RO134390A0 - Process for preparing nanocomposite films meant to protect architectural lithic components of cultural heritage - Google Patents

Process for preparing nanocomposite films meant to protect architectural lithic components of cultural heritage Download PDF

Info

Publication number
RO134390A0
RO134390A0 ROA201900350A RO201900350A RO134390A0 RO 134390 A0 RO134390 A0 RO 134390A0 RO A201900350 A ROA201900350 A RO A201900350A RO 201900350 A RO201900350 A RO 201900350A RO 134390 A0 RO134390 A0 RO 134390A0
Authority
RO
Romania
Prior art keywords
mgo
solution
nanoparticles
glass
water
Prior art date
Application number
ROA201900350A
Other languages
Romanian (ro)
Other versions
RO134390B1 (en
Inventor
Victor Fruth-Oprişan
Ligia-Carmen Todan
Luminiţa Predoană
Iuliana Poenaru
Ludmila Aricov
Anca Ruxandra Leontieş
Elena-Mădălina Ciobanu
Gabriela Petcu
Rodica-Mariana Ion
Lorena Iancu
Maria Luiza Jecu
Iuliana Răut
Mariana Călin
Original Assignee
Institutul De Chimie Fizică "Ilie Murgulescu" Al Academiei Române
Institutul Naţional De Cercetare-Dezvoltare Pentru Chimie Şi Petrochimie - Icechim
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institutul De Chimie Fizică "Ilie Murgulescu" Al Academiei Române, Institutul Naţional De Cercetare-Dezvoltare Pentru Chimie Şi Petrochimie - Icechim filed Critical Institutul De Chimie Fizică "Ilie Murgulescu" Al Academiei Române
Priority to RO201900350A priority Critical patent/RO134390B1/en
Publication of RO134390A0 publication Critical patent/RO134390A0/en
Publication of RO134390B1 publication Critical patent/RO134390B1/en

Links

Abstract

The invention relates to a process for preparing nanocomposite films to be used for protecting architectural components of the national heritage. According to the invention, the process consists in preparing a suspension of nanoparticles of magnesium oxide 0.5% in a solution of hydrophobically modified sodium polyacrylate 0.1% and applying a suspension layer, on surfaces of different roughness such as glass, tiles, ceramics, sandstone, mortar, by usual methods, to result in a nanocomposite film having antimicrobial activity and, in the absence of light, a water absorption by capillarity reduced by 10%, photocatalytic properties and colour and appearance stability.

Description

Procedeu de obținere a unor pelicule nanocompozite destinate protejării componentelor arhitecturale litice ale patrimoniului cultural.Process for obtaining nanocomposite films designed to protect the lithic architectural components of the cultural heritage.

Prezenta invenție se referă la un procedeu de obținere a filmelor subtiri/pelicule nanocompozite dintr-un amestec de nanoparticule oxidice (MgO) și polimeri în soluție apoasă (NaPAC16- Poliacrilatul de sodiu modificat hidrofobic), cu utilizăre in protejarea componentelor arhitecturale ale patrimoniului cultural.The present invention relates to a process for obtaining thin films / nanocomposite films from a mixture of oxide nanoparticles (MgO) and polymers in aqueous solution (NaPAC16- hydrophobically modified sodium polyacrylate), for use in protecting the architectural components of cultural heritage.

Expunerea constantă la activitatea combinată a acțiunii naturii și poluării urbane cauzează mai multe daune materialelor folosite în construcții: apa, poluarea aerului, sărurile solubile, biodeteriorarea sunt principalele cauze ale degradării, iar literatura de specialitate include multe articole privind investigarea mecanismelor lor de acțiune.Constant exposure to the combined activity of nature and urban pollution causes more damage to building materials: water, air pollution, soluble salts, biodegradation are the main causes of degradation, and the literature includes many articles on investigating their mechanisms of action.

Protecția elementelor arhitecurale în domeniul patrimoniului cultural reprezintă o activitate complexă din cauza dificultății de a satisface criteriile impuse. O acoperire ideală ar trebui să fie eficientă, rezistentă, durabilă, transparentă, ușor de aplicat, netoxică și detașabilă. Mai mult, acoperirea protectoare trebuie să garanteze un nivel ridicat de hidrofobicitate, având în vedere că umiditatea și apa de ploaie reprezintă principalele cauze ale mecanismelor de degradare. Totodată acoperirea trebuie să permită transpirația pietrei pentru a evita ca apa deja prezentă în substrat să poată determina o degradare ulterioară. [C. V. Horie, Materials for Conservation: Organic Consolidants, Adhesives and Coatings, Routledge, 2010]The protection of architectural elements in the field of cultural heritage is a complex activity due to the difficulty of meeting the required criteria. An ideal coating should be effective, resistant, durable, transparent, easy to apply, non-toxic and removable. Moreover, the protective coating must guarantee a high level of hydrophobicity, given that moisture and rainwater are the main causes of degradation mechanisms. At the same time, the coating must allow the stone to perspire to avoid that the water already present in the substrate can cause further degradation. [C. V. Horie, Materials for Conservation: Organic Consolidants, Adhesives and Coatings, Routledge, 2010]

Apa contribuie substanțial la degradarea monumentelor prin înghețare și dezghețare și, de asemenea, pentru că este un purtător de poluanți și soluții de sare. Impermeabilitatea poate fi realizata prin aplicarea unui film subțire, hidrofob, organic. Utilizarea acoperirilor simple de polimeri pentru protecția monumentului este încă în dezbatere din cauza reacțiilor adverse nedorite dezvoltate la îmbătrânire.Water contributes substantially to the degradation of monuments by freezing and thawing and also because it is a carrier of pollutants and salt solutions. Waterproofing can be achieved by applying a thin, hydrophobic, organic film. The use of simple polymer coatings for monument protection is still under debate due to the unwanted side effects developed with aging.

Au fost propuse mai multe strategii legate de protejarea monumentelor: straturi organice, particule anorganice și materiale compozite.Several strategies related to the protection of monuments have been proposed: organic layers, inorganic particles and composite materials.

a 2019 00350and 2019 00350

10/06/201910/06/2019

Pentru protejarea și conservarea monumentelor istorice au fost utilizați atât agenți organici cât și anorganici, inclusiv polimeri sintetici. Tratamentele efectuate cu materiale organice prezintă o durabilitate scăzută, schimbarea drastică a proprietăților structurale ale pietrei și compatibilitatea fizico-chimică slabă cu substratul. Produsele anorganice par să aibă anumite avantaje, cum ar fi o bună durabilitate și o compatibilitate fizico-chimică mai mare cu componentele de piatră, dar, pe de altă parte, ele oferă, de obicei, o penetrare insuficientă și, prin urmare, un effect de consolidare slab. [M. Licchelli, M. Malagodi, M. Weththimuni, C. Zanchi, Anti-graffitinanocomposite materials for surface protection of a very porous stone, AppI.Phys. A. 116 (2014) 15251539]Both organic and inorganic agents, including synthetic polymers, were used to protect and preserve historical monuments. Treatments performed with organic materials show low durability, drastic change in the structural properties of the stone and poor physico-chemical compatibility with the substrate. Inorganic products appear to have certain advantages, such as good durability and greater physico-chemical compatibility with stone components, but, on the other hand, they usually provide insufficient penetration and therefore an effect. weak consolidation. [M. Licchelli, M. Malagodi, M. Weththimuni, C. Zanchi, Anti-graffitinanocomposite materials for surface protection of a very porous stone, AppI.Phys. A. 116 (2014) 15251539]

In ultimii 40 de ani au fost folosite cu precădere, pentru consolidarea structurilor din piatra și pereților pictati, material organice: s-au folosit polimeri sintetici acrilici și vinilici ca consolidatori pentru fresce, precum și compuși organosiliconici. Se pot da, cu titlul de exemplu, realizarea unui amestec format din politetrafluoretilenă sub formă de dispersie apoasă, o emulsie sau o microemulsie de perfluoropolietere aplicat pe suprafața materialelor sau articolelor menționate CA2005749A1 [Giovanni Moggi, Daria Lenti, Desiderata Ingoglia, Process for protecting stony materials, marble, tiles and cement from atmospheric agents and pollutants], aplicarea compozițiilor de fluoropolimer amorf în piatră pentru a proteja piatra de efectele dăunătoare ale apei și poluării US20030211332 [William Tuminello, Robert Wheland, Method for protection of stone with substantially amorphous fluoropolymers]In the last 40 years, organic materials have been used mainly to strengthen stone structures and painted walls: synthetic acrylic and vinyl polymers have been used as consolidators for frescoes, as well as organosilicone compounds. Examples include a mixture of polytetrafluoroethylene in the form of an aqueous dispersion, an emulsion or a microemulsion of perfluoropolyether applied to the surface of said materials or articles CA2005749A1 [Giovanni Moggi, Daria Lenti, Desiderata Ingoglia, Process for protecting stony materials, marble, tiles and cement from atmospheric agents and pollutants], application of amorphous fluoropolymer compositions to stone to protect stone from the harmful effects of water and pollution US20030211332 [William Tuminello, Robert Wheland, Method for protection of stone with substantially amorphous fluoropolymers]

Consolidantii anorganici au marele avantaj al compatibilității cu materialele constitutive ale lucrării de artă. Metoda a fost inițial bazată pe dispersia de var stins în alcooli alifatici cu catenă scurtă (particule de hidroxid de calciu micronic) și a fost ulterior îmbunătățită prin reducerea dimensiunii medii a particulelor de consolidare la scara submicrometrică pentru a se obține o penetrare mai profundă a dispersiei, o mai bună stabilitate și pentru a evita formarea de pelicule albe pe suprafața tratată. Mărimea medie a particulelor de consolidare este critică pentru aplicarea lor pe materiale poroase, în special atunci când matricea prezintă porozitate mică: în ultimii ani, aceste particule micronice și submicronice de hidroxid de calciu au fost utilizate cu succes a 2019 00350Inorganic consolidants have the great advantage of compatibility with the constituent materials of the work of art. The method was initially based on the dispersion of slaked lime in short-chain aliphatic alcohols (micron calcium hydroxide particles) and was later improved by reducing the average size of the consolidation particles to the submicrometric scale to obtain a deeper penetration of the dispersion. , better stability and to avoid the formation of white films on the treated surface. The average size of the consolidation particles is critical for their application on porous materials, especially when the matrix has low porosity: in recent years, these micron and submicron particles of calcium hydroxide have been used successfully by 2019 00350

10/06/2019 pentru consolidarea picturilor murale , unde porozitatea relativ înaltă a mortarului a permis penetrarea particulelor mari.10/06/2019 for the consolidation of murals, where the relatively high porosity of the mortar allowed the penetration of large particles.

Numeroase investigatii au vizat îmbunătățirea strategiilor pe bază de compuși organici prin adăugarea de nanoparticule anorganice [Esposito Corcione, C.; Manno, R.; Frigione, M. Sunlight curable boehmite/siloxane-modified mathacrlylic nano composites: An innovative solution for the protection of carbonate stone. Prog. Org. Coat. 2016, 97, 222-232. / Esposito Corcione, C.; Manno, R.; Frigione, M. Novei hydrophobic free solvent UV-cured hybrid organic-inorganic mathacrylic-based coatings for porous stones. Prog. Org. Coat. 2014, 77, 803-812.] [Kapridaki, C.; Maravelaki-Kalaitzaki, P. TiO2-SiO2-PDMS nano-composite hydrophobic coating with self-cleaning properties for marble protection. Prog. Org. Coat. 2013, 76, 400-410.] [Graziani, G.; Sassoni, E.; Franzoni, E.; Scherer, G.W. Hydroxyapatite coatings for marble protection: Optimization of calcite covering and acid resistance. Appl. Surf. Sci. 2016, 368, 241-257. /. Manodius, P.N.; Karapanagiotis, I. Modification of the wettability of polymer surfaces using nanoparticles. Prog. Org. Coat. 2014, 77, 331-338. / Munafo, P.; Goffredo, G.B.; Quagliarini, E. TiO2-based nanocoatings for preserving architectural stone surfaces: An overview. Constr. Build. Mater. 2015, 84, 201-218.] pentru creșterea hidrofobicitatii sau asigurând suprafețelor proprietăți de autocuratare [Kapridaki, C.; Maravelaki-Kalaitzaki, P. TiOa-SiOz-PDMS nano-composite hydrophobic coating with self-cleaning properties for marble protection. Prog. Org. Coat. 2013, 76, 400-410.] [Munafo, P.; Goffredo, G.B.; Quagliarini, E. TiO2-based nanocoatings for preserving architectural stone surfaces: An overview. Constr. Build. Mater. 2015, 84, 201-218./. Quagliarini, E.; Bondioli, F.; Goffredo, G.B.; Licciulli, A.; Munafo, P. Self-cleaning materials on architectural heritage: Compatibility of photo-induced hydrophilicity of T1O2 coatings on stone surfaces. J. Cult. Heritage 2013, 14, 1-7./ Colangiuli, D.; Calia, A.; Bianco, N. Novei multifuncțional coatings with photocatalytic and hydrophobic properties for the preservation of stone building heritage. Constr. Build. Mater. 2015, 93, 189-196.] a 2019 00350Numerous investigations have aimed to improve strategies based on organic compounds by adding inorganic nanoparticles [Esposito Corcione, C .; Manno, R .; Frigione, M. Sunlight curable boehmite / siloxane-modified mathacrlylic nano composites: An innovative solution for the protection of carbonate stone. Prog. Org. Coat. 2016, 97, 222-232. / Esposito Corcione, C .; Manno, R .; Frigione, M. Novei hydrophobic free solvent UV-cured hybrid organic-inorganic mathacrylic-based coatings for porous stones. Prog. Org. Coat. 2014, 77, 803-812.] [Kapridaki, C .; Maravelaki-Kalaitzaki, P. TiO2-SiO2-PDMS nano-composite hydrophobic coating with self-cleaning properties for marble protection. Prog. Org. Coat. 2013, 76, 400-410.] [Graziani, G .; Sassoni, E .; Franzoni, E .; Scherer, GW Hydroxyapatite coatings for marble protection: Optimization of calcite covering and acid resistance. Appl. Surf. Sci. 2016, 368, 241-257. /. Manodius, PN; Karapanagiotis, I. Modification of the wettability of polymer surfaces using nanoparticles. Prog. Org. Coat. 2014, 77, 331-338. / Munafo, P .; Goffredo, GB; Quagliarini, E. TiO2-based nanocoatings for preserving architectural stone surfaces: An overview. Constr. Build. Mater. 2015, 84, 201-218.] For increasing hydrophobicity or providing surfaces with self-cleaning properties [Kapridaki, C .; Maravelaki-Kalaitzaki, P. TiOa-SiOz-PDMS nano-composite hydrophobic coating with self-cleaning properties for marble protection. Prog. Org. Coat. 2013, 76, 400-410.] [Munafo, P .; Goffredo, GB; Quagliarini, E. TiO 2 -based nanocoatings for preserving architectural stone surfaces: An overview. Constr. Build. Mater. 2015, 84, 201-218./. Quagliarini, E .; Bondioli, F .; Goffredo, GB; Licciulli, A .; Munafo, P. Self-cleaning materials on architectural heritage: Compatibility of photo-induced hydrophilicity of T1O2 coatings on stone surfaces. J. Cult. Heritage 2013, 14, 1-7./ Colangiuli, D .; Calia, A .; Bianco, N. Novei multifunctional coatings with photocatalytic and hydrophobic properties for the preservation of stone building heritage. Constr. Build. Mater. 2015, 93, 189-196.] And 2019 00350

10/06/201910/06/2019

Descriere pe larg a invențieiDetailed description of the invention

Materiale precursoarePrecursor materials

MgO - materialele nanostructurate semiconductoare constituie un instrument eficient pentru controlul dezagregărilor biologice deoarece prezintă avantaje mari (raportul dintre suprafață și volum mare și dimensiunea redusă a particulelor). Dintre aceste nanomateriale, dioxidul de titan a atras o atenție deosebită în dezvoltarea acoperirilor antibacteriene și antifungice [ La Russa, M.F.; Macchia, A.; Ruffolo, S.A.; De Leo, F.; Barberio, M.; Barone, P.; Crisci, G.M.; Urzi, C. Testing the Antibacterial Activity of Doped TiO2 for Preventing Biodeterioration of Cultural Heritage Building Materials. Int. Biodeter. Biodegr. 2014, 96, 87-96, DOI: 10.10167j.ibiod.2014.10.002/ Munafo, P.; Goffredo, G.B.; Quagliriani, E. TiO2-Based Nanocoatings for Preserving Architectural Stone Surfaces: an OverView. Constr. Build. Mater. 2015, 84, 201-218, DOI:MgO - semiconductor nanostructured materials are an effective tool for controlling biological disintegrations because they have great advantages (the ratio of surface area to large volume and small particle size). Among these nanomaterials, titanium dioxide has attracted special attention in the development of antibacterial and antifungal coatings [La Russa, M.F .; Macchia, A .; Ruffolo, S.A .; De Leo, F .; Barberio, M .; Barone, P .; Crisci, G.M .; Urzi, C. Testing the Antibacterial Activity of Doped TiO2 for Preventing Biodeterioration of Cultural Heritage Building Materials. Int. Biodeter. Biodegradable. 2014, 96, 87-96, DOI: 10.10167j.ibiod.2014.10.002 / Munafo, P .; Goffredo, G.B .; Quagliriani, E. TiO2-Based Nanocoatings for Preserving Architectural Stone Surfaces: an OverView. Constr. Build. Mater. 2015, 84, 201-218, DOI:

10.1016/j.conbuildmat.2015.02.083]. Dezavantajul principal al acetui material este însă prezenta luminii pentru a fi performante, ceea ce restrâng domeniul aplicativ al acestora./ Morlando, A.; Cardillo, D.; Devers, T.; Konstantinov, K. Titanium Doped Tin Dioxide as Potențial UV Filter with Low Photocatalytic Activity for Sunscreen Products. Mater. Lett. 2016, 171, 289-292. DOI: 10.1016/j.matlet.2016.02.094]10.1016 / j.conbuildmat.2015.02.083]. The main disadvantage of this material, however, is the presence of light to be efficient, which restricts their application field./ Morlando, A .; Cardillo, D .; Devers, T .; Konstantinov, K. Titanium Doped Tin Dioxide as Potential UV Filter with Low Photocatalytic Activity for Sunscreen Products. Mater. Lett. 2016, 171, 289-292. DOI: 10.1016 / j.matlet.2016.02.094]

Oxidul de magneziu prezintă un interes deosebit pentru că, pe lângă faptul că este un material ieftin si ecologic (bio-safe and bio-compatibil), prezintă activitate antimicrobiană și în absenta luminii, datorita activității chimice ridicate pe suprafața [ Salehifar, N.; Zarghami, Z.; Ramezani, M. A Facile, Novei and Low-Temperature Synthesis of MgO Nanorods Via Thermal Decomposition using New Starting Reagent and its Photocalytic Activity Evaluation. Mater. Lett. 2016, 167, 226-229. DOI: 10.1016/j.matlet.2O16.01.015/Zhang, W.; Tay, H.L.; Lim, S.S.; Wang, Y.; Zhong, Z.; Xu, R. Supported Cobalt Oxide on MgO: Highly Efficient Catalysts for Degradation of Organic Dyes in Dilute Solutions. Appl. Catal. B. 2010, 65, 93-99] în plus, nanoparticulele de MgO dopate cu oxizi sau metale pot constitui un fotocatalizator excelent pentru degradarea poluanților organici datorită fotosensibilității lor ridicate.Magnesium oxide is of particular interest because, in addition to being a cheap and environmentally friendly material (bio-safe and bio-compatible), it has antimicrobial activity and in the absence of light, due to high chemical activity on the surface [Salehifar, N .; Zarghami, Z .; Ramezani, M. A Facile, Novei and Low-Temperature Synthesis of MgO Nanorods Via Thermal Decomposition using New Starting Reagent and its Photocalytic Activity Evaluation. Mater. Lett. 2016, 167, 226-229. DOI: 10.1016 / j.matlet.2O16.01.015 / Zhang, W .; Tay, H.L .; Lim, S.S .; Wang, Y .; Zhong, Z .; Xu, R. Supported Cobalt Oxide on MgO: Highly Efficient Catalysts for Degradation of Organic Dyes in Dilute Solutions. Appl. Catal. B. 2010, 65, 93-99] in addition, oxide or metal-doped MgO nanoparticles can be an excellent photocatalyst for the degradation of organic pollutants due to their high photosensitivity.

Poliacrilatul de sodiu modificat hidrofobic. Poliacrilații de sodiu modificați hidrofobic ((NaPACns) sunt compuși macromoleculari amfifilici, având o structură hidrofilă pe care sunt grefate grupările hidrofobe. Aceasta conduce la obținerea de materiale unice, care a 2019 00350Hydrophobically modified sodium polyacrylate. Hydrophobically modified sodium polyacrylates (NaPACns) are amphiphilic macromolecular compounds with a hydrophilic structure on which hydrophobic groups are grafted.This leads to the obtaining of unique materials, which has 2019 00350

10/06/2019 sunt utile într-o varietate mare de aplicații. Proprietățile specifice ale NaPACn sunt determinate de interacțiunile electrostatice (repulsingere și atracție) și interacțiunii hidrofobe. Prin urmare, grupurile nepolare îndepărtează moleculele de apă și au tendința să se adune în stratul de suprafață al soluției apoase, în timp ce lanțul hidrofilic interacționează cu apă [F. Petit-Agnely, I. Iliopoulos, R. Zana, Hydrophobically modified sodium polyacrylates in aqueous Solutions: Association mechanism and characterization of the aggregates by fluorescence probing, Langmuir 16 (2000) 9921-9927./ Yu.A. Shashkina, Yu.D. Zaroslov, V.A. Smirnov, O.E. Philippova, A.R. Khokhlov, T.A. Pryakhina, N.A. Churochkina, Hydrophobic aggregation in aqueous Solutions of hydrophobically modified polyacrylamide in the vicinity of overlap concentration, Polymer 44 (2003) 2289-2293].10/06/2019 are useful in a wide variety of applications. The specific properties of NaPACn are determined by electrostatic interactions (repulsion and attraction) and hydrophobic interaction. Therefore, nonpolar groups remove water molecules and tend to accumulate in the surface layer of the aqueous solution, while the hydrophilic chain interacts with water [F. Petit-Agnely, I. Iliopoulos, R. Zana, Hydrophobically modified sodium polyacrylates in aqueous Solutions: Association mechanism and characterization of the aggregates by fluorescence probing, Langmuir 16 (2000) 9921-9927./ Yu.A. Shashkina, Yu.D. Zaroslov, V.A. Smirnov, O.E. Philippova, A.R. Khokhlov, T.A. Pryakhina, N.A. Churochkina, Hydrophobic aggregation in aqueous Solutions of hydrophobically modified polyacrylamide in the vicinity of overlap concentration, Polymer 44 (2003) 2289-2293].

în funcție de concentrație, lanțurile hidrofobe tind să se auto-asocieze prin atracții hidrofobe intramoleculare (la concentrație scăzută) și intermoleculare (la concentrații ridicate) și formează microdomenii hidrofobe. Studiul acestor materiale este justificat de diversele domenii în care sunt utilizate. NaPACn au proprietăți speciale, cum ar fi creșterea spectaculoasă a vâscozității și elasticității, ceea ce duce la gelifiere [L. Aricov, A. Băran, E.L. Simion, LC. Gîfu, D.F. Anghel, V. Jerca, M. Vuluga, New insights into the self-assembling of some hydrophobically modified polyacrylates in aqueous solution, Colloid Polym. Sci., 294 (2016) 667-679./L. Aricov, H. Petkova, D. Arabadzhieva, A. lovescu, E. Mileva, K. Khristov, G. Stingă, C.F. Mihăilescu, D.F. Anghel, R. Todorov, Aqueous Solutions of associative poly(acrylates): Bulk and interfacial properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects 505 (2016) 138-149]. NaPACn prezintă proprietăți de găzduire a compușilor hidrofobi în absența sau prezența surfactanților [L. Aricov, A. Băran, G. Stingă, E.L. Simion, LC. Gîfu, D.F. Anghel, V. Rădițoiu, Formation and hosting properties of polyacrylate-surfactant complexes, Colloid Polym. Sci., 295 (2017) 1017-1038]. De asemenea, pot fi utilizati în domeniul spumelor viscoelastice [L. Aricov, A. Băran, G. Stîngă, E.L. Simion, LC. Gîfip DJL Anghel, V. Rădițoiu, Formation and hosting properties of polyacrylate-surfactant complexes, Colloid Polym. Sci., 295 (2017) 1017-1038], pentru a construi filme protectoare cu proprietăți de izolare a apei [LC. Gîfu, M.E. Maxim, A. lovescu, E.L. Simion, L. Aricov, M. Anastasescu, C. Munteanu, D.F. Anghel, Surface a 2019 00350Depending on the concentration, hydrophobic chains tend to self-associate through intramolecular (low concentration) and intermolecular (high concentrations) hydrophobic attractions and form hydrophobic microdomains. The study of these materials is justified by the various fields in which they are used. NaPACn have special properties, such as the spectacular increase in viscosity and elasticity, which leads to gelling [L. Aricov, A. Băran, E.L. Simion, LC. Gîfu, D.F. Anghel, V. Jerca, M. Vuluga, New insights into the self-assembling of some hydrophobically modified polyacrylates in aqueous solution, Colloid Polym. Sci., 294 (2016) 667-679./L. Aricov, H. Petkova, D. Arabadzhieva, A. lovescu, E. Mileva, K. Khristov, G. Stingă, C.F. Mihailescu, D.F. Anghel, R. Todorov, Aqueous Solutions of associative poly (acrylates): Bulk and interfacial properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects 505 (2016) 138-149]. NaPACn exhibits host properties of hydrophobic compounds in the absence or presence of surfactants [L. Aricov, A. Băran, G. Stingă, E.L. Simion, LC. Gîfu, D.F. Anghel, V. Rădițoiu, Formation and hosting properties of polyacrylate-surfactant complexes, Colloid Polym. Sci., 295 (2017) 1017-1038]. They can also be used in the field of viscoelastic foams [L. Aricov, A. Băran, G. Stîngă, E.L. Simion, LC. Gîfip DJL Anghel, V. Rădițoiu, Formation and hosting properties of polyacrylate-surfactant complexes, Colloid Polym. Sci., 295 (2017) 1017-1038], to build protective films with water insulation properties [LC. Gîfu, M.E. Maxim, A. lovescu, E.L. Simion, L. Aricov, M. Anastasescu, C. Munteanu, D.F. Anghel, Surface a 2019 00350

10/06/2019 hydrophobization by electrostatic deposition of hydrophobically modified poly(acrylates) and their complexes with surfactants, Appl. Surface Sci., 371 (2016) 519-529], ca acoperiri hidrofobe pe termen lung [I.C. Gîfu, M.E. Maxim, A. lovescu, L. Aricov, E.L. Simion, A.R. Leonties^ M. Anastasescu, C. Munteanu, D.F. Anghel, Natural aging of multilayer films containing hydrophobically modified poly(acrylate)s or their complexes with surfactants, Appl. Surface Sci., 412 (2017) 489-496] și în acoperiri de suprafață antimicrobiene [I.C. Gîfu, M.E.Maxim, L.O. Cinteza, M. Popa, L. Aricov, A.R. Leontieș M. Anastasescu D.F. Anghel, R. lanchis,, C.M. Ninciuleanu, E. Alexandrescu, S.G. Burlacu, C. Nistor, C. Petcu, Antimicrobial activities of hydrophobically modified poly(acrylate) films and their complexes with different chain length cationic surfactants, Coatings 9-4 (2019) 244],10/06/2019 hydrophobization by electrostatic deposition of hydrophobically modified poly (acrylates) and their complexes with surfactants, Appl. Surface Sci., 371 (2016) 519-529], as long-term hydrophobic coatings [I.C. Gîfu, M.E. Maxim, A. lovescu, L. Aricov, E.L. Simion, A.R. Leonties ^ M. Anastasescu, C. Munteanu, D.F. Anghel, Natural aging of multilayer films containing hydrophobically modified poly (acrylate) s or their complexes with surfactants, Appl. Surface Sci., 412 (2017) 489-496] and in antimicrobial surface coatings [I.C. Gîfu, M.E.Maxim, L.O. Cinteza, M. Popa, L. Aricov, A.R. Leontieș M. Anastasescu D.F. Anghel, R. lanchis ,, C.M. Ninciuleanu, E. Alexandrescu, S.G. Burlacu, C. Nistor, C. Petcu, Antimicrobial activities of hydrophobically modified poly (acrylate) films and their complexes with different chain length cationic surfactants, Coatings 9-4 (2019) 244],

Descrierea detaliată a modului de preparare a celor doua componente principale ale nano compozitului, nanoparticulele de MgO si NaPACn, este prezentata in partea de exemple.The detailed description of the preparation of the two main components of the nano-composite, the MgO and NaPACn nanoparticles, is presented in the examples.

Menționam aici cateva proprietăți ale MgO obținut prin metoda sol-gel. Pulberea de MgO de culoare alba este constituită din periclaz, identificat prin analiza de difracție cu raze X (XRD ICD file no. 01-071-1176 avand parametrii celulari a=b=c=4.2172(7)Â, a = β = γ = 90°), prezintă o suprafața specifica de 72,2 m2/g și o dimensiune medie a porilor de 33,1 nm (determinate prin metoda BET) și prezentând forme aciculare (SEM) și are o bandă interzisă de 4,7 eV.We mention here some properties of MgO obtained by the sol-gel method. The white MgO powder consists of periclase, identified by X-ray diffraction analysis (XRD ICD file no. 01-071-1176 having cell parameters a = b = c = 4.2172 (7) Â, a = β = γ = 90 °), has a specific surface area of 72,2 m2 / g and an average pore size of 33,1 nm (determined by the BET method) and has needle-like shapes (SEM) and a bandwidth of 4,7 eV .

NaPACie - sarea de sodiu a acidului poliacrilic modificată hidrofob cu hexildecil amina (amina grasa cu structura liniara) printr-o reacție de amidare folosind ca precursor acidul poliacrilic (PAA, M = 150 kDa, Wako Chemicals). Modificarea PAA a fost făcută prin reactionarea aminei cu grupările carboxil ale precursorului in prezentă de DCC, Ν,Ν'-diciclohexilcarbodiimida (Sigma Aldrich, puritate 99 %) folosind 1-metil-2pirolidona (Sigma Aldrich, puritate 99 %) ca solvent la temperatura de 60° C. Recuperarea polimerului sintetizat a fost făcută prin neutralizarea și precipitarea acestuia in 40 % soluție apoasa de hidroxid de sodiu (NaOH, Chimopar p. a.). Ulterior, polimerul modificat hidrofob a fost purificat prin dializa și recuperat prin liofilizare. Gradul teoretic de grefare a fost de 3 % (moli). Toți precursorii utilizati pentru sinteza a 2019 00350NaPACie - sodium salt of polyacrylic acid modified hydrophobically with hexildecyl amine (fatty amine with linear structure) by an amidation reaction using as precursor polyacrylic acid (PAA, M = 150 kDa, Wako Chemicals). PAA modification was performed by reacting the amine with the carboxyl groups of the present precursor of DCC, Ν, Ν'-dicyclohexylcarbodiimide (Sigma Aldrich, 99% purity) using 1-methyl-2pyrrolidone (Sigma Aldrich, 99% purity) as solvent at room temperature. of 60 ° C. The recovery of the synthesized polymer was done by neutralizing and precipitating it in 40% aqueous sodium hydroxide solution (NaOH, Chimopar pa). Subsequently, the hydrophobic modified polymer was purified by dialysis and recovered by lyophilization. The theoretical degree of grafting was 3% (moles). All precursors used for the synthesis of 2019 00350

10/06/2019 polimerului NaPACie au fost folositi in starea in care au fost achiziționați, fără a fi purificati.10/06/2019 NaPACie polymer were used in the condition in which they were purchased, without being purified.

Pentru a dovedi performantele nanocompozitului obținut pentru protejarea elementelor arhitecturale litice au fost făcute următoarele determinări și teste: 1. Determinarea unghiului de contact pentru a demonstra hidrofobicitatea peliculei, 2. Activitatea microbiană, 3. Capilaritatea , 4. Teste colorimetrice și 5. Activitatea fotocatalitică.To prove the performance of the nanocomposite obtained for the protection of lithic architectural elements, the following determinations and tests were made: 1. Determination of the contact angle to demonstrate the hydrophobicity of the film, 2. Microbial activity, 3. Capillarity, 4. Colorimetric tests and 5. Photocatalytic activity.

1. Determinarea unghiului de contact1. Determination of the contact angle

A fost utilizat Drop Shape Analysis System modelul DSA1 (FM40 Easy Drop) de la KRLISS GMbH pentru măsurarea unghiului de contact al apei deionizate. S-a folosit un ac din otel inoxidabil cu un diametru exterior de 0.5 mm. Volumul picatururii de apa a fost de 3 pl_. Toate măsurătorile au fost efectuate în regim static la temperatura camerei. Unghiul de contact s-a determinat geometric prin trasarea unei tangente din punctul de contact pana la interfața lichid-vapori in profilul picăturii.The Drop Shape Analysis System model DSA1 (FM40 Easy Drop) from KRLISS GMbH was used to measure the contact angle of deionized water. A stainless steel needle with an outer diameter of 0.5 mm was used. The volume of the water drop was 3 pl_. All measurements were performed statically at room temperature. The contact angle was determined geometrically by drawing a tangent from the point of contact to the liquid-vapor interface in the droplet profile.

Rezultatele sunt prezentate in tabelul 1 in cazul depunerii unui strat de film nanocompozit pe suport de sticla. Astfel, pentru materialul compozit depus pe sticla, obtinut din dispersia nanoparticulelor de MgO (0.5%) in soluția de NaPAC16 (0.1%) se observa o creștere semnificativa a valorilor unghiului de contact - o valoare medie de 96,41° - ceea ce demonstrează intrarea in domeniul de hidrofobicitate. Comparativ sunt prezentate rezultate obținute in aceleași condiții de procesare si aceleași a unor pelicule compozite pe baza de T1O2. In acest ultim caz valoarea medie obtinuta a fost de 78.50°, valoare ce situează materialul spre limita de jos a hidrofobiei.The results are presented in table 1 in the case of depositing a layer of nanocomposite film on a glass support. Thus, for the composite material deposited on the glass, obtained from the dispersion of MgO nanoparticles (0.5%) in the NaPAC16 solution (0.1%), a significant increase of the contact angle values is observed - an average value of 96.41 ° - which demonstrates entering the field of hydrophobicity. Comparatively, the results obtained in the same processing conditions and the same T1O2-based composite films are presented. In the latter case, the average value obtained was 78.50 °, a value that places the material towards the lower limit of hydrophobicity.

Tabel 1. Valori ale unghiului de contact pentru filme polimerice si compozite (0.5% concentrație nanoparticule) depuse pe sticla.Table 1. Contact angle values for polymeric and composite films (0.5% nanoparticle concentration) deposited on the glass.

Proba Sample C. A. (°) C. A. (°) C. A. mediu (°) C. A. average (°) Sticla/5 NaPAC 16 Glass / 5 NaPAC 16 66.39 65.09 _________64,66_________ 66.39 65.09 _________ 64.66 _________ 65.38 65.38 Sticla/1 PMH + TiO2 NPs (0. 5 %)Bottle / 1 PMH + TiO 2 NPs (0.5%) 80.89 78.20 76.41 80.89 78.20 76.41 78.50 78.50 Sticla/1 PMH + MgO NPs (0. 5 %) Bottle / 1 PMH + MgO NPs (0.5%) 99.74 89.25 102.21 94.42 99.74 89.25 102.21 94.42 96.41 96.41

a 2019 00350and 2019 00350

10/06/201910/06/2019

2. Activitatea antimicrobiană a fost analizata prin metoda difuzimetrică in agar. Pe mediu Mueller-Hinton (pentru tulpinile bacteriene) și Sabouraud (pentru fungi) s-au turnat in placi Petri s-au insamântat in panza microorganismele de testat (Pseudomonas aeruginosa, Staphylococcus aureus, Candida albicans, Aspergillus niger), utilizând inocul o suspensie bacteriana de densitate 1-3x108 UFC/mL si fungica de 1-5x106 UFC/mL. Ulterior, 10 pL din fiecare compus, menținut in baia de ultrasonare timp de 1 ora înainte de testare, a fost adaugat sub forma de spot. Plăcile Petri au fost incubate timp de 18-24 ore la 37°C pentru tulpinile bacteriene, si Ia2 8°C, 72 ore pentru fungi. Citirea rezultatelor s-a realizat prin masurarea cu ajutorul riglei gradate a zonei de inhibiției a dezvoltării microbiene pe doua axe perpendiculare. [James HJ and Ferraro MJ. Antimicrobial Susceptibility Testing: A Review of General Principles and Contemporary Practices. Clin Infect Dis. 49 (11): 1749-1755, 2OO9./Araniciu C., Maruțescu L., Oniga S., Oniga O., Chifiriuc M.C., Palage M., 2014, Evaluation of the antimicrobial and anti-biofilm activity ofsome 4,2 and 5,2 bisthiazoles derivatives, Digest Journal of Nanomaterials and Biostructures, Voi. 9, No. 1, p. 123 - 131/Siti Hajar Othman, Nurul Raudhah Abd Salam, Norhazlizam Zainal, Roseliza Kadir Basha, Rosnita A. Talib, 2014, Antimicrobial Activity of Τ/Ό2 Nanoparticle-Coated Film for Potențial Food Packaging Applications, International Journal of Photoenergy]2. Antimicrobial activity was analyzed by agar diffusimetric method. On the medium, Mueller-Hinton (for bacterial strains) and Sabouraud (for fungi) were poured into Petri dishes. bacterial density 1-3x10 8 CFU / mL and fungal 1-5x10 6 CFU / mL. Subsequently, 10 μL of each compound, kept in the ultrasonic bath for 1 hour before testing, was added as a spot. Petri dishes were incubated for 18-24 hours at 37 ° C for bacterial strains, and 8 ° C for 72 hours for fungi. The reading of the results was performed by measuring with the help of the graduated ruler the area of inhibition of microbial growth on two perpendicular axes. [James HJ and Ferraro MJ. Antimicrobial Susceptibility Testing: A Review of General Principles and Contemporary Practices. Clin Infect Dis. 49 (11): 1749-1755, 2OO9./Araniciu C., Maruțescu L., Oniga S., Oniga O., Chifiriuc MC, Palage M., 2014, Evaluation of the antimicrobial and anti-biofilm activity ofsome 4,2 and 5.2 bisthiazole derivatives, Digest Journal of Nanomaterials and Biostructures, Vol. 9, No. 1, pp. 123 - 131 / Siti Hajar Othman, Nurul Raudhah Abd Salam, Norhazlizam Zainal, Roseliza Kadir Basha, Rosnita A. Talib, 2014, Antimicrobial Activity of Τ / Ό2 Nanoparticle-Coated Film for Potential Food Packaging Applications , International Journal of Photoenergy]

Din datele experimentale rezultă că pelicula nanocompozită investigată prezintă o activitate microbiana împotriva Stafilococcus aureus, Candida albicans, și Aspergillus niger. Activitatea a fost analizata in condiții diverse de mediu (lumina si întuneric), concentrație de nonoparticule (0,01 -1%), in forma de pulbere sau suspensie. S-a constatat ca activitatea antimicrobiana este direct proporționala cu conținutul in MgO. Din condițiile impuse insa (culoarea și aspectul inițial nu trebuie să varieze) a fost identificata o concentrație optima de MgO -5%.From the experimental data it results that the investigated nanocomposite film has a microbial activity against Staphylococcus aureus, Candida albicans, and Aspergillus niger. The activity was analyzed under various environmental conditions (light and dark), concentration of nonoparticles (0.01 -1%), in the form of powder or suspension. It was found that antimicrobial activity is directly proportional to the MgO content. However, from the imposed conditions (the color and the initial appearance must not vary) an optimal concentration of MgO -5% was identified.

3. Capilaritatea (penetrarea apei: acțiunea capilaritatii)3. Capillarity (water penetration: the action of capillarity)

Testul de capilariatate s-a efectuat după procedura adaptata după Teutonico [Teutonico, J.M., A laboratory manual for architectural conservators. Voi. 168. 1988: ICCROM Rome]. Se aseaza epruveta referință intr-un vas Petri. Se aduaga apa la inaltimea de 1 cm de la baza cărămizii. Se masoara inaltimea (H) la fiecare rninut timp a 2019 00350The capillarity test was performed according to the procedure adapted after Teutonico [Teutonico, J.M., A laboratory manual for architectural conservators. You. 168. 1988: ICCROM Rome]. Place the reference specimen in a Petri dish. Add water to a height of 1 cm from the base of the brick. The height (H) is measured at each time of 2019 00350

10/06/2019 de 5 minute, la fiecare 5 minute timp de 25 de minute si apoi la fiecare 30 de minute. Se înregistrează rezultatele.10/06/2019 of 5 minutes, every 5 minutes for 25 minutes and then every 30 minutes. The results are recorded.

Epruveta de referința s-a obtinut in laborator dintr-un amestec format gips, var, nisip, apa, formate intr-o matrita de silicon cu dimensiuni 1x1x7 cm. Tratarea lor s-a efectuat după uscare in etuva, iar aplicarea consolidantilor s-a efectuat prin pensulareThe reference specimen was obtained in the laboratory from a mixture of gypsum, lime, sand, water, formed in a silicone mold with dimensions 1x1x7 cm. Their treatment was carried out after drying in the oven, and the application of the consolidants was carried out by brushing.

Rezultatele prezentate in tabelul 2. După cum se poate observa, aplicarea unei pelicule compozite pe suprafața epruvetelor determina o creștere de 10%. Spre comparație, in tabel sunt prezentate si valorile capilaritatii obținute in cazul stratului protector pe baza de TiO?.The results presented in Table 2. As can be seen, the application of a composite film on the surface of the specimens determines an increase of 10%. For comparison, the table also shows the capillary values obtained in the case of the protective layer based on TiO ?.

Tabelul 2. Variația capilaritatii apei in funcție de stratul protector aplicatTable 2. Variation of water capillarity depending on the applied protective layer

Timp Time înălțime apa water height Timp Time înălțime apa water height Timp Time înălțime apa water height min min cm cm min min cm cm min min cm cm Martor witness Epruveta cu 0,1 % NaPAC 16, 0.5 % MgO (pensulare) Test tube with 0.1% NaPAC 16, 0.5% MgO (brushing) Epruveta cu 0,1 % NaPAC 16, 0.5 % T1O2 (pensulare) Test tube with 0.1% NaPAC 16, 0.5% T1O2 (brushing) 1 1 2,23 2.23 1 1 2 2 1 1 2,1 2.1 2 2 2,8 2.8 2 2 2,6 2.6 2 2 2,8 2.8 3 3 3,6 3.6 3 3 3,1 3.1 3 3 3,2 3.2 4 4 3,6 3.6 4 4 3,5 3.5 4 4 3,6 3.6 5 5 3,8 3.8 5 5 3,9 3.9 5 5 4 4 10 10 5,3 5.3 10 10 5,3 5.3 10 10 5,4 5.4 15 15 6,4 6.4 15 15 6,2 6.2 15 15 6,4 6.4 După 16 minute cărămidă a absorbit complet apa After 16 minutes the brick completely absorbed the water După 17:25 minute cărămidă a absorbit complet apa After 17:25 minutes the brick completely absorbed the water După 17:10 minute cărămidă a absorbit complet apa After 17:10 the brick completely absorbed the water ----- -----

a 2019 00350and 2019 00350

10/06/201910/06/2019

4. Teste colorimetrice4. Colorimetric tests

Parametrii cromatici pentru cărămizile tratate au fost înregistrate cu un colorimetru Konica Minolta CR-410. S-au efectuat 3 determinări atât pentru referința, cât și pentru probele tratate si s-a făcut media acestora. Diferențele totale de culoare s-au calculate conform ecuațiilor: &Lfinal = |Lx piatra tratata — Lx martor | = | ax piatra tratata — ax martor iThe chromatic parameters for the treated bricks were recorded with a Konica Minolta CR-410 colorimeter. 3 determinations were made both for the reference and for the treated samples and their average was made. The total color differences were calculated according to the equations: & Lf inal = | Lx treated stone - Lx control | = | treated stone axis - control axis i

Ab/eoai = | bx piatra tratata — bx martor i unde: AL este diferența de luminozitate, Aa este deviația cromatică a coordonatelor a (culoare roșie și verde) și Ab este deviația cromatică a coordonatelor b (galben și albastru).Ab / eoai = | bx treated stone - bx control i where: AL is the difference in brightness, Aa is the chromatic deviation of the coordinates a (red and green) and Ab is the chromatic deviation of the coordinates b (yellow and blue).

ΔΕ - variația de culoare si stabilitateaΔΕ - color variation and stability

ΔΕ = [(ALfinal)2 + (Aafinai)2 + (Abfinal)2]172 ΔΕ = [(ALfinal) 2 + (Aa fina i) 2 + (Abfinal) 2 ] 172

ΔΕ evalueaza schimbarea totala a culorii. O variație mica a acestui parametru, cuprinsa intre 0 si 0,2 nu indica o schimbare vizibila. Intre 0,2 si 2 se înregistrează o diferența minora de culoare. Valori mai mari de 2 indica schimbări de culoare vizibile. La valori peste 6 culoarea este grav afectata sau chiar diferita.ΔΕ evaluates the total color change. A small variation of this parameter, between 0 and 0.2 does not indicate a visible change. Between 0.2 and 2 there is a minor color difference. Values greater than 2 indicate visible color changes. At values above 6 the color is severely affected or even different.

In cazul cărămizilor arse (roșii) atunci când proba este imersata timp de 15 minute in dispersia de MgO(0.5%)+NaPAC16 (0.1%), după uscare valorile ΔΕ au media 0,18 ceea ce demonstrează neobservarea vizuala a schimbării de culoare. Comparativ, in cazul in care se folosește T1O2, in condiții similare, valoareaa ΔΕ este 0,39.In the case of burnt bricks (red) when the sample is immersed for 15 minutes in the dispersion of MgO (0.5%) + NaPAC16 (0.1%), after drying the values ΔΕ have an average of 0.18 which demonstrates the visual non-observation of the color change. Comparatively, if T1O2 is used, under similar conditions, the value ΔΕ is 0.39.

Atunci când testul de culoare se face pe o epruveta (un amestec format gips, var, nisip, apa, formate intr-o matrita de silicon cu dimensiuni 1x1x7 cm) valorile ΔΕ au fost cuprinse intre 0,77 si 1,24. In acest caz pelicula compozita a fost obtinuta prin pensulare (trei straturi). Diferentele pot fi explicate prin aplicarea neuniforma a peliculei protectoare, procedeul fiind manual.When the color test is done on a test piece (a mixture of gypsum, lime, sand, water, formed in a silicone mold with dimensions 1x1x7 cm) the values ΔΕ were between 0.77 and 1.24. In this case the composite film was obtained by brushing (three layers). The differences can be explained by the non-uniform application of the protective film, the procedure being manual.

a 2019 00350and 2019 00350

10/06/201910/06/2019

5. Testul fotocatalitic5. Photocatalytic test

Activitatea fotocatalitică a materialelor a fost testată prin măsurarea gradului de degradare a metiloranjului în prezența radiației din domeniul UV (lungimea de undă 254nm).The photocatalytic activity of the materials was tested by measuring the degree of methyl orange degradation in the presence of UV radiation (wavelength 254nm).

Procedeul experimentului de degradare a fost următorul: în minireactoare de sticlă de cuarț s-au adăugată 10 mL soluție metiloranj (MO) 1x10‘5 M in care a fost imersat filmul. S-a agitat inițial în întuneric 30 de minute în vederea atingerii echilibrului de adsorbție-desorbțle, apoi sistemul a fost iradiat. Experimentul fotocatalitic s-a realizat la temperatura camerei, timp de 60, 180, 300 min în UV (254 nm). Au fost colectate cantități de 2,5 mL de soluție de MO, la intervale fixe de timp pentru determinarea eficienței fotodegradării.The process of the degradation experiment was as follows: 10 mL of 1x10 ' 5 M methyl orange (MO) solution was added to the quartz glass mini-reactors in which the film was immersed. It was initially stirred in the dark for 30 minutes to reach the adsorption-desorption balance, then the system was irradiated. The photocatalytic experiment was performed at room temperature for 60, 180, 300 min in UV (254 nm). Amounts of 2.5 mL of MO solution were collected at fixed intervals to determine the efficiency of the photodegradation.

Activitatea fotocatalizatorilor a fost evaluată prin determinarea eficienței de fotodegradare a colorantului. Pentru calculul eficiențelor de fotodegradare s-a stabilit maximul de absorbție pentru colorant prin trasarea spectrului de absorbție pe domeniul 190-900 nm. Pentru determinarea eficienței proceselor fotocatalitice ale MO s-a ținut cont de maximul de absorbție de la 464 nm.The activity of photocatalysts was evaluated by determining the photodegradation efficiency of the dye. For the calculation of the photodegradation efficiencies, the absorption maximum for the dye was established by plotting the absorption spectrum on the range 190-900 nm. To determine the efficiency of the photocatalytic processes of MO, the absorption maximum of 464 nm was taken into account.

Absorbanța (A) soluției iradiate a fost măsurată cu ajutorul unui spectrofotometru UV-Vis. Activitatea fotocatalitică poate fi evaluată cantitativ prin determinarea ratei de decolorare a colorantului calculată după următoarea ecuație:The absorbance (A) of the irradiated solution was measured using a UV-Vis spectrophotometer. The photocatalytic activity can be evaluated quantitatively by determining the discoloration rate of the dye calculated according to the following equation:

D% = {(Ao - At)/Ao} * 100 (%);D% = {(Ao - A t ) / Ao} * 100 (%);

unde D reprezintă rata de decolorare, Ao reprezintă absorbanța inițială (după agitare timp de 30 minute la întuneric) și At absorbanța la timpul t.where D represents the discoloration rate, Ao represents the initial absorbance (after stirring for 30 minutes in the dark) and At the absorbance at time t.

Testele au fost realizate pe pelicule nanocompozite pe baza de MgO. Pe suport de sticla au fost depuse un număr de 5 straturi prin metoda imersiei strat peste strat (layer by layer). După fiecare imersare si extracție, cu viteza controlata, proba a fost pastrata in aer timp de mai multe ore, la temperatura ambientala.The tests were performed on MgO-based nanocomposite films. A number of 5 layers were deposited on the glass support by the layer by layer immersion method. After each immersion and extraction, with controlled speed, the sample was kept in the air for several hours at room temperature.

Din tabelul 5 se observa eficienta materialului compozit analizat in degradarea metiloranjului. Practic, după 5 ore MO este descompus in proporție de 50%.Table 5 shows the efficiency of the composite material analyzed in the degradation of methyl orange. Basically, after 5 hours the MO is decomposed in a proportion of 50%.

a 2019 00350and 2019 00350

10/06/201910/06/2019

Comparativ, nanoparticulele de T1O2 din pelicula compozita prezintă un randament de trei ori mai mic in descompunerea MO.In comparison, the T1O2 nanoparticles in the composite film have a yield three times lower in the decomposition of MO.

Tabel 3. Rezultatele evaluării fotocatalitice pe filme nanocompozite pe baza de MgOTable 3. Results of photocatalytic evaluation on MgO-based nanocomposite films

Proba Sample Eficienta degradării metiloranjului. Methyl orange degradation efficiency. 1 h 1 h 3h 3h 5h 5h Sticla?! PMH Glass?! PMH 0.001 % 0.001% 0% 0% 1 % 1 % Sticla/5 straturi (NaPAC16 +ΊΊΟ2) (0. 5 %) Glass / 5 layers (NaPAC16 + ΊΊΟ2) (0.5%) 3.9 % 3.9% 13.62% 13.62% 17.10% 17.10% Sticla/5 straturi (NaPAC16 + MgO) (0. 5 %) Glass / 5 layers (NaPAC16 + MgO) (0.5%) 18.86% 18.86% 36.9 % 36.9% 49.13% 49.13%

Invenția prezintă următoarele avantaje:The invention has the following advantages:

- utilizarea nanoparticulelor de oxid de magneziu prezintă un interes deosebit pentru ca, pe langa faptul ca este un material ieftin si ecologic (bio-safe and biocompatibil), prezintă activitate antimicrobiana si in absenta luminii, datorita activitatii chimice ridicate pe suprafața;- The use of magnesium oxide nanoparticles is of particular interest because, in addition to being a cheap and environmentally friendly material (bio-safe and biocompatible), it has antimicrobial activity and in the absence of light, due to high chemical activity on the surface;

- nanoparticulele de MgO pot constitui un fotocatalizator excelent pentru degradarea poluanților organici;- MgO nanoparticles can be an excellent photocatalyst for the degradation of organic pollutants;

- compatibilitatea ridicata a MgO cu materiale litice;- high compatibility of MgO with lithic materials;

- prin metodele de preparare relativ simple ale nanoparticulele de MgO acestea pot fi controlate atat din punct de vedere morfologic cat si al distribuției granulometrice.- by relatively simple methods of preparation of MgO nanoparticles they can be controlled both in terms of morphology and particle size distribution.

- pelicula pe baza de poliacrilat de Na prezintă proprietăți hidrofobe si este biodegradabila. Prezenta nanoparticulelor determina creșterea hidrofobicitatii;- Na polyacrylate film has hydrophobic properties and is biodegradable. The presence of nanoparticles increases hydrophobicity;

- posibilitatea aplicării peliculelor/filmelor subțiri prin metode simple (imersare, pensulare, pulverizare) pe diferite suporturi (formă, mărime, compoziție, structura) cu posibilitatea de control a grosimii straturilor aplicate prin depuneri multistrat; grosimea ------stratufur mai poate fi controlata și prTn pârâfnetrii ușor de evaluat (vascozTtate, viteza de extragere din soluție în cazul imersiei);- the possibility of applying thin films / films by simple methods (immersion, brushing, spraying) on different substrates (shape, size, composition, structure) with the possibility of controlling the thickness of the layers applied by multilayer deposits; the thickness ------ layer can also be controlled by easy-to-evaluate sanding (viscosity, speed of extraction from the solution in case of immersion);

- filmele subțiri pot fi aplicate pe orice fel de suprafață (amorfă sau cristalină, poroasă sau compactă) soluția precursoare având un grad mare de umectare;- thin films can be applied on any surface (amorphous or crystalline, porous or compact) the precursor solution having a high degree of wetting;

- posibilitatea interconectării unor materiale.- the possibility of interconnecting some materials.

a 2019 00350and 2019 00350

10/06/201910/06/2019

Se dau în continuare exemple de realizare a invenției:The following are examples of embodiments of the invention:

Exemplul 1. Depunerea filmelor compozite pe bază de nanoparticule de oxid de magneziu (MgO) dispersate in soluție apoasa de polimer modificat hidrofobExample 1. Deposition of composite films based on magnesium oxide (MgO) nanoparticles dispersed in aqueous solution of hydrophobic modified polymer

Precursorii utilizațiPrecursors used

MgO nanoparticuleMgO nanoparticles

Mg(NOa)2 6H2O se dizolva in etanol, raportul molar etanol/azotat de magneziu fiind 85. Soluția se menține la 25°C timp de 1 h. Se precipita pulberea oxidica cu o soluție amoniacala, pH =10. Aceasta se filtrează, se spala cu apa distilata, se usucă si apoi, conform rezultatelor analizei termice se calcineaza la 450°C cu un palier de 1 h si o viteza de încălzire de 1°C/min.Mg (NOa) 2 6H2O is dissolved in ethanol, the molar ratio ethanol / magnesium nitrate being 85. The solution is kept at 25 ° C for 1 h. The oxide powder is precipitated with an ammoniacal solution, pH = 10. It is filtered, washed with distilled water, dried and then, according to the results of the thermal analysis, calcined at 450 ° C with a bearing of 1 h and a heating rate of 1 ° C / min.

NaPACu - sarea de sodiu a acidului poliacrilic modificata hidrofob cu hexildecil amina (amina grasa cu structura liniara) printr-o reacție de amidare folosind ca precursor acidul poliacrilic (PAA, M = 150 kDa, Wako Chemicals). Modificarea PAA a fost făcută prin reactionarea aminei cu grupările carboxil ale precursorului in prezenta de DCC, N,N'diciclohexilcarbodiimida (Sigma Aldrich, puritate 99 %) folosind 1-metil-2-pirolidona (Sigma Aldrich, puritate 99 %) ca solvent la temperatura de 60° C. Recuperarea polimerului sintetizat a fost făcută prin neutralizarea si precipitarea acestuia in 40 % soluție apoasa de hidroxid de sodiu (NaOH, Chimopar p. a.). Ulterior, polimerul modificat hidrofob a fost purificat prin dializa si recuperat prin liofilizare. Gradul teoretic de grefare a fost de 3 % (moli). Toți precursorii utilizati pentru sinteza polimerului NaPACie au fost folositi in starea in care au fost achiziționați, fara a fi purificati.NaPACu - sodium salt of polyacrylic acid modified hydrophobically with hexildecyl amine (fatty amine with linear structure) by an amidation reaction using as precursor polyacrylic acid (PAA, M = 150 kDa, Wako Chemicals). PAA modification was performed by reacting the amine with the carboxyl groups of the precursor in the presence of DCC, N, N'dicyclohexylcarbodiimide (Sigma Aldrich, 99% purity) using 1-methyl-2-pyrrolidone (Sigma Aldrich, 99% purity) as solvent at temperature of 60 ° C. The recovery of the synthesized polymer was done by neutralizing and precipitating it in 40% aqueous sodium hydroxide solution (NaOH, Chimopar pa). Subsequently, the hydrophobic modified polymer was purified by dialysis and recovered by lyophilization. The theoretical degree of grafting was 3% (moles). All precursors used for the synthesis of NaPACie polymer were used in the state in which they were purchased, without being purified.

Soluția polimerica de (PEI) polietilenimina (Sigma Aldrich, M = 75 kDa, concentrație 50 % in apa) a fost utilizata pentru activarea suprafeței substraturilor de sticla.The polymeric solution of (PEI) polyethyleneimine (Sigma Aldrich, M = 75 kDa, 50% concentration in water) was used to activate the surface of the glass substrates.

Soluția de polimer cationic PDADMAC, clorura de dialildimetilamoniu (Sigma Aldrich, M = 100 ... 200 kDa, concentrație 20 % in apa) a fost utilizata la depunerea de straturi contraion la care sa adere straturile compozite alcătuite din polimer modificat hidrofob NaPACu si pulbere de MgO. ________The solution of cationic polymer PDADMAC, dialyldimethylammonium chloride (Sigma Aldrich, M = 100 ... 200 kDa, concentration 20% in water) was used to deposit counterion layers to adhere the composite layers composed of hydrophobic modified polymer NaPACu and powder of MgO. ________

Substraturi utilizate:Substrates used:

Pentru depunerea acoperirilor protectoare s-a folosit ca substrat lamele de sticla de microscop.Microscope glass slides were used as a substrate for the deposition of protective coatings.

a 2019 00350 10/06/2019a 2019 00350 10/06/2019

Prepararea soluțiilor pentru depunere pe substrat sticlaPreparation of solutions for deposition on glass substrate

Prepararea soluției de NaPACie in concentrație 0.1 % in apa ultra-pura s-a realizat in condiții de agitare magnetica la temperatura camerei timp de 24 h pentru atingerea echilibrului reacției.The preparation of the NaPACie solution in 0.1% concentration in ultra-pure water was performed under conditions of magnetic stirring at room temperature for 24 h to achieve the equilibrium of the reaction.

Prepararea suspensiei de nanoparticule de oxid de magneziu (MgO) in soluția polimerica de 0.1 % NaPACiePreparation of the suspension of magnesium oxide (MgO) nanoparticles in the 0.1% NaPACie polymer solution

MgO macinat s-a dispersat in soluția polimerica 0.1% sub agitare magnetica continua.Ground MgO was dispersed in 0.1% polymer solution under continuous magnetic stirring.

Pregătirea substraturilor de sticla pentru depunerePreparation of glass substrates for deposition

Pentru curatarea suprafețelor înaintea procedeului de depunere, lamelele de sticla au fost spălate cu detergent apoi imersate in amestec de apa oxigenata H2O2 si H2SO4 (amestec piranha).To clean the surfaces before the deposition process, the glass slides were washed with detergent and then immersed in a mixture of hydrogen peroxide H2O2 and H2SO4 (piranha mixture).

Succesiune depuneri electrostatice prin metoda de imersie strat peste strat (layer-by-layer)Sequence of electrostatic deposits by the layer-by-layer immersion method

Depunerea straturilor pe sticla prin metoda strat peste strat s-a realizat in următoarea succesiune:The deposition of the layers on the glass by the layer-by-layer method was done in the following sequence:

Sticla 1. Imersare in PEI (concentrație 5*10’2 M) timp de 20 min.Bottle 1. Immersion in PEI (concentration 5 * 10 ' 2 M) for 20 min.

Spalare cu apa ultrapura 1 min (pentru eliminarea excesului de PEI)Wash with ultrapure water 1 min (to remove excess PEI)

Imersare in dispersia apoasa (Polimer - NaPACie) (0.1 % + MgO 0.5 %) . Spalare cu apa ultrapura 1 min (pentru eliminarea excesului de dispersie apoasa . Imersie in soluția PDADMAC (10’2 M) timp de 5 minImmersion in aqueous dispersion (Polymer - NaPACie) (0.1% + 0.5% MgO). Wash with ultrapure water 1 min (to eliminate excess aqueous dispersion. Immersion in PDADMAC solution (10 ' 2 M) for 5 min

Spalare cu apa ultrapura 1 min (pentru eliminarea excesului de PDADMAC)Wash with ultrapure water 1 min (to remove excess PDADMAC)

Viteza de extracție a sticlei din soluții a fost de 0,8 cm/minThe extraction speed of the glass from the solutions was 0.8 cm / min

Etapele 3-6 au fost repetate in funcție de numărul de straturi propusSteps 3-6 were repeated depending on the number of layers proposed

Exemplul 2. Succesiunea etapelor la fel ca mai sus mai puțin faza depunerii pe cărămidă roșie (prin imersie)Example 2. The sequence of steps as above minus the red brick deposition phase (by immersion)

Pregătirea substraturilor de cărămidă arsa pentru depunerePreparation of burnt brick substrates for deposition

- Preparare prin șlefuire la dimensiunea 1,5x1x0.5 cm)- Preparation by grinding to the size 1,5x1x0.5 cm)

- Curatare cu aer comprimat a 2019 00350- Compressed air cleaning of 2019 00350

10/06/201910/06/2019

Prepararea suspensiei de nanoparticule de oxid de magneziu (MgO) in soluția polimerica de 0.1 % NaPACiePreparation of the suspension of magnesium oxide (MgO) nanoparticles in the 0.1% NaPACie polymer solution

MgO macinat s-a dispersat in soluția polimerica 0.1% sub agitare magnetica continua.Ground MgO was dispersed in 0.1% polymer solution under continuous magnetic stirring.

Depuneredeposit

1. Eșantionul de cărămidă arsa este imersat in suspensia 0.5% MgO in soluție apoasa de NaPAC16 0.1 % timp de 15 minute.1. The burnt brick sample is immersed in the 0.5% MgO suspension in 0.1% aqueous NaPAC16 solution for 15 minutes.

2. Se lașa in aer timp de minim 24 ore pentru uscare2. Leave in the air for at least 24 hours to dry

Etapele 1-2 au fost repetate in funcție de numărul de straturi propuseSteps 1-2 were repeated depending on the number of layers proposed

Exemplul 3. Depunere pe epruvete standardExample 3. Filing on standard test pieces

Pregătirea substraturilorSubstrate preparation

Epruvetele standard s-au obtinut in laborator dintr-un amestec format gips, var, nisip, apa, formate intr-o matrita de silicon cu dimensiuni 1x1x7 cm.The standard specimens were obtained in the laboratory from a mixture of gypsum, lime, sand, water, formed in a silicone mold with dimensions 1x1x7 cm.

Depunerea acoperirilor protectoareLaying protective coatings

1. Epruvetele au fost uscate in etuva înainte de aplicarea suspensiei de 0.5 % nanoparticule de MgO in soluție apoasa de NaPAC16. (la temperature de 60C timp de 2h)1. The specimens were dried in the oven before applying the suspension of 0.5% nanoparticles of MgO in aqueous NaPAC16 solution. (at 60C for 2 hours)

2. Epruvetele au fost acoperite pe toate fetele, depunerea realizandu-se prin pensulare .2. The specimens were covered on all sides, the deposition being done by brushing.

3. Uscare in aer după fiecare aplicare..3. Air drying after each application.

Etapele 2-3 au fost repetate in funcție de numărul de straturi propuseSteps 2-3 were repeated depending on the number of layers proposed

Claims (1)

Revendicăriclaims 1. Procedeu de obținere a peliculelor nanocompozite pe baza de nanoparticule oxidice si polimeri in soluție apoasa - pentru protecția suprafețelor componentelor arhitecturale netede, cu rugozitate scăzută gen sticla, faianța, gresie sau alte materiale de construcție șlefuite caracterizat prin aceea că se prepară o suspensie de nanoparticule de MgO 0,5% intr-o soluție de NaPAC16- Poliacrilatul de sodiu modificat hidrofobic 0,1% care se aplica prin pulverizare, imersare sau pensulare ,sub forma multistrat, pe suprafața ce urmeaza a fi protejata împotriva factorilor de mediu si poluanti oferind hidrofobicitate cu valori ale unghiului de contact cuprinse in domeniu 94-102° i o activitate microbiana împotriva Stafilococcus aureus, Candida albicans, si Aspergillus niger, o diminuare a absorbției apei prin capilaritate cu 10% nemodificarea culorii si aspectului caracterizat prin aceea ca valori ale indicelui de variație a culorii si stabilitatii ΔΕ se situează in domeniu 0,18 -1,24 si prezintă activitate fotocatalitica cu un randament de degradare a metiloranjului de 50% după 5 h.1. Process for obtaining nanocomposite films based on oxide nanoparticles and polymers in aqueous solution - for the protection of the surfaces of smooth architectural components, with low roughness such as glass, faience, sandstone or other polished building materials characterized by the preparation of a suspension of 0.5% MgO nanoparticles in a solution of NaPAC16- 0.1% modified hydrophobic sodium polyacrylate which is applied by spraying, immersion or brushing, in multilayer form, on the surface to be protected against environmental factors and pollutants providing hydrophobicity with contact angle values in the range 94-102 ° and microbial activity against Staphylococcus aureus, Candida albicans, and Aspergillus niger, a decrease in water absorption by capillarity by 10% unchanged color and appearance characterized by index values of color variation and stability ΔΕ is in the range 0.18 -1.24 and present Photocatalytic activity with a methyl orange degradation yield of 50% after 5 h.
RO201900350A 2019-06-10 2019-06-10 Process for preparing nanocomposite films meant to protect architectural lithic components of cultural heritage RO134390B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RO201900350A RO134390B1 (en) 2019-06-10 2019-06-10 Process for preparing nanocomposite films meant to protect architectural lithic components of cultural heritage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RO201900350A RO134390B1 (en) 2019-06-10 2019-06-10 Process for preparing nanocomposite films meant to protect architectural lithic components of cultural heritage

Publications (2)

Publication Number Publication Date
RO134390A0 true RO134390A0 (en) 2020-08-28
RO134390B1 RO134390B1 (en) 2021-08-30

Family

ID=72233802

Family Applications (1)

Application Number Title Priority Date Filing Date
RO201900350A RO134390B1 (en) 2019-06-10 2019-06-10 Process for preparing nanocomposite films meant to protect architectural lithic components of cultural heritage

Country Status (1)

Country Link
RO (1) RO134390B1 (en)

Also Published As

Publication number Publication date
RO134390B1 (en) 2021-08-30

Similar Documents

Publication Publication Date Title
Munafò et al. Durability of nano-engineered TiO2 self-cleaning treatments on limestone
Munafò et al. TiO2-based nanocoatings for preserving architectural stone surfaces: An overview
Zhu et al. Recent advances in nanotechnology-based functional coatings for the built environment
Pinho et al. Titania-silica nanocomposite photocatalysts with application in stone self-cleaning
Afsharpour et al. Preventive protection of paper works by using nanocomposite coating of zinc oxide
La Russa et al. Multifunctional TiO2 coatings for cultural heritage
Chapman et al. Antifouling performances of macro-to micro-to nano-copper materials for the inhibition of biofouling in its early stages
Lv et al. Designing a dual-functional material with barrier anti-corrosion and photocatalytic antifouling properties using g-C3N4 nanosheet with ZnO nanoring
MacMullen et al. Silver nanoparticulate enhanced aqueous silane/siloxane exterior facade emulsions and their efficacy against algae and cyanobacteria biofouling
Pérez-Nicolás et al. Photocatalytically active coatings for cement and air lime mortars: Enhancement of the activity by incorporation of superplasticizers
Ren et al. Low-temperature synthesis of flower-like ZnO microstructures supported on TiO2 thin films as efficient antifungal coatings for bamboo protection under dark conditions
Yee et al. Enhanced marine antifouling performance of silver-titania nanotube composites from hydrothermal processing
Šlamborová et al. New type of protective hybrid and nanocomposite hybrid coatings containing silver and copper with an excellent antibacterial effect especially against MRSA
Zarzuela et al. Ormosils loaded with SiO2 nanoparticles functionalized with Ag as multifunctional superhydrophobic/biocidal/consolidant treatments for buildings conservation
Ershad-Langroudi et al. Application of polymer coatings and nanoparticles in consolidation and hydrophobic treatment of stone monuments
Zarzuela et al. Incorporation of functionalized Ag-TiO2NPs to ormosil-based coatings as multifunctional biocide, superhydrophobic and photocatalytic surface treatments for porous ceramic materials
Sciancalepore et al. Antibacterial and self-cleaning coatings for silicate ceramics: a review
Galvagno et al. Present Status and Perspectives of Graphene and Graphene‐related Materials in Cultural Heritage
RO134390A0 (en) Process for preparing nanocomposite films meant to protect architectural lithic components of cultural heritage
Cao et al. Multi-functional TiO2-based nanocomposite coating with durable superhydrophobicity and enhanced photocatalytic and antimicrobial properties for the sustainable maintenance of building stones
Kroftová et al. Nanotechnology In The Cultural Heritage-Influence Of Nanospensions Adopted By Nanoparticles Of Tio2 For Cleaning The Surface Of Historical Plasters
Ryabkova et al. Properties of poly (titanium oxide)-containing polymeric materials exhibiting UV-induced superhydrophilicity under simulated climate test conditions
Ruffolo et al. Nanoparticles in the Field of Built Heritage Restoration: Challenges and Limits
Ciriminna et al. Comparative analysis of AquaSun sol-gel coating and commercial antifouling paint in protecting shipbuilding steel in port seawaters
Zarzuela et al. Exploring the low cell adhesion of photoinduced superhydrophilic surfaces for improving the effect of antifouling protective coatings on porous building materials