RO135074A2 - Method for operating a cluster source based on magnetron sputtering and gas aggregation, in low temperature plasma jet mode - Google Patents
Method for operating a cluster source based on magnetron sputtering and gas aggregation, in low temperature plasma jet mode Download PDFInfo
- Publication number
- RO135074A2 RO135074A2 RO201900870A RO201900870A RO135074A2 RO 135074 A2 RO135074 A2 RO 135074A2 RO 201900870 A RO201900870 A RO 201900870A RO 201900870 A RO201900870 A RO 201900870A RO 135074 A2 RO135074 A2 RO 135074A2
- Authority
- RO
- Romania
- Prior art keywords
- plasma
- nanoparticles
- plasma jet
- cluster source
- source
- Prior art date
Links
Landscapes
- Other Surface Treatments For Metallic Materials (AREA)
- Physical Vapour Deposition (AREA)
Abstract
Description
DESCRIEREA INVENȚIEIDESCRIPTION OF THE INVENTION
Domeniul invențieiFIELD OF THE INVENTION
Aceasta invenție se referă la un regim nou de operare a unei surse de clusteri bazata pe pulverizare magnetron in combinație cu agregarea in gaz inert a atomilor ejectati din tinta magnetron. Noul regim de operare consta in generarea unui jet de plasma care emerge din sursa de clusteri si pătrunde in incinta de colectare a clusterilor; in modul clasic de operare jetul de plasma este absent. Ambele moduri de operare ale sursei de clusteri permit obținerea de nanoparticule. Acest aspect este demonstrat in aceasta invenție pentru nanoparticulele de wolfram si compuși ai acestuia sintetizate in regimul jet de plasma. Avantajul principal al modului de lucru cu jet de plasma fata de modul clasic de operare este ca starea chimica a suprafeței nanoparticulelor metalice obținute in sursa de clusteri poate fi modificata intr-un mod facil, prin injectarea in jetul de plasma a gazelor reactive corespunzătoare. De asemenea, temperatura jetului de plasma este redusa, ceea ce permite depunerea nanoparticulelor pe materiale sensibile la temperatura (cum ar fi polimerii).This invention relates to a new mode of operation of a cluster source based on magnetron spraying in combination with the aggregation in inert gas of the ejected atoms from the magnetron target. The new operating regime consists in generating a plasma jet that emerges from the cluster source and enters the cluster collection enclosure; in the classic mode of operation the plasma jet is absent. Both modes of operation of the cluster source allow the obtaining of nanoparticles. This aspect is demonstrated in this invention for tungsten nanoparticles and its compounds synthesized in the plasma jet regime. The main advantage of the plasma jet mode over the conventional mode of operation is that the chemical state of the surface of the metal nanoparticles obtained in the cluster source can be easily modified by injecting the corresponding reactive gases into the plasma jet. Also, the temperature of the plasma jet is reduced, which allows the deposition of nanoparticles on temperature sensitive materials (such as polymers).
Baza invențieiThe basis of the invention
Invenția este in stransa legătură cu domeniul sintezei de nanoparticule folosind plasma (descărcări in gaze). Ea combina doua dispozitive bazate pe plasma: i) sursele de clusteri bazate pe pulverizare magnetron si agregarea in gaz inert a vaporilor obținuți prin imprastiere magnetron; si ii) sursele de tip jet de plasma.The invention is closely related to the field of nanoparticle synthesis using plasma (gas discharges). It combines two plasma-based devices: i) cluster sources based on magnetron spraying and inert gas aggregation of vapors obtained by magnetron scattering; and ii) plasma jet sources.
Nanoparticulele au capatat in ultimele decenii o atentie deosebita atat in lumea academica dar si in cea tehnologica. Acest interes se datoreaza in principal proprietăților deosebite (cum ar fi cele optice, electrice, magnetice, chimice sau antibacteriene) pe care le poseda nanoparticulele. Din acest motiv, nanoparticule din diverse materiale au început deja sa fie utilizate in diferite domenii (de exemplu medicina), fiind integrate in diverse dispozitive tehnologice dar si in materiale noi (de exemplu pentru cataliza si fotocataliza).Nanoparticles have gained special attention in recent decades in both academia and technology. This interest is mainly due to the special properties (such as optical, electrical, magnetic, chemical or antibacterial) that nanoparticles possess. For this reason, nanoparticles from various materials have already begun to be used in various fields (eg medicine), being integrated into various technological devices but also into new materials (eg for catalysis and photocatalysis).
In prezent exista o diversitate de metode de producere a nanoparticulelor, atat chimice cat si fizice. Cele din urma, in special cele bazate pe descărcările electrice in gaze (plasma), se evidențiază prin puritatea chimica a nanoparticulelor sintetizate.There are currently a variety of methods for producing nanoparticles, both chemical and physical. The latter, especially those based on electric discharges in gases (plasma), are highlighted by the chemical purity of the synthesized nanoparticles.
Dintre sursele de nanoparticule (nanoclusteri) care utilizează descărcările electrice in gaze se evidențiază cele bazate pe pulverizare magnetron combinata cu agregarea in gaz, care au fost dezvoltate inițial in anii 1990 de către H. Haberland (Zeitschrift Fur Phys. D Atoms, Mol. Chist., 20,413, 1991).Among the sources of nanoparticles (nanoclusters) that use electric discharges in gas are those based on magnetron spraying combined with gas aggregation, which were originally developed in the 1990s by H. Haberland (Zeitschrift Fur Phys. D Atoms, Mol. Chist ., 20,413, 1991).
Din punct de vedere constructiv instalațiile de producere de nanoparticule care folosesc sursele de clusteri sunt constitutite din doua incinte de vid, una care adăpostește sursa de clusteri si una care are rol de camera de colectare ; cele doua incinte comunica intre ele printr-un orificiu (duza sursei de clusteri).From a constructive point of view, the nanoparticle production installations that use cluster sources consist of two vacuum enclosures, one that houses the cluster source and one that acts as a collection chamber; the two enclosures communicate with each other through an orifice (cluster source nozzle).
Nanoparticulele sunt produse in camera vidata a sursei de clusteri (denumita si camera de agregare) prin agregare din atomii obținuți in urma pulverizării suprafeței unei tinte constituita din materialul de interes.Nanoparticles are produced in the vacuum chamber of the cluster source (also called the aggregation chamber) by aggregation from atoms obtained by spraying the surface of a target consisting of the material of interest.
Pulverizarea are loc in urma bombardării tintei cu ioni energetici produși in plasma tip magnetron, care se generează intr-un gaz inert (de regula argon, dar nu numai). Atomii pulverizati din tinta, indepartandu-se de substrat, ajung intr-o zona răcită a camerei de agregare, in care presiunea lor parțiala devine suprasaturanta datorita scăderii temperaturii. Acest lucru facilitează nucleatia nanoparticulelor: astfel, in urma ciocnirii atomilor pulverizati din tinta cu cei ai gazului de lucru rezulta dimeri de tip metal-metal in cazul nucleatiei omogene. La aceste nuclee inițiale adera in continuare atomi pulverizati din tinta, conducând la formarea nanoparticulelor din materialul tintei.The spraying takes place after the bombardment of the target with energy ions produced in magnetron type plasma, which is generated in an inert gas (usually argon, but not only). The pulverized atoms in the target, moving away from the substrate, reach a cooled area of the aggregation chamber, where their partial pressure becomes supersaturated due to the decrease in temperature. This facilitates the nucleation of the nanoparticles: thus, after the collision of the pulverized atoms in the target with those of the working gas, metal-metal dimers result in the case of homogeneous nucleation. These atomic nuclei continue to adhere to pulverized atoms in the target, leading to the formation of nanoparticles in the target material.
Procesul de formare al nanoparticulelor are loc simultan cu deplasarea acestora către orificiul de ieșire al sursei de clusteri, datorita antrenării de către curentul de gaz inert. Rezulta in acest fel un fascicul de nanoparticule care emerge datorita fluxului de gaz, din sursa de clusteri in camera de colectare. Plasand un substrat in calea fluxului de gaz, pe acesta se vor colecta nanoparticulele produse in sursa de clusteri.The process of forming nanoparticles takes place simultaneously with their movement to the outlet of the cluster source, due to entrainment by the inert gas stream. This results in a bundle of nanoparticles that emerges due to the flow of gas from the source of clusters in the collection chamber. By placing a substrate in the path of the gas flow, the nanoparticles produced in the cluster source will be collected on it.
In regimul clasic de operarea al sursei de clusteri plasma este confinata in interiorul acesteia.In the classical mode of operation of the plasma cluster source it is confined inside it.
Un alt instrument tehnologic bazat pe descărcări in gaze (plasma), avand diverse aplicatii tehnologice, il reprezintă sursele de plasma tip jet de plasma.Another technological tool based on gas discharges (plasma), with various technological applications, is represented by plasma jet sources.
Exista diverse tipuri de jeturi de plasma, clasificate după criterii specifice, cele mai comune fiind temperatura plasmei (de temperatura înalta sau joasa) sau presiunea de lucru (la joasa presiune sau la presiune atmosferica).There are various types of plasma jets, classified according to specific criteria, the most common being plasma temperature (high or low temperature) or working pressure (low pressure or atmospheric pressure).
Jeturile de plasma au diverse aplicatii tehnologice, cateva dintre ele fiind:Plasma jets have various technological applications, some of them being:
i) Modificarea chimiei suprafețelor prin expunerea lor la un jet de plasma produs intr-un gaz care prezintă reactivitate chimica cu materialul suprafeței de prelucrat;i) Modification of surface chemistry by exposing them to a jet of plasma produced in a gas that is chemically reactive with the material of the surface to be processed;
ii) Sinteza de nanomateriale (cum ar fi cele carbonice, de tip nanofibre si nanopereti de carbon) in urma injectării de precursori chimici (cum ar fi acetilena) in jet;ii) Synthesis of nanomaterials (such as carbon, nanofibers and carbon nanowires) following the injection of chemical precursors (such as acetylene) into the jet;
iii) Sinteza de nanoparticule (cum ar fi cele metalice) in urma topirii si evaporării electrozilor descărcării.iii) Synthesis of nanoparticles (such as metallic ones) following melting and evaporation of the discharge electrodes.
iv) Realizarea de acoperiri prin procedeul plasma-spray;iv) Coating by plasma-spray process;
v) Prelucrarea metalelor (taiere si sudura) folosind jeturi de plasma de temperatura ridicata care folosesc arcul electric.v) Metal processing (cutting and welding) using high temperature plasma jets using electric arc.
Prezenta invenție aduce in atentie o sursa de particule care utilizează o sursa de clusteri bazata pe pulverizare magnetron si agregare in gaz inert care funcționează in regim de jet de plasma, precum si posibilele aplicatii ale acestuia.The present invention provides a particle source that uses a cluster source based on magnetron spraying and inert gas aggregation that operates in a plasma jet regime, as well as its possible applications.
Jetul de plasma se obține in condiții specifice de operare a sursei de clusteri. Acestea permit expansiunea plasmei din camera de agregare a sursei de clusteri in incinta de colectare la care este atașata sursa.The plasma jet is obtained under specific operating conditions of the cluster source. These allow the plasma to expand from the aggregation source of the cluster source into the collection enclosure to which the source is attached.
Sursele de clusteri bazate pe pulverizare magnetron si agregare in gaz inert sunt versatile si sunt utilizate pe scara larga pentru producerea nanoparticulelor (atat metalice cat si din polimeri).Cluster sources based on magnetron spraying and inert gas aggregation are versatile and are widely used for the production of nanoparticles (both metallic and polymer).
Cu toate acestea, acest tip de surse de clusteri întâmpina dificultăți in producerea de nanoparticule din compuși ai metalelor (oxizi, nitruri, carburi, etc.).However, this type of cluster sources encounters difficulties in the production of nanoparticles from metal compounds (oxides, nitrides, carbides, etc.).
In situația in care se intenționează obținerea de nanoparticule direct din o tinta de compus metalic, producerea lor este obstructionata in primul rând de randamentul foarte redus de pulverizare in plasma al compușilor metalici in comparație cu metalul respectiv.If it is intended to obtain nanoparticles directly from a target of a metal compound, their production is obstructed primarily by the very low plasma spray efficiency of the metal compounds compared to that metal.
In situația in care se intenționează obținerea de nanoparticule prin pulverizare magnetron reactiva (folosind o tinta metalica si introducând un gaz reactiv in camera de agregare - de exemplu N2 sau O2 pentru obținerea de nanoparticule de nitruri sau oxizi metalici), procesul de pulverizare magnetron devine greu de controlat datorita particularităților acestui tip de proces (una din ele fiind posibila otrăvire a tintei si reducerea drastica a randamentului de pulverizare a tintei).If it is intended to obtain nanoparticles by reactive magnetron spraying (using a metal target and introducing a reactive gas into the aggregation chamber - for example N2 or O2 to obtain nanoparticles of nitrides or metal oxides), the magnetron spraying process becomes difficult to be controlled due to the particularities of this type of process (one of them being the possible poisoning of the target and the drastic reduction of the spray efficiency of the target).
Invenția oferă posibilitatea de modificare a naturii chimice a nanoparticulelor prin introducerea gazului reactiv la ieșirea din sursa de clusteri, in jetul de plasma. Modificarea stării chimice a nanoparticulelor are loc pe durata transportului acestora către substrat.The invention offers the possibility to modify the chemical nature of the nanoparticles by introducing the reactive gas at the exit of the cluster source, in the plasma jet. The change in the chemical state of the nanoparticles takes place during their transport to the substrate.
Invenția oferă posibilitatea de depunere a nanoparticulelor pe substraturi sensibile la temperatura (cum ar fi polimerii) deoarece jetul de plasma provenind din sursa de clusteri produce o încălzire neglijabila a substratului. Posibila aplicație in acest caz il reprezintă dezvoltarea de biosenzori.The invention provides the possibility of depositing nanoparticles on temperature sensitive substrates (such as polymers) because the plasma jet from the cluster source produces a negligible heating of the substrate. The possible application in this case is the development of biosensors.
Mai multe lucrări prezintă producerea de materiale nanometrice (nanoparticule sau nanostructuri) folosind surse de clusteri bazate pe pulverizare magnetron si condensare in gaz inert pe de o parte, si folosind jeturi de plasma pe de alta parte.Several works present the production of nanometric materials (nanoparticles or nanostructures) using cluster sources based on magnetron spraying and inert gas condensation on the one hand, and using plasma jets on the other hand.
Astfel:So:
Se cunoaște din brevetul US 00614505A o metoda de producere a unor straturi de nanoparticule de Al bazata pe pulverizarea magnetron, cu folosirea lor ulterioara in dispositive cu tunelare cuantica. Dispozitivul este in esența o sursa de nanoparticule bazata pe pulverizare magnetron si condensare in gaz inert, anume He. Oxidarea pe suprafața a nanoparticulelor se realizează de resturile de vapori de apa reziduali in rezervorul de He. Plasma este confinata in interiorul sursei de nanoparticule.US 00614505A discloses a method of producing Al nanoparticle layers based on magnetron spraying, with their subsequent use in quantum tunneling devices. The device is essentially a source of nanoparticles based on magnetron spraying and inert gas condensation, namely He. The oxidation on the surface of the nanoparticles is performed by the residual water vapor residues in the He tank. Plasma is confined inside the nanoparticle source.
Se mai cunoaște din brevetul US 20110209987A1 o metoda de producere a nanoparticulelor amorfe si cristaline de Si folosind o sursa de nanoclusteri bazata pe pulverizare magnetron si agregare in gaz, in un amestec de Ar si H2. Acesta din urma previne oxidarea tintei de Si si reduce tensiunea de suprafața a nanoparticulelor produse. Plasma este confinata in interiorul sursei de nanoparticule.A method of producing amorphous and crystalline Si nanoparticles using a nanocluster source based on magnetron spraying and gas aggregation in a mixture of Ar and H2 is also known from US patent 20110209987A1. The latter prevents the oxidation of the Si target and reduces the surface tension of the nanoparticles produced. Plasma is confined inside the nanoparticle source.
Se mai cunoaște si patentul EP 0522842A1 referitor la o torta de plasma care generează un jet de plasma destinat acoperirii cu diamant sintetic a substraturilor, folosind ca si gaz de lucru un gaz conținând carbon.EP 0522842A1 is also known regarding a plasma torch which generates a plasma jet intended for the coating of substrates with synthetic diamond, using as working gas a gas containing carbon.
Se mai cunoaște si patentul EP3206728A1 referitor la o metoda de creștere a nanoperetilor verticali de carbon pe dipozitive implantabile medical, folosind un jet de plasma la presiune joasa.EP3206728A1 is also known regarding a method of increasing vertical carbon nanoperets on medically implantable devices, using a low pressure plasma jet.
Se mai cunoaște si patentul DE 10031002Al referitor la modificarea stării chimice (oxidarea sau nitrurarea) a unei suprafețe (metalice sau de carbon) folosind un fascicul de plasma la presiune joasa.DE 10031002Al is also known regarding the modification of the chemical state (oxidation or nitriding) of a surface (metallic or carbon) using a low pressure plasma beam.
Gunnarsson R. si coautorii (J. Nanopart. Res., 17, 353, 2015) au raportat sinteza de nanoparticule de oxid de titan avand dimensiune si stoichiometrie controlata, folosind o descărcare cavitara care expandeaza in o camera vidata.Gunnarsson R. and co-authors (J. Nanopart. Res., 17, 353, 2015) reported the synthesis of titanium oxide nanoparticles having controlled size and stoichiometry, using a cavitation discharge that expands into a vacuum chamber.
Lazea-Stoyanova A. si coautorii (Dig. J. Nanomater. Bios., 9, 3, 2014) au raportat producerea de nanoparticule metalice (Cu sau W) folosind un jet de plasma la presiune atmosferica.Lazea-Stoyanova A. and co-authors (Dig. J. Nanomater. Bios., 9, 3, 2014) reported the production of metal nanoparticles (Cu or W) using a plasma jet at atmospheric pressure.
Choukourov A. si colaboratorii (Beilstein J. Nanotechnol., 8, 2002-2014, 2017) au raportat modificarea stării chimice a suprafeței nanoparticulelor de Ag generate cu o sursa de clusteri bazata pe pulverizare magnetron si agregare in gaz folosind o descărcare in plasma in camera de depunere (sau de colectare), poziționată intre duza sursei de clusteri si substrat.Choukourov A. et al. (Beilstein J. Nanotechnol., 8, 2002-2014, 2017) reported changing the surface chemical status of Ag nanoparticles generated with a cluster source based on magnetron spraying and gas aggregation using a plasma discharge in the deposition (or collection) chamber, positioned between the cluster source nozzle and the substrate.
RO 135074 A2,RO 135074 A2,
Nanoparticulele de Ag isi modifica chimia suprafeței la trecerea lor prin aceasta plasma. Plasma magnetron este confinata in interiorul sursei de nanoparticule si nu expandeaza in camera de agregare, fiind total independenta de plasma din camera de colectare.Ag nanoparticles change their surface chemistry as they pass through this plasma. The magnetron plasma is confined inside the nanoparticle source and does not expand in the aggregation chamber, being completely independent of the plasma in the collection chamber.
Prezentarea pe scurt a figurilorBrief presentation of the figures
Figura 1 prezintă o vedere schematică în secțiune longitudinală al sursei de clusteri bazata pe descărcarea magnetron si condensare in gaz inert, exemplificata pentru regimul jet de plasma.Figure 1 shows a schematic longitudinal sectional view of the cluster source based on magnetron discharge and inert gas condensation, exemplified for the plasma jet regime.
Figura 2 prezintă o imagine a jetului de plasma si a substratului. In imagine se observa depunerea obtinuta pe un substrat plasat in incinta de depunere.Figure 2 shows an image of the plasma jet and the substrate. The image shows the deposit obtained on a substrate placed inside the deposit.
Figura 3 prezintă imaginea de microscopie electronica de baleiaj (SEM) a nanoparticulelor depuse pe substrat in modul jet, cu O2 injectat in jetul de plasma, la ieșirea din sursa de clusteri.Figure 3 shows the scanning electron microscopy (SEM) image of the nanoparticles deposited on the substrate in jet mode, with O2 injected into the plasma jet, at the exit of the cluster source.
Figura 4 prezintă spectrul de fotoelectroni de raze X (XPS) înregistrat in zona W4f pe proba de nanoparticule depusa in modul jet, cu O2 injectat in jetul de plasma, la ieșirea din sursa de clusteri.Figure 4 shows the spectrum of X-ray photoelectrons (XPS) recorded in the W4f area on the nanoparticle sample deposited in jet mode, with O2 injected into the plasma jet, at the exit of the cluster source.
Definiția termenilor în general termenii tehnici sau frazele care apar in acest text sunt folosiți ca atare, fiind uzuali persoanelor care au aptitudini in tehnologiile legate de plasma si de sinteza nanoparticulelor; pentru o mai bună înțelegere a lor au fost selectate definiții, după cum urmează.The definition of terms in general the technical terms or phrases that appear in this text are used as such, being common to people who have skills in technologies related to plasma and nanoparticle synthesis; for a better understanding of them definitions have been selected, as follows.
Plasma: se referă la un mediu gazos ionizat ce conține purtători liberi de sarcină (electroni și ioni) și particule neutre excitate (atomi, molecule, radicali). Datorită prezentei purtătorilor liberi de sarcină, plasma este conductivă, prezintă un grad ridicat de interacție între constituenții săi și, în plus, răspunde la acțiunea câmpurilor electrice și magnetice. Mai mult, datorită interacției chimice și fizice a atomilor excitați, moleculelor, radicalilor, ionilor, electronilor, fotonilor cu suprafețe, proprietățile chimice și fizice ale acestora se modifică.Plasma: refers to an ionized gaseous medium containing free charge carriers (electrons and ions) and excited neutral particles (atoms, molecules, radicals). Due to the presence of charge-free carriers, plasma is conductive, has a high degree of interaction between its constituents and, in addition, responds to the action of electric and magnetic fields. Moreover, due to the chemical and physical interaction of excited atoms, molecules, radicals, ions, electrons, photons with surfaces, their chemical and physical properties change.
Jet de plasma: un flux de plasma direcțional ejectat dintr-un dispozitiv sau obiect care produce plasma, cum ar fi o torta de plasma, o stea, etc.Plasma jet: A directional plasma stream ejected from a plasma-producing device or object, such as a plasma torch, star, etc.
Pulverizare a unei tinte in plasma: ejectarea atomilor dintr-un material (denumit tinta, de obicei avand forma unui disc) in urma bombardării tintei cu ioni produși in plasma (de obicei ai unui gaz neutru, cum ar fi, dar nu numai, Ar+). In urma pulverizării tintei se obțin atomi din materialul tintei care pot fi directionati către un obiect (substrat) pentru formarea unui film subțire (depunere, acoperire) pe suprafața acestuia. Acest proces este utilizat pe scara larga pentru acoperirea funcționala a diverse suprafețe cu filme subțiri. Metoda este folosita insa si pentru obținerea clusterilor atomici, prin condensarea vaporilor.Spraying a target in plasma: the ejection of atoms from a material (called a target, usually in the shape of a disk) following the bombardment of the target with ions produced in plasma (usually of a neutral gas, such as, but not limited to, Ar + ). After spraying the target, atoms are obtained from the target material that can be directed to an object (substrate) to form a thin film (deposition, coating) on its surface. This process is widely used for the functional coating of various thin film surfaces. However, the method is also used to obtain atomic clusters, by condensing vapors.
Magnetron: dispozitiv care combina câmpuri electrice si magnetice puternice pentru a confina plasma in vecinătatea tintei; in acest mod se mărește rata de pulverizare a tintei.Magnetron: device that combines strong electric and magnetic fields to confine plasma in the vicinity of the target; in this way the spray rate of the target is increased.
Condensare: proces invers vaporizarii, implicând schimbarea stării de agregare din stare gazoasa in stare lichida sau solida.Condensation: reverse process of vaporization, involving the change of the state of aggregation from gaseous to liquid or solid state.
Clusteri: in fizica semnifica particule mici, multiatomice.Clusters: in physics means small, multiatomic particles.
Nanoparticule: particule cu dimensiuni intre 1 si 100 nm.Nanoparticles: particles with dimensions between 1 and 100 nm.
Sursa de clusteri (nanoparticule): dispozitiv care produce nanoparticule pe baza unor proces fizic sau chimic, sau o combinație a acestora. Nanoparticulele pot fi produse prin doua strategii: “de la mare la mic” si “de la mic la mare”. Prima strategie implica metode mecanice de reducere a dimensiunii materialelor macroscopice (măcinare). A doua strategie implica agregarea atomilor produși prin o metoda oarecare. In prezenta invenție se utilizează a doua strategie, atomii fiind produși prin pulverizare magnetron iar agregarea acesora realizandu-se prin condensarea acestora in un flux de gaz inert.Source of clusters (nanoparticles): a device that produces nanoparticles based on physical or chemical processes, or a combination thereof. Nanoparticles can be produced by two strategies: "from large to small" and "from small to large". The first strategy involves mechanical methods of reducing the size of macroscopic materials (grinding). The second strategy involved the aggregation of atoms produced by some method. In the present invention the second strategy is used, the atoms being produced by magnetron spraying and their aggregation being achieved by condensing them into an inert gas stream.
Prezentarea detaliată a invențieiDetailed presentation of the invention
Obiectul invenției îl constituie metoda de operarea in modul jet de plasma de temperatura joasa a unei surse de clusteri bazata pe pulverizare magnetron si agregarea in gaz si utilizarea ei pentru sinteza de nanoparticule cu suprafața modificata chimic.The object of the invention is the method of operating in low temperature plasma jet mode of a cluster source based on magnetron spraying and gas aggregation and its use for the synthesis of nanoparticles with chemically modified surface.
Fig.l prezintă schematic in secțiune transversala o sursa de clusteri bazata pe pulverizare magnetron si agregarea in gaz. Aceasta consta intr-o incinta de vid (1) in care este montata axial o sursa de plasma cu pulverizare de tip magnetron (2) prevăzută cu o tinta (4); in abordarea prezentata aici tinta este metalica, din W, insa poate fi din orice alt material. Incinta sursei de clusteri prezintă in partea opusa tintei un orificiu plasat axial (7) care comunica cu incinta de depunere (10). Regiunea situata intre tinta si orificiul de ieșire se numește zona de agregare (6). In aceasta zona, care este răcită (5), are loc creșterea nanoparticulelor prin condensarea vaporilor imprastiati din tinta. In incinta de depunere este poziționat substratul (9), pe care se depun nanoparticulele. Acesta este o placheta metalica dar poate fi si din sticla, siliciu, sau material sensibil al temperatura (cum ar fi o folie polimerica). Gazele de lucru sunt introduse in proces in mod controlat, la debit constant, astfel incat presiunea in camera de agregare sa fie cu un ordin de mărime mai mare decât in incinta de depunere. Gazul de lucru din sursa de clusteri (3) este Ar (insa poate fi orice alt gaz inert adecvat procesului de imprastiere magnetron, cum ar fi Kr). Acesta are roluri multiple: susține descărcarea electrica, contribuie la procesul de nucleatie si antrenează nanoparticulele spre camera de depunere. Gazul reactiv (12) este introdus in mod controlat in camera de depunere, in imediata vecinătate a orificiului de ieșire. Gazele de lucru sunt evacuate cu un sistem de vidare (11) atașat la incinta de depunere.Fig. 1 shows schematically in cross section a cluster source based on magnetron spraying and gas aggregation. It consists of a vacuum chamber (1) in which a magnetron spray plasma source (2) is provided axially provided with a target (4); In the approach presented here the target is metallic, from W, but it can be from any other material. The enclosure of the cluster source has on the opposite side of the target an axially placed hole (7) which communicates with the deposition enclosure (10). The region between the target and the outlet is called the aggregation area (6). In this area, which is cooled (5), the nanoparticles grow by condensing the vapors scattered from the target. The substrate (9), on which the nanoparticles are deposited, is positioned in the deposition chamber. This is a metal plate but can also be made of glass, silicon, or temperature sensitive material (such as a polymer foil). The working gases are introduced into the process in a controlled manner, at a constant flow, so that the pressure in the aggregation chamber is an order of magnitude larger than in the deposition chamber. The working gas from the cluster source (3) is Ar (but can be any other inert gas suitable for the magnetron scattering process, such as Kr). It has multiple roles: it supports the electric discharge, contributes to the nucleation process and drives the nanoparticles to the deposition chamber. The reactive gas (12) is introduced in a controlled manner into the deposition chamber, in the immediate vicinity of the outlet. The working gases are discharged with a vacuum system (11) attached to the storage chamber.
In condiții tipice de operare, plasma descărcării magnetron este limitata in interiorul sursei de clusteri, in apropierea tintei si extinzandu-se in o măsură mai mare sau mai mica in zona de agregare. In aceaste condiții, nanoparticulele sunt ejectate din sursa de clusteri prin orificiul de ieșire sub forma unui fascicul de nanoparticule.Under typical operating conditions, the magnetron discharge plasma is limited inside the cluster source, near the target and extending to a greater or lesser extent in the aggregation area. Under these conditions, the nanoparticles are ejected from the cluster source through the outlet through a bundle of nanoparticles.
In anumite condiții experimentale, când grosimea păturii de sarcina spațiala de la perete devine mai mica sau comparabila cu diametrul orificiului de ieșire din sursa de clusteri, plasma expandeaza in afara sursei de clusteri, sub forma unui jet de plasma.Under certain experimental conditions, when the thickness of the spatial load of the wall becomes smaller or comparable to the diameter of the outlet of the cluster source, the plasma expands outside the cluster source, in the form of a plasma jet.
Jetul de plasma format este exemplificat de imaginea foto prezentata in Fig.2. In aceasta figura se observa orificiul de ieșire din sursa de clusteri (6), jetul de plasma (8), tubul de injecție a gazului reactiv (12) si substratul (9), pe care se identifica materialul depus de jetul de plasma.The plasma jet formed is exemplified by the photo image shown in Fig.2. This figure shows the outlet of the cluster source (6), the plasma jet (8), the reactive gas injection tube (12) and the substrate (9), on which the material deposited by the plasma jet is identified.
Grosimea păturii de sarcina spațiala de la perete este o funcție descrescătoare de puterea aplicata descărcării si de presiune, astfel incat pentru diametre foarte mici ale orificiului de ieșire transferul plasmei nu se poate realiza, sursa de clusteri neputand lucra in regimul jet de plasma.The thickness of the spatial load blanket on the wall is a decreasing function of the power applied to the discharge and the pressure, so that for very small diameters of the outlet the plasma transfer cannot be achieved, the cluster source not being able to work in plasma jet mode.
In configurațiile specifice de lucru ale unei surse de clusteri se identifica un diametru optim pentru care sursa de clusteri poate lucra atat in regimul clasic cat si in regimul jet de plasma. Tranziția intre cele doua regimuri se realizează pentru o valoare specifica a distantei tinta - orificiu, in condițiile in care puterea aplicata descărcării si presiunea de lucru au valoare constanta.In the specific working configurations of a cluster source, an optimal diameter is identified for which the cluster source can work both in the classical regime and in the plasma jet regime. The transition between the two modes is made for a specific value of the target-orifice distance, given that the power applied to the discharge and the working pressure have a constant value.
Depunerea de nanoparticule in regimul jet de plasma este demonstrata aici folosind o tinta de W iar ca gaze de lucru Ar (in sursa de clusteri) si O2 (in jetul de plasma, in vederea oxidarii suprafeței nanoparticulelor).The deposition of nanoparticles in the plasma jet regime is demonstrated here using a target of W and as working gases Ar (in the cluster source) and O2 (in the plasma jet, in order to oxidize the surface of the nanoparticles).
In Fig. 3 este prezentata imaginea de microscopie electronica cu baleiere SEM a nanoparticulelor depuse pe substrat; dimensiunea nanoparticulelor este cuprinsa intre 20 si 40 nm.In Figs. 3 shows the SEM scanning electron microscopy image of the nanoparticles deposited on the substrate; the size of the nanoparticles is between 20 and 40 nm.
Analiza elementala a suprafeței probei depuse in aceste condiții experimentale a fost efectuata prin spectroscopie de fotoelectroni de raze X (XPS). Fig. 4 prezintă spectrul XPS de înalta rezoluție in zona W4f. Se remarca in acest spectru prezenta celor doua maxime asignate WO3 si a celor doua maxime asignate W metalic. Deoarece adancimea de pătrundere a razelor X este de maxim 20 nm in tehnica XPS iar dimensiunea nanoparticulelor este cuprinsa intre 20 si 40 nm, spectrul XPS din Fig. 4 sugerează ca nanoparticulele au fost oxidate eficient (unele in totalitate iar altele cu o coaja de oxid, miezul acestora ramanand metalic).Elemental analysis of the sample surface deposited under these experimental conditions was performed by X-ray photoelectron (XPS) spectroscopy. FIG. 4 shows the high resolution XPS spectrum in the W4f area. The presence of the two maximums assigned WO3 and the two maximums assigned W metallic is noticed in this spectrum. Since the X-ray penetration depth is a maximum of 20 nm in the XPS technique and the nanoparticle size is between 20 and 40 nm, the XPS spectrum of Figs. 4 suggests that the nanoparticles were efficiently oxidized (some completely and others with an oxide shell, their core remaining metallic).
Temperatura substraturilor expuse la jetul de plasma nu a depășit 60 °C in timpul depunerilor. Testele de depunere de nanoparticule de W metalic pe substrat de PET (polietilena teraftalat) au aratat ca după expunerea substratului la jetul de plasma acesta isi pastreaza integritatea.The temperature of the substrates exposed to the plasma jet did not exceed 60 ° C during deposition. Tests of deposition of metallic W nanoparticles on PET (polyethylene terephthalate) substrate showed that after exposure of the substrate to the plasma jet it retains its integrity.
Obiectivele invenției constă în:The objects of the invention are:
Operarea surselor de clusteri bazate pe pulverizare magnetron si agregare in gaz inert in regimul jet de plasma, si aplicarea acestui regim de operare pentru sinteza de particule cu suprafața modificata chimic.Operation of cluster sources based on magnetron spraying and inert gas aggregation in the plasma jet regime, and application of this operating regime for the synthesis of chemically modified surface particles.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RO201900870A RO135074A2 (en) | 2019-12-05 | 2019-12-05 | Method for operating a cluster source based on magnetron sputtering and gas aggregation, in low temperature plasma jet mode |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RO201900870A RO135074A2 (en) | 2019-12-05 | 2019-12-05 | Method for operating a cluster source based on magnetron sputtering and gas aggregation, in low temperature plasma jet mode |
Publications (1)
Publication Number | Publication Date |
---|---|
RO135074A2 true RO135074A2 (en) | 2021-06-30 |
Family
ID=76527580
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RO201900870A RO135074A2 (en) | 2019-12-05 | 2019-12-05 | Method for operating a cluster source based on magnetron sputtering and gas aggregation, in low temperature plasma jet mode |
Country Status (1)
Country | Link |
---|---|
RO (1) | RO135074A2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CZ309846B6 (en) * | 2022-10-27 | 2023-12-06 | Jihočeská Univerzita V Českých Budějovicích | Nanoparticle nanoprinting method and nanoparticle nanoprinting device |
-
2019
- 2019-12-05 RO RO201900870A patent/RO135074A2/en unknown
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CZ309846B6 (en) * | 2022-10-27 | 2023-12-06 | Jihočeská Univerzita V Českých Budějovicích | Nanoparticle nanoprinting method and nanoparticle nanoprinting device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Lin et al. | Microplasma: a new generation of technology for functional nanomaterial synthesis | |
Vizireanu et al. | Plasma techniques for nanostructured carbon materials synthesis. A case study: carbon nanowall growth by low pressure expanding RF plasma | |
Vollath | Plasma synthesis of nanopowders | |
Tay et al. | Review of metal oxide films deposited by filtered cathodic vacuum arc technique | |
US7033650B2 (en) | Method of producing a nanotube layer on a substrate | |
De Bonis et al. | Formation of Titanium Carbide (TiC) and TiC@ C core-shell nanostructures by ultra-short laser ablation of titanium carbide and metallic titanium in liquid | |
Lin et al. | An atmospheric pressure microplasma process for continuous synthesis of titanium nitride nanoparticles | |
Levchenko et al. | Lightning under water: Diverse reactive environments and evidence of synergistic effects for material treatment and activation | |
JP6534387B2 (en) | Method of continuously producing aligned nanostructures with a traveling substrate and related equipment | |
Malekzadeh et al. | Vapor-phase production of nanomaterials | |
WO2004003252A1 (en) | Multi-component substances and processes for preparation thereof | |
JP4825846B2 (en) | Carbon nanotube production equipment | |
JP4443423B2 (en) | Single-walled carbon nanotube manufacturing method and manufacturing apparatus | |
JP2008223105A (en) | Treatment apparatus with the use of progressive plasma, treatment method, and article to be treated | |
Ostrikov et al. | Plasma effects in semiconducting nanowire growth | |
Miyazoe et al. | Improving the metallic content of focused electron beam-induced deposits by a scanning electron microscope integrated hydrogen-argon microplasma generator | |
JP5644537B2 (en) | Carbon nanotube aggregate and method for producing the same | |
JP5587423B2 (en) | Method and apparatus for depositing nanostructured thin layers with controlled morphology and nanostructures | |
RO135074A2 (en) | Method for operating a cluster source based on magnetron sputtering and gas aggregation, in low temperature plasma jet mode | |
JP2010247108A (en) | Gold nano cluster uniformly controlled in size on metal oxide, method for manufacturing the same and catalyst using the same | |
JP5042482B2 (en) | Method for producing aggregate of carbon nanotubes | |
JP3783057B2 (en) | Sp3-bonded boron nitride thin film having a self-formation surface shape utilizing field electron emission characteristics, its production method and use | |
RU2371381C2 (en) | Method and device for plasmochemical synthesis of nano-objects | |
Honda et al. | Low-temperature SiO2 film coatings onto Cu particles using the polygonal barrel-plasma chemical vapor deposition method | |
JP2007314391A (en) | Substrate for growth of carbon nanotube and fabrication process for carbon nanotube using the same |