l) The synthesis of ox-CNHs is carried out by plasma treatment of Ar-O 2 (volumetric mixture 2/1), in a quartz tube, at a pressure of 3 torr, at room temperature. The injection time is 5 minutes, the exposure time varying between 2 and 4 minutes.
2)Fluorurarea ox- CNHs se realizează prin tratament în plasma de F2 si N2( amestec echimolecular) la o presiune de 0,5 bari, în reactor de nichel, la temperatura camerei. Timpul de injecție este de 4 minute, timpul de expunere variind între 2 și 4 minute.2) The fluorination of ox-CNHs is carried out by plasma treatment of F 2 and N 2 (equimolecular mixture) at a pressure of 0.5 bar, in a nickel reactor, at room temperature. The injection time is 4 minutes, the exposure time varying between 2 and 4 minutes.
3)Dispersia οχ-CNHs-F se prepară prin dizolvarea a 1 mg de CNHs-F în 3 mL alcool izopropilic, sub agitare magnetică timp de trei ore, la temperatura camerei.3) The οχ-CNHs-F dispersion is prepared by dissolving 1 mg of CNHs-F in 3 mL of isopropyl alcohol, under magnetic stirring for three hours, at room temperature.
4) Dispersia obținută se depune prin metodadrop casting utilizând un substrat de Kapton cu electrozi liniari sau cu electrozi interdigitați (după ce în prealabil s-a realizat mascarea zonei de contacte).4) The obtained dispersion is deposited by the drop casting method using a Kapton substrate with linear electrodes or with interdigitated electrodes (after masking the contact area beforehand).
5)Stratul senzitiv obținut se supune unui tratament termic la 90°C, timp de două ore ,în vid.5) The sensitive layer obtained is subjected to a thermal treatment at 90°C, for two hours, in a vacuum.
Exemplul 5Example 5
Etapele necesare obținerii stratului senzitiv ox-CNH-F/ ox-CNOs-F sunt următoarele:The steps required to obtain the ox-CNH-F/ox-CNOs-F sensitive layer are as follows:
1) 1) Materiale nanocarbonice de tip ceapă (CNOs) se sintetizează din nanodiamant, prin tratament termic la 1650°C, în atmosferă de heliu.1) 1) Onion-type nanocarbon materials (CNOs) are synthesized from nanodiamond, by heat treatment at 1650°C, in a helium atmosphere.
2) Sinteza materialelor nanocarbonice oxidate de tip ceapă ( ox-CNOs) se realizează prin tratament în plasma de Ar-O2 ( amestec volumetric 2/1), în tub de cuart, la o presiune de 3 torr, la temperatura camerei. Timpul de injecție este de 5 minute, timpul de expunere variind între 2 și 4 minute.2) The synthesis of oxidized onion-type nanocarbon materials (ox-CNOs) is carried out by treatment in Ar-O2 plasma (volumetric mixture 2/1), in a quartz tube, at a pressure of 3 torr, at room temperature. The injection time is 5 minutes, the exposure time varying between 2 and 4 minutes.
3) Fluorurarea ox- CNOs se realizează prin tratamentul CNOs în plasmă de F2 si N2( amestec echimolecular) la o presiune de 0,5 bari, în reactor de nichel, la temperatura camerei. Timpul de injecție este de 4 minute, timpul de expunere variind între 1 și 3 minute.3) Ox-CNOs fluorination is carried out by treating CNOs in F2 and N2 plasma (equimolecular mixture) at a pressure of 0.5 bar, in a nickel reactor, at room temperature. The injection time is 4 minutes, the exposure time varying between 1 and 3 minutes.
4) Sinteza CNHs-F se realizează prin tratamentul nanohornurilor carbonice simple în plasma de F2 si N2( amestec echimolecular) la o presiune de 0,5 bari, în reactor de nichel, la temperatura camerei. Timpul de injecție este de 4 minute, timpul de expunere variind între 2 și 4 minute.4) The synthesis of CNHs-F is carried out by the treatment of simple carbon nanohorns in F2 and N2 plasma (equimolecular mixture) at a pressure of 0.5 bar, in a nickel reactor, at room temperature. The injection time is 4 minutes, the exposure time varying between 2 and 4 minutes.
5) Oxidarea CNHs-F se realizează prin tratament în plasma de Ar-O2 ( amestec volumetric 2/1), în tub de cuart, la o presiune de 3 torr, la temperatura camerei. Timpul de injecție este de 5 minute, timpul de expunere variind între 2 și 4 minute.5) The oxidation of CNHs-F is carried out by treatment in Ar-O2 plasma (volumetric mixture 2/1), in a quartz tube, at a pressure of 3 torr, at room temperature. The injection time is 5 minutes, the exposure time varying between 2 and 4 minutes.
6) Dispersia de ox-CNOs-F/ ox -CNHs-F se prepară prin dizolvarea a 2 mg de oxCNOs-F și 2 mg οχ-CNHs-F în 10 mL alcool izopropilic, sub agitare magnetică timp de șase ore, la temperatura camerei.6) The dispersion of ox-CNOs-F/ ox-CNHs-F is prepared by dissolving 2 mg of oxCNOs-F and 2 mg of οχ-CNHs-F in 10 mL of isopropyl alcohol, under magnetic stirring for six hours, at temperature the room.
7) Dispersia obținută se depune prin metodadrop casting utilizând un substrat de Si/SiO2 cu electrozi liniari sau cu electrozi interdigitați (după ce în prealabil s-a realizat mascarea zonei de contacte).7) The obtained dispersion is deposited by the drop casting method using a Si/SiO2 substrate with linear electrodes or with interdigitated electrodes (after masking the contact area beforehand).
8) Stratul senzitiv obținut se supune unui tratament termic la 90°C, timp de două ore ,în vid.8) The sensitive layer obtained is subjected to a thermal treatment at 90°C, for two hours, in a vacuum.
REFERINȚEreference
1. Serban, B. C., Buiu, O., Dumbravescu, N., Cobianu, C., Avramescu, V., Brezeanu, M., ...1. Serban, B. C., Buiu, O., Dumbravescu, N., Cobianu, C., Avramescu, V., Brezeanu, M., ...
& Nicolescu, C. M. (2020). Optimization of Sensing Layers Selection Process for Relative Humidity Sensors. Science and technology 23(1),93-104.& Nicolescu, C. M. (2020). Optimization of Sensing Layers Selection Process for Relative Humidity Sensors. Science and technology 23(1),93-104.
2. Cobianu, C., Serban, B., & Mihaila, Μ. N. (2013). US. Patent No. 8,479,560. Washington, DC: U.S. Patent and Trademark Office.2. Cobianu, C., Serban, B., & Mihaila, Μ. N. (2013). US. Patent No. 8,479,560. Washington, DC: US. Patent and Trademark Office.
3. Alwis, L., Sun, T., & Grattan, K. T. V. (2013). Optical fibre-based sensor technology for humidity and moisture measurement: Review of recent progress. Measurement, 46( 10), 40524074.3. Alwis, L., Sun, T., & Grattan, K. T. V. (2013). Optical fiber-based sensor technology for humidity and moisture measurement: Review of recent progress. Measurement, 46(10), 40524074.
4. Blank, T. A., Eksperiandova, L. P., & Belikov, K. N. (2016). Recent trends of ceramic humidity sensors development: A review. Sensors and Actuators B: Chemical, 228, 416-442.4. Blank, T. A., Eksperiandova, L. P., & Belikov, K. N. (2016). Recent trends of ceramic humidity sensors development: A review. Sensors and Actuators B: Chemical, 228, 416-442.
5. Cobianu, C., Stratulat, A., Serban, B., Buiu, O., Bostan, C. G., Brezeanu, M., ... & Davis, R. (2020). U.S. Patent No. 10,585,058. Washington, DC: U.S. Patent and Trademark Office..5. Cobianu, C., Stratulat, A., Serban, B., Buiu, O., Bostan, C. G., Brezeanu, M., ... & Davis, R. (2020). U.S. Patent No. 10,585,058. Washington, DC: US. Patent and Trademark Office..
6. Lee, C. W., Kim, Y., Joo, S. W., & Gong, M. S. (2003). Resistive humidity sensor using polyelectrolytes based on new-type mutually cross-linkable copolymers. Sensors and Actuators B: Chemical, 55(1), 21-29.6. Lee, C.W., Kim, Y., Joo, S.W., & Gong, M.S. (2003). Resistive humidity sensor using polyelectrolytes based on new-type mutually cross-linkable copolymers. Sensors and Actuators B: Chemical, 55(1), 21-29.
7. Lee, C.-W.; Gong, M.-S. Resistive Humidity Sensor Using Phosphonium Salt-Containing Polyelectrolytes Based on the Mutually Cross-Linkable Copolymers. Macromol. Res. 2003, 11, 322-327.7. Lee, C.-W.; Gong, M.-S. Resistive Humidity Sensor Using Phosphonium Salt-Containing Polyelectrolytes Based on the Mutually Cross-Linkable Copolymers. Macromol. Res. 2003, 11, 322-327.
8. Son, S. Polymeric Humidity Sensor Using Phosphonium Salt-Containing Polymers. Sens. Actuators B Chem. 2002, 86, 168-173.8. Son, S. Polymeric Humidity Sensor Using Phosphonium Salt-Containing Polymers. Sense. Actuators B Chem. 2002, 86, 168-173.
9. Lee, C. W„ Park, H. S., Kim, J. G„ Choi, B. K„ Joo, S. W„ & Gong, M. S. (2005). Polymeric humidity sensor using organic/inorganic hybrid polyelectrolytes. Sensors and Actuators B: Chemical, 109(2), 315-322.9. Lee, C. W„ Park, H. S., Kim, J. G„ Choi, B. K„ Joo, S. W„ & Gong, M. S. (2005). Polymeric humidity sensor using organic/inorganic hybrid polyelectrolytes. Sensors and Actuators B: Chemical, 109(2), 315-322.
10. Qi, Q., Zhang, T., Yu, Q., Wang, R., Zeng, Y., Liu, L., & Yang, H. (2008). Properties of humidity sensing ZnO nanorods-base sensor fabricated by screen-printing. Sensors and Actuators B: Chemical, 133(2), 638-643.10. Qi, Q., Zhang, T., Yu, Q., Wang, R., Zeng, Y., Liu, L., & Yang, H. (2008). Properties of humidity sensing ZnO nanorods-base sensor fabricated by screen-printing. Sensors and Actuators B: Chemical, 133(2), 638-643.
11. Gao, N., Li, Η. Y., Zhang, W., Zhang, Y., Zeng, Y., Zhixiang, H., ... & Liu, H. (2019). QCM-based humidity sensor and sensing properties employing colloidal SnO2 nanowires. Sensors and Actuators B: Chemical, 293, 129-135.11. Gao, N., Li, H. Y., Zhang, W., Zhang, Y., Zeng, Y., Zhixiang, H., ... & Liu, H. (2019). QCM-based humidity sensor and sensing properties employing colloidal SnO2 nanowires. Sensors and Actuators B: Chemical, 293, 129-135.
12. Eroi, A., Okur, S., Comba, B., Mermer, O., & Ankan, M. C. (2010). Humidity sensing properties of ZnO nanoparticles synthesized by sol-gel process. Sensors and Actuators B: Chemical, 145(\), 174-180.12. Eroi, A., Okur, S., Comba, B., Mermer, O., & Ankan, M. C. (2010). Humidity sensing properties of ZnO nanoparticles synthesized by sol-gel process. Sensors and Actuators B: Chemical, 145(\), 174-180.
13. Hsueh, Η. T., Hsueh, T. J., Chang, S. J., Hung, F. Y., Tsai, T. Y., Weng, W. Y., ... & Dai, B. T. (2011). CuO nanowire-based humidity sensors prepared on glass substrate. Sensors and Actuators B: Chemical, 156(2), 906-911.13. Hsueh, H. T., Hsueh, T. J., Chang, S. J., Hung, F. Y., Tsai, T. Y., Weng, W. Y., ... & Dai, B. T. (2011). CuO nanowire-based humidity sensors prepared on glass substrate. Sensors and Actuators B: Chemical, 156(2), 906-911.
14. Ding, X., Chen, X., Chen, X., Zhao, X., & Li, N. (2018). A QCM humidity sensor based on fullerene/graphene oxide nanocomposites with high quality factor. Sensors and Actuators B: Chemical, 266, 534-542.14. Ding, X., Chen, X., Chen, X., Zhao, X., & Li, N. (2018). A QCM humidity sensor based on fullerene/graphene oxide nanocomposites with high quality factor. Sensors and Actuators B: Chemical, 266, 534-542.
15. Radeva, E., Georgiev, V., Spassov, L., Koprinarov, N., & Kanev, S. (1997). Humidity adsorptive properties of thin fullerene layers studied by means of quartz micro-balance. Sensors and Actuators B: Chemical, 42(\), 11-13.15. Radeva, E., Georgiev, V., Spassov, L., Koprinarov, N., & Kanev, S. (1997). Humidity adsorptive properties of thin fullerene layers studied by means of quartz micro-balance. Sensors and Actuators B: Chemical, 42(\), 11-13.
16. Borini, S., White, R., Wei, D., Astley, M., Haque, S., Spigone, E., ... & Ryhanen, T. (2013). Ultrafast graphene oxide humidity sensors. ACS nano, 7(12), 11166-11173.16. Borini, S., White, R., Wei, D., Astley, M., Haque, S., Spigone, E., ... & Ryhanen, T. (2013). Ultrafast graphene oxide humidity sensors. ACS nano, 7(12), 11166-11173.
17. Yao, YChen, X., Guo, H., Wu, Z., & Li, X. (2012). Humidity sensing behaviors of graphene oxide-silicon bi-layer flexible structure. Sensors and Actuators B: Chemical, 161(\), 1053-1058.17. Yao, YChen, X., Guo, H., Wu, Z., & Li, X. (2012). Humidity sensing behaviors of graphene oxide-silicon bi-layer flexible structure. Sensors and Actuators B: Chemical, 161(\), 1053-1058.
18. Han, J. W., Kim, B., Li, L, & Meyyappan, M. (2012). Carbon nanotube based humidity sensor on cellulose paper. The Journal of Physical Chemistry C, 176(41), 22094-22097.18. Han, J.W., Kim, B., Li, L, & Meyyappan, M. (2012). Carbon nanotube based humidity sensor on cellulose paper. The Journal of Physical Chemistry C, 176(41), 22094-22097.
19. Adamska, M., & Narkiewicz, U. (2017). Fluorination of carbon nanotubes- a review. Journal of Fluorine Chemistry, 200, 179-189.19. Adamska, M., & Narkiewicz, U. (2017). Fluorination of carbon nanotubes - a review. Journal of Fluorine Chemistry, 200, 179-189.
20. Leng, X., Luo, D., Xu, Z., & Wang, F. (2018). Modified graphene oxide/Nafion composite humidity sensor and its linear response to the relative humidity. Sensors and Actuators B: Chemical, 257, 372-38120. Leng, X., Luo, D., Xu, Z., & Wang, F. (2018). Modified graphene oxide/Nafion composite humidity sensor and its linear response to the relative humidity. Sensors and Actuators B: Chemical, 257, 372-381
21. Leng, X., & Wang, F. Modified graphene oxide/Nafion composite humidity sensor and its linear response to the relative humidity. In 2017 IEEE SENSORS (pp. 1-3). IEEE.21. Leng, X., & Wang, F. Modified graphene oxide/Nafion composite humidity sensor and its linear response to the relative humidity. In 2017 IEEE SENSORS (pp. 1-3). IEEE.
22. Chen, H. W., Wu, R. J., Chan, K. H., Sun, Y. L., & Su, P. G. (2005). The application of CNT/Nafion composite material to low humidity sensing measurement. Sensors and Actuators B: Chemical, 104(\), 80-84.22. Chen, H.W., Wu, R.J., Chan, K.H., Sun, Y.L., & Su, P.G. (2005). The application of CNT/Nafion composite material to low humidity sensing measurement. Sensors and Actuators B: Chemical, 104(\), 80-84.
23. Wu, R. J., Sun, Y. L., Lin, C. C., Chen, H. W., & Chavali, M. (2006). Composite of TiO2 nanowires and Nafion as humidity sensor material. Sensors and Actuators B: Chemical, 115(1), 198-204.23. Wu, R. J., Sun, Y. L., Lin, C. C., Chen, H. W., & Chavali, M. (2006). Composite of TiO2 nanowires and Nafion as humidity sensor material. Sensors and Actuators B: Chemical, 115(1), 198-204.
24. Dake, S. B., Bhoraskar, S. V., Patil, P. A., & Narasimhan, N. S. (1986). Chemically modified Teflon as an effective humidity sensor. Polymer, 27(6), 910-912.24. Dake, S. B., Bhoraskar, S. V., Patil, P. A., & Narasimhan, N. S. (1986). Chemically modified Teflon as an effective humidity sensor. Polymer, 27(6), 910-912.
25. Ahmetali, E., Karaoglu, Η. P., Urfa, Y., Altindal, A., & Koyak, Μ. B. (2020). A series of asymmetric zinc (II) phthalocyanines containing fluoro and alkynyl groups: Synthesis and examination of humidity sensing performance by using QCM based sensor. Materials Chemistry and Physics, 254, 123477.25. Ahmetali, E., Karaoglu, Η. P., Urfa, Y., Altindal, A., & Koyak, Μ. B. (2020). A series of asymmetric zinc (II) phthalocyanines containing fluoro and alkynyl groups: Synthesis and examination of humidity sensing performance by using QCM based sensor. Materials Chemistry and Physics, 254, 123477.
26. Zhang, J., Lei, J., Xu, C., Ding, L., & Ju, H. (2010). Carbon nanohorn sensitized electrochemical immunosensor for rapid detection of microcystin-LR. Analytical chemistry, 82(3), 1117-1122.26. Zhang, J., Lei, J., Xu, C., Ding, L., & Ju, H. (2010). Carbon nanohorn sensitized electrochemical immunosensor for rapid detection of microcystin-LR. Analytical chemistry, 82(3), 1117-1122.
27. Serban, B. C., Bumbac, M., Buiu, O., Cobianu, C., Brezeanu, M., & Nicolescu, C. (2018). Carbon nanohorns and their nanocomposites: Synthesis, properties and applications. A concise review. Ann. Acad. Rom. Sci. Ser. Math. Appl, 11, 5-18.27. Serban, B. C., Bumbac, M., Buiu, O., Cobianu, C., Brezeanu, M., & Nicolescu, C. (2018). Carbon nanohorns and their nanocomposites: Synthesis, properties and applications. Concise review. Ann. Acad. Rom. Sci. Ser. Math. Appl, 11, 5-18.
28. Marinescu R., Șerban, B. C.„ Dumbravescu N., Avramescu V., Cobianu C. & Buiu O., (2019). CARBON-BASED MATERIALS FOR HEALTHCARE M1CRO-DEVICES. Revista de Tehnologii Neconventionale, 23(4), 72-77.28. Marinescu R., Șerban, B. C. „ Dumbravescu N., Avramescu V., Cobianu C. & Buiu O., (2019). CARBON-BASED MATERIALS FOR HEALTHCARE M1CRO-DEVICES. Journal of Unconventional Technologies, 23(4), 72-77.
29. Serban, B. C., Buiu, O., Dumbravescu, N., Cobianu, C., Avramescu, V., Brezeanu, M., ... & Nicolescu, C. M. (2020). Oxidized Carbon Nanohorns as Novei Sensing Layer for Resistive Humidity Sensor. Acta Chimica Slovenica, 67, 1-7.29. Serban, B. C., Buiu, O., Dumbravescu, N., Cobianu, C., Avramescu, V., Brezeanu, M., ... & Nicolescu, C. M. (2020). Oxidized Carbon Nanohorns as a Novel Sensing Layer for Resistive Humidity Sensor. Acta Chimica Slovenica, 67, 1-7.
30. Serban, B. C., Buiu, O., Dumbravescu, N., Cobianu, C., Avramescu, V., Brezeanu, M., ... & Nicolescu, C. M. (2020). Oxidized Carbon Nanohorn-Hydrophilic Polymer Nanocomposite as the Resistive Sensing Layer for Relative Humidity. Analytical Letters, 114.30. Serban, B. C., Buiu, O., Dumbravescu, N., Cobianu, C., Avramescu, V., Brezeanu, M., ... & Nicolescu, C. M. (2020). Oxidized Carbon Nanohorn-Hydrophilic Polymer Nanocomposite as the Resistive Sensing Layer for Relative Humidity. Analytical Letters, 114.
31. Bogdan-Catalin Serban, Cornel Cobianu, Niculae Dumbravescu, Octavian Buiu, Viorel Avramescu, Marius Bumbac, Cristina-Mihaela Nicolescu, Cosmin Cobianu Mihai Brezeanu, Electrica! Percolation Threshold In Oxidized Single Wall Carbon Nanohorn Polyvinylpyrrolidone Nanocomposite: A Possible Application For High Sensitivity Resistive Humidity Sensor, Proceedings CAS, 2020, pp 239-242, Sinaia Romania, IEEE event31. Bogdan-Catalin Serban, Cornel Cobianu, Niculae Dumbravescu, Octavian Buiu, Viorel Avramescu, Marius Bumbac, Cristina-Mihaela Nicolescu, Cosmin Cobianu Mihai Brezeanu, Electrica! Percolation Threshold In Oxidized Single Wall Carbon Nanohorn Polyvinylpyrrolidone Nanocomposite: A Possible Application For High Sensitivity Resistive Humidity Sensor, Proceedings CAS, 2020, pp 239-242, Sinaia Romania, IEEE event
32. Șerban, B. C., Buiu, O., Cobianu, C., Avramescu, V., Dumbrăvescu, N., Brezeanu, M., ... & Marinescu, R. (2019). Ternary Carbon-Based Nanocomposite as Sensing Layer for Resistive Humidity Sensor. Multidisciplinary Digital Publishing Institute Proceedings, 29(1), 114.32. Șerban, B. C., Buiu, O., Cobianu, C., Avramescu, V., Dumbrăvescu, N., Brezeanu, M., ... & Marinescu, R. (2019). Ternary Carbon-Based Nanocomposite as Sensing Layer for Resistive Humidity Sensor. Multidisciplinary Digital Publishing Institute Proceedings, 29(1), 114.
33. Bogdan-Catalin Șerban, Cornel Cobianu, Octavian Buiu, Nicolae Dumbrăvescu, Viorel Avramescu, Mihai Brezeanu, Maria-Roxana Marinescu, Ternary hydrophilic carbon nanohorn / ZnO/ PVP nanohybrid structure for room temperature resistive humidity sensing. , 3rd International conference on emerging technologies in materials engineering, pp 8429-30 october 2020 , Bucharest, Romania,.33. Bogdan-Catalin Șerban, Cornel Cobianu, Octavian Buiu, Nicolae Dumbrăvescu, Viorel Avramescu, Mihai Brezeanu, Maria-Roxana Marinescu, Ternary hydrophilic carbon nanohorn / ZnO/ PVP nanohybrid structure for room temperature resistive humidity sensing. , 3 rd International conference on emerging technologies in materials engineering, pp 8429-30 October 2020, Bucharest, Romania,.
34. Bogdan-Catalin Șerban, Cornel Cobianu, Octavian Buiu, Nicolae Dumbrăvescu, Viorel Avramescu Mihai Brezeanu Maria-Roxana Marinescu Ternary oxidized carbon nanohorn based nanohybrid as sensing layer for resistive humidity sensor, 3rd International conference on emerging technologies in materials engineering, pp.83, 29-30 october 2020, Bucharest, Romania34. Bogdan-Catalin Șerban, Cornel Cobianu, Octavian Buiu, Nicolae Dumbrăvescu, Viorel Avramescu Mihai Brezeanu Maria-Roxana Marinescu Ternary oxidized carbon nanohorn based nanohybrid as sensing layer for resistive humidity sensor, 3rd International conference on emerging technologies in materials engineering, pp .83, October 29-30, 2020, Bucharest, Romania
35. Bartelmess, J., & Giordani, S. (2014). Carbon nano-onions (multi-layer fullerenes): chemistry and applications. Beilstein journal of nanotechnology, 5(1), 1980-1998.35. Bartelmess, J., & Giordani, S. (2014). Carbon nano-onions (multi-layer fullerenes): chemistry and applications. Beilstein journal of nanotechnology, 5(1), 1980-1998.
36. Mohapatra, J., Ananthoju, B., Nair, V., Mitra, A., Bahadur, D., Medhekar, N. V., & Aslam, M. (2018). Enzymatic and non-enzymatic electrochemical glucose sensor based on carbon nano-onions. AppliedSurface Science, 442, 332-341.36. Mohapatra, J., Ananthoju, B., Nair, V., Mitra, A., Bahadur, D., Medhekar, N. V., & Aslam, M. (2018). Enzymatic and non-enzymatic electrochemical glucose sensor based on carbon nano-onions. Applied Surface Science, 442, 332-341.
37. Kumud Malika Tripathi, et. al., From the tradițional way of pyrolysis to tunable photoluminescent water soluble carbon nano-onions for cell imaging and selective sensing of glucose. RSC Advances, 2016 ,6, 37319-3732937. Kumud Malika Tripathi, et. al., From the traditional way of pyrolysis to tunable photoluminescent water soluble carbon nano-onions for cell imaging and selective sensing of glucose. RSC Advances, 2016 ,6, 37319-37329
Claims (18)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ROA202100394A RO137257A2 (en) | 2021-07-07 | 2021-07-07 | Oxy-fluoro-nanocarbon sensitive layers for resistive detection of humidity |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ROA202100394A RO137257A2 (en) | 2021-07-07 | 2021-07-07 | Oxy-fluoro-nanocarbon sensitive layers for resistive detection of humidity |
Publications (1)
Publication Number | Publication Date |
---|---|
RO137257A2 true RO137257A2 (en) | 2023-01-30 |
Family
ID=85035500
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
ROA202100394A RO137257A2 (en) | 2021-07-07 | 2021-07-07 | Oxy-fluoro-nanocarbon sensitive layers for resistive detection of humidity |
Country Status (1)
Country | Link |
---|---|
RO (1) | RO137257A2 (en) |
-
2021
- 2021-07-07 RO ROA202100394A patent/RO137257A2/en unknown
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Dai et al. | Chemiresistive humidity sensor based on chitosan/zinc oxide/single-walled carbon nanotube composite film | |
Turkani et al. | A highly sensitive printed humidity sensor based on a functionalized MWCNT/HEC composite for flexible electronics application | |
Li et al. | SnO 2/SnS 2 nanotubes for flexible room-temperature NH 3 gas sensors | |
Khalifa et al. | Smart paper from graphene coated cellulose for high-performance humidity and piezoresistive force sensor | |
Zhang et al. | Drawn a facile sensor: A fast response humidity sensor based on pencil-trace | |
Jung et al. | Enhanced humidity-sensing response of metal oxide coated carbon nanotube | |
Lin et al. | Polyaniline nanofiber humidity sensor prepared by electrospinning | |
Wee et al. | A high-performance moisture sensor based on ultralarge graphene oxide | |
KR20190076341A (en) | Chemiresistor gas sensor using mxene and the manufacturing method thereof | |
Chen et al. | A wide range conductometric pH sensor made with titanium dioxide/multiwall carbon nanotube/cellulose hybrid nanocomposite | |
Li et al. | Room-temperature humidity-sensing performance of SiC nanopaper | |
Hoa et al. | Porous single-wall carbon nanotube films formed by in Situ arc-discharge deposition for gas sensors application | |
Misra et al. | Analysis on activation energy and humidity sensing application of nanostructured SnO2-doped ZnO material | |
Zhang et al. | A novel humidity sensor based on Na2Ti3O7 nanowires with rapid response-recovery | |
Lee et al. | Humidity effects according to the type of carbon nanotubes | |
Abdulhameed et al. | Airflow-assisted dielectrophoresis to reduce the resistance mismatch in carbon nanotube-based temperature sensors | |
Pustelny et al. | The sensibility of resistance sensor structures with graphene to the action of selected gaseous media | |
EP3992622A1 (en) | Quaternary hydrophilic nanohybrid composition for resistive humidity sensors | |
Jung et al. | ZnO nanorod-based humidity sensors with fast response | |
RO137257A2 (en) | Oxy-fluoro-nanocarbon sensitive layers for resistive detection of humidity | |
Su et al. | Effect of adding Au nanoparticles and KOH on the electrical and humidity-sensing properties of WO3 particles | |
Xu et al. | Development and performance of an all-solid-stated pH sensor based on modified membranes | |
Ionete et al. | SWCNT-Pt-P 2 O 5-Based Sensor for Humidity Measurements | |
Ahmed et al. | Graphene oxide humidity sensor built entirely by additive manufacturing approaches | |
Vedala et al. | Effect of PVA functionalization on hydrophilicity of Y-junction single wall carbon nanotubes |