RO131917A2 - Procedure for making nanostructured electrodes based on metal oxides, for electrochemical systems of producing electric energy - Google Patents

Procedure for making nanostructured electrodes based on metal oxides, for electrochemical systems of producing electric energy Download PDF

Info

Publication number
RO131917A2
RO131917A2 ROA201500812A RO201500812A RO131917A2 RO 131917 A2 RO131917 A2 RO 131917A2 RO A201500812 A ROA201500812 A RO A201500812A RO 201500812 A RO201500812 A RO 201500812A RO 131917 A2 RO131917 A2 RO 131917A2
Authority
RO
Romania
Prior art keywords
niobium
procedure
mbar
electrochemical systems
samples
Prior art date
Application number
ROA201500812A
Other languages
Romanian (ro)
Other versions
RO131917B1 (en
Inventor
Daniela Ion-Ebrasu
Stanica Enache
Mihai Varlam
Vasile Stanciu
Ioan Stefanescu
Original Assignee
Institutul Naţional De Cercetare-Dezvoltare Pentru Tehnologii Criogenice Şi Izotopice - Icsi Rm.Vâlcea
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institutul Naţional De Cercetare-Dezvoltare Pentru Tehnologii Criogenice Şi Izotopice - Icsi Rm.Vâlcea filed Critical Institutul Naţional De Cercetare-Dezvoltare Pentru Tehnologii Criogenice Şi Izotopice - Icsi Rm.Vâlcea
Priority to ROA201500812A priority Critical patent/RO131917B1/en
Publication of RO131917A2 publication Critical patent/RO131917A2/en
Publication of RO131917B1 publication Critical patent/RO131917B1/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Abstract

The invention relates to a process for making nanostructured electrodes for electrochemical systems of producing electric energy. According to the invention, the process consists in that, on a rotary electrode of glassy graphite, niobium is deposited by magnetron sputtering, in direct current, under Ar atmosphere, at pressures of 6, 9, 12, 15 and 18 mbar, employing a usual deposition system, to result in niobium oxide/niobium metal composite films of 30 and 80 nm, respectively, with no oxidic impurities.

Description

Invenția se referă la un procedeu de obținere a unor electrozi nanostructurați, pentru sisteme electrochimice de producere a energiei electrice. Procedeul conform invenției constă în aceea că pe un electrod rotativ de grafit sticlos se depune niobiu prin pulverizare în regim magnetron, în curent continuu, în atmosferă de Ar la presiuni de 6, 9, 12, 15 și 18 mbar, utilizând un sistem de depunere uzual, din care rezultă filme compozite de 30, respectiv, 80 nm, de oxid de niobiu/niobiu metalic care nu prezintă impurități de natură oxidică.The invention relates to a process for obtaining nanostructured electrodes for electrochemical systems for the production of electricity. The process according to the invention consists in that on a rotating glass graphite electrode, niobium is deposited by sputtering in magnetron regime, in direct current, in Ar atmosphere at pressures of 6, 9, 12, 15 and 18 mbar, using a deposition system usually, resulting in composite films of 30 and 80 nm, respectively, of metal niobium oxide / niobium, which do not exhibit oxide impurities.

Revendicări: 2Claims: 2

Figuri: 10Figures: 10

Cu începere de la data publicării cererii de brevet, cererea asigură, in mod provizoriu, solicitantului, protecția conferită potrivit dispozițiilor art:32 din Legea nr: 64/1991, cu excepția cazurilor in care cererea de brevet de invenție a fostrespinsă, retrasă sau considerată ca fiind retrasă, întinderea protecției conferite de cererea de brevet de invenție este determinată de revendicările conținute iri cererea publicată in conformitate cu art.23 alinți) - (3).Starting from the date of publication of the patent application, the application provides, provisionally, to the applicant, the protection granted according to the provisions of art: 32 of Law no: 64/1991, except in cases where the patent application has been rejected, withdrawn or considered as withdrawn, the extent of the protection conferred by the patent application is determined by the claims contained in the application published in accordance with article 23 paragraphs) - (3).

AbAb

SOi iCii;:. xL LAi rO»W Μ7ί;>φί șjSOi iCii;:. xL LAi rO »W Μ7ί;> φί șj

Ii Cerere tis brevei de invenție Nr.Ii Application of the invention patent No.

Data depozit ^»»«ί»ΜΒΙιι«<«ΒΚιιη<τ«^^»ΐDeposit date ^ »» «« »ΜΒΙιι« <«ΒΚιιη <τ« ^^ »ΐ

Procedura de realizare de electrozi nanostructurați pe bază de oxizi metalici pentru sisteme electrochimice de producere a energiei electriceProcedure for making nanostructured electrodes based on metallic oxides for electrochemical systems for electricity production

Descriere îngrijorările crescânde referitoare la impactul gazelor cu efect de seră, dar și cele cu privire la diminuarea drastică a resurselor disponibile de combustibili fosili au făcut că oamenii de știință să caute cu prioritate noi soluții pentru dezvoltarea unei noi structuri energetice. Pe lângă efortul continuu de identificare de noi surse de energie regenerabilă, mai „curate” și mai eficiente, definirea unui nou „transportator” de energie care să elimine complet carbonul din acest lanț este vitală pentru evitarea principalelor probleme cu care se confruntă economia mondială [1].Description The growing concerns about the impact of greenhouse gases, but also about the drastic reduction of the available fossil fuel resources, have made it a priority for scientists to seek new solutions for the development of a new energy structure. In addition to the ongoing effort to identify new, cleaner and more efficient renewable energy sources, defining a new energy carrier that will completely remove carbon from this chain is vital to avoiding the main problems facing the world economy. 1].

Tranziția către o structură energetică “curată” nu poate fi concepută în momentul de față fără a implica, într-o anumită măsură, hidrogenul și, implicit, o tehnologie “verde” de producere a sa, electroliza. Crearea unui lanț energetic sustenabil, ce pornește de la sursa de energie și până la consumator, în care hidrogenul este elementul central de transport și de stocare a energiei, cu eficiență net superioară și care să aibă caracteristici de costuri și fiabilitate comparabile cu cele actuale, reprezintă una dintre prioritățile la ora actuală în acest domeniu.The transition to a "clean" energy structure cannot currently be conceived without, to a certain extent, hydrogen and, implicitly, a "green" technology for its production, electrolysis. Creating a sustainable energy chain, starting from the energy source to the consumer, in which hydrogen is the central element of energy transport and storage, with a higher efficiency and having characteristics of costs and reliability comparable to the current ones, is one of the priorities at the moment in this field.

Dezvoltarea științifică a tehnologiilor bazate pe hidrogen din ultimii ani a fost impulsionată de oportunitatea de a utiliza hidrogenul ca principal combustibil în viitor, ceea ce ar duce, totodată, la răspândirea rapidă a utilizării surselor de energie regenerabilă, precum și de nevoia tot mai acută de dezvoltare a unor soluții tehnologice de stocare a energiei devine acută și în Europa, inclusiv în România, unde multe centrale eoliene sau fotovoltaice generează deja sute de gigawați de electricitate, deseori în totalăThe scientific development of hydrogen technologies in recent years has been driven by the opportunity to use hydrogen as the main fuel in the future, which would lead to the rapid spread of the use of renewable energy sources, as well as the growing need for development of technological solutions for energy storage becomes acute in Europe, including Romania, where many wind or photovoltaic power plants already generate hundreds of gigawatts of electricity, often in total

a 2015 00812to 2015 00812

11/11/2015 neconcordanță cu cerințele rețelei de putere. Mai mult, hidrogenul regenerabil, dată fiind relevanța sa pentru implementarea conceptului „power-to-gas” prin posibilitatea de injecție în rețeaua de gaze naturale, se impune ca element de bază în strategia de integrare a celor două infrastructuri energetice de electricitate și căldură.11/11/2015 inconsistency with the requirements of the power network. Moreover, renewable hydrogen, given its relevance for the implementation of the concept "power-to-gas" through the possibility of injection into the natural gas network, is required as a basic element in the strategy of integrating the two energy infrastructures of electricity and heat.

Nevoia de dezvoltare a unor soluții tehnologice de stocare a energiei devine acută în Europa, inclusiv în România, unde multe centrale eoliene sau fotovoltaice generează deja sute de gigawatt electricitate, deseori în totală neconcordanță cu cerințele rețelei de putere. Tehnologia de electroliză PEM reprezintă, din mai multe puncte de vedere, un sistem perfect adaptat cerințelor în materie de aplicații ale surselor de energie regenerabilă. Aceasta este considerată, în prezent, cea mai flexibilă și sustenabilă soluție de stocare a energiei regenerabile pe termen lung și la scale diferite, utilizând surplusul de electricitate generat pentru a produce hidrogen, care este ulterior stocat și reconvertit în energie electrică/termică prin diverse tehnologii.The need to develop technological solutions for energy storage becomes acute in Europe, including Romania, where many wind or photovoltaic power plants already generate hundreds of gigawatt of electricity, often in total non-compliance with the requirements of the power grid. The PEM electrolysis technology represents, from several points of view, a system perfectly adapted to the application requirements of renewable energy sources. This is considered, at present, the most flexible and sustainable solution for storing renewable energy in the long term and at different scales, using the surplus of electricity generated to produce hydrogen, which is subsequently stored and converted into electrical / thermal energy by various technologies. .

In sistemele electrochimice, viteza de reacție (densitate de putere/densitate de curent) este determinata de temperatura de lucru si natura electrocatalizatorilor.In electrochemical systems, the reaction rate (power density / current density) is determined by the working temperature and the nature of the electrocatalysts.

Electrocatalizatorii sunt substanțe (metale, oxizi metalici, nemetale, compuși organo-metalici) care sa favorizeze creșterea vitezei reacțiilor (ioniozare, deionizare) printo suprafața data.Electrocatalysts are substances (metals, metal oxides, non-metals, organo-metallic compounds) that favor the speed of reactions (ionization, deionization) on the given surface.

Prin definiție, un electrocatalizator este o substanța care accelerează transferul de sarcina înainte si irinapoi prin sistemul redox fara a perturba echilibrul chimic. Acest lucru inseamna ca prezenta catalizatorului nu afecteaza sistemul din punct de vedere termodinamic. Un electrocatalizator are de fapt rolul de a imbunatati mecanismul de transfer de sarcina prin scadea energiei de activare a reacției electrochimice care se desfasoara la nivelul electrodului.By definition, an electrocatalyst is a substance that accelerates the transfer of charge forward and backward through the redox system without disturbing the chemical balance. This means that the presence of the catalyst does not affect the system from a thermodynamic point of view. An electrocatalyst actually has the role of improving the charge transfer mechanism by decreasing the activation energy of the electrochemical reaction that takes place at the electrode level.

In cazul electrolizoarelor si pilelor de combustie, electrocatalizatorii heterogeni se găsesc sub forma de folii, filme subțiri, particule individuale sau depuse pe un suport.In the case of electrolysers and fuel cells, heterogeneous electrocatalysts can be found in the form of sheets, thin films, individual particles or deposited on a support.

Procesul de evoluție a oxigenului la anodul unei celula de electroliza PEM implica patru electroni și este mult mai complex comparativ cu evoluția hidrogenului la catod în cazul caruia sunt folosiți ca agenți reducatoori doi electroni. Reacția de evoluție a oxigenului sau de oxidare a apei (OER) este un proces cu mai multe etape care implică formarea intermediari oxigenați și de oxizi de suprafață. Trasatti a sugerat ca in cazulThe process of oxygen evolution at the anode of a PEM electrolysis cell involves four electrons and is much more complex compared to the evolution of hydrogen at the cathode where two electrons are used as reducing agents. The reaction of oxygen evolution or oxidation of water (OER) is a multi-step process that involves the formation of oxygenated intermediates and surface oxides. Trasatti suggested that in the case

a 2015 00812to 2015 00812

11/11/2015 reacției de OER, mecanismul de producere a oxigenului este de forma unei parabole (fig. 2.3) si este rezultaul dintre suprapotentialul aplicat si taria legăturii metal-oxigen de la suprafața oxidului [5]. Catalizatorii pe baza de oxizi de RuO2 si lrC>2 au cel mai scăzut suprapotential si legaturile metal-oxigen cele mai potrivite ca tărie care sa permită ca procesul de adsorbtie-desorbtie a oxigenului sa se realizeze cu ușurința la suprafața catalizatorului. Materialele aflate in stanga maximului parabolei au legaturi slabe intre metal si oxigen, in timp ce metarialele din dreapta (CO3O4 si FesCh) sunt oxidate cu ușurința si formează o legătură puternica intre metal si oxigen. Urmarea este o desorbție a oxigenului gazos dificila.11/11/2015 OER reaction, the mechanism of oxygen production is in the form of a parabola (fig. 2.3) and is the result between the applied superpower and the strength of the metal-oxygen bond from the oxide surface [5]. The oxide catalysts of RuO2 and lrC> 2 have the lowest suprapotential and the most suitable metal-oxygen bonds as a force that allows the adsorption-desorption process of oxygen to be easily carried out on the surface of the catalyst. The materials to the left of the parabola maxima have weak connections between metal and oxygen, while the right metaria (CO3O4 and FesCh) are easily oxidized and form a strong bond between metal and oxygen. Following is a difficult gas oxygen desorption.

Mai mult decât atat, Trasatti a subliniat ca evoluția oxigenului poate avea loc doar când potențialul electrodului (anodul) aste mai mare decât cel al cuplului metaloxigen [2-4].Moreover, Trasatti emphasized that the evolution of oxygen can only occur when the potential of the electrode (anode) is higher than that of the metal-oxygen couple [2-4].

Electrocatalizatori utilizați la producerea oxigenului sunt, de obicei, de tipul metalelor nobile (Pt, Au, Ir, Rh, Ru, Ag), dar oxizii lor metalici sunt mai activi decât metalele corespunzătoare [5,6].Electrocatalysts used in the production of oxygen are usually of the type of noble metals (Pt, Au, Ir, Rh, Ru, Ag), but their metal oxides are more active than the corresponding metals [5,6].

Oxizii metalelor tranzitionale de tipul Ni si Co au o actvitate catalitica ridicata fata de reacția de producere a oxigenului, dar utilizarea lor este restricționată de problemele de coroziune. Compușii oxidici pe baza de Co, Ni, Mn si Fe au o structura cristalina complexa si sunt considerați a fi capabili sa imbunatateasca activitatea catalitica si stabilitatea procesului de OER in medii alcaline [7,8].The oxides of transition metals of Ni and Co type have a high catalytic activity towards the oxygen production reaction, but their use is restricted by corrosion problems. Oxide compounds based on Co, Ni, Mn and Fe have a complex crystalline structure and are considered to be able to improve the catalytic activity and stability of the OER process in alkaline environments [7,8].

Catalizatorii nanostructurati sunt considerați la ora actuala o soluție viabila pentru obținerea de electrozi pentru reacția de OER. Dimensiunea și forma particulelor de catalizator poate determina localizarea si aria suprafeței active corespunzătoare reacției de degajare a oxigenului. Krtil și colab. au studiat efectul pe care marimea si forma nanoparticulelor de oxizi de tipul RuO2, Rui-xCoxO2 și Rui-xNixO2-y il au in mediu acid asupra reacției de OER.Nanostructured catalysts are currently considered a viable solution for obtaining electrodes for the OER reaction. The size and shape of the catalyst particles can determine the location and area of the active surface corresponding to the oxygen release reaction. Krtil et al. studied the effect that the size and shape of oxide nanoparticles of the RuO2 type, Rui-xCo x O2 and Rui- x NixO2- y have in acidic medium on the reaction of OER.

Pe de alta parte, catalizatorii folosiți singular utilizează doar o parte din suprafața for catalitica si ca urmare, pentru a le îmbunătății performantele se utilizează diferite tipuri de suporturi catalitice. Un suport catalitic asigură o suprafață fizică folosita pentru dispersia de particule cu dimensiuni mici, ceea ce duce la obținerea unei suprafețe catalitice ridicate si conductivitate electrica mare.On the other hand, the catalysts used alone use only part of the surface for catalytic and as a result, to improve their performance different types of catalytic supports are used. A catalytic support provides a physical surface used for the dispersion of small particles, which results in a high catalytic surface and high electrical conductivity.

a2015 00812a2015 00812

11/11/201511/11/2015

Prin urmare, suportii catalitici pot duce la îmbunătățirea eficienței catalitice si o mai bună utilizare a catalizatorului prin reducerea încărcărilor de catalizator si implicit la scăderea costului de pproductie. Cu toate acestea, suporturile catalitice folosite in reacția de OER aceptate sunt dificil de utilizat în electroliza apei din cauza mediului înalt coroziv.Therefore, catalytic supports can lead to improved catalytic efficiency and better use of the catalyst by reducing catalyst charges and thus lowering the cost of production. However, the catalytic supports used in the accepted OER reaction are difficult to use in water electrolysis due to the high corrosive environment.

Din punct de vedere al eficienței electrocatalitice, este de foarte mare importanta ca materialele electrochimie stabile pentru suporturi catalitice sa fie studiate si dezvoltate pentru a fi aplicate in procesul de generare a oxigenului.From the point of view of electrocatalytic efficiency, it is of great importance that stable electrochemical materials for catalytic supports be studied and developed to be applied in the process of oxygen generation.

Principalul obiectiv al acestui brevet îl reprezintă realizarea și unui nou tip de catalizator pentru electrolizoarele de tip PEM utilizând metoda pulverizării DC in câmp magnetic si caracterizarea electrochimică și a stabilitatii oxidului de niobiu nanostructurat depus la temperatura camerei prin metoda pulverizării DC in carrip magnetic în atmosferă de Ar, fără a face uz de oxigen. Această procedură este diferita de cele utilizate până în prezent pentru sinteza de catalizatori de NbOx si permite controlul și dimensiunea medie a cristalitelor de Nb sub limita 10 nm prin varierea debitului Ar si are ca scop creșterea suprafaței specifice expusa contaminării reziduale cu oxigen obținerea unui strat de oxid NbOx cu activitate catalitică imbunatatita. Această procedură de depunere conferă compozitului filme de niobiu/niobiu oxid.The main objective of this patent is the realization of a new type of catalyst for PEM type electrolysers using the DC spray method in magnetic field and the electrochemical characterization and stability of the nanostructured niobium oxide deposited at room temperature by the DC spraying method in magnetic strip in atmosphere. It would, without making use of oxygen. This procedure is different from those used to date for the synthesis of NbOx catalysts and allows the control and average size of Nb crystallites below the 10 nm limit by varying the Ar flow and aims to increase the specific surface exposed to residual oxygen contamination by obtaining a layer of oxygen. NbOx oxide with improved catalytic activity. This deposition procedure gives the composite films niobium / niobium oxide.

în aceast brevet este prezentata procedura de realizare de electrozi nanostructurați pe bază de oxizi metalici pentru sisteme electrochimice de producere a energiei electrice. In acest sens, au fost realizate mai multe probe de niobiu prin pulverizare în regim magnetron în curent continuu (DC). Depunerea DC in câmp magnetic s-a realizat in atmosfera de Ar la diferite presiuni (6, 9, 12, 15 18 rribar) pe sticla optica utilizând un system de depunere DC BOC EDWARDS FL 400 (figura 1). Probele au fost analizate din punct de vedere structural utilizând următoarele tehnici de investigație: difracție cu raze X (XRD) si specroscopie in ultraviolet (Uv-Vis). Caracterizarea XRD s-a efectuat utilizând un difractometru de raze X Brueker AXS D8, si testele UV-Vis folosind spectroeleipsometrul WVASE 32 (Woollhman).This patent presents the procedure for making nanostructured electrodes based on metallic oxides for electrochemical systems for electricity production. In this respect, several niobium samples were made by direct current (DC) magnetron sputtering. DC deposition in the magnetic field was performed in the Ar atmosphere at different pressures (6, 9, 12, 15 18 rribar) on the optical glass using a DC BOC EDWARDS FL 400 deposition system (figure 1). The samples were structurally analyzed using the following investigation techniques: X-ray diffraction (XRD) and ultraviolet (Uv-Vis) spectroscopy. XRD characterization was performed using a Brueker AXS D8 X-ray diffractometer, and UV-Vis tests using the WVASE 32 spectrometer (Woollhman).

Pentru a caracteriza funcțional comportamentul niobiului in vederea utilizării lui ca si catalizator pentru eletroliza PEM, s-a depus un film de aproximativ 250 nm pe un electrod rotativ de grafit sticlos diametru de 5 mm produs de firma ORIGATROD. Teste electrochimice au constant in curbe de voltametrie ciclica realiza cu unIn order to functionally characterize the behavior of the niobium for its use as a catalyst for PEM electrolysis, a film of approximately 250 nm was deposited on a rotary electrode of 5 mm diameter glass graphite produced by ORIGATROD. Electrochemical tests have constant cyclic voltammetry curves performed with a

a 2015 00812to 2015 00812

11/11/2015 poentiostat/galvanostat PARSTAT 2273 de la firma Princeton applied Research. In tabelul 1. sunt prezentate probele de filme subțiri de neobiiu si conditile de depunere.11/11/2015 Princeton applied research pointer / galvanostat PARSTAT 2273. Table 1. shows the samples of thin films of noisiness and the conditions of submission.

Figura 1. Sistem de depunere prin metoda de pulverizare DC Boc Ewards FL 400Figure 1. DC Boc Ewards FL 400 spraying system

Ta Your belul 1. Cond belul 1. Cond iții experimentale de depunere pentru filmele de neobiu experimental casting depictions for neo movies Ținta Aim Substrat substrate Denumire proba Name sample Grosime film Nb (nm) Film thickness Nb (nm) Presiune de lucru (mTorr) Ar Working pressure (mTorr) It Putere (W) Power (W) Rata depunere (A/s) The duck deposit (I would) Nb Nb Sticla optica de grosime 1 mm. 1 mm thick optical glass. Nb 30 nm6 mbar Nb 30 nm6 mbar 30 30 6 6 375 375 0,45 0.45 Nb 30 nm-9 mbar Nb 30 nm-9 mbar 30 30 9 9 388 388 0,43 0.43 Nb 30 nm12 mbar Nb 30 nm12 mbar 30 30 12 12 355 355 0,41 0.41 Nb 30 nm15 mbar Nb 30 nm15 mbar 30 30 15 15 341 341 0,38 0.38 Nb 30 nm18 mbar Nb 30 nm18 mbar 30 30 18 18 330 330 0,37 0.37 Nb 30 nm22 mbar Nb 30 nm22 mbar 30 30 22 22 307 307 0,31 0.31 Nb 80 nm-9 mbar Nb 80 nm-9 mbar 80 80 9 9 380 380 0,45 0.45 Nb 80 nm12 mbar Nb 80 nm12 mbar 80 80 12 12 365 365 0,40 0.40 Nb 80 nm15 mbar Nb 80 nm15 mbar 80 80 15 15 316 316 0,37 0.37 Nb 80 nm18 mbar Nb 80 nm18 mbar 80 80 18 18 305 305 0,34 0.34

Caracterizarea prin difracție cu raze XX-ray diffraction characterization

Una dintre metodele de caracterizare structurala a probelor a fost diifractia cu raze X. Experimentele s-au realizat in domeniul de unghi de difracție 2Θ cuprins intre 10-60°.One of the methods of structural characterization of the samples was X-ray diffraction. The experiments were performed in the diffraction angle range 2Θ between 10-60 °.

In figura 2 sunt prezentate spectrele de difracție ale probelor Nb 80 nm-9 mbar (a); Nb 80 nm-12 mbar (b); Nb 80 nm-15 mbar (c) si resppectiv Nb 80 nm-18 rribar (d). Din analiza spectrelor se poate observa prezenta fazei bcc a neobiului la diferite unghiuri 2Θ situate in intervalul 36-38°. Trebuie menționat faptul ca in cazul probei Nb 80 nm-9 mbar apare un pic suplimentar la 2Θ = 54,76° corespunzător fazei (200). Datele furnizate deFigure 2 shows the diffraction spectra of samples Nb 80 nm-9 mbar (a); Nb 80 nm-12 mbar (b); Nb 80 nm-15 mbar (c) and respectively Nb 80 nm-18 mb (d). From the analysis of the spectra one can observe the presence of the bcc phase of the nephew at different angles 2Θ located in the range 36-38 °. It should be noted that in the case of the sample Nb 80 nm-9 mbar appears an additional peak at 2Θ = 54.76 ° corresponding to the phase (200). Data provided by

a 2015 00812to 2015 00812

11/11/2015 analizele XRD ne demonstrează faptul ca in urma depunerii prin pulverizare DC in câmp magnetic s-au obtinut filme de Nb metalice, care nu prezintă impurități de natura oxidica.11/11/2015 XRD analyzes show us that following the deposition by DC spray in magnetic field, Nb metallic films were obtained, which do not have oxide impurities.

Figura 2. Spectrele de difracție ale probelor Nb 80 nm-9 mbar (a); Nb 80 nm-12 mbar (b); Nb 80 nm-15 mbar (c) si resppectiv Nb 80 nm-18 mbar (d).Figure 2. Diffraction spectra of Nb samples 80 nm-9 mbar (a); Nb 80 nm-12 mbar (b); Nb 80 nm-15 mbar (c) and respectively Nb 80 nm-18 mbar (d).

Din figura 3 unde sunt aratate spectrele anterioare suprapuse, se observa o scădere a lărgimii benzii calculate la jumatatea înălțimii picului [110] odata cu creșterea presiunii de lucru de Arși o scădere a dimensiunii particulelor depuse (grain size). Latimea picului este invers proporționala cu dimensiunea particulelor astfel incat se poate spune ca o creștere a lățimii picului se traduce printr-o scădere a dimensiunii reale a criistalitelor odata cu creșterea presiunii de lucru. Din figura 5.3 se poate observa de asemenea o deplasare a linei corespunzătoare fazei [110] către valori mai mici ale unghiului 2φ odata cu creșterea presiunii, ceea ce inseamna o mărire a distantei interplanare intre planele bcc [110].From the figure 3 where the previous superposed spectra are shown, a decrease of the bandwidth calculated at the half of the peak height [110] is observed with the increase of the working pressure of Arși a decrease of the particle size (grain size). The width of the peak is inversely proportional to the size of the particles so that it can be said that an increase in the width of the peak translates into a decrease in the true size of the crystallites as the working pressure increases. From Figure 5.3, one can also observe a displacement of the line corresponding to the phase [110] to smaller values of the angle 2φ with increasing pressure, which means an increase of the interplanar distance between the planes bcc [110].

Figura 3. Spectrele de Nb 80 nm suprapuseFigure 3. Nb 80 nm superimposed spectra

Aceleași considerații se aplica si in cazul probelor de Nb 30 nm (figura 4).The same considerations apply to Nb 30 nm samples (Figure 4).

Figura 4 Spectrele de Nb 30 nm suprapuseFigure 4 Nb 30 nm superimposed spectra

Caracterizarea prin spectroscopie UV-VisCharacterization by UV-Vis spectroscopy

Caracterizarea probelor de filme de Nb s-a realizat prin spectroscopie UV-Vis folosind spectro-eleipsometrul WVASE 32 (Woollhman).Characterization of Nb film samples was performed by UV-Vis spectroscopy using the WVASE 32 spectroscope (Woollhman).

Din analiza spectrolor Uv-Vis suprapuse ale probelor de Nb 30 nm (figura 5) se observa o creștere a transmisiei odata cu creșterea presiunii.From the analysis of the overlapping Uv-Vis spectrometers of the 30 nm Nb samples (Figure 5), an increase of the transmission was observed with the increase of the pressure.

Figura 5. Spectrele Uv-Vis suprapuse ale probelor de Nb 30 nmFigure 5. Uv-Vis superimposed spectra of 30 nm Nb samples

a 2015 00812to 2015 00812

11/11/201511/11/2015

Aceleași considerații se aplica si in cazul probelor de Nb 80 (figura 6). ' s CThe same considerations apply to Nb 80 samples (Figure 6). C's

Figura 6. Spectrele Uv-Vis suprapuse ale probelor de Nb 80 nmFigure 6. Uv-Vis superposed spectra of 80 nm Nb samples

Figura 7. Spectrele suprapuse ale probelor de Nb 30 si 80 rim depuse in aceleași cinditii de presiune (15 mbar).Figure 7. Superposed spectra of Nb 30 and 80 rim samples deposited in the same pressure indentations (15 mbar).

In figura 7 sunt prezentate spectrele suprapuse ale probelor de Nb 30 si 80 nm depuse in aceleași cinditii de presiune (15 mbar). Din analiza spectrelor se oobserva o scădere a transmisiei odata cu creșterea grosimii filmului, ceea ce este in deplina concordanta cu așteptările noastre.Figure 7 shows the overlapping spectra of samples of Nb 30 and 80 nm deposited in the same pressure indices (15 mbar). From the analysis of the spectra, a decrease of the transmission is observed with the increase of the film thickness, which is in full agreement with our expectations.

De asemenea din figurle 5.6 si 5.7, se poate observa faptul ca tangenta la graficul transmisiei intersectează axa x corespunzătoare energiei la valori peste 3 eV ceea ce ne face sa credem ca in fapt s-au obtinut filme composite de oxid de niobiu/niobiu metallic sub forma de core-shell.Also from Figures 5.6 and 5.7, it can be observed that the tangent to the transmission graph intersects the x axis corresponding to the energy at values above 3 eV, which makes us believe that in fact niobium oxide / metallic niobium oxide films were obtained below core-shell shape.

Caracterizarea funcționala prin voltametrie ciclicaFunctional characterization by cyclic voltammetry

Caracterizarea funcționala prin voltametrie ciclica a avut drept scop punerea in evidenta a stabilitatii Nb in mediu apos si acid characteristic unui electrolizor cu membrana polimera schimbătoare de protoni. Intr-o astfel de celula, mediul acid este cosntituit din grupările sulfonice aflate in structura membrane de NaFion.Functional characterization by cyclic voltammetry aimed at highlighting the stability of Nb in aqueous and acidic medium characteristic of an electrolyser with proton changing polymer membrane. In such a cell, the acidic environment is constituted by the sulfonic groups in the membrane structure of NaFion.

In acest sens, experimentele s-au desfasurat utilizând electrod rotativ de grafit sticlos diametru de 5 mm produs de firma ORIGATROD pe care s-a depus prin pulverizare DC in câmp magnetic un strat de paroximativ 250 nm Nb. Teste electrochimice au constant in curbe de voltametrie ciclica realiza cu un poentiostat/galvanostat PARSTAT 2273 de la firma Princeton applied Research, iar drept electrolit s-a folosit acid sulfuric 0,5M [9].In this respect, the experiments were carried out using a rotary electrode of 5 mm diameter glass graphite produced by the company ORIGATROD on which a layer of approximately 250 nm Nb was deposited by spraying DC in magnetic field. Electrochemical tests have constant cyclic voltammetry curves performed with a PARSTAT 2273 poentiostat / galvanostat from Princeton applied Research and 0.5M sulfuric acid was used as electrolyte [9].

Curbele de voltametrie ciclica au fost trasate in intervalul -0,75-1,8 V, la viteze diferite de scanare si rotatii diferite ale electrodului rotativ.The cyclic voltammetry curves were plotted in the range -0.75-1.8 V, at different scan speeds and different rotations of the rotating electrode.

In figura 8 este prezentata curba de voltametrie cicliica obtinuta la o viteza de scanare de 50 mV/s, in intervalul de potențial -0,75-1,8 V versu Ag/AgCI.Figure 8 shows the cyclic voltammetry curve obtained at a scan speed of 50 mV / s, in the potential range -0.75-1.8 V towards Ag / AgCI.

a 2015 00812a 2015 00812

11/11/201511/11/2015

Figura 8. Curba de voltametrie cicliica obtinuta la o viteza de scanare de 50 mV/s.Figure 8. Cyclic voltammetry curve obtained at a scan speed of 50 mV / s.

Analizând vooltamograma de mai sus, se constata prezenta a 3 picuri diferite:Analyzing the vooltamogram above, we find the presence of 3 different peaks:

Picul anodic la larg situat in jurul valorii de o,7 V.The anodic offshore peak located around a, 7 V.

Picurile catodice Ic1 si Ic2 bine definite situate la 0,06 si respective 0,26 V.Well defined cathode peaks Ic1 and Ic2 located at 0.06 and 0.26 V. respectively.

Picul anodic la este asociat cu formarea de oxid de neobiu, Nb2O5 si picurile catodice Ic1 si Ic2 corespund adsorbției de hidrogen.The anodic peak at is associated with the formation of neobium oxide, Nb2O5 and the cathodic peaks Ic1 and Ic2 correspond to the adsorption of hydrogen.

A fost studiat de asemenea efectul vitezei de scanare asupra voltamogramelor trasate in intervalul de potențial -0,75-1,8 V versu Ag/AgCI. In figura 9 sunt prezentate spectrele suprapuse ale probelor obținute la diferite viteze de scanare (20, 50, 100, 200, 500, 750 si 1000 mV/s).The effect of the scan speed on the voltammograms drawn in the potential range -0.75-1.8 V towards Ag / AgCI was also studied. Figure 9 shows the overlapping spectra of the samples obtained at different scanning speeds (20, 50, 100, 200, 500, 750 and 1000 mV / s).

Figura 9. Spectrele suprapuse ale probelor obținute la diferite viteze de scanare (20, 50, 100, 200, 500, 750 si 1000 mV/s).Figure 9. The superimposed spectra of the samples obtained at different scan speeds (20, 50, 100, 200, 500, 750 and 1000 mV / s).

In urma analizei spectrelor se observa ca picurile Ic1 si Ic2 se tratnsforma iin unul singur si creste odata cu viteza de scanare si devine mai negativ. Acest lucru insemana ca avem o modificare a structurii cristaline a filmului de Nb prin adsorbtia de hidrogen.Following the analysis of the spectra, it is observed that the peaks Ic1 and Ic2 are transformed into one and increases with the scanning speed and becomes more negative. This means that we have a change in the crystal structure of the Nb film by hydrogen adsorption.

Tot in aceasta lucrare a fost studiiat efectul vitezei de rotatie a electrodului rotativ asupra evoluției oprocesului de oxidare si reeducere a unui film de Nb. S-au trasat astfel voltamograme (figura 10) in care viteza de scanare a fost de 100 mV/s la diferite rotatii ale electrodului rotativ (500, 2000, 4500 so 9000 rot/min).Also in this paper the effect of the rotational speed of the rotating electrode on the evolution of the oxidation and re-process of a Nb film was studied. Thus, voltamograms were drawn (Figure 10) in which the scan speed was 100 mV / s at different rotations of the rotary electrode (500, 2000, 4500 and 9000 rot / min).

S-a constat astfel ca picul catodic Ic1 scade pe măsură ce viteza de rotatie creste, in timp ce Ic2 creste cu viteza de rotatie si devine mai negativ.It was thus found that the cathode peak Ic1 decreases as the rotational speed increases, while Ic2 increases with the rotational speed and becomes more negative.

Figura 10. Efectul vitezei de rotatie a electrodului rotativ asupra evoluției oprocesului de oxidare si reducereFigure 10. Effect of rotation speed of the rotating electrode on the evolution of the oxidation and reduction process

a 2015 00812a 2015 00812

11/11/201511/11/2015

Rezultatele exerimentale prezentate in aceast brevet sunt deosebit de importante φ^ si certifica faptul ca alegerea niobiului drept catalizator pentru electrolizoarele cu membrana polimera PEM reprezintă un pas important in dezvoltarea de catalizatori nanostructurati cu activitate catalitica ridicata cu conținut scăzut de metale prețioase.The experimental results presented in this patent are particularly important si ^ and certify that the choice of niobium as catalyst for PEM polymer membrane electrolyzers represents an important step in the development of nanostructured catalysts with high catalytic activity with low content of precious metals.

Claims (2)

REVENDICĂRI 1. Procedura de realizare de depunere filme compozite de oxid de niobiu/niobiu metallic sub forma de core-shell. electrozi nanostructurați pe bază de oxizi metalici pentru sisteme electrochimice de producere a energiei electrice. In acest sens, au fost realizate mai multe probe de niobiu prin pulverizare în regim magnetron în curent continuu (DC). Depunerea DC in câmp magnetic s-a realizat in atmosfera de Ar la diferite presiuni (6, 9, 12, 15 18 mbar) pe sticla optica utilizând un system de depunere DC BOC EDWARDS FL 400. Probele au fost analizate din punct de vedere structural utilizând următoarele tehnici de investigație: difracție cu raze X (XRD) si specroscopie in ultraviolet (Uv-Vis). Pentru a caracteriza funcțional comportamentul niobiului in vederea utilizării lui ca si catalizator pentru eletroliza PEM, film de niobiu depus pe un electrod rotativ de grafit sticlos s-au trasat curbe de voltametrie ciclica.1. Procedure for filing niobium oxide / metallic niobium oxide films in core-shell form. nanostructured electrodes based on metal oxides for electrochemical systems for electricity generation. In this respect, several niobium samples were made by direct current (DC) magnetron sputtering. Magnetic field DC deposition was performed in the Ar atmosphere at different pressures (6, 9, 12, 15 18 mbar) on the optical glass using a DC BOC EDWARDS FL 400 deposition system. The samples were structurally analyzed using the following investigation techniques: X-ray diffraction (XRD) and ultraviolet (Uv-Vis) spectroscopy. In order to functionally characterize the behavior of the niobium for its use as a catalyst for PEM electrolysis, niobium film deposited on a rotating glass graphite electrode were drawn with cyclic voltammetry curves. 2. Procedura de realizare electrozi nanostructurați pe bază de oxizi metalici pentru sisteme electrochimice de producere a energiei electrice a utilizând filme compozite de oxid de niobiu/niobiu metallic sub forma de core-shell obținute conform revendicării 2. Rezultatele exerimentale prezentate in aceast brevet certifica faptul ca alegerea niobiului drept catalizator pentru electrolizoarele cu membrana polimera PEM reprezintă un pas important in dezvoltarea de catalizatori nanostructurați cu activitate catalitica ridicata cu continui scăzut de metale prețioase.2. Procedure for making nanostructured electrodes based on metallic oxides for electrochemical systems for electricity production using core-shell composite films of metal / niobium oxide obtained according to claim 2. The experimental results presented in this patent certify the fact that the choice of niobium as catalyst for PEM polymer membrane electrolysers is an important step in the development of nanostructured catalysts with high catalytic activity and low content of precious metals.
ROA201500812A 2015-11-11 2015-11-11 Synthesis process for making nanostructured electrodes based on niobium oxides, for electrochemical systems producing electric energy RO131917B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
ROA201500812A RO131917B1 (en) 2015-11-11 2015-11-11 Synthesis process for making nanostructured electrodes based on niobium oxides, for electrochemical systems producing electric energy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
ROA201500812A RO131917B1 (en) 2015-11-11 2015-11-11 Synthesis process for making nanostructured electrodes based on niobium oxides, for electrochemical systems producing electric energy

Publications (2)

Publication Number Publication Date
RO131917A2 true RO131917A2 (en) 2017-05-30
RO131917B1 RO131917B1 (en) 2018-11-29

Family

ID=58746745

Family Applications (1)

Application Number Title Priority Date Filing Date
ROA201500812A RO131917B1 (en) 2015-11-11 2015-11-11 Synthesis process for making nanostructured electrodes based on niobium oxides, for electrochemical systems producing electric energy

Country Status (1)

Country Link
RO (1) RO131917B1 (en)

Also Published As

Publication number Publication date
RO131917B1 (en) 2018-11-29

Similar Documents

Publication Publication Date Title
Kou et al. Ni foam-supported Fe-doped β-Ni (OH) 2 nanosheets show ultralow overpotential for oxygen evolution reaction
Kim et al. Facet-dependent in situ growth of nanoparticles in epitaxial thin films: the role of interfacial energy
Li et al. Iron-doped nickel phosphate as synergistic electrocatalyst for water oxidation
Yang et al. Enhancing electrode performance by exsolved nanoparticles: a superior cobalt-free perovskite electrocatalyst for solid oxide fuel cells
Burke et al. Oxygen evolution reaction electrocatalysis on transition metal oxides and (oxy) hydroxides: activity trends and design principles
Shan et al. NanoCOT: low-cost nanostructured electrode containing carbon, oxygen, and titanium for efficient oxygen evolution reaction
US9062384B2 (en) Corrosion resistant and electrically conductive surface of metal
Kim et al. Electrodeposited molybdenum sulfide as a cathode for proton exchange membrane water electrolyzer
Li et al. Highly efficient NiFe nanoparticle decorated Si photoanode for photoelectrochemical water oxidation
Park et al. A highly transparent thin film hematite with multi-element dopability for an efficient unassisted water splitting system
CN104064792B (en) A kind of high-temperature electrolysis water vapour Simultaneous Oxidation methane is for the method for fuel
Zhang et al. An oriented ultrathin catalyst layer derived from high conductive TiO2 nanotube for polymer electrolyte membrane fuel cell
Zhang et al. Preparation of Pt catalysts decorated TiO2 nanotube arrays by redox replacement of Ni precursors for proton exchange membrane fuel cells
JPWO2012157193A1 (en) Photoelectrode and manufacturing method thereof, photoelectrochemical cell, energy system using the same, and hydrogen generation method
Jiang et al. Self-supported iridium oxide nanostructures for electrocatalytic water oxidation in acidic media
Wang et al. Deciphering the exceptional performance of NiFe hydroxide for the oxygen evolution reaction in an anion exchange membrane electrolyzer
Dao et al. A facile synthesis of ruthenium/reduced graphene oxide nanocomposite for effective electrochemical applications
JP6446373B2 (en) Electrochemical devices
Perego et al. Hierarchical TiN nanostructured thin film electrode for highly stable PEM fuel cells
Pandiyan et al. Enhancing the electrocatalytic activity of redox stable perovskite fuel electrodes in solid oxide cells by atomic layer-deposited Pt nanoparticles
Umeda et al. Alcohol electrooxidation at Pt and Pt–Ru sputtered electrodes under elevated temperature and pressurized conditions
Hrbek et al. Sputter-etching treatment of proton-exchange membranes: Completely dry thin-film approach to low-loading catalyst-coated membranes for water electrolysis
Shen et al. A RuCoBO nanocomposite for highly efficient and stable electrocatalytic seawater splitting
Chen et al. Anchoring Highly Dispersed Pt Electrocatalysts on TiO x with Strong Metal–Support Interactions via an Oxygen Vacancy-Assisted Strategy as Durable Catalysts for the Oxygen Reduction Reaction
Zahran et al. Nickel sulfate as an influential precursor of amorphous high-valent Ni (III) oxides for efficient water oxidation in preparation via a mixed metal-imidazole casting method