RO131321A0 - System for recovery of braking kinetic energy - Google Patents

System for recovery of braking kinetic energy Download PDF

Info

Publication number
RO131321A0
RO131321A0 ROA201600361A RO201600361A RO131321A0 RO 131321 A0 RO131321 A0 RO 131321A0 RO A201600361 A ROA201600361 A RO A201600361A RO 201600361 A RO201600361 A RO 201600361A RO 131321 A0 RO131321 A0 RO 131321A0
Authority
RO
Romania
Prior art keywords
holes
hydraulic
circular
brake
piston
Prior art date
Application number
ROA201600361A
Other languages
Romanian (ro)
Inventor
Ionuţ Cristian Scripcariu
Original Assignee
Ionuţ Cristian Scripcariu
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ionuţ Cristian Scripcariu filed Critical Ionuţ Cristian Scripcariu
Priority to ROA201600361A priority Critical patent/RO131321A0/en
Priority to PCT/US2016/000062 priority patent/WO2017007509A2/en
Publication of RO131321A0 publication Critical patent/RO131321A0/en

Links

Abstract

The invention relates to a system for recovering braking kinetic energy, intended for any type of motor vehicle or hauled vehicle, in order to partially eliminate the conventional hydraulic, pneumatic or electric braking system thereof and recover the braking kinetic energy to use it in the motor vehicle acceleration. According to the invention, the system comprises some motor-hydropumps (A) in connection with a hydraulic distributor (B) by means of some electrically operated valves (1) and a connection (210), and connected to a pneumo-hydraulic tank (D) by means of the same electrically operated valves (1) and a connection (202), the tank (D) being in connection with both the distributor (B), through a connection (217), and some pneumo-hydraulic cylinders (E and F), by some connections (217, 218), the said distributor (B) communicating with the cylinder (E) by a connection (213) and also with the above-mentioned cylinder (F) by a connection (216), and a hydraulic compressor (G) in connection with the motor-hydropumps (A) by some connections (204), and some hydraulic accumulators (H) mounted on the motor-hydropumps (A), as well as some hydraulic controllers (J) mounted between a braking pump (17) and some braking calipers/cylinders (19) and a hydraulic regulator (K) connected by a connection (211) to some electrically operated valves (3 and 4) and with the first electrically operated valves (1).

Description

Prezenta invenție se refera la un sistem de recuperare a energiei cinetice la franare destinat oricărui tip de autovehicul sau vehicul tractat, eliminând parțial sistemul de franare convențional hidraulic, pneumatic sau electric al acestuia si care sa recupereze energia cinetica la franare pentru a o utiliza la accelerarea autovehiculului.The present invention relates to a kinetic energy recovery system for braking for any type of vehicle or towed vehicle, partially eliminating its conventional hydraulic, pneumatic or electric braking system and recovering kinetic energy at braking for use in accelerating the vehicle. .

STADIUL TEHNICII:BACKGROUND OF THE TECHNIQUE:

In scopul recuperării energiei de franare sunt cunoscute sisteme electrice si hidraulice de recuperare a energiei cinetice.In order to recover the braking energy, electric and hydraulic systems for kinetic energy recovery are known.

Un sistem de recuperare a energiei cinetice {adesea cunoscut doar ca KERS sau kers) este un sistem pentru recuperarea energiei cinetice la franare a unui vehicul aflat în mișcare. Energia recuperata este stocata intr-un rezervor (de exemplu, un rezervor cu gaz, un volant sau baterii de înalta tensiune) pentru o utilizare ulterioara in accelerare. Exemplele includ sisteme complexe de ultima generație, utilizate în cursele de Formula 1 si sisteme simple integrate, ușor de fabricat, bazate pe diferențiale, cum ar fi sistemul de recuperare a energiei cinetice Cambridge Passenger/Commercial Vehicle Kinetic Energy Recovery System (CPC-KERS). Sistemele hidraulice regăsite in stadiul tehnicii nu au o aplicabilitate larga, putând fi instalate doar pe autovehiculele dotate cu cardan, diferențial si axe planetare, neputand fi montate pe rotile fara axe planetare, cu fuzeta. Aceste sisteme hidraulice funcționează împreuna cu frânele convenționale ale autovehiculului/vehiculului tractat si nu pot recupera in totalitate energia cinetica disponibila, ea fiind impartita intre sistemul de franare convențional transformandu-se in căldură datorita fricțiunii si intre sistemul de recuperare. Un alt dezavantaj al acestor sisteme este legat de costurile ridicate pentru modificarea structurii autovehiculului astfel incat sa poata fi montate. La unele sisteme hidraulice de recuperare ABS-ul nu funcționează in același timp cu sistemul, caz in care se pierde energia cinetica la franare. La unele sisteme hidraulice de recuperare se folosesc pompe-motor cu deschideri variabile ale paletelor. La aplicarea unei astfel de pompe intr-un sistem ce dorește recuperarea energiei cinetice, la un eveniment de franare autovehiculul nu va putea fi franat fluent, ci neuniform, din cauza variației de suprafața cu care actioneaza paletele pompei. Mai exact, din cauza faptului ca secțiunea paletelor ce actioneaza in camera de presiune formata intre admisie si evacuare se schimba, datorita amplasării excentrice a rotorului fata de stator, apar fluctuații de presiune in sistem, iarA kinetic energy recovery system (often known only as KERS or kers) is a system for recovering kinetic energy when braking a moving vehicle. The recovered energy is stored in a tank (for example, a gas tank, flywheel or high voltage batteries) for later use in acceleration. Examples include state-of-the-art complex systems used in Formula 1 races and simple, easy-to-build, integrated, differential systems such as the Cambridge Passenger / Commercial Kinetic Energy Recovery System (CPC-KERS) kinetic energy recovery system. . The hydraulic systems found in the prior art do not have a wide applicability, they can only be installed on vehicles equipped with gimbal, differential and planetary axes, and cannot be mounted on wheels without planetary axles, with the rocket. These hydraulic systems operate in conjunction with the conventional brakes of the towed vehicle / vehicle and cannot fully recover the available kinetic energy, being divided between the conventional braking system transforming into heat due to the friction and between the recovery system. Another disadvantage of these systems is related to the high costs for modifying the structure of the vehicle so that it can be fitted. In some hydraulic recovery systems the ABS does not work at the same time as the system, in which case the kinetic energy is lost when braking. In some hydraulic recovery systems are used motor pumps with variable blades openings. When applying such a pump in a system that wishes to recover kinetic energy, at a braking event the vehicle will not be able to brake fluently, but unevenly, due to the variation of the surface with which the pump blades operate. More precisely, due to the fact that the section of the blades operating in the pressure chamber formed between the inlet and outlet is changed, due to the eccentric position of the rotor with respect to the stator, pressure fluctuations appear in the system, and

^-2016-- 003612 Ο -05- 2016^ -2016-- 003612 Ο -05- 2016

intensitatea franarii va fi discontinua, determinând autovehiculul sau vehiculul sa se comporte la franare ca in cazul in care tamburii sau discurile de frana ar fi ovalizate.the braking intensity will be discontinued, causing the vehicle or vehicle to behave as if the drum or brake discs were oval.

Sunt cunoscute de asemenea si sisteme hibrid electrice care stochează energia in baterii de acumulatoare. Dezavantajul acestor sisteme este datorat faptului ca pentru recuperarea energiei de franare sunt necesari acumulatori electrici si un motor/generator electric, pe langa motorul termic al autovehiculului, astfel costurile de adaptare sau construcție sunt ridicate.Also known are hybrid electric systems that store energy in battery packs. The disadvantage of these systems is due to the fact that in order to recover the braking energy, electric batteries and an electric motor / generator are required, besides the thermal engine of the vehicle, so the costs of adaptation or construction are high.

Se menționează din stadiul tehnicii cateva documente in care se regăsesc sisteme hidraulice de recuperare a energiei cinetice, si anume: W02010/098881, W02006/066156,There are mentioned from the prior art some documents in which hydraulic kinetic energy recovery systems are found, namely: W02010 / 098881, W02006 / 066156,

WO2006/122241.WO2006 / 122 241.

PROBLEMA TEHNICA:TECHNICAL PROBLEM:

Problema tehnica pe care o rezolva invenția de fata, eliminând dezavantajele soluțiilor menționate anterior, este realizarea unui sistem de recuperare a energiei cinetice la franare destinat oricărui tip de autovehicul sau vehicul tractat prin instalarea acestuia direct pe autovechicul/vehicul tractat fara modificări aduse in structura si componentele autovehiculului/vehiculului tractat, prin montarea unor hidropompe-motor la nivelul roților acestuia (prin prindere mecanica de butucul rotii, astfel incat rotorul hidropompei-motor sa devină solidar cu acesta) si nu pe axele planetare sau cardan, care la franare vor avea rolul de pompa, iar la accelerare de motor hidraulic si care împreuna cu celelalte componente ale sistemului sa recupereze energia cinetica totala la franarea autovehiculului/vehiculului tractat intr-o presiune reutilizabila la accelerarea acestuia in scopul plecării de pe loc sau al propulsiei in mișcare.The technical problem that the present invention solves, eliminating the disadvantages of the aforementioned solutions, is the realization of a kinetic energy recovery system for braking for any type of vehicle or towed vehicle by installing it directly on the towed vehicle / vehicle without any changes in the structure and the components of the towed vehicle / vehicle, by installing hydropumps on its wheels (by mechanically gripping the hub of the wheel, so that the hydropower's rotor becomes integral with it) and not on the planetary or drive shafts, which will play the role of the pump, and when accelerating a hydraulic motor and which, together with the other components of the system, recover the total kinetic energy when braking the towed vehicle / vehicle in a reusable pressure when accelerating it for the purpose of leaving the site or propelling it in motion.

O alta problema tehnica pe care o poate rezolva sistemul, conform invenției, intr-o a doua varianta de realizare, pe langa recuperarea energiei cinetice la franare, este asigurarea tracțiunii integrale la autovehiculele cu tracțiune spate, prin împărțirea puterii autovehiculului si către celelalte roti non-motoare, pe care sunt montate hidropompe-motor.Another technical problem that the system can solve, according to the invention, in a second embodiment, besides the kinetic energy recovery at braking, is to ensure the integral traction in the vehicles with rear traction, by dividing the power of the vehicle and to the other non-wheels. -motors, on which hydropower-motor are mounted.

Se considera un autovehicul/vehicul tractat, care are cel puțin patru roti, si care prezintă un sistem de franare convențional, hidraulic, pneumatic sau electric.It is considered to be a towed vehicle / vehicle, which has at least four wheels, and which has a conventional braking system, hydraulic, pneumatic or electric.

In scopul recuperării energiei cinetice, pe autovehiculul considerat se instalează sistemul de recuperare a energiei cinetice la franare, conform invenției, prin montarea unor hidropompe-motor in locul discurilor de frana si etrierelor, pentru sistemele de franare cu disc sau in locul sabotilor si cilindrilor de frana pentru sistemele de franare cu tamburi, pe unele dintre rotile motoare sau non-motoare, fie ele directoare sau nu, indiferent daca autovehiculul este cu tracțiune integrala, cu tracțiune fata sau tracțiune spate sau daca este prevăzut cu osii,In order to recover the kinetic energy, the vehicle under consideration will install the kinetic energy recovery system at the braking, according to the invention, by installing hydropump-motor instead of the brake discs and the stirrups, for the disc braking systems or instead of the shoe and roller cylinders. brake for drum braking systems, on some of the drive or non-drive wheels, whether they are steering or not, whether the vehicle is all-wheel drive, front-wheel drive or rear-wheel drive or equipped with axles,

Cf 2 Ο 1 6 - - 0 0 3 6 1 2 O -05- 20«Cf 2 Ο 1 6 - - 0 0 3 6 1 2 O -05- 20 «

astfel incat sa ramana cel puțin doua roti ale autovehiculului fara hidropompe-motor. Datorita faptului ca nu se renunța total la sistemul de franare convențional, ci acesta ramane doar pe unele roti {de exemplu doar pe rotile din fata sau doar pe rotile din spate), dar acționarea lui este intarziata si intra in funcțiune doar in cazul in care se efectuează o franare de urgenta, energia cinetica se poate recupera, in general, in totalitate, dar si uzura plăcutelor si discurilor de frana sau a sabotilor de pe aceste roti este mai mica.so that at least two wheels of the vehicle without hydraulic pumps remain. Due to the fact that the conventional braking system is not completely relinquished, it remains only on some wheels (for example, only on the front wheels or only on the rear wheels), but its operation is delayed and comes into operation only if an emergency braking is performed, the kinetic energy can be recovered in general, in total, but also the wear of the brake pads and discs or of the shoe wheels on these wheels is less.

Sistemul, conform invenției, poate fi construit in funcție de fiecare autovehicul sau vehicul, astfel incat împreuna cu sistemul de franare convențional pneumatic, hidraulic sau electric ramas parțial pe autovehicul, sa poata asigura franarea conform standardelor si reglementarilor de siguranța in vigoare si sa asigure o performanta sporita, iar în acest mod franarea sa nu difere fata de franarea doar cu sistemul convențional aflat intial pe mașina.The system, according to the invention, can be built according to each vehicle or vehicle, so that together with the conventional pneumatic, hydraulic or electric braking system partially left on the vehicle, it can ensure braking in accordance with the safety standards and regulations in force and ensure a increased performance, and in this way braking does not differ from braking only with the conventional system initially located on the machine.

Sistemul, conform invenției, funcționează împreuna cu ABS-ul, senzorul de la roti împreuna cu roata polara (danturata) ale ABS-ului fiind nemodificate.The system, according to the invention, works in conjunction with the ABS, the wheel sensor along with the ABS gear being unmodified.

DESCRIEREA DETALIATA A INVENȚIEI:DETAILED DESCRIPTION OF THE INVENTION:

In cele ce urmeaza se prezintă variantele de realizare a sistemului de recuperare a energiei cinetice la franare.In the following we present the variants of the kinetic energy recovery system at braking.

Intr-o prima varianta de realizare, sistemul de recuperare a energiei cinetice la franare, conform invenției, elimina dezavantajele soluțiilor menționate anterior prin aceea ca, la instalarea pe un oarecare autovehicul sau vehicul tractat legat la un autovehicul pe care se gaseste, un carburator/pompa de injecție, un sistem de franare convențional, ce are o pompa de frana si niște etriere/cilindrii de frana, o baterie electrica de curent continuu, un contact de marsarier si o pedala de frana, respectiv una de accelerație, este constituit din niște cilindrii hidraulici, niște electrovalve cu dublu circuit, o electrovalva simpla, niște electrovalve proporționale, un contactor hidraulic, niște supape de presiune unisens , niște presostate, niște contactori cu cursa, un potentiometru si un swîtch electric ce lucrează împreuna cu niște hidropompe-motor, in legătură cu un distribuitor hidraulic, prin intermediul electrovalvelor cu dublu circuit si racordate la un rezervor pneumohidraulic cu ajutorul acelorași electrovalve cu dublu circuit, rezervorul fiind in legătură atat cu distribuitorul printr-un racord pe care se gaseste o supapa unisens, cat si cu buteliile pneumohidraulice, prin racoarde pe care se găsesc supapele unisens, amintitul distribuitor comunica cu butelia pneumohidraulica de presiune mai mica, printr-un racord pe care se gaseste o supapa unisens si de asemenea este in legătură cu butelia pneumohidraulica de presiune mare, printr-un alt racord pe care se gaseste o supapa unisens. Sistemul, conform invenției, este mai are in component si un compensator hidraulic in legătură cu hidropompele-motor si niște acumulatori hidraulici, montati pe hidropompelemotor, precum si din niște controllere hidraulice instalate intre etriere/cilindrii de frana siIn a first embodiment, the braking kinetic energy recovery system, according to the invention, eliminates the disadvantages of the aforementioned solutions by installing a carburetor / towed vehicle on a certain vehicle or towed vehicle. the injection pump, a conventional braking system, which has a brake pump and some brake calipers / cylinders, a direct current electric battery, a reverse gear and a brake pedal, respectively an accelerator, is made up of some hydraulic cylinders, some double circuit solenoid valves, a single solenoid valve, some proportional solenoid valves, a hydraulic contactor, some unisense pressure valves, some pressure switches, some contactors with the stroke, a potentiometer and an electrical switch that work together with some hydropump-motor, in connection with a hydraulic distributor, via double circuit solenoid valves and connected to a tank pneumatic with the same double circuit solenoid valves, the reservoir being connected both to the distributor through a connection on which a one-way valve is found, as well as to the pneumatic hydraulic cylinders, through fittings on which the one-way valves are found, the mentioned distributor communicates with the pneumatic hydraulic cylinder. lower pressure, through a fitting that has a one-way valve and is also connected to the high-pressure pneumatic hydraulic cylinder, through another fitting that has a one-way valve. The system, according to the invention, also has a hydraulic compensator in connection with the hydropump-motor and hydraulic accumulators, mounted on the hydropompelemotor, as well as some hydraulic controllers installed between the brake calipers / cylinders and

Ο 1 6 - - 0 0 3 6 1 2 C' -05- 2016 pompa de frana si un regulator hidraulic ce se intercalează pe cablul de accelerație intre pedala de accelerație si carburator/pompa de injecție. Hidropompa-motor este alcatuita dintr-un rotor, montat intr-un stator, sprîjinindu-se pe niște rulmenți si ghidat de niște rulmenți de presiune, si închis de o flansa prin infiletarea acesteia in stator, si niște palete fixate de niște elemente de etanșare, ce pot culisa din rotor, in niște camere de presiune formate între rotor, stator si flansa. Rotorul este prevăzut cu niște găuri de fixare si cu o degajare circulara, care comunica la partea inferioara cu niște canale înclinate, continuate prin niște canale longitudinale, urmat de niște canale radiale, acestea fiind in legătură cu cele patru locașuri radiale, dispuse la 90 de grade, in care culiseaza paletele, anterior menționate, in vecinătatea degajării circulare, se gaseste un canal circular, iar in partea opusa degajării circulare, este practicata o alta degajare circulara si in aceasta un canal circular, in vecinătatea celei de-a doua degajări circulare gasindu-se inca o degajare circulara, iar pe fiecare din cele doua fete ale rotorului sunt practicate niște canale inelare. Pentru centrarea hidropompei-motor, pe butucul rotii autovehiculului, rotorul este prevăzut cu o gaura de centrare, iar degajările circulare delimitate spre exterior de niște umeri, iar cu un diametru mai mare decât gaura de centrare mai este prevăzută concentric cu aceasta o degajare circulara destinata cuplării sabotilor frânei de mana in cazul in care hidropompele-motor se montează pe rotile din spate. Statorul este de forma cilindrica si este prevăzut la exterior cu doua orificii de admisie diametral opuse si cu doua orificii de evacuare, diametral opuse, orificiile de admisie si cele de evacuare fiind egale ca suprafața, fiecare comunicând la interior cu cate o degajare. Statorul este de asemenea prevăzut cu patru degajări circulare care scad in diametru. Una dintre degajările statorului, este impartita in patru suprafețe cilindrice cu deschiderea la centru de 40 de grade, in doua suprafețe cilindrice cu deschiderea la centru de 10 grade si in doua suprafețe cilindrice cu deschiderea la centru de 90 grade si razele la centru egale, iar razele la centru care descriu suprafețele cu deschiderea la centru de 40 de grade descresc pana la suprafețele cu deschiderea la centru de 10 grade ale căror raze sunt egale cu razele ce descriu circumferința exterioara a rotorului, ale suprafețelor elementelor de etanșare si ale suprafețelor paletelor. Statorul mai este prevăzut cu o gaura axiala realizate in trepte prin trei degajări circulare , destinate montării rotorului si cu o gaura filetata realizata pe o suprafața exterioara, ce comunica cu o degajare, prin intermediul unor canale si de asemenea cu o alta degajare prin intermediul unor canale si in final printr-un canal circular. Pe aceeași suprafața exterioara mai sunt prevăzute trei găuri filetate ce comunica cu o degajare prin intermediul unor canale longitudinale si a unor canale radiale. Intre doua din degajările statorului se gaseste un canal inelar, iar pe suprafața exterioara sunt poziționate doua găuri filetate de fixare. Flansa este prevăzută cu doua degajări circulare intre acestea fiind practicat un canal inelar, iar in interiorul unei degajări circulare este poziționat un canal circular, care comunica prin niște canale cu un alt canal circular aflat pe circumferința exterioara a flansei. Flansa mai are prevăzută la exterior o suprafața filetata care se termina intr-o degajare circulara de etanșare. Pe aceeași flansa se6 1 6 - - 0 0 3 6 1 2 C '-05- 2016 Brake pump and a hydraulic regulator that intersects on the acceleration cable between the accelerator pedal and the carburetor / injection pump. The hydraulic pump is composed of a rotor, mounted in a stator, supporting on bearings and guided by some pressure bearings, and closed by a flange by threading it into the stator, and some blades fixed by some sealing elements. , which can slide from the rotor, in some pressure chambers formed between the rotor, stator and flange. The rotor is provided with some fixing holes and a circular clearance, which communicates at the bottom with inclined channels, continued through longitudinal channels, followed by some radial channels, these being in connection with the four radial seats, arranged at 90 degrees. degrees, in which the pallets, mentioned above, in the vicinity of the circular clearance, are found a circular channel, and on the opposite side of the circular clearance, another circular clearance is practiced and in this a circular channel, in the vicinity of the second circular clearance there is still a circular release, and on each of the two faces of the rotor are practiced ring channels. For the centering of the hydropower-motor, on the hub of the vehicle wheel, the rotor is provided with a centering hole, and the circular openings delimited outwards by some shoulders, and with a diameter larger than the centering hole, a circular clearance is provided concentricly with this coupling the handbrake shoe if the hydraulic pumps are mounted on the rear wheels. The stator is cylindrical in shape and is provided on the outside with two diametrically opposed inlet ports and two diametrically opposed outlet ports, the inlet and outlet ports being the same as the surface, each communicating on the inside with a release. The stator is also provided with four circular recesses that decrease in diameter. One of the stator relays is divided into four cylindrical surfaces with the opening at the center of 40 degrees, in two cylindrical surfaces with the opening at the center of 10 degrees and in two cylindrical surfaces with the opening at the center of 90 degrees and the radii at the center equal, and the center radii that describe the surfaces with the opening at the center of 40 degrees decrease to the surfaces with the opening at the center of 10 degrees whose radii are equal to the radii that describe the outer circumference of the rotor, the surfaces of the sealing elements and the surfaces of the blades. The stator is also provided with an axial hole made in stages through three circular openings, intended for mounting the rotor and with a threaded hole made on an outer surface, which communicates with a clearance, through channels and also with another clearance through some channels and finally through a circular channel. On the same outer surface there are also three threaded holes that communicate with a release through longitudinal channels and radial channels. Between two of the stator relays there is an annular channel, and on the outer surface there are two threaded holes for fixing. The flange is provided with two circular recesses between them being an annular channel, and inside a circular recess is positioned a circular channel, which communicates through some channels with another circular channel located on the outer circumference of the flange. The flange also has externally provided a threaded surface which ends in a circular sealing release. On the same flange itself

¢¢2016--003612 ί -15- ZW¢¢ 2016--003612 ί -15- ZW

mai gaseste o gaura axiala compusa din trei degajări crescătoare ca diametru. Paletele, dispuse la 90 de grade una de cealalta, in locașurile radiale ale rotorului sunt formate din din cate doua brațe, dotate cu niște degajări cilindrice si terminate cu cate o talpa. In degajările cilindrice sunt așezate niște arcuri elicoidale care se sprijină pe tălpile anterior menționate, iar brațele fac corp comun cu un piston cilindric prevăzut cu doua canale circulare de etanșare, si cu un piston rectangular cu muchiile rotunjite a cărui forma în secțiune transversala permite culisarea acestuia prin elementul de etanșare. Elementul de etanșare are prevăzută o degajare dreptunghiulara corelata ca forma cu pistonul rectangular al paletei si prevăzută cu un canal de etanșare, si cu niște găuri de fixare pentru fixarea pe suprafața exterioara a rotorului in niște locașuri. Suprafața exterioara a elementului de etanșare este generate de aceeași raza ca cea a circumferinței exterioare a rotorului. In hidropompa-motor se formează doua camere de presiune, egale si diametral opuse, delimitate de stator, suprafața exterioara a rotorului si închise de flanșa. Suprafețele interioare a camerelor de presiune sunt definite de suprafața exterioara a rotorului, iar suprafețele exterioare a acestora de suprafețele cu deschideri la centru de 10 grade, 40 de grade si 90 de grade. Paletele culiseaza controlat in camerele de presiune, la franare comandate de pedala de frana, prin intermediul pompei de frana care controlează un cilindrul hidraulic conectat printr-un racord la găurile filetate ale hidropompelormotor. La accelerare paletele sunt comandate de pedala de accelerație prin intermediul compensatorului hidraulic, ce primește comanda de la potentiometru prin intermediul switchului electric. Paletele pot culisa la cursa maxima in camerele de presiune formate intre rotor, stator si flanșa de-a lungul suprafețelor cu deschidere de 90 de grade, iar suprafața maxima cu care poate acționa o paleta este egala cu suprafața unui orificiu de admisie sau de evacuare. Hidropompele-motor se pot monta la nivelul roților autovehiculului sau vehiculului tractat, înlocuind discurile de franare si etrierele la autovehiculele dotate cu sisteme de franare cu disc, prin cuplarea rotorului de butucul rotii autovehiculului prin găurile de fixare , astfel rotorul devine solidar cu butucul rotii, si prin cuplarea statorului cu suportul etrierului prin găurile filetate de fixare. Hidropompele-motor se pot monta la nivelul roților autovehiculului sau vehiculului tractat, înlocuind sabotii de franare si cilindrii de frana, pentru autovehiculele dotate cu sisteme de franare cu tamburi, prin cuplarea rotorului de butucul rotii autovehiculului prin găurile de fixare si prin găurile filetate de fixare ale statorului se fixeaza pe suportul saboților de franare, iar prin intermediul unei flanse intermediare se fixeaza pe tambur prin niște găuri. Flanșa intermediara mai prezintă alte găuri care corespund cu găurile de fixare ale rotorului, flanșa intermediara devine astfel solidara cu rotorul si se centrează pe butucul rotii printr-o gaura axiala ce corespunde cu gaura de centrare a rotorului. Distribuitorul hidraulic este compus dintr-un corp tubular, care are prevăzute trei perechi de găuri filetate așezate diametral opus astfel incat fiecare pereche sa comunice prin niște orificii cu diametre descrescătoare, care sunt realizate la interiorul amintitului corp tubular. Corpul tubular mai este prevăzut si cu o gaura filetata axiala si cu o gaura filetata radiala, in interiorul corpuluiit also finds an axial hole made up of three increasing openings in diameter. The pallets, arranged at 90 degrees from each other, in the radial seats of the rotor are formed of two arms, equipped with cylindrical recesses and finished with a sole. In the cylindrical recesses are placed helical springs that rest on the aforementioned soles, and the arms make common body with a cylindrical piston provided with two circular sealing channels, and with a rectangular piston with rounded edges whose shape in cross-section allows its sliding. through the sealing member. The sealing element is provided with a rectangular clearance correlated as the shape with the rectangular piston of the blade and provided with a sealing channel, and with some fixing holes for fixing on the outer surface of the rotor in some recesses. The outer surface of the sealing member is generated by the same radius as that of the outer circumference of the rotor. In the hydropump-engine two pressure chambers, equal and diametrically opposed, formed by the stator, the outer surface of the rotor and closed by the flange are formed. The inner surfaces of the pressure chambers are defined by the outer surface of the rotor, and their outer surfaces by the surfaces with center openings of 10 degrees, 40 degrees and 90 degrees. The pallets slide controlled in the pressure chambers, at the brakes controlled by the brake pedal, through the brake pump which controls a hydraulic cylinder connected through a connection to the threaded holes of the hydropompelormotor. When accelerating the blades are controlled by the accelerator pedal through the hydraulic compensator, which receives the command from the potentiometer through the electric switch. The blades can slide at the maximum stroke in the pressure chambers formed between the rotor, stator and the flange along the surfaces with 90 degree opening, and the maximum surface with which a blade can operate is equal to the surface of an inlet or outlet port. Hydro-pumps can be mounted on the wheels of the vehicle or towed vehicle, replacing the brake discs and the brake calipers on vehicles equipped with disc braking systems, by coupling the rotor to the hub of the wheel of the vehicle through the mounting holes, so the rotor becomes integral with the hub of the wheel, and by coupling the stator with the bracket support through the threaded mounting holes. Hydraulic pumps can be mounted on the wheels of the vehicle or towed vehicle, replacing the brake shoes and brake cylinders, for vehicles equipped with drum braking systems, by coupling the rotor to the hub of the vehicle wheel through the fixing holes and through the threaded holes. of the stator is fixed on the support of the brake pads, and by means of an intermediate flange it is fixed on the drum through some holes. The intermediate flange also has other holes corresponding to the fixing holes of the rotor, the intermediate flange thus becomes integral with the rotor and is centered on the hub of the wheel through an axial hole corresponding to the center of the rotor. The hydraulic distributor is composed of a tubular body, which has three pairs of threaded holes positioned diametrically opposite so that each pair communicates through holes with decreasing diameters, which are made inside said tubular body. The tubular body is also provided with an axial threaded hole and a radial threaded hole, inside the body

ft,-2 Ο 1 6 - - 003612 t ·15- 20Η tubular culiseaza un piston. Pistonul este prevăzut la capete cu porțiuni de diametre mai mici, iar in porțiunea mediana cu niște canalele circulare dintre care primul canal poate comunica cu orificiile corespunzătoare primei perechi de găuri filetate, al doilea canal poate comunica cu orificiile corespunzătoare celei de-a doua perechi de găuri filetate, iar al treilea canal cu orificiile corespunzătoare celei de-a treia perechi de găuri filetate. Când pistonul culiseaza in interiorul distribuitorului hidraulic, doar doua dintre canalele circulare pot obtura orificiile corepsunzatoare in același moment, astfel suma suprafețelor de trecere obținute prin obturare este egala cu suprafața orificiilor cu diametru mai mic. Pistonul mai este prevăzut cu niște canale circulare de etanșare, iar la căpătui acestuia porțiunea cu un diametru mic se afla in interiorul unui arc elicoidal si culiseaza printr-o gaura axiala aflata la căpătui corpului tubular. Rezervorul pneumohidraulic este de forma cilindrica fiind alcătuit dintr-un cilindru metalic închis la capete cu semisfere, de aceste semisfere este prins un ax pe care culiseaza un piston prevăzut cu doua canale circulare de etanșare, acesta fiind presat pe un butuc, prevăzut si el cu niște canale de etanșare. Același piston separa rezervorul in doua camere in care se gaseste ulei, respective gaz sub presiune. Buteliile pneumohidraulice sunt similare constructiv cu rezervorul. Compensatorul hidraulic este compus dintr-un electromagnet montat la un corp tubular care are prevăzute o gaura filetata radiala si un alezaj axial in care culiseaza un piston, retinut de un arc elicoidal. Atat corpul tubular, cat si pistonul au prevăzute cate un canal circular de etanșare, iar corpul este închis la căpătui opus electromagnetului cu un capac prevăzut cu un orificiu de depresurizare. Acumulatorii hidraulici sunt montati in doua din găurile filetate ale statorului si sunt de forma cilindrica fiind formați dintr-un corp tubular filetat la exterior care este închis de un corp tubular filetat la interior. In interiorul corpului filetat la exterior culiseaza un piston, a cărui tija pătrunde printr-o gaura axiala a corpului filetat la interior fiind retinut de un arc elicoidal si prevăzut cu un canal circular de etanșare. Corpul filetat la exterior mai este dotat cu un stut filetat la exterior. Controllerele hidraulice sunt formate dintr-un corp tubular închis la capete cu doua corpuri cilindrice si prevăzut la interior cu un piston. Pistonul este prevăzut cu un alezaj axial prin care culiseaza in lungul unui piston cu tija, pe care il poate acționa, retinut de un arc elicoidal. Corpul tubular este prevăzut cu o gaura axiala in care culiseaza pistonul cu alezaj axial si cu o alta gaura axiala in care culiseaza pistonul cu tija, găurile axiale au diametre diferite si sunt pozitonate fiecare la cate un capat al corpului tubular, la interior fiind delimitate printr-un umăr, ce nu permite pistonului cu tija sa pătrundă in gaura axiala in care culiseaza pistonul cu alezaj axial. Același corp tubular mai este prevăzut si cu un canal longitudinal, ce comunica la un capat cu gaura in care culiseaza pistonul cu alezaj axial printr-un orificiu continuat cu un canal circular ce comunica cu un canal longitudinal, canale ale pistonului cu alezaj axial si la celalalt capat comunica cu gaura in care culiseaza pistonul cu tija. printr-un alt orificiu. Pistoanele sunt prevăzute cu cate un canal circular de etanșare. Intre pistonul cu alezaj axial si un corp cilindric, in interiorul corpului tubular, este poziționat un inel distantier fixat in canalul circular al corpului cilindric. Deasemenea, corpurileft, -2 Ο 1 6 - - 003612 t · 15- 20Η tubular sliding piston. The piston is provided at the ends with smaller diameter portions, and in the median portion with some circular channels of which the first channel can communicate with the holes corresponding to the first pair of threaded holes, the second channel can communicate with the holes corresponding to the second pair of holes. threaded holes, and the third channel with the holes corresponding to the third pair of threaded holes. When the piston slides inside the hydraulic distributor, only two of the circular channels can seal the core holes at the same time, so the sum of the passage surfaces obtained by the seal is equal to the surface of the holes with smaller diameter. The piston is also provided with circular sealing channels, and at its head the small diameter portion is inside a helical spring and slides through an axial hole at the head of the tubular body. The pneumatic hydraulic reservoir is cylindrical in shape and is composed of a metal cylinder closed at the ends with hemispheres, from these hemispheres is caught an axis on which a piston provided with two circular sealing channels slides, it is pressed on a hub, also provided with some sealing channels. The same piston separates the tank into two chambers in which oil is found, respectively pressure gas. The pneumatic cylinders are constructively similar to the tank. The hydraulic compensator is composed of an electromagnet mounted to a tubular body which has a radial threaded hole and an axial bore in which a piston slides, held by a helical spring. Both the tubular body and the piston each have a circular sealing channel, and the body is closed at the end opposite the electromagnet with a lid provided with a depressurization hole. The hydraulic accumulators are mounted in two of the threaded holes of the stator and are of cylindrical form being formed by a tubular body threaded to the outside which is closed by a tubular body threaded to the interior. Inside the outer threaded body slides a piston, whose rod penetrates through an axial hole of the inner threaded body being held by a helical spring and provided with a circular sealing channel. The external threaded body is also equipped with an external threaded stutter. The hydraulic controllers consist of a tubular body closed at the ends with two cylindrical bodies and provided inside with a piston. The piston is provided with an axial bore through which it slides along a piston with a rod, which it can actuate, held by a helical spring. The tubular body is provided with an axial hole in which the piston with the axial bore slides and with another axial hole in which the piston with the rod slides, the axial holes have different diameters and are positioned each at one end of the tubular body, the inside being delimited by - a shoulder, which does not allow the piston with the rod to enter the axial hole in which the piston with axial bore slides. The same tubular body is also provided with a longitudinal channel, which communicates at one end with the hole in which the axial bore piston slides through a continuous orifice with a circular channel which communicates with a longitudinal channel, axial bore piston channels and at the other end communicates with the hole in which the piston rod slides. through another hole. The pistons are provided with a circular sealing channel. Between the piston with axial bore and a cylindrical body, inside the tubular body, is positioned a distal ring fixed in the circular channel of the cylindrical body. Also the bodies

ί\- 2 Ο 1 6 - - 0 0 3 6 1 2 6 -05- 2016 cilindrice sunt dotate cu cate o gaura filetata si cate un canal circular de etanșare. Regulatorul hidraulic de accelerație este compus dintr-un corp tubular, prevăzut cu o gaura axiala filetata si cu un canal circular de etanșare, iar in interiorul corpului tubular culiseaza o tija presata de un arc elicoidal. La căpătui exterior al tijei este prevăzut un inel de prindere, corpul tubular fiind si el dotat cu un alt inel de prindere.ί \ - 2 Ο 1 6 - - 0 0 3 6 1 2 6 -05- 2016 cylindrical ones are equipped with a threaded hole and a circular sealing channel. The hydraulic acceleration regulator is composed of a tubular body, provided with a threaded axial hole and a circular sealing channel, and inside the tubular body slides a rod pressed by a helical spring. At the outer head of the rod is provided a clamping ring, the tubular body being also equipped with another clamping ring.

In a doua varianta de realizare, sistemul de recuperare a energiei cinetice la franare, conform invenției, se montează pe un autovehicul cu tracțiune spate, la care se dorește recuperarea energiei cinetice la franare, dar si asigurarea tracțiunii integrale este constituit din aceleași componente ca in prima varianta de realizare, hidropompele-motor se monteza pe rotile non-motoare ale autovehiculului, sistemul fiind compus si dintr-o alta hidropompa-motor similara constructiv cu hidropompele-motor de pe roti, hidropompa-motor care se montează intre flanșa cutiei si cardanul care trimite mișcarea la rotile din spate prin găurile de fixare ale rotorului care devine solidar cu cardanul si flanșa cutiei, iar statorul se poate prinde mecanic de o traversa montata intre lonjeroanele autovehiculului sau de sasiul acestuia, aceeași hidropompa-motor este conectata prin intermediul unei electrovalve cu dublu circuit si a unui racord cu rezervorul pneumohidraulic, electrovalva cu dublu circuit fiind si ea conectata printrun alt racord si cu butelia pneumohidraulica cu presiune mare. Pe hidropompa-motor se găsesc doi acumulatori hidraulici, similari constructiv cu acumulatorii hidraulici din prima varianta de realizare. In aceasta varianta de realizare pe langa componentele enumerate anterior sistemul mai este constituit si dintr-un compensator hidraulic, similar cu compensatorul hidraulic din prima varianta de realizare, conectat la hidropompa-motor printr-un racord, dintr-o supapa unisens montata pe racordul prin care electrovalva cu dublu circuit comunica cu butelia pneumohidraulica si dintr-un buton conectat la switchul electric, dar si dintr-o electrovalva montata pe racordul regulatorului de accelerație.In the second embodiment, the braking kinetic energy recovery system, according to the invention, is mounted on a rear-wheel drive vehicle, which is intended to recover the kinetic energy when braking, but also the integral traction is made up of the same components as in the first embodiment, the hydropump-motor is mounted on the non-motor wheels of the vehicle, the system being composed of another hydropump-motor similar to the hydropump-motor on the wheels, hydropump-motor which is mounted between the flange of the box and the cardan which sends the movement to the rear wheels through the fixing holes of the rotor which becomes integral with the drive shaft and the flange of the box, and the stator can be mechanically gripped by a cross member mounted between the car's struts or its chassis, the same hydropump-motor is connected by means of an electrovalve with double circuit and of a connection with the pneumatic hydraulic tank, solenoid valve with double u circuit being also connected by another connection and with the pneumatic cylinder with high pressure. On the hydraulic pump there are two hydraulic accumulators, similar constructively to the hydraulic accumulators from the first embodiment. In this embodiment, besides the components listed above, the system also consists of a hydraulic compensator, similar to the hydraulic compensator in the first embodiment, connected to the hydropump-motor through a connection, from a one-way valve mounted on the connection through which solenoid valve with double circuit communicates with the pneumatic cylinder and from a button connected to the electric switch, but also from an solenoid valve mounted on the throttle regulator connection.

In urma aplicării invenției se obțin următoarele avantaje :Following the application of the invention, the following advantages are obtained:

se elimina sistemul de franare al autovehiculelor parțial, fara a elimina ABS-ul (sistemul de anti-blocare a roților), prin montarea hidropompelor-motor in locul discurilor de frana si a etrierelor sau in interiorul tamburilor in locul sabotilor si cilindrilor de frana;the braking system of the vehicles is eliminated partially, without removing the ABS (the anti-lock system of the wheels), by installing the motor-hydropumps instead of the brake discs and the stirrups or inside the drums instead of the shoes and the brake cylinders;

se elimina costul de mentenanta sau înlocuire a discurilor de frana,a cilindrilor de frana, etrierelor, plăcutelor de frana/saboti;eliminates the cost of maintaining or replacing brake discs, brake cylinders, calipers, brake pads / shoes;

poate fi montat pe orice tip de autovehicul, fara a aduce modificări structurii acestuia, astfel aria de aplicabilitate a sistemului este foarte mare;it can be mounted on any type of vehicle, without making changes to its structure, so the area of application of the system is very large;

poate asigura tracțiune integrala daca este montat pe un autovehicul cu tracțiune spate;can provide all-wheel drive if fitted to a rear-wheel drive vehicle;

<V 2 ο 1 6 - - 0 0 3 6 1 2 Ρ 05- 2016 in cazul autovehiculelor de mare tonaj se elimina intarderul;<V 2 ο 1 6 - - 0 0 3 6 1 2 Ρ 05- 2016 in the case of high tonnage vehicles, the delay is eliminated;

se recuperează in totalitate energia cinetica la franare si se folosește la accelerarea autovehiculului, astfel consumul de carburant urban se diminuează ajungând la valoarea consumului extraurban;the kinetic energy is completely recovered when braking and is used to accelerate the vehicle, thus the urban fuel consumption diminishes reaching the value of the extra-urban consumption;

costurile de producție sunt reduse datorita construcției simple si a dimensiunilor reduse ale pieselor;production costs are reduced due to the simple construction and the small dimensions of the parts;

ca factor ecologic, prin reducerea consumului de carburant se diminuează si emisiile de noxe.as an ecological factor, reducing fuel consumption also reduces emissions of pollutants.

DESCRIEREA FIGURILOR:DESCRIPTION OF FIGURES:

Se dau in continuare, doua exemple de realizare a invenției, in legătură si cu figurile de la 1-37, care reprezintă:The following are two examples of embodiment of the invention, in connection with the figures from 1 to 37, which represent:

fig. 1 - schema electrohidraulica a sistemului de recuperare a energiei cinetice de franare, in prima varianta de realizare, conform invenției, sensul pe racoardele de admisie si evacuare a hidropompelor-motor fiind reprezentat pentru mersul înainte; fig. 2 - vedere din fata a hidropompei-motor;Fig. 1 - the electro-hydraulic diagram of the system for recovering the kinetic energy of braking, in the first embodiment, according to the invention, the meaning on the intake and discharge portions of the hydropump-motor being represented for the forward movement; Fig. 2 - front view of the hydropower-motor;

fig. 3 - secțiune l-l axiala prin hidropompa-motor reprezentata in fig. 2;Fig. 3 - axial section I through the hydraulic pump motor shown in fig. 2;

fig. 4-vedere din fata a hidropompei-motor reprezentata in fig. 2, rotita la 90 de grade fig. 5 - secțiune ll-ll axiala hidropompei-motor reprezentata in fig. 4;Fig. 4-front view of the hydropower-motor represented in fig. 2, rotated at 90 degrees fig. 5 - axial section ll-ll hydraulic pump-motor represented in fig. 4;

fig. 6 - secțiune lll-lll transversala prin hidropompa-motor reprezentata in fig. 3;Fig. 6 - cross section III-III through the hydropump-motor represented in fig. 3;

fig. 7 - vedere din fata a rotorului hidropompei-motor;Fig. 7 - front view of the hydropower-motor rotor;

fig. 8 - secțiune IV-IV axiala prin rotorul reprezentat in fig. 7;Fig. 8 - section IV-IV axial through the rotor represented in fig. 7;

fig. 9 - secțiune axiala prin statorul hidropompei-motor;Fig. 9 - axial section through the hydropower-motor stator;

fig. 10 - secțiune transversala prin statorul hidropompei motor;Fig. 10 - cross-section through the motor pump stator;

fig. 11 - vedere din fata a flansei hidrompompei motor;Fig. 11 - front view of the hydraulic pump flange;

fig. 12 - secțiune axiala V-V prin flanșa reprezentata in fig. 11;Fig. 12 - axial section V-V through the flange shown in fig. 11;

fig. 13 - vedere mărită VI a flansei din fig. 12;Fig. 13 - enlarged view VI of the flange of fig. 12;

fig. 14-vedere frontala a paletei rotorului hidropompei-motor;Fig. 14-front view of the hydropower-motor rotor blade;

fig. 15-vedere izometrica a paletei rotorului hidropompei-motor;Fig. 15-isometric view of the hydropower-motor rotor blade;

fig. 16 - vedere izometrica a paletei, pe care sunt figurate arcuri elicoidale;Fig. 16 - isometric view of the pallet, on which helical springs are shown;

fig. 17 - vedere de sus a elementului de etanșare a paletei rotorului;Fig. 17 - top view of the rotor blade sealing member;

fig. 18 - secțiune VII-VII axiala a elementului de etanșare din fig. 17;Fig. 18 - axial section VII-VII of the sealing element of fig. 17;

fig. 19-vedere laterala a rotorului hidropompei-motor;Fig. 19-side view of the hydropower-motor rotor;

ν2 ο 16 - · η Β 3 6 1 2 ϋ -05- 2015 fig. 20 - secțiune VIII-VIII transversala prin rotorul reprezentat in fig. 19, in care se gaseste montata si o paleta reprezentata in fig. 14 fixata de un element de etanșare din fig. 18;ν 2 ο 1 6 - · η Β 3 6 1 2 ϋ -05- 2015 fig. 20 - cross section VIII-VIII through the rotor shown in fig. 19, in which it is found mounted and a pallet represented in fig. 14 fixed by a sealing member of fig. 18;

fig. 21-vedere izometrica a rotorului hîdropompei-motor;Fig. 21-isometric view of the hydropower-motor rotor;

fig. 22 - secțiune axiala prin distribuitorul reprezentat in fig.l;Fig. 22 - axial section through the distributor represented in fig.

fig. 23 - secțiune axiala prin cilindrii hidraulici reprezentat! in fig. 1;Fig. 23 - axial section through hydraulic cylinders represented! in FIG. 1;

fig. 24 - secțiune axiala prin rezervorul si buteliile reprezentate in fig. 1;Fig. 24 - axial section through the tank and the cylinders shown in fig. 1;

fig. 25 - secțiune axiala prin compensatorul hidraulic reprezentat in fig. 1;Fig. 25 - axial section through the hydraulic compensator shown in fig. 1;

fig. 26-secțiune axiala prin acumulatorii hidraulici reprezentat! in fig. 1;Fig. 26-axial section through hydraulic accumulators represented! in FIG. 1;

fig. 27 - secțiune parțiala hidrompompei-motor reprezentata in fig. 5, pe care este montat acumulatorul hidraulic;Fig. 27 - partial section of the hydrofoil-motor represented in fig. 5, on which the hydraulic battery is mounted;

fig. 28 - secțiune axiala prin controllerul hidraulic reprezentat in fig. 1;Fig. 28 - axial section through the hydraulic controller shown in fig. 1;

fig. 29 - secțiune axiala prin regulatorul hidraulic de accelerație reprezentat in fig.l;Fig. 29 - axial section through the hydraulic acceleration regulator represented in fig.

fig. 30-vedere izometrica a hidropompei-motor;Fig. 30-isometric view of the hydropump-motor;

fig. 31 - vedere din fata a hidropompei-motor la care este atașata o flansa intermediara; fig. 32 - secțiune IX-IX axiala a hidropompei-motor asamblata cu flansa intermediara, din fig. 31;Fig. 31 - front view of the hydraulic pump to which an intermediate flange is attached; Fig. 32 - axial section IX-IX of the hydraulic pump-motor assembled with the intermediate flange, of fig. 31;

fig. 33 - schema de admisie-evacuare la franare, la mersul înainte, a hidropompei-motor prin intermediul electrovalvei cu dublu circuit, reprezentata in fig. 1; fig. 34 - schema de admisie-evacuare la accelerare, la mersul înainte, a hidropompeimotor prin intermediul electrovalvei cu dublu circuit;Fig. 33 - the inlet-outlet diagram for braking, on the forward movement, of the hydropump-motor by means of the double-circuit solenoid valve, represented in fig. 1; Fig. 34 - the admission-evacuation scheme for acceleration, on the forward movement, of the hydropompeimotor by means of the double circuit solenoid valve;

fig. 35 - schema de admisie-evacuare la franare, in marsarier, a hidropompei-motor prin intermediul electrovalvei cu dublu circuit;Fig. 35 - the intake / exhaust scheme for braking, in reverse, of the hydropump-motor through the double-circuit solenoid valve;

fig. 36 - schema de admisie-evacuare la accelerare, in marsarier, a hidropompei-motor prin intermediul electrovalvei cu dublu circuit;Fig. 36 - the admission-evacuation scheme for acceleration, in reverse gear, of the hydropump-motor through the double-circuit solenoid valve;

fig. 37 - schema electrohîdraulica a sistemului de recuperare a energiei cinetice de franare, in a doua varianta de realizare, conform invenției;Fig. 37 - the electro-hydraulic diagram of the kinetic energy recovery system for braking, in the second embodiment, according to the invention;

In cele ce urmeaza se prezintă descrierea detaliata a sistemului de recuperare a energiei cinetice de franare, conform invenției, in prima varianta de realizare.In the following, a detailed description of the kinetic braking energy recovery system, according to the invention, is presented in the first embodiment.

Intr-o prima varianta de realizare, montat pe un autovehicul sau vehicul tractat prevăzut cu un sistem de franare convențional, sistemul de recuperare a energiei cinetice la franare conform invenției, este compus din niște elemente de acționare reprezentate in fig. 1, după cum urmeaza: niște hidropompe-motor A, racordate la un distribuitor hidraulic B si niște cilindrii hidraulici Cl sî C2, care comunica cu un rezervor pneumohîdraulic D si niște butelii pneumohidraulice E si F, un compensator hidraulic G, niște acumulatori hidraulici H, niște controllere hidraulicei si un regulator hidraulic K,In a first embodiment, mounted on a motor vehicle or towed vehicle provided with a conventional braking system, the kinetic energy recovery system for braking according to the invention, is composed of some actuating elements represented in fig. 1, as follows: some hydraulic pumps A, connected to a hydraulic distributor B and hydraulic cylinders Cl and C2, which communicates with a pneumatic hydraulic tank D and some pneumatic hydraulic cylinders E and F, a hydraulic compensator G, some hydraulic accumulators H , some hydraulic controllers and a hydraulic regulator K,

(V 2 Ο 1 β - - 003612 Ρ -05- 2918(V 2 Ο 1 β - - 003612 Ρ -05- 2918

Deasemenea, sistemul, conform invenției, este compus si din niște elemente de comanda si control, reprezentate in fig. 1: niște electrovalve cu dublu circuit 1, o electrovalva cu circuit simplu 2, niște electrovalve proporționale 3 si 4, un contactor hidraulic 5, niște supape de presiune unisens 6, 7, 8, 9 si 10, niște presostate 11 si 12, nîste contactori cu cursa 13 si 14, un potentîometru 15 si un switch electric L.Also, the system, according to the invention, is composed of some control and control elements, represented in fig. 1: some solenoid valves with double circuit 1, a solenoid valve with single circuit 2, some proportional solenoid valves 3 and 4, a hydraulic contactor 5, some unisense pressure valves 6, 7, 8, 9 and 10, some pressure switches 11 and 12, contactors with stroke 13 and 14, a potentiometer 15 and an electric switch L.

Sistemul, conform invenției, se montează pe un autovehicul, pe care se găsesc o baterie electrica 16 de curent continuu, o pompa de frana 17, un carburator/pompa de injecție 18, niște etriere/cîlindrii de frana 19 si cunoscutele pedale de frana 20, respectiv de accelerație 21, dar si un contact de marsarier 22 (bec de marsarier).The system, according to the invention, is mounted on a motor vehicle, on which are a DC electric battery 16, a brake pump 17, a carburetor / injection pump 18, some brake calipers / cylinders 19 and the known brake pedals 20 , respectively of acceleration 21, but also a back contact 22 (back light bulb).

Daca sistemul, conform invenției, se montează pe un vehicul tractat, atunci elementele de acționare si cele de comanda si control sunt aceleași, in schimb vor comunica sau vor fi conectate la pompa de frana 17 si bateria electrica 16 a autovehiculului ce tracteaza vehiculul, si vor primi comanda de la pedala de frana 20, respectiv accelerație 21 ale autovehiculului, iar pentru marsarier, contactul de marsarier 22 (becul de marsarier) al vehiculului va fi legat tot la switchul L, astfel se pastreaza exact aceeași configurație ca in fig. 1If the system, according to the invention, is mounted on a towed vehicle, then the drive and control and control elements are the same, instead they will communicate or be connected to the brake pump 17 and the electric battery 16 of the vehicle towing the vehicle, and they will receive the command from the brake pedal 20, respectively acceleration 21 of the vehicle, and for the gearbox, the gearbox contact 22 (gearbox bulb) of the vehicle will also be connected to the switch L, thus keeping exactly the same configuration as in fig. 1

Hidropompa motor A reprezentata in fig. 2 este alcatuita dintr-un rotor 23, montat intrun stator 24, si închis de o flansa 25 si niște palete 26 ce culiseaza din rotorul 23 fixate de niște elemente de etanșare 27.The hydropower motor A shown in fig. 2 is made up of a rotor 23, mounted in a stator 24, and closed by a flange 25 and some blades 26 sliding from the rotor 23 fixed by some sealing elements 27.

Rotorul 23 este de forma cilindrica si are prevăzute găuri de fixare 28 cu șuruburi pe butucul rotii autovehiculului. Rotorul 23 este prevăzut cu o degajare circulara 29, care comunica la partea inferioara cu niște canale înclinate 30, continuate prin niște canale longitudinale 31, urmat de niște canale radiale 32, acestea fiind in legătură cu cele patru locașuri radiale 33, dispuse la 90 de grade, in care culiseaza paletele 26. In vecinătatea degajării circulare 29, se gaseste un canal circular 34, iar in partea opusa degajării circulare 29, este practicata o alta degajare circulara 35 si odata cu aceasta un canal circular 36. In vecinătatea degajării circulare 35 se gaseste inca o degajare circulara 37. Pe fiecare din cele doua fete ale rotorului 23 sunt practicate cate un canal inelar 38 si 39. Pentru centrarea hidropompei-motor A, pe butucul rotii autovehiculului, rotorul 23 este prevăzut cu o gaura de centrare 40. Cu un diametru mai mare si concentrica cu gaura de centrare 40 mai este prevăzută o degajare circulara 40a pe suprafața careia se montează saboții frânei de mana in cazul in care hidropompele-motor A se montează pe rotile din spate al autovehiculului. Degajările circulare 29 si 35, sunt delimitate spre exterior de nîste umeri 41 si respectiv 42.The rotor 23 is cylindrical in shape and has fixing holes 28 with screws on the wheel hub of the vehicle. The rotor 23 is provided with a circular clearance 29, which communicates at the bottom with inclined channels 30, continued by longitudinal channels 31, followed by some radial channels 32, these being in connection with the four radial seats 33, disposed at 90 degrees, in which the pallets slide 26. In the vicinity of the circular release 29, there is a circular channel 34, and on the opposite side of the circular release 29, another circular release 35 is practiced and at the same time a circular channel 36. In the vicinity of the circular release 35 there is still a circular clearance 37. On each of the two faces of the rotor 23, an annular groove 38 and 39 are practiced. For centering the motor-pump A, on the hub of the vehicle wheel, the rotor 23 is provided with a centering hole 40. With a larger diameter and concentric with the centering hole 40, a circular clearance 40a is provided on the surface of which the hand brake pads are mounted in in case the hydropump-motor A is mounted on the rear wheels of the vehicle. The circular openings 29 and 35, are delimited outwards by the shoulders 41 and 42 respectively.

In cele patru locașuri radiale 33, culiseaza cate o paleta 26, formata din cate doua brațe 43, dotate cu niște degajări cilindrice 44 si terminate cu cate o talpa 45. In degajările cilindrice 44 sunt așezate niște arcuri elicoidale 46, care se sprijină pe tălpile 45. Brațele 43 fac corpIn the four radial seats 33, slide one pallet 26, consisting of two arms 43, endowed with some cylindrical recesses 44 and finished with each a sole 45. In the cylindrical recesses 44 are placed helical arcs 46, which rest on the soles 45. Arms 43 make body

0-2016-- 003612 t -J5- îi® comun cu un piston cilindric 47, prevăzut cu doua canale circulare 48, destinate unor oringuri de etanșare nepozîtîonate. Brațele 43 si pistonul cilindric 47 fac corp comun si cu un piston rectangular 49, cu muchiile rotunjite, a carul forma in secțiune transversal trebuie sa permită culisarea acestuia printr-un element de etanșare 27 si anume printr-o degajare dreptunghiulara 50, corelata ca forma cu pistonul rectangular 49, si prevăzută cu un canal 51, destinat unei garnituri de etanșare, nepozitionate. Elementul de etanșare 27 este prevăzut cu niște găuri de fixare 52 si se fixeaza cu niște șuruburi nepozitionate, pe suprafața 53 a rotorului 23 descrisa de circumferința exterioara a acestuia, in niște locașuri 54 prevăzute cu niște găuri 54a corespunzătoare cu găurile 52. Suprafața exterioara 55 a elementului de etanșare 27 si suprafața 56 a pistoanelor rectangulare 49 al paletelor 26, sunt descrise de aceeași raza care descrie si suprafața 53 corespunzătoare circumferinței exterioare a rotorului 23. Suprafața 56a a unei palete 26 este suprafața de acționare.0-2016-- 003612 t -J5- i® common with a cylindrical piston 47, provided with two circular channels 48, intended for unstitched sealing rings. The arms 43 and the cylindrical piston 47 make a common body and with a rectangular piston 49, with the rounded edges, the shape of which in cross-section must allow its sliding through a sealing element 27, namely by a rectangular clearance 50, correlated with the shape with the rectangular piston 49, and provided with a channel 51, intended for a sealing gasket, not positioned. The sealing element 27 is provided with some fixing holes 52 and is fixed with some non-positioned screws, on the surface 53 of the rotor 23 described by its outer circumference, in some places 54 provided with holes 54a corresponding to the holes 52. Outer surface 55 of the sealing element 27 and the surface 56 of the rectangular pistons 49 of the blades 26, are described by the same radius which also describes the surface 53 corresponding to the outer circumference of the rotor 23. The surface 56a of a blade 26 is the actuating surface.

Statorul 24 este de forma cilindrica avand la exterior doua orificii 57 diametral opuse si doua orificii 58, tot diametral opuse, orificiile 57 si orificiile 58 fiind orificii de admisie sau evacuare, egale ca suprafața, ce comunica la interior fiecare cu cate o degajare 59. Statorul 24 este prevăzut cu mai multe degajări circulare care scad in diametru după cum urmeaza: o prima degajare filetata 60 la interior, urmata de o alta degajare circulara 61, continuata de o degajare circulara 62. Cu diametre descrescătoare mai exista si inca o degajare 63 si o alta degajare 64. Circumferința degajării 62 este impartita in patru suprafețe 65 corespunzătoare cu degajările 59, doua suprafețe 66 si doua suprafețe 67.The stator 24 is cylindrical in shape having two openings 57 diametrically opposed and two openings 58, all diametrically opposed, the openings 57 and the openings 58 being the inlet or outlet openings, equal to the surface, which communicates inside each one with a release 59. The stator 24 is provided with several circular openings that decrease in diameter as follows: a first threaded clearance 60 inside, followed by another circular clearance 61, followed by a circular clearance 62. With decreasing diameters there is still a further clearance 63 and another recess 64. The circumference of the recess 62 is divided into four surfaces 65 corresponding to the recesses 59, two surfaces 66 and two surfaces 67.

Deschiderea la centru a suprafețelor cilindrice 65 este de 40 de grade, iar deschiderea la centru a suprafețelor cilindrice 66, aflate intre doua degajări 59 vecine, este de 10 grade si deschiderea la centru a suprafețelor cilindrice 67 este de 90 grade.The opening at the center of the cylindrical surfaces 65 is 40 degrees, and the opening at the center of the cylindrical surfaces 66, between two adjacent 59 releases, is 10 degrees and the opening at the center of the cylindrical surfaces 67 is 90 degrees.

Razele la centru ce descriu suprafețele cilindrice 67 sunt egale, insa pornind de la suprafețele cilindrice 67 razele la centru care descriu suprafețele cilindrice 65 din dreptul degajărilor 59 descresc pana la suprafețele cilindrice 66, acestea avand aceeași raza cu suprafața 53 a rotorului 23, cu suprafața 55 a elementului de etanșare 27 si cu suprafața 56 a paletelor 26.The radii at the center describing the cylindrical surfaces 67 are equal, but starting from the cylindrical surfaces 67 the radii at the center describing the cylindrical surfaces 65 near the openings 59 decrease to the cylindrical surfaces 66, these having the same radius as the surface 53 of the rotor 23, with the surface 55 of the sealing element 27 and with the surface 56 of the blades 26.

Statorul 24 mai are o gaura axiala compusa din niște degajări circulare 68, 69 si 70, destinate montării rotorului 23. Totodată mai este prevăzut si cu o gaura filetata 71, realizata pe o suprafața exterioara 72, ce comunica cu degajarea 61, prin intermediul canalelor 73, 74, 75 si 76 si de asemenea comunica cu degajarea 63 prin intermediul canalelor 73, 74 si in final prin canalului circular 77. Pe aceeași suprafața 72, sunt prevăzute o gaura filetata 78, si doua găuri filetate 79, toate comunicând cu degajarea 70 prin intermediul unor canale longitudinale 80 si a unor canale radiale 81. Intre degajările 63 si 64 se gaseste un canal inelar 82. Tot pe suprafața 72, se găsesc doua găuri filetate 83 care se cuplează cu suportul etrierului sau sabotilor rotiiThe stator 24 also has an axial hole composed of circular openings 68, 69 and 70, intended for mounting the rotor 23. At the same time it is also provided with a threaded hole 71, made on an outer surface 72, which communicates with the clearance 61, through the channels 73, 74, 75 and 76 and also communicates with the release 63 through the channels 73, 74 and finally through the circular channel 77. On the same surface 72, there is provided a threaded hole 78, and two threaded holes 79, all communicating with the release 70 through longitudinal channels 80 and radial channels 81. Between the recesses 63 and 64 there is an annular channel 82. Also on the surface 72, there are two threaded holes 83 which are coupled with the support of the caliper or the shoe wheels.

enpora brand ^AGEMENTimpora brand ^ AGEMENT

^-2016-- 003612 Ρ -05- 2016 γ?^ -2016-- 003612 Ρ -05- 2016 γ?

autovehiculului, pentru autovehicule dotate cu sisteme de franare cu disc, respectiv autovehicule dotate cu sisteme de franare cu tamburi.the vehicle, for vehicles equipped with disc braking systems, respectively vehicles equipped with drum braking systems.

In flanșa 25 sunt executate o degajare circulara 84 si o degajare 85, intre acestea fiind practicat un canal inelar 86, iar in interiorul degajării 85 un canal circular 87. Canalul circular 87 comunica prin niște canale 88,89 si 90 cu alt canal circular 91 aflat pe circumferința exterioara a flansei 25. Flanșa 25 este prevăzută la exterior cu o suprafața filetata 92 ce se termina intr-o degajare circulara 93, destinata unui oring de etanșare, nepozitionat. Flanșa 25 mai este prevăzută cu o gaura axiala compusa din trei degajări 94, 95 si 96.In the flange 25 a circular clearance 84 and a clearance 85 are executed, between them being an annular channel 86, and inside the clearance 85 a circular channel 87. The circular channel 87 communicates through channels 88,89 and 90 with another circular channel 91 located on the outer circumference of the flange 25. The flange 25 is provided on the outside with a threaded surface 92 which ends in a circular clearance 93, intended for a sealing orangle, not positioned. The flange 25 is provided with an axial hole composed of three openings 94, 95 and 96.

După introducerea paletelor 26 in locașurile radiale 33 ale rotorului 23, pistoanele cilindrice 47 ale paletelor 26 pătrund in canalele radiale 32, si după fixarea elementelor de etanșare 27 in locașurile 54, se asambleaza ansamblul astfel obtinut la statorul 24. La aceasta ansamblare umărul 41 al rotorului 23 pătrunde în degajarea 64 a statorului 24.After inserting the blades 26 into the radial grooves 33 of the rotor 23, the cylindrical pistons 47 of the blades 26 penetrate into the radial grooves 32, and after fixing the sealing elements 27 in the seats 54, the assembly thus obtained at the stator 24. is assembled. the rotor 23 enters the release 64 of the stator 24.

La asamblarea rotorului 23 in statorul 24 sunt cuprinse un rulment 97, pe care se sprijină rotorul 23, asigurat de o siguranța 98 si etanșat de un simering 99 ce etanseaza canalul circular 100, format intre degajarea 70 si suprafața interioara a degajării circulare 29, care astfel face legătură intre canalele înclinate 30 si canalele radiale 81. Rulmentul 97 si siguranța 98 sunt închise spre exteriorul hîdropompei-motor  de o presetupa nepozitionata.At the assembly of the rotor 23 in the stator 24 are included a bearing 97, on which the rotor 23 rests, provided by a fuse 98 and sealed by a seal 99 which seals the circular channel 100, formed between the clearance 70 and the inner surface of the circular clearance 29, which thus it connects the inclined channels 30 and the radial channels 81. The bearing 97 and the fuse 98 are closed to the outside of the hydraulic pump  by a non-positioned gland.

In cadrul aceleiași asamblari intre umărul 41 al rotorului 23 si degajarea 64 a statorului 24, se creaza un locaș destinat unui simering 101, iar intre canalul inelar 38 al rotorului 23 si canalul inelar 82 al statorului 24 este plasat un rulment de presiune 102.Within the same assembly between the shoulder 41 of the rotor 23 and the release 64 of the stator 24, a housing for a seal 101 is created and between the annular channel 38 of the rotor 23 and the annular channel 82 of the stator 24 a pressure bearing 102 is placed.

Odata realizata aceasta asamblare intre rotorul 23 si statorul 24, flanșa 25 se îmbina cu statorul 24 prin intermediul suprafeței filetate 92 si respectiv degajării filetate 60, astfel umărul 42 al rotorului 23 pătrunde in degajarea 84 a flansei 25, astfel se creaza un locaș destinat unui simering 103. Tot în aceasta asamblare mai sunt cuprinse si un rulment 104 pe care se sprijină rotorul 23, asigurat de o siguranța 105 montate in spațiul ramas dintre degajarea 94 a flansei 25 si degajarea 35 a rotorului 23, spațiu închis de o presetupa, iar intre canalul inelar 86 al flansei 25 si canalul inelar 39 al rotorului 23 este plasat un rulment de presiune 106. Rulmenții de presiune 102 si 106 ghidează rotorul 23 in interiorul ansamblului solidar format din statorul 24 si flanșa 25.Once this assembly is made between the rotor 23 and the stator 24, the flange 25 is joined to the stator 24 by means of the threaded surface 92 and respectively the threaded release 60, so the shoulder 42 of the rotor 23 enters the clearance 84 of the flange 25, thus creating a seat for a also 103. Also included in this assembly is a bearing 104 on which the rotor 23 rests, provided by a safety 105 mounted in the space left between the clearance 94 of the flange 25 and the release 35 of the rotor 23, space closed by a cable gland, and Between the annular channel 86 of the flange 25 and the annular channel 39 of the rotor 23 is placed a pressure bearing 106. The pressure bearings 102 and 106 guide the rotor 23 inside the integral assembly formed by the stator 24 and the flange 25.

La realizarea acestei asamblari, între degajarea 62 a statorului 24, suprafața exterioara 53 a rotorului 23 si flanșa 25 se creaza doua camere de presiune 107, delimitate de rotorul 23 si suprafața 66 a statorului 24, in care pătrund in timpul funcționarii paletele 26. Paletele 26 pot culisa la cursa maxima in camerele de presiune 107 de-a lungul suprafeței 67, iar suprafața 56a, maxima, cu care actioneaza o paleta 26 este egala cu suprafața unui orificiu 57 sau unui orificiu 58.When carrying out this assembly, between the clearance 62 of the stator 24, the outer surface 53 of the rotor 23 and the flange 25, two pressure chambers 107 are created, delimited by the rotor 23 and the surface 66 of the stator 24, where the blades enter during operation. 26 may slide at the maximum stroke in the pressure chambers 107 along the surface 67, and the surface 56a, the maximum, with which a pallet 26 operates, is equal to the surface of an orifice 57 or an orifice 58.

<χ- 2 D 1 6 - - D D 3 6 1 -<χ- 2 D 1 6 - - D D 3 6 1 -

P 05- 2M6P 05-2M6

Distribuitorul hidraulic B, anterior menționat si reprezentat in fig, 22, este compus dintrun corp tubular 108, care are prevăzute niște perechi de găuri filetate 109 si 110, 111 si 112, 113 si 114 așezate diametral opus astfel incat gaura 109 sa comunice cu gaura 110 prin orificiile 115, gaura 111 sa comunice cu gaura 112 prin orificiile 116, respectiv gaura 113 sa comunice cu gaura 114 prin orificiile 117, orificii cu diametre descrescătoare si care sunt realizate Ia interiorul amintitului corp tubular 108. La căpătui dinspre electrovalva 2 corpul tubular 108 este prevăzut cu o gaura filetata axiala 118, si cu o gaura filetata radiala 119. In interiorul corpului tubular 108 culiseaza un piston 120 prevăzut la capete cu porțiuni de diametre mai mici, iar în porțiunea mediana cu niște canalele circulare 121, 122 si 123, dintre care canalul 121 poate comunica cu orificiile 115, canalul 122 poate comunica cu orificiile 116, iar canalul 123 cu orificiile 117. Când orificiile 115 sunt obturate de canalul circular 121 si orificiile 116 sunt obturate de canalul circular 122, suma suprafețelor de trecere obținute prin obturare este egala cu suprafețele orificiilor 116, iar când orificiile 116 sunt obturate de canalul circular 122 si orificiile 117 sunt obturate de canalul circular 123, suma suprafețelor de trecere obținute prin obturare este egala cu suprafețele orificiilor 117. Tot pe pistonul 120 sunt practicate niște canale circulare de etanșare 124, 125, 126, 127 si 128 destinate unor garniture de etanșare, nepozitionate. La căpătui liber al pistonului 120 porțiunea cu un diametru mic se afla in interiorul unui arc elicoidal 129, si culiseaza prin gaura 130 aflata la căpătui corpului tubular 108.The hydraulic distributor B, mentioned above and shown in FIG. 22, is composed of a tubular body 108, which has provided pairs of threaded holes 109 and 110, 111 and 112, 113 and 114 diametrically opposed so that the hole 109 communicates with the hole 110 through the holes 115, the hole 111 to communicate with the hole 112 through the holes 116, respectively the hole 113 to communicate with the hole 114 through the holes 117, the holes with decreasing diameters and which are made inside the aforementioned tubular body 108. When you get from the solenoid valve 2 the tubular body 108 is provided with an axial threaded hole 118, and with a radial threaded hole 119. Inside the tubular body 108 slides a piston 120 provided at ends with portions of smaller diameters, and in the median portion with some circular channels 121, 122 and 123 , of which the channel 121 can communicate with the holes 115, the channel 122 can communicate with the holes 116, and the channel 123 with the holes 117. When the holes e 115 are closed by the circular channel 121 and the holes 116 are closed by the circular channel 122, the sum of the passage surfaces obtained by the obturation is equal to the surfaces of the holes 116, and when the holes 116 are closed by the circular channel 122 and the holes 117 are closed by the circular channel 123, the sum of the passage surfaces obtained by the sealing is equal to the surfaces of the holes 117. Also on the piston 120 are circular sealing channels 124, 125, 126, 127 and 128 for sealing gaskets, not positioned. At the free head of the piston 120 the small diameter portion was inside a helical spring 129, and slid through the hole 130 at the head of the tubular body 108.

Cilindrul hidraulic Cl reprezentat in fig. 23 este format dintr-un corp cilindric 131 exterior, dotat cu un filet interior in care se asambleaza un corp cilindric 132, corpul 131 fiind prevăzut cu un orificiu filetat 133, iar corpul cilindric 132 fiind prevăzut cu un orificiu filetat 134, aceste orificii 133 si 134 servind la racordarea cilindrului hidraulic C in schema electrohidraulica reprezentata in fig.1, conform invenției. In interiorul corpurilor 131 si 132 culiseaza un piston 135 prevăzut cu niște canale circulare 136 si 137 destinate garniturilor de etanșare, nepozitionate.The hydraulic cylinder Cl shown in fig. 23 is formed by an outer cylindrical body 131, equipped with an internal thread in which a cylindrical body 132 is assembled, the body 131 being provided with a threaded hole 133, and the cylindrical body 132 being provided with a threaded hole 134, these holes 133 and 134 serving to connect the hydraulic cylinder C in the electro-hydraulic diagram shown in fig. 1, according to the invention. Inside the bodies 131 and 132 slides a piston 135 provided with some circular channels 136 and 137 for sealing gaskets, not positioned.

Cilindrul hidraulic C2 este identic constructiv cu cilindrul hidraulic Cl.Hydraulic cylinder C2 is identical constructively with hydraulic cylinder Cl.

Rezervorul pneumohidraulic D reprezentat in fig. 24 este de forma cilindrica si este alcătuit dintr-un cilindru metalic 138 închis la capete cu semisfere, de aceste semisfere este prins un ax 139 pe care culiseaza un piston 140 prevăzut cu doua canale circulare 141 de etanșare. Axul 139 are rolul si de a spori rezistenta rezervorului D la presiune. Pistonul 140 este presat pe un butuc 142, prevăzut si el cu niște canale 143 în care se regăsesc garnituri de etanșare, nepozitionate. Pistonul 140 separa rezervorul D in doua camere in care se gaseste ulei, respectiv gaz sub presiune. Din rezervorul D uleiul nu va fi niciodată evacuat in totalitate, ci va ramane cel puțin un volum de ulei egal cu volumul unei semisfere, datorita construcțieiThe pneumatic hydraulic tank D shown in FIG. 24 is cylindrical in shape and is composed of a metal cylinder 138 closed at the ends with hemispheres, from these hemispheres is caught an axis 139 on which slides a piston 140 provided with two circular channels 141 for sealing. The axis 139 also has the role of increasing the resistance of the tank D under pressure. The piston 140 is pressed on a hub 142, also provided with channels 143 in which there are sealing gaskets, not positioned. Piston 140 separates reservoir D into two chambers in which oil, respectively pressure gas, is found. The oil will never be completely discharged from the D tank, but at least one volume of oil equal to the volume of a hemisphere will remain, due to the construction

<V 2 Ο 1 6 - - 003612 Ρ -05- 2016<V 2 Ο 1 6 - - 003612 Ρ -05- 2016

butucului 142. Rezervorul pneumohidraulic D este sub o presiune mica si are volumul mai mare decât suma volumelor buteliilor E si F.hub 142. The pneumatic hydraulic tank D is under a small pressure and has a volume greater than the sum of the volumes of cylinders E and F.

Buteliile pneumohidraulice E si F sunt indentice din punct de vedere constructiv cu rezervorul D, mai sus explicitat. Buteliile E si F sunt butelii sub presiune înalta, butelia E avand o presiune mai mica si un volum mai mare fata de butelia F, atat butelia E cat si butelia F pot asigura franarea pana la oprire a autovehiculul de la viteza maxima pe care o poate atinge acesta, dar in spatii de franare diferite. Atat rezervorul D cat si buteliile E si F prezintă orificii pentru racordare, nepozitionate.The pneumatic cylinders E and F are constructively identical with the tank D, mentioned above. The E and F cylinders are the high pressure cylinders, the E cylinder having a lower pressure and a larger volume than the F cylinder, both the E cylinder and the F cylinder can ensure the braking of the vehicle at the maximum speed it can. touch it, but in different braking spaces. Both the tank D and the cylinders E and F have holes for connection, not positioned.

Compensatorul hidraulic G reprezentat in fig. 25 este compus dintr-un electromagnet tubular 144 montat la un corp tubular 145 cu ajutorul unor șuruburi, nepozitionate, care are prevăzute o gaura filetata radiala 146, si un alezaj axial 147 in care culiseaza un piston 148, retinut de un arc elicoidal 149. Corpul 145 cat si pistonul 148 au prevăzute cate un canal circular 150, respectiv 151, de etanșare. Corpul 145 este închis la căpătui opus electromagnetului 144 cu un capac 152 prevăzut cu un orificiu de depresurizare 153.The hydraulic compensator G shown in fig. 25 is composed of a tubular electromagnet 144 mounted to a tubular body 145 by means of screws, not positioned, which has a radial threaded hole 146, and an axial bore 147 in which it slides a piston 148, retained by a helical spring 149. The body 145 and the piston 148 each provide a circular channel 150, respectively 151, for sealing. The body 145 is closed at the end opposite the electromagnet 144 with a lid 152 provided with a depressurization hole 153.

Acumulatorii hidraulici H reprezentat! in fig. 26 sunt au forma cilindrica fiind formați dintr-un corp tubular 154 filetat la exterior care este închis de un corp tubular 155 filetat la interior, in interiorul corpului 154 culiseaza un piston 156, a cărui tija pătrunde printr-o gaura axiala 157 a corpului 155, retinut de un arc elicoidal 158 si prevăzut cu un canal circular 159 de etanșare. Corpul 154 este dotat cu un stut filetat 160 la exterior pentru montarea acestui subansamblu H in găurile filetate 79 ale statorului 24, reprezentare in fig. 27.Hydraulic accumulators H represented! in FIG. 26 are cylindrical in shape being formed of a tubular body 154 threaded to the outside which is closed by a tubular body 155 threaded to the inside, inside the body 154 slides a piston 156, the rod of which penetrates through an axial hole 157 of the body 155 , retained by a helical spring 158 and provided with a circular sealing channel 159. The body 154 is provided with a threaded rod 160 on the outside for mounting this subassembly H in the threaded holes 79 of the stator 24, shown in FIG. 27.

Controllerele hidraulice J reprezentate in fig 28 sunt formate dintr-un corp tubular 161 închis la capete cu doua corpuri cilindrice 162 si 163, si prevăzut la interior cu un piston 164, prevăzut cu un alezaj axial 165 prin care culiseaza in lungul unui piston 166, pe care il poate acționa, si retinut de un arc elicoidal 167. Corpul 161 este prevăzut cu o gaura axiala 168, in care culiseaza pistonul 164 si cu o gaura axiala 169 in care culiseaza pistonul 166, găurile 168 si 169 au diametre diferite si sunt pozitonate fiecare la cate un capat al corpului 161, la interior fiind delimitate printr-un umăr 170, ce nu permite pistonului 166 sa pătrundă in gaura axiala 168. Corpul 161 mai este prevăzut si cu un canal longitudinal 171, ce comunica la un capat cu gaura 168 printr-un orificiu 172 continuat cu un canal circular 173 ce comunica cu un canal longitudinal 174, canale 173 si 174 ale pistonului 164, atunci când pistonul 164 nu presează arcul 167, si la celalalt capat comunica cu gaura 169 printr-un orificiu 175. Pistonul 164 si 166 sunt prevăzute cu cate un canal circular 176, respectiv 177 de etanșare. Intre pistonul 164 si corpul 162 in interiorul corpului 161, este poziționat un inel distanțier 178 fixat in canalul circular 179 al corpului 162, Corpurile 162 si 163 sunt dotate cu cate o gaura filetata 180 si un canal circular 181, respectiv cu o gaura filetata 182 si un canal circular 183, canale circulare de etanșare. Controllerele hidraulice J se montează la rotile pe care nu sunt montateThe hydraulic controllers J shown in FIG. 28 are formed by a tubular body 161 closed at the ends with two cylindrical bodies 162 and 163, and provided internally with a piston 164, provided with an axial bore 165 through which it slides along a piston 166, which can act, and retained by a helical spring 167. The body 161 is provided with an axial hole 168, in which it slides the piston 164 and with an axial hole 169 in which it slides the piston 166, the holes 168 and 169 have different diameters and are each positioned at one end of the body 161, the inside being delimited by a shoulder 170, which does not allow the piston 166 to enter the axial hole 168. The body 161 is also provided with a longitudinal channel 171, which communicates at one end with hole 168 through an opening 172 continued with a circular channel 173 communicating with a longitudinal channel 174, channels 173 and 174 of the piston 164, when the piston 164 does not press the spring 167, and at the other common end as with the hole 169 through a hole 175. The piston 164 and 166 are provided with a circular channel 176, respectively 177 for sealing. Between the piston 164 and the body 162 inside the body 161, is positioned a spacer ring 178 fixed in the circular channel 179 of the body 162, the bodies 162 and 163 are equipped with a threaded hole 180 and a circular channel 181, respectively with a threaded hole 182 and a circular channel 183, circular sealing channels. Hydraulic controllers J are mounted on wheels that are not mounted

Λ- 2 Ο 1 6 - - 003612 Ρ -0S- 20« hidrompompele motor A, între circuitele pompei de frana 17 si etrierele/cilindrii de frana 19 ale roților si au rolul de a regla presiune in etrierele/cilindrii de frana 19.2- 2 Ο 1 6 - - 003612 Ρ -0S- 20 «motor pumps A, between the brake pump circuits 17 and the brake calipers / cylinders 19 and have the role of regulating pressure in the brake calipers / cylinders 19.

Regulatorul hidraulic K de accelerație reprezentat in fig. 29 este compus dintr-un corp tubular 184, prevăzut cu o gaura axiala filetata 185 si cu un canal circular 186 de etanșare. In interiorul corpului tubular 184 culiseaza o tija 187 presata de un arc elicoidal 188. La căpătui exterior al tijei 187 este prevăzut un inel de prindere 189, iar corpul tubular 184 este prevăzut cu un alt inel de prindere 190. Regulatorul K se intercalează pe cablul de accelerație prin intermediul inelelor de prindere 189 si 190, împărțind cablul de accelerație in doua parti, una intre inelul 189 si carburatorul/pompa de injecție 18 si alta intre inelul 190 si pedala de accelerație 21.The hydraulic accelerator regulator K shown in fig. 29 is composed of a tubular body 184, provided with a threaded axial hole 185 and a circular channel 186 for sealing. Inside the tubular body 184 slides a rod 187 pressed by a helical spring 188. At the outer head of the rod 187 there is provided a clamping ring 189, and the tubular body 184 is provided with another clamping ring 190. The regulator K is interleaved on the cable acceleration via the clamping rings 189 and 190, dividing the acceleration cable into two parts, one between the ring 189 and the carburetor / injection pump 18 and another between the ring 190 and the accelerator pedal 21.

Hidropompele-motor A se pot monta pe doua dintre rotile autovehicul in locul discurilor de franare pentru autovehiculele dotate cu sisteme de franare cu disc, prinderea realizandu-se prin intermediul unor găuri filetate 83 ale statorului 24 de suportul etrierilor rotii autovehiculului. Prin găurile de fixare 28 rotorul 23 se prinde cu prezoane de butucul rotii devenind solidar cu acesta.Hydraulic pumps A can be mounted on two of the wheels of the vehicle instead of the braking discs for vehicles equipped with disc braking systems, the clamping being realized by means of threaded holes 83 of the stator 24 of the support of the vehicle's brake calipers. By means of the fixing holes 28 the rotor 23 is fastened with the studs of the wheel hub becoming integral with it.

De asemenea, aceste hidropompe-motor A se pot monta in locul sabotilor de franare pe suportul acestora, pentru autovehiculele dotate cu sisteme de franare cu tamburi, prin găurile filetate 83 ale statorului 24, iar prin intermediul unei flanșe intermediare 191 se fixeaza pe tambur prin găurile 192.Flanșa intermediara 191 reprezentata in fig. 32 mai prezintă niște găuri 193 care corespund cu găurile de fixare 28 ale rotorului 23, flanșa intermediara 191 devine astfel solidara cu rotorul 23 si se centrează pe butuc prin gaura axiala 193a corespunzătoare cu gaura de centrare 40 a rotorului 23.Also, these hydraulic pumps A can be mounted in place of the brake shoes on their support, for vehicles equipped with drum braking systems, through the threaded holes 83 of the stator 24, and through an intermediate flange 191 is fixed to the drum by holes 192. The intermediate sheet 191 shown in fig. 32 also has holes 193 which correspond to the fixing holes 28 of the rotor 23, the intermediate flange 191 thus becomes integral with the rotor 23 and is centered on the hub through the axial hole 193a corresponding to the centering hole 40 of the rotor 23.

In cazul in care se considera, un autovehicul cu patru roti, este optim ca hidropompelemotor A sa se monteze pe doua dintre rotile acestuia, astfel energia cinetica va putea fi recuperata in totalitate, fara vreo modificare adusa autovehiculului sau dimensiunilor roților acestuia. Deasemenea, hidropompele-motor A se pot monta pe una sau pe toate rotile unui autovehicul. Daca se montează pe doua roti ale unui autovehicul la aplicarea sistemului raman pe autovehicul si etrierele/cilindrii de frana 19, care datorita controllerelor hidraulice J, vor lucra doar in caz de frana de urgenta, sporind astfel siguranța sistemului de recuperare a energiei cinetice la franare aplicat pe mașina chiar si in cazul in care apare vreo defecțiune.If considered, a four-wheel motor vehicle, it is optimal for the hydropompelemotor A to be mounted on two of its wheels, so the kinetic energy will be able to be fully recovered, without any modification to the vehicle or its wheel dimensions. Also, the hydropump-motor A can be mounted on one or all of the wheels of a motor vehicle. If it is mounted on two wheels of a vehicle when applying the system, it remains on the vehicle and the brake calipers / cylinders 19, which due to the hydraulic controllers J, will work only in case of emergency braking, thus increasing the safety of the kinetic energy recovery system on braking. applied to the machine even in the event of a malfunction.

Hidropompele-motor A sunt racordate hidraulic prin niște racoarde 194 racordate la orificiile 57 si prin niște racoarde 195 racordate la orificiile 58, la cate o electrovalva cu dublu circuit 1, alcatuita din doua valve cu dublu circuit 196 si 197 care sunt acționate electric, ele comutând alternativ circuitele hidraulice 198 si 199 respectiv circuitele 200, 201, reprezentate in fig. 33, Valva 196 comunica cu rezervorul pneumohidraulic D prin racordul 202, iar valva 197Hydro-pumps A are hydraulically connected by means of fittings 194 connected to holes 57 and through fittings 195 connected to holes 58, each one solenoid valve with double circuit 1, made up of two valves with double circuit 196 and 197 which are electrically actuated, they alternatively switching the hydraulic circuits 198 and 199 respectively the circuits 200, 201, represented in fig. 33, Valve 196 communicates with the pneumatic hydraulic reservoir D through the connection 202, and valve 197

^-2016-- 003612 C -05-2118 comunica cu buteliile pneumohidraulice E si F prin racordul 203. La găurile filetate 78, ale hidropompelor-motor A sunt legate hidraulic cu cilindrul hidraulic C2 si compensatorul hidraulic G prin niște racoarde 204 conectate cu un racord 205, iar la găurile 71 sunt conectate niște racoarde 206 care comunica cu racordul 202. Circuitele hidraulice/pneumatice 207 si 208 ale pompei de frana 17, corespunzătoare roților pe care sunt montate hidropompele-motor A, sunt legate la orificiile filetate 134 ale cilindrilor hidraulici CI, respectiv C2. La orificiul 133 al cilindrului CI este racordata printr-un racord 209 cu electrovalva 2 aflata in legătură cu distribuitorul B.^ -2016-- 003612 C -05-2118 communicates with the pneumatic cylinders E and F through the connection 203. At the threaded holes 78, of the hydropumps-motor A are hydraulically connected to the hydraulic cylinder C2 and the hydraulic compensator G through some connections 204 connected with a connection 205, and at the holes 71 are connected fittings 206 which communicates with the connection 202. The hydraulic / pneumatic circuits 207 and 208 of the brake pump 17, corresponding to the wheels on which the hydropower-motor A are mounted, are connected to the threaded holes 134 of the cylinders. hydraulics CI, respectively C2. At the hole 133 of the cylinder CI is connected by a connection 209 with solenoid valve 2 connected to the distributor B.

Electrovalvele cu dublu circuit 1 comunica cu distribuitorul B printr-un racord 210 si cu regulatorul K printr-un alt racord 211. La gaura filetata 110 a distribuitorului B este conectat un racord 212 si supapa 6, acesta comunicând cu un racord 213 prin care distribuitorul B comunica cu butelia E. La gaura filetata 112 a distribuitorului B este conectat un racord 215, ce comunica cu supapa 7 care este conectata cu un alt racord 216 si comunica direct cu butelia F, iar la gaura filetata 114 a distribuitorului B este conectat un racord 217 si supapa 8 ce comunica direct cu rezervorul D. La rezervorul D mai este legata si butelia F printr-un racord 218 pe care se gaseste o supapa 10, dar si butelia E printr-un racord 214 cu o supapa 9. Butelia E comunica cu electrovalva proporționala 4 prin racordul 213 conectat la un racord 219 al electrovalvei proporționale 4. Butelia F comunica cu electrovalva proporționala 3 prin racordul 216 conectat cu un racord 220. Electrovalvele 3 si 4 comunica cu electrovalvele 1 printr-un racord 221 conectat cu racordul 203. La celelalte doua circuite hidraulice/pneumatice 222 ale pompei de frana 17 sunt legate controllerele hidraulice J ce se interpun intre pompa de frana 17 si etrierele/cilindrii de frana 19. La pedala de frana 20 este legat mecanic un contactor de cursa 13, iar la pedala de accelerație 21 este legat mecanic un contactor de cursa 14, dar si un potentiometru 15. Pe cablul dintre pedala de accelerație 21 si carburatorul/pompa de injecție 18 se interpune regulatorul hidraulic K. Switch-ul electric L este legat electric la o baterie 16 ce se gaseste pe autovehicul. La switch-ul L sunt legate electric elementele sistemului prin circuite electrice după cum urmeaza: contactorul 13 prin circuitul 223, contactorul 14 prin circuitul 224, potentiometrul 15 prin circuitul 225, electromagnetul 144 al compensatorului hidraulic G prin circuitul 226, electrovalvele 1 prin circuitele 227, electrovalva 2 prin circuitul 228, contactorul hidraulic 5 prin circuitul 229, electrovalvele proporționale 3 si 4 prin circuitele 230, respectiv 231, presostatele 11 si 12 prin circuitele 232 si 233 si contactul de marsarier 22 prin circuitul 234.Double-circuit solenoid valves 1 communicate with distributor B through a connection 210 and with regulator K through another connection 211. At the threaded hole 110 of distributor B is connected a connection 212 and valve 6, this communicating with a connection 213 through which the distributor B communicates with cylinder E. At thread 112 of distributor B a connection 215 is connected, which communicates with valve 7 which is connected with another connection 216 and communicates directly with cylinder F, and at threaded hole 114 of distributor B is connected a connection 217 and valve 8 which communicates directly with the tank D. In the tank D there is also connected the cylinder F through a connection 218 on which there is a valve 10, but also the cylinder E through a connection 214 with a valve 9. The cylinder E communicates with the proportional solenoid valve 4 through the connection 213 connected to a connection 219 of the proportional solenoid valve 4. The F cylinder communicates with the proportional solenoid valve 3 through the connection 216 connected with a connection 220. Solenoid valves 3 and 4 as with solenoid valves 1 through a connection 221 connected to the connection 203. At the other two hydraulic / pneumatic circuits 222 of the brake pump 17 are connected the hydraulic controllers J which are interposed between the brake pump 17 and the brake calipers / cylinders 19. On the pedal. The brake contactor 20 is mechanically connected to a travel contactor 13, and to the accelerator pedal 21 a mechanical contactor of the race 14 is connected mechanically, as well as a potentiometer 15. On the cable between the accelerator pedal 21 and the carburetor / injection pump 18 the regulator is interposed. hydraulic K. The electric switch L is electrically connected to a battery 16 found on the vehicle. The elements of the system through electrical circuits are connected to switch L as follows: contactor 13 through circuit 223, contactor 14 through circuit 224, potentiometer 15 through circuit 225, electromagnet 144 of hydraulic compensator G through circuit 226, electrovalves 1 through circuits 227 , solenoid valve 2 through circuit 228, hydraulic contactor 5 through circuit 229, proportional solenoid valves 3 and 4 through circuits 230, respectively 231, pressure switches 11 and 12 through circuits 232 and 233 and reverse contact 22 through circuit 234.

In cele ce urmeaza se prezintă modul de funcționare, in prima varianta de realizare, al sistemului de recuperare a energiei cinetice la franare, conform invenției, luând ca exemplu un oarecare autovehicul cu patru roti.In the following, we present the mode of operation, in the first embodiment, of the kinetic energy recovery system when braking, according to the invention, taking as an example a four-wheel motor vehicle.

O 1 5 - - 0 O 3 6 1 2 (' -05- 20«O 1 5 - - 0 O 3 6 1 2 ('-05- 20 «

In cazul in care autovehiculul este dotat cu sistemul de recuperare a energiei cinetice la franare, conform invenției, si se deplasează, rotoarele 23 ale hîdropompelor motor A descriu o mișcare de rotatie fiind solidare cu butucul roților pe care sunt montate, deoarece paletele 26 nu sunt activate, acestea fiind retrase in locașurile radiale 33 ale rotoarelor 23. Atunci când conducătorul auto actioneaza pedala de frana 20, contactorul de cursa 13 trimite curent prin switchul L la electrovalva 2, care deschide circuitul către distribuitorul B. In același timp la apasarea pedalei de frana 20 lichidul de frana sau aerul sub presiune de la pompa de frana 17 actioneaza prin circuitele hidraulice/pneumatice 222 corespunzătoare fiecărei roti pe care nu sunt montate hidropompele-motor A, asupra controllerelor hidraulice J care întârzie acționarea etrierelor/cilindrilor de frana 19 si prin circuitele hidraulice/pneumatice 207 si 208 corespunzătoare roților pe care sunt montate hidropompele-motor A către cilindrii hidraulici Cl si C2. Lichidul de frana/aerul sub presiune pătrunde in cilindrul hidraulic Cl prin orificiul filetat 133 si actioneaza asupra pistonului 134 care împinge uleiul prin orificiul filetat 132, prin racordul 209 si electrovalva 2 către distribuitorul B. Lichidul de frana/aerul sub presiune pătrunde si in cilindrul hidraulic C2 care acționat împinge uleiul către găurile filetate 78 ale hidropompelor-motor A, dar sî către compensatorul hidraulic G, in care nu se actioneaza nimic in acest sens, deoarece pistonul 148 nu poate fi acționat de ulei, ci doar de electromagnetul 144, In momentul in care uleiul pătrunde prin gaura axiala 118 în distribuitorul B actioneaza asupra pistonului 120, care se deplasează axial prin corpul tubular 108 si prin gaura radiala 119 asupra contactorului hidraulic 5, acesta odata acționat trimite curentul către switchul Lsi de aici către electrovalvele cu dublu circuit 1, deschizând astfel, circuitul 198 al valvei 196 si circuitul 201 al valvei 197. In același timp uleiul împins din cilindrul hidraulic C2 prin racoardele 204 pătrunde in fiecare hidropompa-motor A prin găurile filetate 78 si ajunge in canalele circulare 100 si de aici prin canalele radiale 32 sub paletele 26 ale hidropompelor-motor A, actionandu-le spre exterior in camera de presiune 107, preluând uleiul ajuns aici din rezervorul D prin orificiile 57 de admisie.If the vehicle is equipped with the kinetic energy recovery system when braking, according to the invention, and is moving, the rotors 23 of the hydropower motors A describe a rotational movement being integral with the hub of the wheels on which they are mounted, because the blades 26 are not activated, these being withdrawn in the radial seats 33 of the rotors 23. When the driver activates the brake pedal 20, the race contactor 13 sends current through the switch L to the solenoid valve 2, which opens the circuit to the distributor B. At the same time when the pedal is depressed. Brake 20 The brake fluid or the pressure air from the brake pump 17 acts through the hydraulic / pneumatic circuits 222 corresponding to each wheel on which the hydropump-motor A is not mounted, on the hydraulic controllers J which delay the actuation of the brake calipers / cylinders 19 and through the hydraulic / pneumatic circuits 207 and 208 corresponding to the wheels on which they are mounted hydraulic pumps A to hydraulic cylinders Cl and C2. The brake fluid / pressure air enters the hydraulic cylinder Cl through the threaded hole 133 and acts on the piston 134 which pushes the oil through the threaded hole 132, through the connection 209 and solenoid valve 2 to the distributor B. The brake fluid / pressure air enters the cylinder as well. hydraulic C2 which actuated pushes the oil to the threaded holes 78 of the hydropower-motor A, but also to the hydraulic compensator G, in which nothing is actuated in this sense, because the piston 148 cannot be driven by the oil, but only by the electromagnet 144, In the moment the oil enters through the axial hole 118 in the distributor B it acts on the piston 120, which moves axially through the tubular body 108 and through the radial hole 119 on the hydraulic contactor 5, this once actuated sends the current to the switch Lsi from here to the double circuit solenoid valves. 1, thus opening circuit 198 of valve 196 and circuit 201 of valve 197. In ac time elapses the oil pushed from the hydraulic cylinder C2 through the slots 204 penetrates into each hydropump-motor A through the threaded holes 78 and reaches the circular channels 100 and thence through the radial channels 32 under the blades 26 of the hydropump-motor A, acting outwards in pressure chamber 107, taking the oil reached here from tank D through the inlet ports 57.

La acționarea pedalei de frana 20 pentru a reduce viteza, uleiul din distribuitorul B actioneaza asupra pistonului 120, astfel se formează un prim circuit prin distribuitorul B, prin canalul circular 121 care comunica cu orificiile 115, ce face legătură intre găurile filetate 109 siWhen the brake pedal 20 is actuated to reduce speed, the oil in the distributor B acts on the piston 120, thus forming a first circuit through the distributor B, through the circular channel 121 which communicates with the holes 115, which connects the threaded holes 109 and

110. In același timp uleiul preluat de către paletele 26 este evacuat prin orificiile 58 ale hidropompelor-motor A si trece prin circuitele 201 ale valvelor 197 ale electrovalvelor 1 si prin racordele 203 si 210 ajunge la distribuitorul B trecând prin găurile 109 si 110, prin supapa 6, racoardele 212 si 213 sî ajunge in rezervorul E, in care se afla gaz sub presiune. Presiunea existenta in rezervorul E, datorita pernei de gaz, opune rezistenta la înaintare uleiului si implicit asupra paletelor 26 si rotoarelor 23 ce sunt solidare cu butucii roților, fapt ce duce la franarea autovehiculului. Presiunea gazului din butelia E poate frana autovehiculul de la viteza maxima pe care acesta o poate atinge. Daca in butelia E se depășește presiunea maxima admisa (doar daca se coboara o panta si prin franare se valorifica energie potențiala) atunci supapa de110. At the same time, the oil taken up by the blades 26 is evacuated through the holes 58 of the motor-hydropumps A and passes through the circuits 201 of the valves 197 of the solenoid valves 1 and through the connections 203 and 210 it reaches the distributor B passing through the holes 109 and 110, through valve 6, the slots 212 and 213 reach the reservoir E, where there is gas under pressure. The pressure in the reservoir E, due to the gas cushion, opposes the resistance to the advancement of the oil and implicitly on the blades 26 and the rotors 23 which are integral with the wheel hubs, which leads to the braking of the vehicle. The gas pressure in the E cylinder can brake the vehicle at the maximum speed it can reach. If in the cylinder E the maximum permissible pressure is exceeded (only if a slope is lowered and by braking potential energy is used) then the

Ql-2 Ο 1 6 - - 0 0 3 6 1 2 0 -05- 2016Ql-2 Ο 1 6 - - 0 0 3 6 1 2 0 -05- 2016

presiune unisens 9 se deschide si trimite surplusul de ulei înapoi in rezervorul D prin racordul 214. In acest prim circuit de franare pentru reducerea vitezei, paletele 26 culiseaza la cursa maxima din rotoarele 23 doar atunci când canalul circular 121, al pistonului 120, deschide complet trecerea uleiului prin orificiile 115 ale distribuitorului B, lucru realizat prin intermediul arcurilor elicoidale 46 ale paletelor 26 si arcului elicoidal 129 al distribuitorului B, ce se comprima diferit la aceeași presiune furnizata prin cilindrii hidraulici Cl si C2.unisense pressure 9 opens and sends the oil surplus back to reservoir D via connection 214. In this first braking circuit for speed reduction, the blades 26 slide at the maximum stroke of the rotors 23 only when the circular channel 121, of the piston 120, fully opens. the passage of the oil through the holes 115 of the distributor B, made by means of the helical springs 46 of the blades 26 and the helical spring 129 of the distributor B, which compresses differently at the same pressure provided by the hydraulic cylinders Cl and C2.

La acționarea pedalei de frana 20 pentru a opri autovehiculul, se deschide un al doilea circuit prin distribuitorul B, prin culisarea pistonului 120, astfel incat canalul circular 122 sa comunice cu orificiile 116. Prin ai doilea circuit trece uleiul din racordul 210 către supapa 7 si prin racoardele 215 si 216 ajunge in butelia F, butelie cu o presiune mai mare decât butelia E, ce opune prin perna de gaz o rezistenta la înaintare mai mare pentru a reduce spațiul de franare, astfel vehicul este oprit in condiții de siguranța. Butelia F poate frana autovehiculul de la viteza maxima pe care acesta o poate atinge, dar intr-un spațiu de franare mai redus fata de butelia E, insa in cazul in care in butelia F creste presiunea peste valoarea maxima stabilita( doar daca se coboara o panta si se valorifica energie potențial), se deschide supapa unisens 10 si trimite uleiul prin racordul 218 in rezervorul D.When the brake pedal 20 is actuated to stop the vehicle, a second circuit opens through the distributor B, by sliding the piston 120, so that the circular channel 122 communicates with the openings 116. The second circuit passes the oil from the connection 210 to the valve 7 and through the slots 215 and 216 it reaches the cylinder F, a cylinder with a higher pressure than the cylinder E, which opposes through the gas cushion a higher resistance to reduce the braking space, so the vehicle is stopped safely. The F-cylinder can brake the vehicle at the maximum speed it can reach, but in a braking space lower than the E-cylinder, but if the F-cylinder increases the pressure above the set maximum value (only if a lower is lowered) the slope and the potential energy is harnessed), open the unisense valve 10 and send the oil through the connection 218 in the tank D.

Buteliile E si F sunt prevăzute cu cate un presostat 11, respectiv 12, care se activeaza la cea mai mica creștere de presiune trimițând curent in switchul L.The cylinders E and F are provided with a pressure switch 11, respectively 12, which is activated at the smallest pressure increase by sending current in the switch L.

Tranziția intre primul circuit si al doilea circuit al distribuitorului B, adica intre o frana de încetinire si una de oprire, se realizează uniform, fara fluctuații de presiune, astfel rezistenta la înaintare creste constant cu cat pistonul 120 culiseaza mai mult prin corpul tubular 108, fapt direct proporțional cu acționarea pedalei de frana 20. Acest lucru este posibil datorita construcției distribuitorului B, deoarece când orificiile 115 sunt obturate de canalul circular 121 si orificiile 116 sunt obturate de canalul circular 122, suma suprafețelor de trecere obținute prin obturare este egala cu suprafețele orificiilor 116.The transition between the first circuit and the second circuit of the distributor B, ie between a deceleration brake and a stop brake, is uniformly performed, without pressure fluctuations, so the resistance to advancement increases steadily as the piston 120 slides further through the tubular body 108, fact directly proportional to the actuation of the brake pedal 20. This is possible due to the construction of the distributor B, because when the openings 115 are closed by the circular channel 121 and the openings 116 are closed by the circular channel 122, the sum of the passage surfaces obtained by the shutter is equal to the surfaces holes 116.

La acționarea pedalei de frana 20 la maxim, in caz de urgenta, pistonul 120 culiseaza spre căpătui distribuitorului B si face legătură in orificiile 117 si canalul circular 123 formând al treilea circuit prin care uleiul trece prin supapa 8 si racordul 217 direct in rezervorul D. Diametrul orificiilor 117 este mai mic decât a celorlalte orificii 115 si 116, astfel obturează trecerea uleiului si opune o rezistenta mai mare paletelor 26 fapt ce micșorează spațiul si timpul de franare.When actuating the brake pedal 20 to the maximum, in case of emergency, the piston 120 slides towards the distributor B and connects in the holes 117 and the circular channel 123 forming the third circuit through which the oil passes through the valve 8 and the connection 217 directly into the tank D. The diameter of the holes 117 is smaller than of the other holes 115 and 116, thus obstructing the passage of the oil and opposing a greater resistance to the blades 26, which reduces the space and the braking time.

Controllerele hidraulice J încep sa exercite presiune asupra etrierelor/cilindrilor de frana 19 de la tranziția intre al doilea circuit si al treilea circuit al distribuitorului B, astfel franarea de urgenta este insotita si de acțiunea acestora, sporind eficienta. Controllerele hidraulice J sunt montate intre etrierele/cilindrii de frana 19 si pompa de frana 17, avand rolulThe hydraulic controllers J begin to exert pressure on the brake calipers / cylinders 19 from the transition between the second circuit and the third circuit of the distributor B, thus the emergency braking is accompanied by their action, increasing the efficiency. The hydraulic controllers J are mounted between the brake calipers / cylinders 19 and the brake pump 17, having the role

<\3 1 0 1 6 - - 0 0 3 6 1 2 ί· -05- 2018 de a întârzia intervenția sistemului de franare convențional ramas parțial pe rotile autovehiculului pe care nu se găsesc hidropompele-motor A. Controllerele hidraulice J primesc prin circuitele hidraulice/pneumatice 222 lichid de frana/aer sub presiune, pe tot parcursul fenomenului de franare. Lichidul de frana/aerul sub presiune pătrunde intr-un controller hidraulic J prin gaura filetata 180 si actioneaza asupra pistonului 164 piston retinut de arcul elicoidal 167. Când presiunea învinge rezistenta arcului elicoidal 167 si permite pistonului 164 sa împingă pistonul 166 atunci lichidul de frana sau aerul sub presiune este împins prin gaura filetata 182 către etrierul/cilindrul de frana 19 care vor frana rotile. Pistoanele 166 vor acționa asupra etrierelor/cilindrilor de frana 19 doar atunci când al doilea circuit al distribuitorului va începe sa se închidă, prin culisarea pistonului 120 prin distribuitorul B, iar al treilea circuit va începe sa se deschidă, circuite formate intre orificiile 116 si canalul circular 122, respectiv orificiile 117 si canalul circular 123.<\ 3 1 0 1 6 - - 0 0 3 6 1 2 ί · -05- 2018 to delay the intervention of the conventional braking system that remains partially on the wheels of the vehicle that are not found hydropump-motor A. The hydraulic controllers J receive through the circuits hydraulic / pneumatic 222 brake fluid / air under pressure, throughout the braking phenomenon. The brake fluid / pressurized air enters a hydraulic controller J through the threaded hole 180 and acts on the piston 164 piston retained by the coil spring 167. When the pressure overcomes the resistance of the coil spring 167 and allows the piston 164 to push the piston 166 then the brake fluid or the pressurized air is pushed through the threaded hole 182 to the brake caliper / cylinder 19 which will brake the wheels. The pistons 166 will act on the brake calipers / cylinders 19 only when the second circuit of the distributor will start to close, by sliding the piston 120 through the distributor B, and the third circuit will start to open, circuits formed between the holes 116 and the channel. circular 122, respectively the holes 117 and the circular channel 123.

Când autovehiculul este franat, deci paletele 26 ale hidropompelor-motor A actioneaza in camera 107, franarea se realizează uniform fara șocuri, datorita acumulatorilor hidraulici H care preiau surplusul de ulei de sub paletele 26. Volumul minim de ulei sub paletele 26 este atunci când doar doua dintre paletele 26 ale unei hidropompe-motor A sunt culisate la cursa maxima, atunci când acestea actioneaza in dreptul suprafețelor 67 ale camerei de presiune 107, iar celelalte doua fiind retractate in interiorul rotoarelor 23, in dreptul suprafețelor 66. Volumul maxim de ulei este doar in momentul în care toate cele patru palete 26 ale unei hidropompemotor A se afla intre suprafețele 65 si 67. Diferența dintre volumul maxim si volumul minim de ulei aflat sub paletele 26 este preluata de acumulatorii hidraulici H astfel uleiul nu este trimis Înapoi in cilindrul hidraulic C2 si ulterior presiunea in pedala de frana 20.When the vehicle is braked, so the blades 26 of the hydropower-motor A operate in room 107, the braking is evenly done without shocks, due to the hydraulic accumulators H that take over the oil surplus under the blades 26. The minimum volume of oil under the blades 26 is when only two of the blades 26 of a hydropower-motor A are slipped at the maximum stroke, when they act against the surfaces 67 of the pressure chamber 107, and the other two being retracted inside the rotors 23, against the surfaces 66. The maximum oil volume is only when all four blades 26 of a hydropumpper A are between surfaces 65 and 67. The difference between the maximum volume and the minimum volume of oil below the blades 26 is taken over by the hydraulic accumulators H so the oil is not sent back to the hydraulic cylinder. C2 and then the brake pedal pressure 20.

In momentul în care pedala de frana 20 nu mai este actionata, contactorul 13 nu mai trimite curent in switch-ul L astfel se închide electrovalva 2, contactorul hidraulic 5 nemaifiind presat de ulei închide circuitul 198 al valvei 196 si circuitul 201 al valvei 197 din electrovalvele cu dublu circuit 1 prin switch-ul L. Totodată daca pedala de frana 20 nu mai este actionata se retrag si paletele 26 in rotoarele 23, deoarece nu mai sunt acționați de către presiunea exercitata in cilindrul hidraulic C2 de către pompa de frana 17. Pompa de frana 17 nu va mai acționa nici asupra controllerelor hidraulice J, astfel pistoanele 164 si 166 revin in poziția intitiala, iar canalul circular 173 va putea comunica cu orificiul 172 astfel presiunea la etrierele/cilindrii de frana 19 se va normaliza la fel ca in racoardele 222.When the brake pedal 20 is no longer actuated, the contactor 13 no longer sends current to switch L thus closing the solenoid valve 2, the hydraulic contactor 5 not being pressed by the oil closes circuit 198 of valve 196 and circuit 201 of valve 197 of double circuit solenoid valves 1 through switch L. At the same time if the brake pedal 20 is no longer actuated, the blades 26 in the rotors 23 are also withdrawn, because they are no longer actuated by the pressure exerted in the hydraulic cylinder C2 by the brake pump 17. The brake pump 17 will no longer act on the hydraulic controllers J, so the pistons 164 and 166 return to their original position, and the circular channel 173 will be able to communicate with the hole 172 so the pressure on the brake calipers / cylinders 19 will normalize as in the fences 222.

Daca in momentul franarii rotile autovehiculului se blochează, ABS-ul intervine. Sistemul de recuperare a energiei cinetice la franare, conform invenției, este conceput astfel incat sa lucreze împreuna cu ABS-ul, iar în cazul în care ABS-ul intervine si întrerupe presiunea furnizata de pompa de frana 17, cilindrul hidraulic C2 nu mai actioneaza asupra paletelor 26, iar acestea se retrag, totodată cilindrul hidraulic CI nu mai actioneaza asupra distribuitorului B, astfel uleiulIf at the moment of braking the wheels of the vehicle are locked, the ABS intervenes. The braking kinetic energy recovery system, according to the invention, is designed to work together with the ABS, and if the ABS intervenes and breaks the pressure provided by the brake pump 17, the C2 hydraulic cylinder no longer acts on it. blades 26, and they retract, at the same time the hydraulic cylinder CI no longer acts on the distributor B, thus the oil

(^- 2 0 1 6 -- 003812 f -ΙΒ- 2015 nu mai este pompat de paletele 26, iar circuitele prin distribuitorul B sunt închise, nu se va mai opune rezistenta la înaintare si in acest caz franarea va fi întrerupta.(^ - 2 0 1 6 - 003812 f -ΙΒ- 2015 is no longer pumped by the pallets 26, and the circuits through the distributor B are closed, the resistance to advancement will not be stopped and in this case the braking will be interrupted.

La acționarea pedalei de accelerație 21 contactorul 14 se activeaza si trimite curent in switch-ul L care comanda atat electrovalvele 1 sa deschidă circuitul 199 al valvei 196 si circuitul 200 al valvei 197, cat si electromagnetul 144 al compensatorului hidraulic G, care odata activat actioneaza asupra pistonului 148 care culisand scoate uleiul din interiorul compensatorului G prin racordul 205 si racordul 204 ajunge la găurile filetate 78 ale hidropompelor-motor A si de aici sub paletele 26, pe care le actioneaza spre exteriorul rotorului 23 în camera de presiune 107. Volumul de ulei din interiorul compensatorului hidraulic G, este egal cu volumul maxim de ulei de sub paletele 26, atunci când toate cele opt palete 26 ale celor doua hidropompe-motor A se afla intre suprafețele 65 si 67.When actuating the accelerator pedal 21 the contactor 14 is activated and sends current to the switch L which controls both solenoid valves 1 to open circuit 199 of valve 196 and circuit 200 of valve 197, as well as electromagnet 144 of the hydraulic compensator G, which once activated. on the piston 148 which sliding the oil out of the compensator G through the connection 205 and the connection 204 reaches the threaded holes 78 of the hydropower-motor A and thence under the blades 26, which they actuate outwards of the rotor 23 in the pressure chamber 107. The volume of the oil inside the hydraulic compensator G is equal to the maximum oil volume under the blades 26, when all eight blades 26 of the two hydropower pumps A are between surfaces 65 and 67.

Butelia F se descarcă prima pentru a asigura un plus de putere datorita presiunii acumulate mai mari fata de butelia E. Astfel când pedala de accelerație 21 este actionata si contactorul 14 se activeaza, acesta Împreuna cu presostatul 12 care anunța faptul ca in butelia F exista presiune acumulata, deschid prin switch-ul L electrovalva proporționala 3, care permite uleiului venit de la butelia F prin racordul 216 sa treaca spre electrovalvele cu dublu circuit 1 prin racordul 221 si racordul 203, ajungând de aici prin circuitul 200 al valvei 197 a electrovalvei 1 si prin aceleași orificii de admisie 57 in interiorul camerelor de presiune 107 acționând asupra paletelor 26, care vor propulsa autovehiculul, prin rotirea rotoarelor 23 si implicit a butucilor roților. Uleiul va ieși din hidropompele-motor A prin orificiile 58 si va trece prin circuitul 199 al valvei 196 si prin racordul 202 va ajunge in rezervorul D. Pentru a se evita eliberarea necontrolata a presiunii acumulate in rezervorul F astfel incat accelerarea sa nu difere de accelerarea cu motorul autovehiculului se folosesc electrovalve proporționale 3 si 4 care sunt comandate de către potentiometrul 15 legat la pedala de accelerație 21. Potentiometrul 15 prin intermediul switch-ului L, comanda debitul de ulei care trece prin electrovalvele proporționale 3 si 4.The F cylinder is first discharged to provide additional power due to the accumulated pressure greater than the E cylinder. As soon as the acceleration pedal 21 is actuated and the contactor 14 is activated, this together with the pressure switch 12 which announces the pressure in the F cylinder. accumulated, open by the switch L proportional solenoid valve 3, which allows the oil coming from the cylinder F through the connection 216 to pass to the double circuit solenoid valves 1 through the connection 221 and the connection 203, arriving from here through the circuit 200 of the valve 197 of the solenoid valve 1 and through the same inlet ports 57 inside the pressure chambers 107 acting on the blades 26, which will propel the vehicle, by rotating the rotors 23 and implicitly the wheel hubs. The oil will exit the hydropump-motor A through the holes 58 and will pass through the circuit 199 of the valve 196 and through the connection 202 it will reach the reservoir D. In order to avoid the uncontrolled release of the accumulated pressure in the tank F so that the acceleration does not differ from the acceleration. with the motor of the vehicle, proportional solenoid valves 3 and 4 are used, which are controlled by the potentiometer 15 connected to the accelerator pedal 21. The potentiometer 15 by means of switch L, controls the oil flow passing through proportional solenoid valves 3 and 4.

Când una dintre electrovalvele 3 si 4 se deschide atunci uleiul sub presiune trece din racordul 221 si In racordul 211 către regulatorul de accelerație K prin gaura axiala 185 si împinge tija 187 ce este reținuta de arcul elicoidal 188, astfel incat cablul de accelerație dintre regulatorul K si carburatorul/pompa de injecție 18 se detensioneaza, permițând astfel in cazul accelerării eliberarea energiei acumulate in rezervoarele E si F si ulterior intervenția motorului autovehiculului.When one of the solenoid valves 3 and 4 opens, then the pressure oil passes from the connection 221 and In the connection 211 to the accelerator regulator K through the axial hole 185 and pushes the rod 187 which is retained by the helical spring 188, so that the acceleration cable between the regulator K and the carburetor / injection pump 18 relaxes, thus allowing in the event of acceleration the release of the accumulated energy in the E and F tanks and subsequently the intervention of the motor vehicle.

Când butelia F eliberează toata energia stocata sub forma de presiune, presostatul 12 se dezactivează si nu mai trimite curent in switch-ul L, astfel electrovalva proporționala 3 se închide si in același timp daca in butelia E exista energie acumulata si implicit presostatul 11 este activat, atunci switchul L comuta pe circuitul dintre contactorul de cursa 14 si presostatulWhen the cylinder F releases all the stored energy under pressure, the pressure switch 12 is deactivated and no longer sends current to switch L, so the proportional solenoid valve 3 closes and at the same time if the cylinder E has accumulated energy and by default the pressure switch 11 is activated. , then the switch L switches on the circuit between the travel contactor 14 and the pressure switch

£*- 2 0 1 6 -- 0 0 3 6 1 7 f ®- 7116£ * - 2 0 1 6 - 0 0 3 6 1 7 f ®- 7116

si deschide electrovalva proporționala 4, care face legătură între racordul 219 prin care circula uleiul de la butelia E si intre racordul 221 ce duce uleiul spre hidropompele-motor A, in care paletele 26 sunt acționate si uleiul ajunge prin racordul 202 in rezervorul D. Când butelia E eliberează toata energia si nu mai exista presiune care sa tina activat presosatul 11 atunci acesta nu mai trimite curent către switch-ul L si electrovalva proporționala 3 se închide, astfel presiunea scade si in racordul 211 astfel tija 187 revine in poziția inițiala datorita arcului elicoidal 188, si implicit cablul de accelerație dintre carburator/pompa de injecție 18 se retensioneaza, permițând accelerarea autovehiculului cu ajutorul motorului acestuia.and opens the proportional solenoid valve 4, which connects between the connection 219 through which the oil from the cylinder E flows and between the connection 221 which carries the oil to the hydropumps-motor A, in which the blades 26 are actuated and the oil reaches through the connection 202 in the tank D. When the cylinder E releases all the energy and there is no pressure to keep the presser 11 activated then it no longer sends current to the switch L and the proportional solenoid valve 3 closes, so the pressure decreases and in the connection 211 so the rod 187 returns to the initial position due to the spring helical 188, and by default the acceleration cable between the carburetor / injection pump 18 is re-tensioned, allowing the vehicle to accelerate with its engine.

Regulatorul de accelerație K se poate înlocui cu un ecu (unitate electronica de control) programabil, care poate controla turatia motorului, indiferent de cursa la care este actionata pedala de accelerație 21. Unitatea electronica de control (ecu) trebuie programata astfel incat prin Intermediul unor senzori de presiune aflat! pe buteliile E si F sa elibereze restricția aplicata accelerării cu motorul autovehiculului invers proporțional cu eliberarea energiei din buteliile E si F, astfel incat accelerarea sa fie direct proporționala cu cursa pedalei de accelerație 21, si sa nu difere de accelerație pe care o asigura autovehiculul fara sistemul de recuperare a energiei cinetice la franare.The throttle controller K can be replaced with a programmable ecu (electronic control unit), which can control the engine speed, regardless of the speed at which the accelerator pedal is actuated. 21. The electronic control unit (ecu) must be programmed so that through some pressure sensors found! on the E and F cylinders to release the restriction applied to the acceleration with the motor of the vehicle inversely proportional to the release of energy from the E and F cylinders, so that the acceleration is directly proportional to the acceleration pedal stroke 21, and does not differ from the acceleration provided by the vehicle without kinetic energy recovery system at braking.

Când nu se mai actioneaza pedala de accelerație 21, contactorul 14 nu mai trimite curent in switch-ul L astfel electrovalvele 1 închid circuitul 199 al valvei 196 si circuitul 200 al valvei 197 si electromagnetul 144 al compensatorului hidraulic G eliberează pistonul 148, acesta revenind in poziția inițiala datorita arcului elicoidal 149, astfel paletele 26 se retrag in rotoarele 23.When the accelerator pedal 21 is no longer actuated, the contactor 14 no longer sends current to the switch L, so the solenoid valves 1 close the circuit 199 of the valve 196 and the circuit 200 of the valve 197 and the electromagnet 144 of the hydraulic compensator G releases the piston 148, returning it to the piston 148. the initial position due to the helical spring 149, so the blades 26 retract into the rotors 23.

Pentru mersul înainte, atat la franare, cat si la accelerare rotile si implicit rotoarele se rotesc in același sens.For the forward, both braking and acceleration the wheels and by default the rotors rotate in the same direction.

Pentru mersul cu spatele, rotoarele 23 se vor roti odata cu rotile autovehiculului, în sens invers fata de mersul înainte, astfel orificiile 58 vor deveni orificii de admisie, iar orificiile 57 vor deveni orificii de evacuare. Când se dorește ca autovehiculul sa mearga cu spatele, si se actioneaza treapta de marsarier, atunci contactul de marsarier 22 trimite curent in switchul L.For rear-wheel drive, the rotors 23 will rotate with the wheels of the vehicle, in the opposite direction from the forward movement, thus the holes 58 will become the inlet ports and the holes 57 will become the exhaust ports. When it is desired that the vehicle goes with the rear, and the gearbox is actuated, then the gearbox contact 22 sends current to the switch L.

La franarea in marsarier, contactul 22 împreuna cu contactorul 13, trimit curent in switchul L care comanda electrovalvele 1 sa deschidă circuitul 199 al valvei 196 si circuitul 200 al valvei 197, astfel incat admisia in hidropompele-motor A sa se faca prin orificiile 58, restul procesului de franare si recuperare ramanand neschimbat.When reversing, the contact 22 together with the contactor 13 sends current to the switch L which controls the solenoid valves 1 to open the circuit 199 of the valve 196 and the circuit 200 of the valve 197, so that the admission to the hydropump-motor A is made through the holes 58, the remainder of the braking and recovery process remains unchanged.

La accelerarea in marsarier, contactul 22 împreuna cu contactorul 14, trimit curent switchului Lcare comanda electrovalvele 1 sa deschidă circuitul 201 al valvei 197 si circuitul 198 al valvei 196, restul procesului de accelerare si eliberare a energiei stocate ramanandWhen accelerating in reverse gear, contact 22 together with contactor 14, sends current to switch Lcare ordering solenoid valves 1 to open circuit 201 of valve 197 and circuit 198 of valve 196, the rest of the process of accelerating and releasing stored energy remaining

¢^- 2 0 1 6 -- 003612 c 05- 2016¢ ^ - 2 0 1 6 - 003612 c 05- 2016

neschimbat. In cazul in care nu exista energie acumulata in buteliile E si F electrovalvele proporționale 3 si 4 vor fi închise, iar autovehiculul va accelera cu ajutorul motorului sau.unchanged. If there is no energy accumulated in the cylinders E and F the proportional solenoid valves 3 and 4 will be closed and the vehicle will accelerate with the help of its engine.

Pe tot parcursul funcționarii sistemului, indiferent de direcția de mers sau daca se franeaza sau se accelerează, vor exista mici pierderi de ulei intre rotorul 23, statorul 24 si flanșa 25 din camerele de presiune 107. Uleiul scapat printre rotorul 23 si statorul 24 va ajunge intr-un canal circular 77 si de aici printr-un canal radial 74 si un canal longitudinal 73, va trece in racordul 206 conectat cu gaura filetata 71 a statorului 24, iar din racordul 206 ajunge in racordul 202, racord ce alimentează hidropompele-motor A cu ulei de la rezervorul D. Uleiul scapat printre rotorul 23 si flanșa 25 ajunge in canalul circular 87 care comunica cu canalul circular 91 prin canalele 88, 89 si 90, canale ale flanșei 25, iar din canalul circular 91 trece in statorul 24 prin canalul 76 care comunica cu gaura filetata 71 si implicit cu racordul 206 prin canalele 75, 74 si 73.Throughout the operation of the system, regardless of the direction of travel or when braking or accelerating, there will be small oil losses between the rotor 23, the stator 24 and the flange 25 of the pressure chambers 107. The oil leaked between the rotor 23 and the stator 24 will reach in a circular channel 77 and thence by a radial channel 74 and a longitudinal channel 73, it will pass into the connection 206 connected with the threaded hole 71 of the stator 24, and from the connection 206 it will reach the connection 202, connection that supplies the hydropump-motor A with oil from reservoir D. The oil escaped between the rotor 23 and the flange 25 reaches the circular channel 87 which communicates with the circular channel 91 through channels 88, 89 and 90, channels of the flange 25, and from the circular channel 91 it passes into the stator 24 through channel 76 which communicates with the threaded hole 71 and implicitly with the connection 206 through channels 75, 74 and 73.

In cele ce urmeaza se prezintă descrierea detaliata a sistemului de recuperare a energiei cinetice de franare, conform invenției, in a doua varianta de realizare.In the following, the detailed description of the braking kinetic energy recovery system, according to the invention, is presented in the second embodiment.

Problema tehnica pe care o rezolva invenția, in a doua varianta de realizare, pe langa recuperarea energiei cinetice este si asigurarea tracțiunii integrale pentru autovehiculele cu tracțiune spate.The technical problem that the invention solves, in the second embodiment, besides the kinetic energy recovery is the provision of all-wheel drive for rear-wheel drive vehicles.

Sistemul de recuperare a energiei cinetice la franare, conform invenției, in a doua varianta de realizare, reprezentat in fig. 37, se instalează pe un autovehicul cu tracțiune spate pentru a recupera energia cinetica, dar si pentru a asigura autovehiculului tracțiune integrala. In aceasta varianta de realizare, se pastreaza configurația din prima varianta de realizare a sistemului de recuperare a energiei de franare, conform invenției, cu condiția ca hidropompelemotor A sa fie montate pe rotile non-motoare ale autovehiculului (rotile din fata in acest caz), iar intre flanșa arborelui de ieșire din cutia de viteza si cardanul care transmite mișcarea de la cutie la rotile din spate se montează o alta hidropompa-motor A', similara constructiv cu hidropompele-motor A. Hidropompa-motor A' se montează intre flanșa cutiei si cardan prin găurile 28' ale rotorului 23' care devine solidar cu cardanul si flanșa cutiei. Statorul 24' se poate prinde mecanic de o traversa montata intre lonjeroanele autovehiculului sau de sasiul acestuia.The system of kinetic energy recovery at braking, according to the invention, in the second embodiment, represented in fig. 37, is installed on a rear-wheel drive vehicle to recover kinetic energy, but also to provide the vehicle with all-wheel drive. In this embodiment, the configuration of the first embodiment of the braking energy recovery system, according to the invention, is preserved, provided that the hydropompelemotor A is mounted on the non-motor wheels of the vehicle (the front wheels in this case), and between the flange of the output shaft of the gearbox and the drive shaft that transmits the movement from the gearbox to the rear wheels, another hydropump-motor A 'is mounted, similar to the hydropump-motor A. The hydropump-motor A' is mounted between the flange of the gearbox. and cardan through the holes 28 'of the rotor 23' which becomes integral with the cardan and the flange of the box. The 24 'stator can be mechanically attached to a cross member mounted between the car's side rails or its chassis.

Hidropompa-motor A' este conectata prin intermediul unei eleetrovalve cu dublu circuit Γ, similara constructiv cu electrovalvele 1, si a unui racord 235 cu rezervorul D. Electrovalva 1' mai este conectata printr-un alt racord 236 si cu butelia F, si primește comanda printr-un circuit 237 de la switch-ul electric L. Pe hidropompa-motor A' se găsesc doi acumulatori hidraulici H', similari constructiv cu acumulatorii hidraulici H.The hydropump-motor A 'is connected by means of a double circuit ele, similar to the solenoid valves 1, and of a connection 235 with the tank D. The solenoid valve 1' is connected by another connection 236 and with the cylinder F, and receives control by a circuit 237 from the electric switch L. On the hydropump-motor A 'there are two hydraulic accumulators H', constructively similar to the hydraulic accumulators H.

Pentru a putea asigura tracțiune integrala mai este nevoie si de: un compensator hidraulic G', similar cu compensatorul hidraulic G, conectat la hidropompa-motor A' printr-unIn order to ensure all-wheel drive, you also need: a hydraulic compensator G ', similar to the hydraulic compensator G', connected to the hydropump-motor A 'through a

cc

Oc 2 0 1 6 - - 003612 C -05- 2015 racord 238 si la switchul L prin circuitul 239 ; o supapa unisens 240 montata pe racordul 236; un buton 241 conectat la switchul L printr-un circuit 242; dar si de o electrovalva 243 montata pe racordul 211 si conectata printr-un circuit 244 la switchul L.Oc 2 0 1 6 - - 003612 C -05- 2015 connection 238 and at switch L through circuit 239; a unisense valve 240 mounted on the connection 236; a button 241 connected to the switch L through a circuit 242; but also by a solenoid valve 243 mounted on the connection 211 and connected by a circuit 244 to the switch L.

In vederea recuperării energiei cinetice la franare sistemul, in aceasta varianta de realizare, funcționează la fel sub aceeași configurație ca si in prima varianta de realizare.In order to recover the kinetic energy when braking, the system, in this embodiment, works the same under the same configuration as in the first embodiment.

In cazul in care este nevoie si de rotile non-motoare pentru un plus de tracțiune, in condiții neadecvate de drum si de vreme pentru a putea circula fara probleme pe zapada, nisip sau teren accidentat, atunci se actioneaza butonul 241, montat la bordul autovehiculului, care trimite curent in switchul L, acesta trimițând curent electromagnetului 144' al compensatorului hidraulic G' activandu-l si la electrovalva 243 pe care o închide, deoarcece nu mai este nevoie de intervenția regulatorului de accelerație K la accelerare, pentru ca se dorește propulsarea si cu ajutorul motorului autovehiculului, Electromagnetul 144' odata activat actioneaza asupra pistonului 148' care actîveaza paletele 26' sa culiseze in camerele de presiune 107’ ale hidropompei-motor A'. Rotorul 23' fiind solidar cu cardanul autovehiculului, la apasarea pedalei de accelerație 21 preia mișcarea de la cardan si trimite cu ajutorul paletelor 26' uleiul venit de la rezervorul D prin racordul 235 către butelia F prin racordul 236, in care se va acumula energie sub forma de presiune, energie ce va fi eliberata la apasarea pedalei de accelerație 21 către hidropompele-motor A aflate pe rotile non-motoare, rotindu-le. Astfel se va folosi hidropompamotor A' pentru a distribui puterea trimisa către rotile motoare si către rotile non-motoare.In case you need non-motorized wheels for extra traction, in inadequate conditions of road and weather to be able to move smoothly on snow, sand or rough terrain, then push button 241, mounted on the vehicle , which sends current to the switch L, which sends current to the electromagnet 144 'of the hydraulic compensator G' and activates it to the solenoid valve 243 which it closes, because the acceleration regulator K is no longer needed to accelerate, because the propulsion is desired and with the help of the motor of the vehicle, the electromagnet 144 'once activated acts on the piston 148' which activates the blades 26 'to slide in the pressure chambers 107' of the hydropump-motor A '. The rotor 23 'being in solidarity with the drive shaft, when pressing the acceleration pedal 21 takes the movement from the drive shaft and sends with the blades 26' the oil coming from the tank D through the connection 235 to the cylinder F through the connection 236, in which energy will accumulate below the form of pressure, energy that will be released when the accelerator pedal 21 is pressed to the hydraulic pumps A on the non-motor wheels, rotating them. Thus, the hydropumpper A 'will be used to distribute the power sent to the drive wheels and to the non-drive wheels.

In cazul in care se intra in treapta de marsarier a autovehiculului, contactul de marsarier 22 trimite curent in switch-ul electric L care nu va schimba doar circuitele valvelor 196 si 197 ale electrovalvelor 1, ci si circuitele valvelor 196' si 197' ale electrovalvei Γ.In the case of entering the gearbox of the vehicle, the gearbox contact 22 sends current to the electric switch L which will not only change the circuits of valves 196 and 197 of the solenoid valve 1, but also the circuits of the valves 196 'and 197' of the solenoid valve. Γ.

Când butonul 241 se dezactivează se deschide si electrovalva 243 ce permite trecerea uleiului prin racordul 211 spre regulatorul K, si se dezactivează electromagnetul 144', astfel paletele 26' se retrag in rotorul 23', al hidropompei-motor A'.When the button 241 is deactivated, the solenoid valve 243 is opened which allows the oil to pass through the connection 211 to the regulator K, and the electromagnet 144 'is deactivated, so the blades 26' are withdrawn into the rotor 23 'of the hydropump-motor A'.

Pierderile de ulei intre rotorul 23', statorul 24' si flanșa 25' din camerele de presiune 107' vor ajunge prin racordul 245 conectat la gaura filetata 71' a statorului 25' in racordul 235 prin care se alimentează hidropompa-motor A' de la rezervorul D.The oil losses between the rotor 23 ', the stator 24' and the flange 25 'of the pressure chambers 107' will reach via the connection 245 connected to the threaded hole 71 'of the stator 25' in the connection 235 through which the hydropump-motor A 'is fed from tank D.

Toate elementele in aceasta a doua varianta de realizare notate cu ' (de exemplu Aj sunt similare constructiv, prezentând aceleași particuiaritati tehnice si aceleași componenente, dar putând diferi doar prin scara la care sunt realizate fata de cele notate fara ' ( de exemplu G) si descrise detaliat in prima varianta de realizare si reprezentate in figurile corespunzătoare.All the elements in this second embodiment noted with '(for example Aj are similar constructively, presenting the same technical features and the same components, but can differ only by the scale at which they are made compared to those noted without' (for example G) and described in detail in the first embodiment and represented in the corresponding figures.

Claims (21)

REVENDICĂRI <2 O 1 6 - - O 0 3 6 1 2 fi -15- 2016CLAIMS <2 O 1 6 - - O 0 3 6 1 2 on -15- 2016 1. Sistem de recuperare a energiei cinetice la franare, intr-o prima varianta de realizare, considerandu-se un autovehicul sau vehicul tractat dotat cu o pompa de frana (17) si niște etriere/cilindrii de frana (19), o baterie electrica (16) de curent continuu, un carburator/pompa de injecție (18), un contact de marsarier (22) si o pedala de frana (20), respectiv una de accelerație (21), este constituit din niște cilindrii hidraulici (CI si C2), niște electrovalve cu dublu circuit (1), o electrovalva (2), niște electrovalve proporționale (3 si 4), un contactor hidraulic (5), niște supape de presiune unisens (6,7,8,9 si 10), niște presostate (11 si 12), niște contactori cu cursa (13 si 14), un potentiometru (15) si un switch electric (L), caracterizat prin aceea ca, este compus din niște hidropompe-motor (A), in legătură cu un distribuitor hidraulic (B), prin intermediul electrovalvelor (1) si un racord (210) si racordate la un rezervor pneumohidraulic (D) cu ajutorul acelorași electrovalve (1) si a unui racord (202), rezervorul (D) fiind in legătură atat cu distribuitorul (B) prin racordul (217), cat si cu buteliile pneumohidraulice (E si F), prin racoardele (214, respectiv 218) pe care se găsesc supapele unisens (9 si 10), amintitul distribuitor (B) comunica cu butelia (E ) prin racordul (212) conectat la racordul (213) si de asemenea, este in legătură cu butelia (F), anterior amintita, prin racordul (216), si dintr-un compensator hidraulic (G) in legătură cu hidropompele-motor (A) prin niște racorduri (204) si din niște acumulatori hidraulici (H), montati pe hidropompele-motor (A), precum si din niște controllere hidraulice (J) montate intre pompa de frana (17) si etrierele/cilindrii de frana (19), si un regulator hidraulic (K) care se interpune pe cablul de accelerație intre pedala de accelerație (21) si carburatorul/pompa de injecție (18) si care este conectat printr-un racord (211) cu electrovalvele (3 si 4) si cu electrovalvele (1).1. Brake kinetic energy recovery system, in a first embodiment, considering a vehicle or towed vehicle equipped with a brake pump (17) and some brake calipers / cylinders (19), an electric battery (16) DC, a carburetor / injection pump (18), a gearbox contact (22) and a brake pedal (20), respectively an accelerator (21), consists of hydraulic cylinders (CI and C2), some double-circuit solenoid valves (1), a solenoid valve (2), some proportional solenoid valves (3 and 4), a hydraulic contactor (5), some one-way pressure valves (6,7,8,9 and 10) , pressure switches (11 and 12), contactors with stroke (13 and 14), a potentiometer (15) and an electrical switch (L), characterized in that it is composed of hydropump-motor (A), in connection with a hydraulic distributor (B), via solenoid valves (1) and a connection (210) and connected to a pneumatic reservoir (D) by means of the needles solenoid valves (1) and of a connection (202), the reservoir (D) being connected both to the distributor (B) through the connection (217) and to the pneumatic hydraulic cylinders (E and F), through the fittings (214 and 218 respectively ) on which the one-way valves (9 and 10) are located, said distributor (B) communicates with the cylinder (E) through the connection (212) connected to the connection (213) and also is connected with the cylinder (F), mentioned above , through the connection (216), and from a hydraulic compensator (G) in connection with the motor-pumps (A) through some connections (204) and from some hydraulic accumulators (H), mounted on the motor-pumps (A), as well and from some hydraulic controllers (J) mounted between the brake pump (17) and the brake calipers / cylinders (19), and a hydraulic regulator (K) that interposes on the acceleration cable between the accelerator pedal (21) and the carburetor / injection pump (18) and which is connected by a connection (211) with solenoid valves (3 and 4) and solenoid valves (1). 2. Sistem de recuperare a energiei cinetice la franare, conform revendicării 1, caracterizat prin aceea ca, hidropompa-motor (A) este alcatuita dintr-un rotor (23), montat intr-un stator (24), sprijinindu-se pe niște rulmenți (97 si 104) si ghidat de niște rulmenți de presiune (102 si 106), si închis de o flansa (25) prin infiletarea acesteia in statorul (24) si niște palete (26) fixate de niște elemente de etanșare (27), culisând din rotorul (23), in camerele de presiune (107).2. Brake kinetic energy recovery system according to claim 1, characterized in that the hydropump-motor (A) is composed of a rotor (23), mounted in a stator (24), resting on some bearings (97 and 104) and guided by some pressure bearings (102 and 106), and closed by a flange (25) by threading it into the stator (24) and some blades (26) fastened by some sealing elements (27) , sliding from the rotor (23), into the pressure chambers (107). 3. Sistem de recuperare a energiei cinetice la franare, conform revendicărilor 1 si 2, Caracterizat prin aceea ca, rotorul (23) este prevăzut cu niște găuri de fixare (28) si cu o degajare circulara (29), care comunica la partea inferioara cu niște canale înclinate (30), continuate prin niște canale longitudinale (31), urmate de niște canale radiale (32), acestea fiind in legătură cu cele patru locașuri radiale (33), dispuse la 90 de grade, in care culiseaza paletele (26), anterior menționate, in vecinătatea degajării circulare (29), se gaseste un canal circular (34), iar in partea opusa degajării circulare (29), este practicata o alta degajare circulara (35) si in aceasta un canal circular (36), in vecinătatea degajării circulare (35) gasindu-se inca o3. Brake kinetic energy recovery system according to claims 1 and 2, characterized in that the rotor (23) is provided with some fixing holes (28) and a circular release (29), which communicates at the bottom. with inclined channels (30), followed by longitudinal channels (31), followed by some radial channels (32), these being in connection with the four radial seats (33), arranged at 90 degrees, in which they slide the pallets ( 26), previously mentioned, in the vicinity of the circular clearance (29), there is a circular channel (34), and in the opposite side of the circular clearance (29), another circular clearance (35) is practiced and in this a circular channel (36) ), in the vicinity of the circular clearing (35) still being found Ο 2 0 1 6 - - 0 0 3 6 1 2 fi -05- 2016 degajare circulara (37), iar pe fiecare din cele doua fete ale rotorului (23) sunt practicate niște canale inelare (38 si 39), pentru centrarea hidropompei-motor (A), pe butucul rotii autovehiculului, rotorul (23) fiind prevăzut cu o gaura de centrare (40) si cu o degajare circulara (40a), iar degajările circulare (29 si 35) fiind delimitate spre exterior de niște umeri (41 si respectiv 42).Ο 2 0 1 6 - - 0 0 3 6 1 2 fi -05- 2016 circular clearance (37), and on each of the two faces of the rotor (23) are practiced ring channels (38 and 39), for hydropump centering -motor (A), on the wheel hub of the vehicle, the rotor (23) being provided with a centering hole (40) and with a circular clearance (40a), and the circular releases (29 and 35) being delimited outwards by some shoulders ( 41 and 42 respectively). 4. Sistem de recuperare a energiei cinetice la franare, conform revendicărilor 1,2 si 3, ,caracterizat prin aceea ca, statorul (24), de forma cilindrica, este prevăzut la exterior cu doua orificii (57) diametral opuse si cu doua orificii (58), diametral opuse, orificiile 57 si orificiile 58 fiind orificii de admisie sau evacuare, egale ca suprafața, fiecare comunicând la interior cu cate o degajare (59), statorul (24) fiind de asemenea prevăzut cu mai multe degajări circulare care scad in diametru, o prima degajare filetata (60) la interior, urmata de o alta degajare circulara (61), continuata cu o degajare circulara (62), o degajare (63) si o ultima degajare (64).4. Brake kinetic energy recovery system according to claims 1,2 and 3, characterized in that the stator (24), cylindrical in shape, is provided on the outside with two holes (57) diametrically opposed and two holes (58), diametrically opposed, the openings 57 and the openings 58 being the inlet or outlet openings, equal to the surface, each communicating on the inside with one release (59), the stator (24) also being provided with several circular openings that decrease. in diameter, a first threaded release (60) inside, followed by another circular release (61), continued with a circular release (62), a release (63) and a last release (64). 5. Sistem de recuperare a energiei cinetice la franare, conform revendicărilor de la 1 la 4 ,caracterizat prin aceea ca, degajarea (62) a statorului (24), este impartita in patru suprafețe (65) corespunzătoare cu degajările (59),cu deschiderea la centru de 40 de grade, in doua suprafețe (66), cu deschiderea la centru de 10 grade si in doua suprafețe (67), cu deschiderea la centru de 90 grade si razele la centru egale, iar razele la centru care descriu suprafețele cilindrice (65) din dreptul degajărilor (59) descresc pana la suprafețele cilindrice (66) ale căror raze sunt egale cu razele ce descriu suprafața (53) exterioara a rotorului (23), ale suprafețelor (55) ale elementelor de etanșare (27) si ale suprafețelor (56) ale paletelor (26).5. Brake kinetic energy recovery system according to claims 1 to 4, characterized in that the clearance (62) of the stator (24) is divided into four surfaces (65) corresponding to the releases (59), with opening at the center of 40 degrees, in two surfaces (66), with the opening at the center of 10 degrees and in two surfaces (67), with the opening at the center of 90 degrees and the rays at the center equal, and the rays at the center describing the surfaces cylindrical (65) from the openings (59) decrease to the cylindrical surfaces (66) whose radii are equal to the radii describing the outer surface (53) of the rotor (23), of the surfaces (55) of the sealing elements (27) and of the surfaces (56) of the pallets (26). 6. Sistem de recuperare a energiei cinetice la franare, conform revendicărilor de la 1 la 5 ,caracterizat prin aceea ca, statorul (24) este prevăzut cu o gaura axiala realizata in trepte prin niște degajări circulare (68, 69 si 70), destinate montării rotorului (23) si cu o gaura filetata (71), realizata pe o suprafața exterioara (72), ce comunica cu degajarea (61), prin intermediul unor canale (73, 74, 75 si 76) si de asemenea cu degajarea (63) prin intermediul canalelor (73, 74) si in final printr-un canal circular (77), pe aceeași suprafața (72) fiind prevăzute o gaura filetata (78) si doua găuri filetate (79), cele trei găuri comunicând cu degajarea (70) prin intermediul unor canale longitudinale (80) si a unor canale radiale (81), intre degajările (63 si 64) gasindu-se un canal inelar (82), tot pe suprafața (72) se regăsesc doua găuri filetate (83).6. Brake kinetic energy recovery system according to claims 1 to 5, characterized in that the stator (24) is provided with an axial hole made in stages through circular openings (68, 69 and 70), intended mounting of the rotor (23) and with a threaded hole (71), made on an outer surface (72), which communicates with the release (61), through channels (73, 74, 75 and 76) and also with the release ( 63) through the channels (73, 74) and finally through a circular channel (77), on the same surface (72) being provided a threaded hole (78) and two threaded holes (79), the three holes communicating with the release (70) through longitudinal channels (80) and radial channels (81), between the openings (63 and 64) an annular channel (82) is found, also on the surface (72) there are two threaded holes (83). ). 7. Sistem de recuperare a energiei cinetice la franare, conform revendicărilor de la 1 la 6 ,caracterizat prin aceea ca, flansa (25) este prevăzută cu niște degajări circulare (84 si 85), intre acestea fiind practicat un canal inelar (86), iar in interiorul degajării (85) este poziționat un canal circular (87), care comunica prin niște canale (88, 89 si 90) cu un canal circular (91) aflat pe circumferința exterioara a flansei (25), ce este prevăzută la exterior cu o suprafața filetata (92) %7. Brake kinetic energy recovery system according to claims 1 to 6, characterized in that the flange (25) is provided with circular openings (84 and 85), between which an annular channel is practiced (86). , and inside the recess (85) is positioned a circular channel (87), which communicates through some channels (88, 89 and 90) with a circular channel (91) located on the outer circumference of the flange (25), which is provided at exterior with threaded surface (92)% α-1 ο 1 6 - - 0 0 3 6 1 2 Ο -05- 2016 care se termina intr-o degajare circulara (93) de etanșare, pe aceeași flanșa (25) se mai gaseste o gaura axiala compusa din trei degajări (94, 95 si 96) crescătoare ca diametru.α-1 ο 1 6 - - 0 0 3 6 1 2 Ο -05- 2016 ending in a circular clearance (93) of sealing, on the same flange (25) there is also an axial hole composed of three releases ( 94, 95 and 96) increasing in diameter. 8. Sistem de recuperare a energiei cinetice la franare, conform revendicărilor de la 1 la 7 caracterizat prin aceea ca, paletele (26), dispuse la 90 de grade una de cealalta, in locașurile radiale (33) ale rotorului (23) sunt formate din din cate doua brațe (43), dotate cu niște degajări cilindrice (44) si terminate cu cate o talpa (45), in degajările cilindrice (44) sunt așezate niște arcuri elicoidale (46) care se sprijină pe tălpile (45), iar brațele (43) fac corp comun cu un piston cilindric (47) prevăzut cu doua canale circulare (48), de etanșare, si cu un piston rectangular (49), cu muchiile rotunjite,piston (49) a cărui forma in secțiune transversala permite culisarea acestuia prin elementul de etanșare (27).8. Brake kinetic energy recovery system according to claims 1 to 7, characterized in that the blades (26), arranged at 90 degrees from each other, in the radial seats (33) of the rotor (23) are formed. out of two arms (43), equipped with cylindrical recesses (44) and finished with a sole (45), in the cylindrical recesses (44) are placed helical springs (46) which rest on the soles (45), and the arms (43) share a common body with a cylindrical piston (47) provided with two circular channels (48), for sealing, and with a rectangular piston (49), with the rounded edges, piston (49) whose shape in cross-section allows it to slide through the sealing element (27). 9. Sistem de recuperare a energiei cinetice la franare, conform revendicărilor de la 1 la 8 caracterizat prin aceea ca, elementul de etanșare (27) are prevăzută o degajare dreptunghiulara (50) corelata ca forma cu pistonul rectangular (49) al paletei (26), si prevăzută cu un canal (51), de etanșare, si cu niște găuri de fixare (52) pentru fixarea pe suprafața (53) exterioara a rotorului (23), in locașurile (54) prevăzute cu niște găuri (54a) corespunzătoare cu găurile (52), iar suprafața exterioara (55) fiind generata de aceeași raza ca cea a circumferinței exterioare a rotorului (23).9. Brake kinetic energy recovery system according to claims 1 to 8, characterized in that the sealing element (27) has a rectangular release (50) correlated as the shape with the rectangular piston (49) of the blade (26). ), and provided with a channel (51), sealing, and with some fixing holes (52) for fixing on the outer surface (53) of the rotor (23), in the seats (54) provided with corresponding holes (54a) with the holes (52), and the outer surface (55) being generated by the same radius as that of the outer circumference of the rotor (23). 10. Sistem de recuperare a energiei cinetice la franare, conform revendicărilor de la 1 la 9, caracterizata prin aceea ca, in hidropompa-motor (A) se formează doua camere de presiune (107), egale si diametral opuse, delimitate de degajarea (62) a statorului (24), suprafața exterioara a rotorului (23) si închise de flanșa (25), suprafețele interioare a camerelor de presiune (107) fiind definite de suprafața exterioara a rotorului (23), iar suprafețele exterioare a acestora de suprafețele (65, 66 si 67).10. Brake kinetic energy recovery system according to claims 1 to 9, characterized in that two pressure chambers (107), equal and diametrically opposed, delimited by the release (107) are formed in the hydropump-motor (A). 62) of the stator (24), the outer surface of the rotor (23) and closed by the flange (25), the inner surfaces of the pressure chambers (107) being defined by the outer surface of the rotor (23), and the outer surfaces thereof by the surfaces (65, 66 and 67). 11. Sistem de recuperare a energiei cinetice la franare, conform revendicărilor de la 1 la 10, caracterizata prin aceea ca, paletele (26) culiseaza controlat In camerele de presiune (107), la franare comandate de pedala de frana (20), prin intermediul pompei de frana(17) care controlează cilindrul hidraulic (C2) conectat prin racordul (205) si racoardele (204) la găurile filetate (78) ale hidropompelor-motor (A), iar la accelerare paletele (26) fiind comandate de pedala de accelerație (21) prin intermediul compensatorului hidraulic (G), ce primește comanda de la potentiometrul (15) prin intermediul switch-ului electric (L), compensatorul (G) comunicând cu găurile filetate (78) tot prin prin aceleași racoarde (205 si 204).11. Brake kinetic energy recovery system according to claims 1 to 10, characterized in that the blades (26) slide controlled in the pressure chambers (107), at the brakes controlled by the brake pedal (20), by by means of the brake pump (17) which controls the hydraulic cylinder (C2) connected by the connection (205) and the fittings (204) to the threaded holes (78) of the motor-pumps (A), and on acceleration the blades (26) are controlled by the pedal of acceleration (21) by means of the hydraulic compensator (G), which receives the command from the potentiometer (15) by means of the electric switch (L), the compensator (G) communicating with the threaded holes (78) also through the same slots (205 and 204). 12. Sistem de recuperare a energiei cinetice la franare, conform revendicărilor de la 1 la 11, caracterizata prin aceea ca, paletele (26) pot culisa la cursa maxima in camerele de presiune (107) de-a lungul suprafețelor (67), iar suprafața (56a) maxima cu care poate acționa o paleta (26) este egala cu suprafața unui orificiu (57) sau unui orificiu (58).12. Brake kinetic energy recovery system according to claims 1 to 11, characterized in that the blades (26) can slide at maximum travel in the pressure chambers (107) along the surfaces (67), and the maximum surface (56a) with which a pallet (26) can operate is equal to the surface of an orifice (57) or an orifice (58). OA C\- 2 O 1 6 - - 0 0 3 6 1 2 O -05- 2016C \ - 2 O 1 6 - - 0 0 3 6 1 2 O -05- 2016 13. Sistem de recuperare a energiei cinetice la franare, conform revendicărilor de la 1 la 12, caracterizat prin aceea ca, hidropompele-motor (A) se montează la nivelul roților autovehiculului sau vehiculului tractat, înlocuind discurile de franare si etrierele la autovehiculele dotate cu sisteme de franare cu disc, prin cuplarea rotorului (23) de butucul rotii autovehiculului prin găurile de fixare (28), astfel rotorul (23) devine solidar cu butucul rotii, si prin cuplarea statorului (24) cu suportul etrierului prin găurile filetate (83).13. Brake kinetic energy recovery system according to claims 1 to 12, characterized in that the hydropumps (A) are mounted on the wheels of the towed vehicle or vehicle, replacing the brake discs and the stirrups on the vehicles equipped with disc braking systems, by coupling the rotor (23) to the hub of the vehicle wheel through the mounting holes (28), thus the rotor (23) becomes integral with the hub of the wheel, and by coupling the stator (24) with the bracket support through the threaded holes (83 ). 14. Sistem de recuperare a energiei cinetice la franare, conform revendicărilor de la 1 la 13, caracterizat prin aceea ca, hidropompele-motor (A) se montează la nivelul roților autovehiculului sau vehiculului tractat, înlocuind sabotii de franare si cilindrii de frana, pentru autovehiculele dotate cu sisteme de franare cu tamburi, prin cuplarea rotorului (23) de butucul rotii autovehiculului prin găurile de fixare (28) si prin găurile filetate (83) ale statorului (24) se fixeaza pe suportul sabotilor de franare, iar prin intermediul unei flanse intermediare (191) se fixeaza pe tambur prin găurile (192), flansa intermediara mai prezintă niște găuri (193) care corespund cu găurile de fixare (28) ale rotorului (23), flansa intermediara (191) devine astfel solidara cu rotorul (23) si se centrează pe butucul rotii prin gaura axiala (193a) ce corespunde cu gaura de centrare (40) a rotorului (23).14. Brake kinetic energy recovery system according to claims 1 to 13, characterized in that the hydropumps (A) are mounted on the wheels of the towed vehicle or vehicle, replacing the brake shoes and the brake cylinders, for vehicles equipped with drum braking systems, by coupling the rotor (23) to the hub of the vehicle wheel through the fixing holes (28) and through the threaded holes (83) of the stator (24) are fixed on the brake shoe support, and by means of a the intermediate flanges (191) are fixed to the drum through the holes (192), the intermediate flange also has some holes (193) which correspond to the fixing holes (28) of the rotor (23), the intermediate flange (191) thus becoming integral with the rotor ( 23) and is centered on the hub of the wheel through the axial hole (193a) which corresponds to the centering hole (40) of the rotor (23). 15. Sistem de recuperare a energiei cinetice la franare, conform revendicării 1, caracterizata prin aceea ca, distribuitorul hidraulic (B) este compus dintr-un corp tubular (108), care are prevăzute niște perechi de găuri filetate (109 si 110), (111 si 112), (113 si 114) așezate diametral opus astfel incat gaura (109) sa comunice cu gaura (110) prin orificiile (115), gaura (111) sa comunice cu gaura (112) prin orificiile (116), respectiv gaura (113) sa comunice cu gaura (114) prin orificiile (117), orificii cu diametre descrescătoare si care sunt realizate la interiorul amintitului corp tubular (108), care mai este prevăzut si cu o gaura filetata axiala (118), si cu o gaura filetata radiala (119), in interiorul corpului tubular (108) culiseaza un piston (120) prevăzut la capete cu porțiuni de diametre mai mici, iar in porțiunea mediana cu niște canalele circulare (121, 122 si 123), dintre care canalul (121) poate comunica cu orificiile (115), canalul (122) poate comunica cu orificiile (116), iar canalul (123) cu orificiile (117), când orificiile (115) sunt obturate de canalul circular (121) si orificiile (116) sunt obturate de canalul circular (122), suma suprafețelor de trecere obținute prin obturare este egala cu suprafețele orificiilor (116) , iar când orificiile (116) sunt obturate de canalul circular (122) si orificiile (117) sunt obturate de canalul circular (123), suma suprafețelor de trecere obținute prin obturare este egala cu suprafețele orificiilor (117), tot pe pistonul (120) sunt practicate niște canale circulare de etanșare (124, 125, 126,127 si 128), iar la căpătui pistonului (120) porțiunea cu un diametru mic se afla in interiorul unui arc elicoidal (129), si culiseaza prin gaura (130) aflata la căpătui corpului tubular (108).Brake kinetic energy recovery system according to claim 1, characterized in that the hydraulic distributor (B) is composed of a tubular body (108), which has threaded holes (109 and 110), (111 and 112), (113 and 114) placed diametrically opposite such that the hole (109) communicates with the hole (110) through the holes (115), the hole (111) communicates with the hole (112) through the holes (116), respectively the hole (113) communicates with the hole (114) through the holes (117), the holes with decreasing diameters and which are made inside said tubular body (108), which is also provided with an axial threaded hole (118), and with a radial threaded hole (119), inside the tubular body (108) slides a piston (120) provided at ends with portions of smaller diameters, and in the median portion with some circular channels (121, 122 and 123), of which the channel (121) can communicate with the holes (115), the channel (122) can communicate with the holes (116) and the channel (123) with the holes (117), when the holes (115) are closed by the circular channel (121) and the holes (116) are closed by the circular channel (122), the sum of the passage surfaces obtained by filling is equal to the surfaces of the holes (116), and when the holes (116) are closed by the circular channel (122) and the holes (117) are closed by the circular channel (123), the sum of the passage surfaces obtained by the obturation is equal to the surfaces of the holes ( 117), also on the piston (120) there are practiced circular sealing channels (124, 125, 126,127 and 128), and at the end of the piston (120) the small diameter portion is inside a helical spring (129), and slides through the hole (130) at the head of the tubular body (108). Ζ c\- 2 Ο 1 6 - - 0 0 3 6 1 2 O -05- 2016Ζ c \ - 2 Ο 1 6 - - 0 0 3 6 1 2 O -05- 2016 16. Sistem de recuperare a energiei cinetice la franare, conform revendicării 1, caracterizata prin aceea ca, rezervorul pneumohidraulic (D) este de forma cilindrica fiind alcătuit dintr-un cilindru metalic (138) închis la capete cu semisfere, de aceste semisfere este prins un ax (139) pe care culiseaza un piston (140) prevăzut cu doua canale circulare (141), de etanșare, acesta fiind presat pe un butuc (142), prevăzut si el cu niște canale (143), de etanșare, același piston (140) separând rezervorul (D) in doua camere in care se gaseste ulei, respectiv gaz sub presiune.16. Brake kinetic energy recovery system according to claim 1, characterized in that the pneumatic-hydraulic reservoir (D) is cylindrical in shape and consists of a metal cylinder (138) closed at the ends with hemispheres, these hemispheres are trapped. an axis (139) on which slides a piston (140) provided with two circular channels (141), sealing, this being pressed on a hub (142), also provided with some channels (143), sealing, the same piston (140) separating the reservoir (D) into two chambers in which oil and gas under pressure are found. 17. Sistem de recuperare a energiei cinetice la franare, conform revendicării 1, caracterizata prin aceea ca, compensatorul hidraulic (G) este compus dintr-un electromagnet (144) montat la un corp tubular (145) care are prevăzute o gaura filetata radiala (146) si un alezaj axial (147) in care culiseaza un piston (148), retinut de un arc elicoidal (149), atat corpul (145) cat si pistonul (148) avand prevăzute cate un canal circular (150, respectiv 151), de etanșare, iar corpul (145) este închis la căpătui opus electromagnetului (144) cu un capac (152) prevăzut cu un orificiu de depresurizare (153).Brake kinetic energy recovery system according to claim 1, characterized in that the hydraulic compensator (G) is composed of an electromagnet (144) mounted to a tubular body (145) having a radially threaded hole ( 146) and an axial bore (147) in which a piston (148) slides, retained by a helical spring (149), both the body (145) and the piston (148) having provided a circular channel (150, respectively 151) , sealing, and the body (145) is closed at the end opposite the electromagnet (144) with a lid (152) provided with a depressurization hole (153). 18. Sistem de recuperare a energiei cinetice la franare, conform revendicării 1 si 6, caracterizata prin aceea ca, acumulatorii hidraulici (H), care sunt montati in găurile filetate (79) ale statorului (24), sunt de forma cilindrica fiind formați dintr-un corp tubular (154) filetat la exterior care este închis de un corp tubular (155) filetat la interior, in interiorul corpului (154) culiseaza un piston (156), a cărui tija pătrunde printr-o gaura axiala (157) a corpului (155) fiind retinut de un arc elicoidal (158) si prevăzut cu un canal circular (159), de etanșare, amintitul corp (154) fiind dotat cu un stut (160) filetat la exterior.18. Brake kinetic energy recovery system according to claims 1 and 6, characterized in that the hydraulic accumulators (H), which are mounted in the threaded holes (79) of the stator (24), are cylindrical in shape and are formed from - a tubular body (154) threaded to the outside which is closed by a tubular body (155) threaded to the inside, inside the body (154) slides a piston (156), the rod of which penetrates through an axial hole (157) of the body (155) being retained by a helical spring (158) and provided with a circular channel (159), for sealing, the said body (154) being endowed with a screw (160) threaded to the outside. 19. Sistem de recuperare a energiei cinetice la franare, conform revendicării 1, caracterizata prin aceea ca, controllerele hidraulice (J) se montează intre etrierele/cilindrii de frana 19 si pompa de frana 17 si sunt formate dintr-un corp tubular (161) închis la capete cu doua corpuri cilindrice (162) si (163), si prevăzut la interior cu un piston (164), prevăzut cu un alezaj axial (165) prin care culiseaza in lungul unui piston (166), pe care il poate acționa, si retinut de un arc elicoidal (167), corpul (161) este prevăzut cu o gaura axiala (168), in care culiseaza pistonul (164) si cu o gaura axiala (169) in care culiseaza pistonul (166), găurile (168) si (169) au diametre diferite si sunt pozitonate fiecare la cate un capat al corpului (161), la interior fiind delimitate printr-un umăr (170), ce nu permite pistonului (166) sa pătrundă in gaura axiala (168), același corp (161) mai este prevăzut si cu un canal longitudinal (171), ce comunica la un capat cu gaura (168) printr-un orificiu (172) continuat cu un canal circular (173) ce comunica cu un canal longitudinal (174), canale (173) si (174) ale pistonului (164), , atunci când pistonul (164) nu presează arcul (167), si la celalalt capat comunica cu gaura (169) printr-un orificiu (175), pistoanele (164) si (166) sunt prevăzute cu cate un canal circular (176), respectiv (177) de etanșare, iar intre pistonul (164) si corpul (162) in interiorul corpului (161), este poziționat un19. Brake kinetic energy recovery system according to claim 1, characterized in that the hydraulic controllers (J) are mounted between the brake calipers / cylinders 19 and the brake pump 17 and are formed by a tubular body (161). closed at the ends with two cylindrical bodies (162) and (163), and provided inside with a piston (164), provided with an axial bore (165) through which it slides along a piston (166), which it can actuate , and held by a helical spring (167), the body (161) is provided with an axial hole (168), in which it slides the piston (164) and with an axial hole (169) in which it slides the piston (166), the holes ( 168) and (169) have different diameters and are positioned at each end of the body (161), the inside being delimited by a shoulder (170), which does not allow the piston (166) to enter the axial hole (168) , the same body (161) is also provided with a longitudinal channel (171), which communicates at one end with the hole (168) p in an orifice (172) continued by a circular channel (173) communicating with a longitudinal channel (174), channels (173) and (174) of the piston (164), when the piston (164) does not press the spring ( 167), and at the other end communicates with the hole (169) through an orifice (175), the pistons (164) and (166) are provided with a circular channel (176), respectively (177) for sealing, and between the piston (164) and the body (162) inside the body (161), is positioned one Ζ 0 1 6 - - 0 0 3 6 1 2 Ο 0S- 2010 inel distanțier (178) fixat în canalul circular (179) al corpului (162), corpurile (162) si (163) sunt dotate cu cate o gaura filetata (180) si un canal circular (181), respectiv cu o gaura filetata (182) si un canal circular (183), canale circulare de etanșare.Ζ 0 1 6 - - 0 0 3 6 1 2 Ο 0S- 2010 spacer ring (178) fixed in the circular channel (179) of the body (162), the bodies (162) and (163) are endowed with a threaded hole ( 180) and a circular channel (181), respectively with a threaded hole (182) and a circular channel (183), circular sealing channels. 20. Sistem de recuperare a energiei cinetice la franare, conform revendicării 1, caracterizata prin aceea ca, regulatorul hidraulic (K) de accelerație este compus dintr-un corp tubular (184), prevăzut cu o gaura axiala filetata (185) si cu un canal circular (186), de etanșare, iar in interiorul corpului tubular (184) culiseaza o tija (187) presata de un arc elicoidal (188), la căpătui exterior al tijei (187) fiind prevăzut un inel de prindere (189), iar corpul tubular (184) fiind si el dotat cu un alt inel de prindere (190).Brake kinetic energy recovery system according to claim 1, characterized in that the acceleration hydraulic regulator (K) is composed of a tubular body (184), provided with a threaded axial hole (185) and a circular groove (186), for sealing, and inside the tubular body (184) slides a rod (187) pressed by a helical spring (188), at the outer head of the rod (187) being provided a clamping ring (189), and the tubular body (184) being also equipped with another clamping ring (190). 21. Sistem de recuperare a energiei cinetice la franare, in a doua varianta de realizare, considerandu-se un autovehicul cu tracțiune spate, la care se dorește recuperarea energiei cinetice la franare, dar si asigurarea tracțiunii integrale, este constituit din aceleași componente ca in prima varianta de realizare, caracterizat prin aceea ca, hidropompele-motor (A) se monteza pe rotile non-motoare ale autovehiculului, sistemul fiind compus si dintr-o hidropompa-motor (AQ similara constructiv cu hidropompele-motor (A), hidropompa-motor (A') care se montează între flansa cutiei si cardanul care trimite mișcarea la rotile din spate prin găurile (28') ale rotorului (23') care devine solidar cu cardanul si flansa cutiei, iar statorul (24') se poate prinde mecanic de o traversa montata intre lonjeroanele autovehiculului sau de sasiul acestuia, la hidropompa-motor (A') fiind conectați niște acumulatori hidraulic (H'), similari constructiv cu acumulatorii hidraulici (H), iar hidropompa-motor (A') comunica prin intermediul unei electrovalve cu dublu circuit (1'), similara constructiv cu electrovalvele (1), si a unui racord (235) cu rezervorul (D), electrovalva (1') fiind si ea conectata printr-un alt racord (236) si cu butelia (F), si primește comanda printr-un circuit (237) de la switch-ul electric (L), dar si dintr-un compensator hidraulic (G'), similar cu compensatorul hidraulic (G), conectat la hidropompamotor (A') printr-un racord (238), dintr-o supapa unisens (240) montata pe racordul (236), dintr-un buton (241) conectat la switchul (L), dar si dintr-o electrovalva (243) montata pe racordul (211) si conectata la switchul (L) printr-un circuit (244),21. Brake kinetic energy recovery system, in the second embodiment, considering a rear-wheel drive vehicle, which is intended to recover kinetic energy at braking, but also providing all-wheel drive, consists of the same components as in the first embodiment, characterized by the fact that, the hydropump-motor (A) is mounted on the non-motor wheels of the vehicle, the system being composed of a hydropump-motor (AQ similar to the hydropump-motor (A), hydropump- motor (A ') which is mounted between the flange of the box and the drive shaft which sends the movement to the rear wheels through the holes (28') of the rotor (23 ') which becomes integral with the drive shaft and the flange of the box, and the stator (24') can be attached mechanically from a cross member mounted between the side rails of the vehicle or its chassis, with hydraulic pump (A ') being connected some hydraulic accumulators (H'), constructively similar to hydraulic accumulators (H), and hydropom the pa-motor (A ') communicates through a double-circuit solenoid valve (1'), constructively similar to the solenoid valves (1), and of a connection (235) with the tank (D), the solenoid valve (1 ') being also connected through another connection (236) and with the cylinder (F), and receives the command through a circuit (237) from the electrical switch (L), but also from a hydraulic compensator (G '), similar to the compensator hydraulic (G), connected to the hydraulic pump (A ') through a connection (238), from a one-way valve (240) mounted on the connection (236), from a button (241) connected to the switch (L), but and from an solenoid valve (243) mounted on the connection (211) and connected to the switch (L) by a circuit (244),
ROA201600361A 2015-07-07 2016-05-20 System for recovery of braking kinetic energy RO131321A0 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
ROA201600361A RO131321A0 (en) 2016-05-20 2016-05-20 System for recovery of braking kinetic energy
PCT/US2016/000062 WO2017007509A2 (en) 2015-07-07 2016-07-26 Kinetic energy recovery system under braking

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
ROA201600361A RO131321A0 (en) 2016-05-20 2016-05-20 System for recovery of braking kinetic energy

Publications (1)

Publication Number Publication Date
RO131321A0 true RO131321A0 (en) 2016-08-30

Family

ID=56740643

Family Applications (1)

Application Number Title Priority Date Filing Date
ROA201600361A RO131321A0 (en) 2015-07-07 2016-05-20 System for recovery of braking kinetic energy

Country Status (1)

Country Link
RO (1) RO131321A0 (en)

Similar Documents

Publication Publication Date Title
US9586486B2 (en) Control unit for a recuperative brake system of a vehicle and method for braking a vehicle
KR101398380B1 (en) Externally controllable electrohydraulic vehicle brake system
CN101868387B (en) Brake system for motor vehicles
JP2602794B2 (en) Fluid pressure controlled dual system brake system for road vehicles.
US9914443B2 (en) Brake system for a vehicle
US9688258B2 (en) Method for operating a braking system of a vehicle, and control device for a braking system of a vehicle
CN102256839B (en) Brake device for a motor vehicle and method for controlling said brake system
US20150314765A1 (en) Brake Device
CN107697053B (en) A kind of recycling of braking energy of electric automobiles and reutilization system
US9963134B2 (en) Method for controlling a brake system, and brake system in which the method is carried out
JP2014051285A (en) Brake device of automobile, hydraulic device therefor, and operation method of brake device
CN102015392A (en) Hydraulic vehicle braking system
CN109562748B (en) Vehicle brake device
JP5625530B2 (en) Brake device for vehicle
JP2013514932A (en) Brake master cylinder for hydraulic vehicle brake system and method for operating a brake master cylinder
US9908416B2 (en) Method for blending a generator braking torque of a generator of a recuperative brake system having two brake circuits, and a control device for a recuperative brake system having two brake circuits
JP2013177024A (en) Brake control device for electric vehicle
CN102729971B (en) The brake system of automobile and the method for operation brake system of car
RO131321A0 (en) System for recovery of braking kinetic energy
JP5927093B2 (en) Brake device
CN103260971B (en) Pressure transfer device, energy assisted braking system and method for vehicle
WO2017007509A2 (en) Kinetic energy recovery system under braking
RO130764A0 (en) System for recovery of kinetic energy upon braking
CN105883691A (en) Forklift hydraulic system with hydraulic power-assisted brake
CN210565432U (en) Electrohydraulic valve group of unmanned agricultural machine