RO130748A0 - Process of wet desulphurization of acid spent gases and integrated technology for recycling the suspension resulting therefrom - Google Patents
Process of wet desulphurization of acid spent gases and integrated technology for recycling the suspension resulting therefrom Download PDFInfo
- Publication number
- RO130748A0 RO130748A0 ROA201500099A RO201500099A RO130748A0 RO 130748 A0 RO130748 A0 RO 130748A0 RO A201500099 A ROA201500099 A RO A201500099A RO 201500099 A RO201500099 A RO 201500099A RO 130748 A0 RO130748 A0 RO 130748A0
- Authority
- RO
- Romania
- Prior art keywords
- suspension
- magnesium
- desulfurization
- gases
- limestone
- Prior art date
Links
Landscapes
- Treating Waste Gases (AREA)
- Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
Abstract
Description
PROCEDEU DE DESULFURIZARE UMEDA A GAZELOR REZIDUALE ACIDE SI TEHNOLOGIE INTEGRATA DE VALORIFICARE A SUSPENSIEI REZULTATEPROCESS FOR WET DESULFURIZATION OF ACID RESIDUAL GASES AND INTEGRATED SUSPENSION VALUATION TECHNOLOGY RESULT
DUPĂ DESULFURIZAREAFTER DESULFURIZATION
Invenția se referă la un procedeu de desulfurizare umeda a gazelor reziduale încărcate cu bioxid de sulf si alte combinații acide de origine minerala sau organica. Procedeul consta in suspendarea in apa tehnologica a materialului absorbant din clasele calcare magnezitice, calcare dolomitice si calcare brucitice, dolomit, magnezit, brucit, olivina si serpentina sau amestecurile lor in stare micronizata sau nemicronizata, urmata de contactarea suspensiei rezultate cu gazele încărcate in poluanti acizi pana la neutralizarea totala a componentelor acide din gaze si epuizarea capacitatii de neutralizare a materialului absorbant, precum si de procesarea ulterioara a produsilor de reacție in faze tehnologice distincte pana la obținerea de produse vandabile.The invention relates to a process for the wet desulfurization of waste gases charged with sulfur dioxide and other acidic combinations of mineral or organic origin. The process consists in the suspension in the technological water of the absorbent material of the magnesite, dolomite and brucitic limestone classes, dolomite, magnesite, brucite, olivine and serpentine or their mixtures in micronized or non-synchronized state, followed by contacting the resulting suspension with the charged gases in the pollutants. until the total neutralization of the acidic components of the gases and the depletion of the neutralization capacity of the absorbent material, as well as of the subsequent processing of the reaction products in different technological phases, until obtaining the salable products.
Se cunosc numeroase procedee de desulfurizare a gazelor reziduale cu continui de SOX,NOX si alte componente acide minerale sau organice, bazate pe procedee uscate sau umede de absortie/adsorbtie cu reacție chimica, folosind ca agenti de desulfurizare materiale minerale alcaline din clasa calcarelor mai mult sau mai puțin pure, conform brevetelor US3808321/1974, US4552683/1985 si US2006070561/2006.Numerous processes for the desulfurization of waste gases containing SO X , NO X and other mineral or organic acid components are known, based on dry or wet processes of absorption / adsorption with chemical reaction, using as desalination agents alkaline mineral materials of limestone class. more or less pure, according to the patents US3808321 / 1974, US4552683 / 1985 and US2006070561 / 2006.
Procedeele curente de desulfurizare a gazelor reziduale provenite din arderea cărbunilor fosili in unitățile de producție a energiei electrice prin procedeul umed sunt bazate pe reacția: CaCO3 + SO2 + 1/2 O2 + 2 H2O = CaSO4-2H2O care are loc in faza lichida după absorbția SO2 din gaze si oxidarea fortata a sulfitilor formați inițial cu oxigenul din aerul insuflat in absorber.The current processes of desulfurization of waste gases from fossil coal combustion in the units of electricity production through the wet process are based on the reaction: CaCO 3 + SO 2 + 1/2 O 2 + 2 H 2 O = CaSO 4 -2H 2 O which occurs in the liquid phase after SO2 absorption of gases and forced oxidation of sulfites initially formed with oxygen from the air blown into the absorber.
Procedeele curente de desulfurizare a gazelor reziduale prin procedeul umed constau in absorbția oxidativa a SO2 in suspensii de carbonat de calciu natural (calcar) fin maruntit, pulverizate in absorbere multietajate special proiectate pentru acest process, cu si fara recircularea suspensiilor de carbonat de calciu, cu si fara oxidarea fortata cu aer a suspensiilor folosite, cu si fara adaugare de aditivi suplimentari pentru intensificarea amestecării trifazice (gaz-lichid-solid) si a reacțiilor chimice, precum si pentru finisarea cristalizării sulfatului de calciu ca dihidrat si atingerea randamentelor rezonabile de îndepărtarea a SO2, respectiv, a Grup MIR TimisaM®^A\Current processes for desulfurization of waste gases through the wet process consist of the oxidative absorption of SO2 in suspensions of finely chopped natural calcium carbonate (limestone), sprayed in multi-stage absorption specially designed for this process, with and without recirculating the suspensions of calcium carbonate, with and without the forced air oxidation of the suspensions used, with and without the addition of additional additives for intensifying the three-phase mixing (gas-liquid-solid) and chemical reactions, as well as for finishing the crystallization of calcium sulphate as dihydrate and achieving reasonable yields by removing it. SO2, respectively, of the MIR Group TimisaM® ^ A \
Z Z SC \ \ Președinte, Irina Maricic;Z Z SC \ \ President, Irina Maricic;
gbvp-mir aron—->—- . ./ \\srl/7gbvp-mir aron —-> —-. ./ \\ srl / 7
Λ 2 Ο 1 5 - - 000991 2 -02- 2015Λ 2 Ο 1 5 - - 000991 2 -02- 2015
randamentelor maxime de consum a CaO activ din calcar. Brevetul JP3361775/2000 recomanda maruntirea calcarului pana la dimensiuni de ordinul 0,01 -0,10 mm si o suprafața specifica de cel puțin 30 m2/g, iar brevetele US4836991/1989 si US5168065/1992 precizează principalii parametrii tehnologici ai procesului, precum si modul uzual de reglare si control a acestor parametri.maximum consumption yields of active CaO from limestone. Patent JP3361775 / 2000 recommends shredding of limestone to dimensions of the order of 0.01 -0.10 mm and a specific surface area of at least 30 m 2 / g, and patents US4836991 / 1989 and US5168065 / 1992 specify the main technological parameters of the process, such as and the usual way of adjusting and controlling these parameters.
Sunt cunoscute numeroase variante de realizare a fluxului de producție, conform brevetelor US3966878/1976, US4600570/1986, WO9416797/1994, KR20100138644/2009,Numerous embodiments of the production flow are known, according to the patents US3966878 / 1976, US4600570 / 1986, WO9416797 / 1994, KR20100138644 / 2009,
CN202844870/2012, CN202724993/2012, CN103446866 /2013, US8663585/2014 si mai multe tipuri de reactoare in care are loc absorbția si oxidarea SO2 din gazele reziduale, conform brevetelor GB1410037/1972, RU2149679/2000, CN201313032/2008, JP2009220021 /2008, CN201586442/2009, CN101862587/2010, CN101934195/2010,CN202844870 / 2012, CN202724993 / 2012, CN103446866 / 2013, US8663585 / 2014 and several types of reactors in which SO2 uptake and oxidation of waste gases take place, according to patents GB1410037 / 1972, RU2149679 / 2000, CN201313032 / 2008, JP2009220021 / 2008 , CN201586442 / 2009, CN101862587 / 2010, CN101934195 / 2010,
JP2012020216/2010, CN102225308/2011, JP2012239958/2011, CN103301727/2013,JP2012020216 / 2010, CN102225308 / 2011, JP2012239958 / 2011, CN103301727 / 2013,
CN203183915 /2013, CN103752164/2014.CN203183915 / 2013, CN103752164 / 2014.
Sunt cunoscute numeroase procedee de intensificare a tuturor proceselor fizice si chimice implicate in tehnnologia de eliminare a SO2 din gazele de ardere rezultate in unitățile de producție a energiei electrice din cărbuni fosili prin procedeul umed. Dintre acestea cele mai importante sunt: a) Stabilizarea suspensiei de carbonat de calciu pentru asigurarea omogenității si fluidității acesteia, precum si pentru prevenirea spumarii si a formarii crustelor pe traseele de curgere si in dipozitivele de dispersie a suspensiei in fluxul de gaze; b) Introducerea agentilor sinergici pentru accelerarea proceselor de transfer de masa, accelerarea cristalizării sulfatului de calciu ca dihidrat si a îmbunătățirii filtrabilitatii acestuia, precum si pentru favorizarea umectarii si a dizolvării particulelor de carbonat de calciu in vederea obținerii de randamente maxime de utilizare a calcarului; c) Introducerea agentilor de oxidare pentru a accelera oxidarea sulfitilor la sulfați in faza lichida si pentru a mari viteza globala a procesului de desulfurizare, respectiv, pentru micșorarea conținutului de SO2 in gazele eliberate in atmosfera. Brevetul CN102773003/2012 descrie un procedeu de mărire a stabilitatii suspensiei prin micșorarea viscozității acesteia cu un stabilizant format din 25-45 parti polycarboxylat organic si 10-20 parii of de polifosfat metalic, iar brevetul WO 2013082856/2012 propune ca dispersant un amestec de 15-40 % formiat de sodiu (dispersantul propriu zis) si 15-40 % antispumat organic. Numărul de agenți sinergici propuși este mare, iar compzitia acestora este foatre diversificata. Dintre agenții sinergici anorganiciNumerous processes are known to intensify all the physical and chemical processes involved in SO2 elimination technology from the flue gases resulting in the units of electricity production from fossil coal through the wet process. Of these the most important are: a) Stabilization of the calcium carbonate suspension to ensure its homogeneity and fluidity, as well as to prevent foaming and crust formation on the flow paths and in the suspension dispersion deposits in the gas flow; b) Introduction of synergistic agents to accelerate mass transfer processes, accelerate the crystallization of calcium sulphate as a dihydrate and improve its filterability, as well as to favor the wetting and dissolution of calcium carbonate particles in order to obtain maximum yields of limestone use; c) The introduction of oxidation agents to accelerate the oxidation of sulphites to sulphates in the liquid phase and to increase the overall speed of the desulfurization process, respectively, to decrease the SO2 content in the gases released into the atmosphere. Patent CN102773003 / 2012 describes a process for increasing the stability of the suspension by reducing its viscosity with a stabilizer consisting of 25-45 parts of organic polycarboxylate and 10-20 parts of metallic polyphosphate, and patent WO 2013082856/2012 proposes a dispersant of 15 -40% sodium formate (the dispersant itself) and 15-40% organic antifoam. The number of synergistic agents proposed is high, and their composition is highly diversified. Among the inorganic synergistic agents
pot fi menționați: perboratul de sodiu (brevet CN102327737/2012) si tiosulfatul de sodiu (brevet US4994246/1991). Acțiunea acestora consta in marirea vitezei si a randamentului de oxidare a sulfitilor. Agenții sinergici de natura organica recomandați sunt: esterii alchilsuccinici cuplați cu umectanti organici (brevet TW200944285/2009), acizii organici rezultați la fabricarea ciclohexanonei (brevet TW243418/1995), acizii organici si sărurile lor (brevet CN102380301/2012). esteri ai acizilor alchil-sulfonici cuplați cu umectanti organici (brevet CN101574615/2009), precum si compușii organici carboxilati si hidroxicarboxilati (brevet CN102974209/2013). Acțiunea acestora este multipla: măresc randamentul global de desulfurizare, măresc randamentul de transformare al calcarului, măresc viteza de oxidare a sulfitilor, modifica pH-optim al reacției principale, măresc umectabilitatea calcarului si scad consumurile energetice. Acțiunea comuna a agentilor sinergici organici si anorganici intensifica efectele scontate. Dintre formulările complexe ale acestora pot fi citate: acid caproic, acid glutaric si polixiloxani cuplați cu clorura de magneziu (brevet CN102000491/2010), acid adipic, sărurile acestuia si surfactanti organici cuplați cu săruri ale metalelor grele (brevet CN 102580514/2012), acid citric, acid salicilic si acizi policarboxilici cuplați cu oxizi si săruri ale metalelor alcaline (brevet CN102145252/2011) acizi organici cuplați cu compuși anorganici ai magneziului (brevet CN 102814118/2012), acizi organici si surfactanti organici cuplați cu săruri de magneziu (brevet CN103263842/2013), solventi organici cuplați cu săruri de magneziu si de sodiu (brevet CN103263843/2013), amine organice cuplate cu săruri de magneziu si de sodiu (brevet CN103272472/2013), acizi policarboxilici cu masa moleculara mare cuplați cu săruri anorganice (brevet CN102847429/2013), acizi hidroxi-aromatici cu masa moleculara mare, benzoati de sodiu si carboxometil celuloza cuplați cu oxid feric (brevet CN103752162/2014). Acțiunea acestora se extinde de la intensificarea procesului de oxidare si intensificarea proceselor de transfer de masa pana la marirea randamentului global, prevenirea incrustarii echipamentelor, limitarea efectelor secundare ale impurităților si reducerea consumurilor energetice. Catalizatorii introduși in suspensia de carbonat de calciu pentru accelerarea oxidarii sulfitilor sunt sărurile si oxizii manganului (CN103446870/2013, CN103752161/2014, CN103357263/ 2013), combinațiile chimice organice si anorganice ala lantanidelor (CN101954240/2011, CN103191785/2013), oxizii metalici si in special AI2O3 si S1O2 (CN102114385/2011, CN102847428/2013, CN103446870/2013) si sărurile organice si anorganice conținând ionulMention may be made of: sodium perborate (patent CN102327737 / 2012) and sodium thiosulphate (patent US4994246 / 1991). Their action consists in increasing the speed and the oxidation efficiency of the sulfites. Recommended synergistic agents of organic nature are: alkylsuccinic esters coupled with organic humectants (patent TW200944285 / 2009), organic acids resulting in the manufacture of cyclohexanone (patent TW243418 / 1995), organic acids and their salts (patent CN102380301 / 2012). esters of alkyl sulfonic acids coupled with organic humectants (patent CN101574615 / 2009), as well as carboxylated and hydroxycarboxylated organic compounds (patent CN102974209 / 2013). Their action is multiple: they increase the overall desulfurization efficiency, they increase the transformation yield of the limestone, they increase the oxidation rate of the sulphites, they modify the pH-optimum of the main reaction, they increase the wettability of the limestone and decrease the energy consumption. The common action of the organic and inorganic synergistic agents intensifies the expected effects. Among their complex formulations can be mentioned: caproic acid, glutaric acid and polixiloxanes coupled with magnesium chloride (patent CN102000491 / 2010), adipic acid, its salts and organic surfactants coupled with salts of heavy metals (patent CN 102580514/2012), citric acid, salicylic acid and polycarboxylic acids coupled with oxides and salts of alkali metals (patent CN102145252 / 2011) organic acids coupled with inorganic magnesium compounds (patent CN 102814118/2012), organic acids and organic surfactants coupled with magnesium salts CN103263842 / 2013), organic solvents coupled with magnesium and sodium salts (patent CN103263843 / 2013), organic amines coupled with magnesium and sodium salts (patent CN103272472 / 2013), polycarboxylic acids with high molecular weight coupled with inorganic salts patent CN102847429 / 2013), high molecular weight hydroxy-aromatic acids, sodium benzoates and carboxomethyl cellulose coupled with ferric oxide (bre vet CN103752162 / 2014). Their action extends from the intensification of the oxidation process and the intensification of the mass transfer processes until the increase of the overall efficiency, the prevention of the inlay of the equipment, the limitation of the secondary effects of the impurities and the reduction of the energy consumption. The catalysts introduced in the suspension of calcium carbonate to accelerate the oxidation of sulphites are the salts and oxides of manganese (CN103446870 / 2013, CN103752161 / 2014, CN103357263 / 2013), the organic and inorganic chemical combinations and the lanthanides (CN101954240 / 2011, CN103191785 / 2013). and in particular AI2O3 and S1O2 (CN102114385 / 2011, CN102847428 / 2013, CN103446870 / 2013) and the organic and inorganic salts containing the ion
C\- 2 o 1 5 - - 0 0 0 9 9 î 2 -02- 2015 amoniu (CN103433070/2013). Catalizatorii sunt însoțiți de aditivi capabili sa susțină omogenizarea acestora in suspensie, prevenirea spumarii si a acumulatii substanțelor active in spuma, respectiv, sa asigure marirea solubilitatii carbonatului de calciu. Efectul catalizatorilor de oxidare se reflecta in marirea vitezei de oxidare a sulfitilor, scăderea continulului de SO2 in gazele evacuate in atmosfera, creșterea randamentului global al procesului de desulfurizare si reducerea consumurilor energetice.C \ - 2 o 1 5 - - 0 0 0 9 9 Î 2 -02- 2015 ammonium (CN103433070 / 2013). The catalysts are accompanied by additives capable of supporting their homogenization in suspension, preventing foaming and accumulation of active substances in the foam, respectively, to ensure the increased solubility of calcium carbonate. The effect of the oxidation catalysts is reflected in the increase of the sulphite oxidation rate, the decrease of the SO2 content in the gases discharged into the atmosphere, the increase of the global desulfurization process efficiency and the reduction of the energy consumption.
Procedeele umede de eliminarare a SO2 din gazele reziduale, enumerate mai sus, rezolva in mod egal, atat problema identificării unui material absorbant reactiv economic abordabil, cat si atingerea unui nivel de performanta optimizat fata de necesitatea coborârii concentrațiilor SO2 in gazele procesate pana la limite acceptate de normele de protecția mediului. Insa, produsul secundar, gipsul de uz industrial, este un produs ieftin cu sanse mici de a acoperi prin valorificare costurile de exploatare si cu atat mai puțin de a amortiza investiția inițiala, îmbunătățirile expuse mai sus, chiar daca pot fi acceptate ca soluții tehnice viabile, sunt nerentabile întrucât sporesc cheltuielile de exploatare. In plus, introducerea suplimentara de aditivi pentru imbunatatirea performantelor tehnologice ale procesului poate dauna calitatii gipsului si poate ridica probleme majore de poluare a apelor reziduale.The wet processes for eliminating SO2 from the waste gases, listed above, also solve both the problem of identifying an economically reactive reagent absorbent material, as well as achieving an optimized level of performance against the need to lower SO2 concentrations in the processed gases to the accepted limits. environmental protection rules. However, the by-product, the gypsum for industrial use, is a cheap product with low chances of covering by exploiting the costs of operation and even less to amortize the initial investment, the improvements mentioned above, even if they can be accepted as viable technical solutions. , are unprofitable as operating expenses increase. In addition, the additional introduction of additives to improve the technological performance of the process can damage the quality of the gypsum and can lead to major problems of wastewater pollution.
Problema tehnica pe care o rezolva invenția de procedeu de desulfurizare umeda a gazelor reziduale acide si tehnologie integrata de valorificare a suspensiei rezultate după desulfurizare, conform invenției, consta in înlocuirea parțiala sau totala a calcarului ca agent de desulfurizare cu materiale din clasele calcare magnezitice, calcare dolomitice si calcare brucitice, dolomit, magnezit, brucit, olivina si serpentina sau amestecurile lor in stare micronizata sau nemicronizata, materiale mai reactive decât calcarul, care limitaza producția de gips si permite obținerea, ca cel de al doilea produs secundar, a sulfatului de magneziu sub forma de soluție convertibila in sulfat de magneziu de uz industial, hidroxid de magneziu brut si purificat, oxid de magneziu brut si purificat, carbonat si carbonat bazic de magneziu brut si purificat, concomitent cu transformarea ionului sulfat in produse vandabile, precum sulfatul de amoniu, sulfatul de potasiu sau, in ultima instanța, a sulfatul de calciu recuperat sub forma de gips de uz industrial, la fel ca in faza primara de desulfurizare a gazelor reziduale cu continui de SO2, realizând importante reduceri de materii prime si energie.The technical problem solved by the invention of a process of wet desulfurization of acid waste gases and an integrated technology of valorization of the suspension resulting after desulfurization, according to the invention, consists in the partial or total replacement of the limestone as a desulfurizing agent with materials of the magnesite, limestone classes. dolomitic and brucitic limestones, dolomite, magnesite, brucite, olivine and serpentine or their mixtures in micronized or non-micronized state, materials more reactive than limestone, which limit the production of gypsum and allow the obtaining, as the second by-product, of magnesium sulfate. in the form of a convertible solution into magnesium sulfate for industrial use, crude and purified magnesium hydroxide, crude and purified magnesium oxide, crude and purified basic magnesium carbonate and carbonate, together with the conversion of the sulphate ion into salable products, such as ammonium sulphate , potassium sulphate or, ultimately, sulfur the calcium layer recovered in the form of gypsum for industrial use, as in the primary phase of desulfurization of waste gases with SO2 contents, achieving significant reductions in raw materials and energy.
Fundația MIR TimjsoacaMIR Timjsoaca Foundation
Președinte, Z-/_ XPresident, Z - / _ X
Irina MaricicfâÎiigiP-MIR jIrina MaricicfâÎiigiP-MIR j
^- 2 0 1 5 -- 0 0 0 9 9 ί 2 -02- 2015^ - 2 0 1 5 - 0 0 0 9 9 ί 2 -02- 2015
Procedeul conform invenției rezolva aceasta problema tehnica prin aceia ca prevede înlocuirea suspensiei de calcar in proporție de 5 -100% cu suspensia unui mineral activat sau neactivat mecanic, cu dimensiunea medie a particulelor cuprinsa intre 0 si 100 pm, sau cel mai bine mai mica 20pm, apartinand clasei de compuși alcalini de magneziu de tipul oxizi, hidroxizi, carbonați legați sau nelegati chimic de alte alte elemente chimice sub forma de oxizi, hidroxizi, carbonați sau silicati simpli sau dubli, hidratati sau nehidratati, avand un continui de cel puțin 15-20 % MgO, din care cel puțin 30% se gaseste sub forma de Mg(OH)2. Procedeul conform invenției consta in prepararea unei suspensii apoase cu concentrația de 20 -50% a unui mineral alcalin sau a unui amestec de minerale alcaline micronizate sau nemicronizate, avand dimensiunea particulelor cuprinsa intre 0 si 60 pm, sau mai bine intre 10 si 20 pm, provenind din clasele de minerale naturale: calcare magnezitice, calcare dolomitice si calcare brucitice, magnezit, brucit, olivina si serpentina cu sau fara o îmbogățire preliminarea si contactarea suspensiei preparate cu gazele de gazelor reziduale acide cu conținut de SO2 in condiții similare, dar nu identice si folosind echipamente similare, dar nu identice cu cele folosite in procedeul umed de desulfurizare cu suspensii de calcar.The process according to the invention solves this technical problem by that it provides for the replacement of the limestone suspension in a proportion of 5-100% with the suspension of a mineral activated or not mechanically activated, with the average particle size between 0 and 100 pm, or at least 20pm at best. , belonging to the class of alkali magnesium compounds of the type oxides, hydroxides, carbonates or chemically bound or other chemical elements in the form of oxides, hydroxides, carbonates or silicates, single or double, hydrated or non-hydrated, having a content of at least 15- 20% MgO, of which at least 30% is in the form of Mg (OH) 2. The process according to the invention consists in the preparation of an aqueous suspension with a concentration of 20-50% of an alkaline mineral or of a mixture of micronized or non-synchronized alkaline minerals, having a particle size between 0 and 60 pm, or better between 10 and 20 pm, coming from the classes of natural minerals: magnesitic limestone, dolomitic limestone and brucitic limestone, magnesite, brucite, olivine and serpentine with or without a preliminary enrichment and contacting the suspension prepared with the gases of acid waste gases with SO2 content under similar but not identical conditions and using similar equipment, but not identical to those used in the wet desulphurization process with limestone suspensions.
Procedeul conform invenției înlătură dezavantajele celorlalte variante de aplicare a procedeului umed de desulfurizare a gazelor reziduale acide, folosind suspensia de calcar ca agent de desulfurizare, prin aceia ca schimba mecanismul intern al procesului de desulfurizare, ca urmare a introducerii reacției de formare a sulfatului de magneziu cu o pondere echivalenta cu cea a formarii si precipitareii CaSO4-2H2O, avand următoarele consecințe asupra chimismului procesului de desulfurizare: creșterea concentrației ionului sulfit in faza lichida datorata solubilitatii mai mari a sulfitului de magneziu comparativ cu solubilitatea sulfitului de calciu, intensificarea procesului de oxidare a sulfitilor datorata creșterii concentrației acestora in faza lichida a suspensiei, creșterea aciditatii fazei lichide datorata solubilitatii mai mari a sulfitului de magneziu si prin aceasta creșterea vitezei de solubilizare a carbonatului de calciu si accelerarea procesului de cristalizare a CaSO4-2H2O sub suprasaturatiile mai mari generate intensificarea procesului de oxidare a sulfitilor, creșterea intensității procesului de fragmentare a particulelor solide in suspensie insotita de creșterea suprafeței specifice a acestora datorata dizolvării componentei magneziene a agentului de desulfurizare si prin aceasta prevenirea formarii crustelor de CaSO4-2H2O la suprafața particulelor nereactionate de CaCCh si accelerarea întregului proces deThe process according to the invention removes the disadvantages of the other variants of applying the wet process for acid desulfurization of waste gases, using the limestone suspension as desulfurization agent, by which it changes the internal mechanism of the desulfurization process, following the introduction of the magnesium sulfate formation reaction. with a weight equivalent to that of CaSO4-2H2O formation and precipitation, having the following consequences on the chemistry of the desulfurization process: increasing the concentration of sulphite ion in the liquid phase due to the higher solubility of magnesium sulfite compared to the solubility of calcium sulphite, intensifying the oxidation process sulphites due to the increase of their concentration in the liquid phase of the suspension, the increase of the acidity of the liquid phase due to the higher solubility of magnesium sulphite and thereby the speed of solubilization of calcium carbonate and the acceleration of the crystallization process. CaSO4-2H2O under the higher supersaturations generated the intensification of the sulphite oxidation process, the increase of the intensity of the fragmentation process of the solid particles in suspension accompanied by the increase of their specific surface due to the dissolution of the magnesium component of the desulfurization agent and thus the prevention of the formation of Ca4 at the surface of the particles not reacted by CaCCh and accelerating the whole process
Fundația MIR Timiso;MIR Timiso Foundation;
Președinte, . Irina MarieîcaPresident,. Irina Marieîca
SCSC
MitaRÎJPJÎή (χ- 2 β 1 5 - - 00099I 2 -02- 2015 desulfurizare, reducerea cantitatii de CO2 degajat pe unitatea de volum de suspensie datorata prezentei Mg(OH)2 in agentul de desulfurizare si prin aceasta reducerea capacitatii de spumare a suspensiei, creșterea densității si a viscozitatii fazei lichide si prin aceasta creșterea stabilitatii suspensiei. Acest nou mecanism de desulfurizare face inutila utilizarea agentilor sinergici, a agentilor oxidanti sau a stabilizatorilor suspensiei pentru accelerarea procesului global.MitaRÎJPJÎή (χ- 2 β 1 5 - - 00099I 2 -02- 2015 desulfurization, reducing the amount of CO2 released per unit volume of suspension due to the presence of Mg (OH) 2 in the desulfurizing agent and thus reducing the foaming capacity of the suspension , increasing the density and viscosity of the liquid phase and thereby increasing the suspension stability.This new desulfurization mechanism makes it unnecessary to use synergistic agents, oxidizing agents or suspension stabilizers to accelerate the overall process.
Procedeul conform invenției modifica substanțial mecanismul intern al procesului global de desulfurizare a gazelor reziduale provenite din procesele de ardere a cărbunilor cu continui ridicat de sulf prin procedeul umed, insa nu modifica principiile generale ale tehnologiei de desulfurizare si nici sistemele de asigurare a excesului de oxigen disponibil pentru oxidarea SO2 sau sistemele de recirculare a fluidelor in procesul tehnologic si nici sistemul de control si reglare a parametrilor tehnologici.The process according to the invention substantially modifies the internal mechanism of the global process of desulfurization of waste gases from the combustion processes of high sulfur coal through the wet process, but does not change the general principles of the desulfurization technology nor the systems for ensuring the excess oxygen available. for the oxidation of SO2 or the fluid recirculation systems in the technological process and neither the system of control and regulation of the technological parameters.
Procedeul conform invenției beneficiază de avantajele induse de schimbarea mecanismului intern al procesului global de desulfurizare a gazelor reziduale provenite din procesele de ardere a cărbunilor cu conținut ridicat de sulf prin procedeul umed si permite realizarea randamentelor de 93-98% in procesul de de eliminare a SO2 din gazele procesate si a unui randament de 95-98% in consumul de agent de desulfurizare, in condițiile utilizării ca parametru de referința a unui raport molar 1,00/1,05 intre cantitatea de SO2 eliminata din gazele procesate si cantitatea de totala de CaO si MgO alimentata cu suspensia agentului de desulfurizare, la o temperatura de 40-90°C.The process according to the invention benefits from the advantages induced by the change of the internal mechanism of the global process of desulfurization of waste gases from the combustion processes of high sulfur coal through the wet process and allows to achieve 93-98% yields in the process of SO2 elimination. from the processed gases and a 95-98% yield in the consumption of desulphurizing agent, under the conditions of use as reference parameter of a molar ratio 1.00 / 1.05 between the quantity of SO2 removed from the processed gases and the total amount of CaO and MgO fed with the suspension of the desulphurizing agent at a temperature of 40-90 ° C.
Procedeul conform invenției permite separarea fluxurilor de eliminare a SO2 din gazele reziduale si de valorificare a SO2 recuperat sub forma de gips de uz industrial de fluxul de prelucrare a soluției de sulfat de magneziu si de valorificare a acestui produs sub forma de sulfat de magneziu de uz industial, hidroxid de magneziu brut si purificat, oxid de magneziu brut si purificat, carbonat si carbonat bazic de magneziu brut si purificat, concomitent cu transformarea ionului sulfat in produse vandabile, precum sulfatul de amoniu, sulfatul de potasiu sau sulfatul de calciu separat prin precipitare cu var hidratat sub forma de gips de uz industrial alaiuri de hidroxidul de magneziu, de care se separa prin hidrociclonare si apoi, se recircula in faza primara de desulfurizare a gazelor reziduale cu continui de SO2. Mai mult, in cazul valorificării sulfatului de magneziu sub forma de hidroxid de magneziu si CaSO4-2H2O prin tratarea soluției de sulfat de magneziu cu var hidratat, urmata de recircularea gipsului siThe process according to the invention allows the separation of the SO2 elimination flows from the waste gases and the recovery of SO2 recovered in the form of industrial gypsum from the processing flow of the magnesium sulphate solution and of the use of this product as the magnesium sulfate for use. industrial, crude and purified magnesium hydroxide, crude and purified magnesium oxide, crude and purified basic magnesium carbonate and carbonate, together with the conversion of sulphate ion into salable products, such as ammonium sulphate, potassium sulphate or calcium sulphate separated by precipitation with hydrated lime in the form of gypsum for industrial use together with magnesium hydroxide, which is separated by hydrocyclone and then recirculated in the primary phase of desulfurization of waste gases with SO2 contents. Moreover, in the case of the use of magnesium sulphate in the form of magnesium hydroxide and CaSO4-2H2O by treating the solution of magnesium sulphate with hydrated lime, followed by the recirculation of gypsum and
Fundația MIR Timiso^rSipDA/șXMIR Timiso Foundation ^ rSipDA / ŞX
Președinte, Irina MaricicaPresident, Irina Maricica
^-2015-- 000991 2 -02- 2015 apelor reziduale in fluxul eliminare a SO2 din gazele reziduale, procedeul conform invenției permite închiderea unui ciclu de fabricație cu valorificarea integrala a produselor rezultate la desulfurizarea gazelor provenite din arderea cărbunilor cu continui de sulf. Configurarea celor doua fluxuri de fabricație este ilustrata in figura 1, in care este prezentata schema tehnologiei integrate de desulfurizare si de valorificare a produselor comerciale rezultate prin procesarea suspensiei de CaSO4-2H2O si conversia sulfatului de magneziu format prin solubilizarea magneziului din calcarele magneziene. In schema tehnologica din figura 1, materiile prime si auxiliarii sunt: apa tehnologica (1), calcarele magneziene (2), gazele de termocentrala (3), aerul pentru oxidare (4), si varul nehidratat (5). Din calcarele magneziene si apa tehnologica se prepara suspensia de absorbant (6) alimentata in faza de desulfurizare propriu zisa a procesului tehnologic (7). Gazele purificate in faza de desulfurizare (7) sunt eliberate in atmosfera, iar suspensia de CaSO4.2H2O in soluția concentrata de magneziu se acumulează in colectorul de suspensie (8), unde se alimentează aerul suplimentar pentru oxidarea SO3(2-) la SO4(2-). Din colectorul (8), o parte din suspensia de CaSO4-2H2O in soluția concentrata de magneziu se recircula in faza desulfurizare (7), iar o cantitate de suspensie echivalenta cu cantitatea de calcar magnezian alimentat ca suspensie in faza de desulfurizare (7) este filtrata pentru separarea CaSO4-2H2O. Operația de filtrare are loc in trei trepte. In prima treapta (nefigurata in schema din figura 1), cea mai mare parte din soluția concentrata de MgSO4 se separa prin hidrociclonare si este trimisa in colectorul de soluție concentrata (11). In continuare suspensia îngroșata de CaSO4-2H2O se filtrează pe un filtru cu spalare avansata a precipitatului cu apa tehnologica recirculata si cu apa tehnologica proaspata pentru îndepărtarea completa a sulfatului de magneziu din turta de CaSO4-2H2O. In schema din figura 1, filtrarea I (9) este desemnata ca zona funcționala a filtrului din care se colectează soluția concentrata de MgSO4, care este apoi trimisa in colectorul de soluție concentrata (11). Filtrarea II (10) este desemnata ca zona funcționala a filtrului din care se colectează apele de spalare a CaSO4-2H2O, recirculate apoi, parțial sau total, împreuna cu apele recirculate din colectotrul de ape recirculate (15), ca ape pentru hidratarea varului. Precipitatul umed separat si spalat (23) este produul finit valorificabil ca gips industrial. O parte din soluția concentrata de sulfat de magneziu este caustificata in faza de caustificare (13) cu varul hidratat (12), in vederea obținerii Mg(OH)2 si a MgO. Restul de soluție concentrata de sulfat de magneziu este^ -2015-- 000991 2 -02- 2015 wastewater in the SO 2 waste stream, the process according to the invention allows the closure of a manufacturing cycle with the full use of the products resulting from the desulfurization of the gases from the combustion of sulfur-containing coal. The configuration of the two manufacturing flows is illustrated in figure 1, in which is presented the diagram of the integrated technology of desulfurization and of valorisation of the commercial products resulted by processing the CaSO 4 -2H 2 O suspension and the conversion of the magnesium sulphate formed by the solubilization of the magnesium from the magnesian limestones. . In the technological scheme of figure 1, the raw materials and auxiliaries are: technological water (1), magnesian limestone (2), gas from the power plant (3), air for oxidation (4), and non-hydrated lime (5). From the magnesian limestone and the technological water, the absorbent suspension (6) fed in the desulphurization phase of the technological process (7) is prepared. The purified gases in the desulphurisation phase (7) are released into the atmosphere, and the CaSO 4 .2H 2 O suspension in the concentrated magnesium solution is accumulated in the suspension manifold (8), where additional air is supplied for SO3 oxidation (2-). SO 4 (2-). From the collector (8), part of the suspension of CaSO 4 -2H 2 O in the concentrated magnesium solution is recycled in the desulfurization phase (7), and a suspension amount equivalent to the amount of magnesium limestone fed as a suspension in the desulfurization phase ( 7) is filtered to separate CaSO 4 -2H 2 O. The filtration operation takes place in three steps. In the first step (not shown in the diagram in figure 1), most of the concentrated solution of MgSO 4 is separated by hydrocyclone and is sent to the concentrated solution collector (11). Further, the thickened suspension of CaSO 4 -2H 2 O is filtered on a filter with advanced washing of the precipitate with recirculated technological water and fresh technological water for the complete removal of magnesium sulphate from the CaSO 4 -2H 2 O. cake. Figure 1, filtration I (9) is designated as the functional area of the filter from which the concentrated solution of MgSO 4 is collected, which is then sent to the concentrated solution collector (11). Filtration II (10) is designated as the functional area of the filter from which the waste water of CaSO 4 -2H 2 O is collected, then recirculated, partially or totally, together with the recirculated waters from the recirculated water collector (15), as water for hydration of lime. The separated and washed wet precipitate (23) is the finished product that can be used as industrial gypsum. Part of the concentrated magnesium sulfate solution is caustified in the caustification phase (13) with hydrated lime (12), in order to obtain Mg (OH) 2 and MgO. The rest of the concentrated solution of magnesium sulfate is
^-2015-- 000991 2 -02- 2015 concentrata in faza de Concentrare - Cristalizare (16) pana la atingerea concentrației optime pentru cristalizarea MgSO4-7H2O. Produsul cristalizat este separat din suspensie prin filtrare si apoi uscat, rezultând produsul comercial MgSO4-7H2O (18). O parte din MgSO4-7H2O umed este calcinat pana la anhidrizare (19), rezultând produsul comercial MgSC>4 anhidru (20). Soluția muma de la cristalizarea MgSO4-7H2O (17) se recircula in instalația de Concentrare - Cristalizare (16), iar toate apele reziduale colectate pe fluxurile de fabricație a MgSO4-7H2O si MgSCU anhidru se trimit in fluxul de suspensie de la instalația de caustificare (13) către Hidrociclonarea I (14). Suspensia rezultata la caustificarea MgSO4 (13) este îngroșata in faza de hidrociclonare I (14), iar apele reziduale sunt trimise in colectorul de ape recirculate (15). In faza de hidrociclonare II (21), suspensia îngroșata in hidrocilonul I este este fractionata in o suspensie concentrata in Mg(OH)2 ca faza solida si suspensie concentrata in CaSO4-2H2O ca faza solida. In faza de Filtrare 3 (22) se separa CaSO4'2H2O valorificabil ca gips industrial de calitate superioara, iar apele reziduale sunt trimise trimise in colectorul de ape recirculate (15). Suspensia concentrata in Mg(OH)2 este îngroșata in faza de hidrociclonare III (24), iar îngroșatul se centrifugheaza in faza (25) pentru reducerea conținutului de umiditate si apoi se calcineaza in faza (26) pentru obținerea produsului comercial MgO (27). Apele reziduale de la fazele hidrociclonare III (24), centrifugare (25) si calcinare (26) sunt trimise in in colectorul de ape recirculate (15). Tehnologia de procesare a soluțiilor concentrate de MgSCh este flexibila si ușor adaptabila la schimbările rapoatelor intre producțiile celor 3 sortimante de compuși cu magneziu rezultați ca produse finite comercializabile, atunci când conținutul de magneziu in materia prima variaza in limite semnificative. De asemenea, tehnologia poate fi adaptata pentru fabricarea altor produși utili cu continui de SO4(2-) sau Mg(2+), precum MgCO3'3H2O, K2SO4, (NFL^SC^, 4MgCO3 Mg(OH)2-5H2O, 4MgCO3 Mg(OH)2-4H2O, MgCO3 Mg(OH)2-3H2O, etc.^ -2015-- 000991 2 -02- 2015 concentrated in the Concentration - Crystallization (16) phase until the optimum concentration for crystallization of MgSO4-7H 2 O is reached. The crystallized product is separated from the suspension by filtration and then dried, resulting in the commercial product MgSO4 -7H 2 O (18). Part of the moist MgSO4-7H 2 is calcined to anhydrization (19), resulting in the commercial product anhydrous MgSO 4 (20). The mum solution from the crystallization of MgSO4-7H 2 O (17) is recirculated to the Concentration - Crystallization plant (16), and all the waste water collected on the manufacturing flows of MgSO4-7H 2 O and anhydrous MgSCU is sent to the suspension stream. at the caustification facility (13) towards Hidrocyclone I (14). The suspension resulting from the caustification of MgSO 4 (13) is thickened in the hydrocyclone phase I (14), and the waste water is sent to the recirculated water collector (15). In hydrocyclone phase II (21), the thickened suspension in hydrocylon I is fractionated into a suspension concentrated in Mg (OH) 2 as a solid phase and a suspension concentrated in CaSO4-2H 2 O as a solid phase. In the Filtration phase 3 (22), CaSO4'2H 2 separates. It can be used as a high quality industrial gypsum, and the waste water is sent to the recycled water collector (15). The suspension concentrated in Mg (OH) 2 is thickened in hydrocyclone phase III (24), and the thickener is centrifuged in phase (25) to reduce the moisture content and then calcined in phase (26) to obtain the commercial MgO product (27). . Waste water from hydrocyclonal phases III (24), centrifugation (25) and calcination (26) are sent to the recirculated water collector (15). The technology for processing solutions concentrated by MgSCh is flexible and easily adaptable to the changes of ratios between the productions of the 3 types of magnesium compounds resulting as marketable finished products, when the magnesium content in the raw material varies within significant limits. Also, the technology can be adapted to manufacture other useful products with SO4 (2-) or Mg (2+) contents, such as MgCO 3 '3H 2 O, K2SO4, (NFL ^ SC ^, 4MgCO 3 Mg (OH) 2 -5H 2 O, 4MgCO 3 Mg (OH) 2 -4H 2 O, MgCO 3 Mg (OH) 2 -3H 2 O, etc.
Procedeul conform invenției, prin creșterea capacitatii de oxidare a componentilor activi din compoziția suspensiei folosite, permite eliminarea parțiala a ΝΟχ si a mercurului, cu si fara maririrea conținutului de oxigen in gazele de ardere sau marirea debitului de oxigen/aer insuflat in colectorul de suspensie recirculata in absorber.The process according to the invention, by increasing the oxidation capacity of the active components of the suspension composition used, allows the partial elimination of ΝΟχ and mercury, with and without increasing the oxygen content in the flue gases or increasing the oxygen / air flow in the recirculated suspension manifold. in the absorber.
Procedeul conform invenției, permite si prelucrarea altor categorii de gaze reziduale acide cu conținut de SOx, NOx, HC1, HF, etc. si identificatea procedeelor de prelucrate a soluțiilor reziduale.The process according to the invention also allows the processing of other categories of acid waste gases containing SOx, NOx, HC1, HF, etc. and identifying the processes for processing the residual solutions.
-2015-- 00099ί 2 -02- 2015-2015-- 00099ί 2 -02- 2015
Procedeul conform invenției prezintă următoarele avantaje:The process according to the invention has the following advantages:
- creșterea productivității procesului exprimata prin consumul de agent de desulfurizare pe tona de SO2 eliminat din gaze, datorata diferenței de masa moleculara intre fracția de CaO din compoziția agentului de desulfurizare înlocuit si fracția de MgO sau MgCC>3 din agenții alcalini cu conținut de magneziu folosiți ca agenti de desulfurizare;- increasing the productivity of the process expressed by the consumption of desulphurizing agent per ton of SO2 eliminated from gas, due to the difference in molecular mass between the CaO fraction from the composition of the replaced desulphurizing agent and the fraction of MgO or MgCC> 3 from the alkaline agents containing magnesium content as desulphurizing agents;
- scăderea consumului energetic proporțional cu scăderea consumului de agent de desulfurizare, întrucât energia consumata in proces depinde exclusiv de debitele de materiale solide si lichide vehiculate;- the decrease of the energy consumption proportional to the decrease of the consumption of desulfurization agent, since the energy consumed in the process depends exclusively on the flows of solid and liquid materials conveyed;
- marirea randamentelor in toate fazele tehnologice in care este implicat agentul de desulfurizare, datorata efectului sinergie si oxidant al componentei magneziene din compoziția agentului de desulfurizare;- increasing the yields in all the technological phases in which the desulphurizing agent is involved, due to the synergistic and oxidizing effect of the magnesium component of the desulphurizing agent composition;
- flexibilitatea procesului indusa de posibilitatea reglării raportului intre produsii secundari si a variabilitatii condițiilor de integrare a tehnologiilor de conversie a sulfatului de magneziu in produși vandabili;- the flexibility of the process induced by the possibility of adjusting the ratio between by-products and the variability of the conditions of integration of the technologies for the conversion of magnesium sulfate into salable products;
- adaptabilitatea ușoara si fara consumuri mari de materii prime si energie la variațiile concentrațiilor SO2 in gazele reziduale, respectiv, la variația calitatii cărbunelui utilizat in unitățile de producția a energiei electrice.- easy adaptability and without high consumption of raw materials and energy to the variations of SO2 concentrations in the waste gases, respectively, to the variation of the quality of the coal used in the units of electricity production.
Se dau in continuare doua exemple care ilustrează invenția:Two examples illustrating the invention are given below:
Exemplul 1. Experimentul de laborator a fost executat in condiții similare cu cele existente in absorberul instalației industriale de desulfurizare a gazelor, in scopul determinării performantelor procedeului umed de desulfurizare cu calcar filler cu un conținut de 92% CaCCE sau 51,5 % CaO si 8% insolubile si comparării acestor performante cu performantele procedeului, conform invenției. Experimentul a fost excutat pe o proba 50 g calcar tip filler, macinat pana la dimensiunea medie a particulei de 30 pm, avand capacitatea teoretica de neutralizare a SO2 de 588,2 kg SO2 /1 calcar brut sau 24,41 g SO2 /50 g calcar brut. Instalația folosita a fost alcatuita dintr-o coloana de absobtie cu diametrul de 10 cm, prevăzută cu irita pentru distribuția uniforma a gazului in suspensia de calcar tip filler, alimentata cu gaze reziduale preluate direct din conducta de aductie a gazelor in absorberul industrial si cu aer preluat din atmosfera de un minicompresor. Ambele gaze au fost trecute prin vase de barbotare umplute cu apa pentru saturarea acestora cu vapori de apa si menținerea constanta a cantitatii de apa in suspensia de calcar. Debitele celor doua gaze au fost de 200 1/h. DebiteleExample 1. The laboratory experiment was performed under conditions similar to those existing in the industrial gas desulphurization plant absorber, in order to determine the performance of the wet desulphurization process with limestone filler with a content of 92% CaCCE or 51.5% CaO and 8 % insoluble and comparing these performances with the performance of the process, according to the invention. The experiment was excised on a sample of 50 g filler type limestone, milled to the average particle size of 30 µm, having the theoretical neutralization capacity of SO2 of 588.2 kg SO2 / 1 crude limestone or 24.41 g SO2 / 50 g rough limestone. The installation used was made up of an absorption column with a diameter of 10 cm, provided with irritation for the uniform distribution of the gas in the suspension of filler type limestone, fed with waste gases taken directly from the gas pipeline in the industrial absorber and with air. taken from the atmosphere by a mini compressor. Both gases were passed through bubbling vessels filled with water to saturate them with water vapor and to maintain the constant amount of water in the limestone suspension. The flow rates of the two gases were 200 1 / h. debits
ν 2 0 1 5 - - 0 0 0 9 9 1 2 -02- 2015 celor doua gaze au fost alese la valorile indicate pentru a conduce experimentul in condiții hidrodinamice similare cu cele din absorberul industrial si pentru a permite oxidarea completa a SO2 la SO3. Astfel, debitul total de 400 1/h corespunde unui debit volumetric al gazelor de aproximativ 51 m3/m2-h sau unei viteze liniare a gazului prin suspensia de calcar de 0,014 m/s. Concentrația suspensiei de calcar a fost 30%, adica 50 g calcar si 117 ml apa. Experimentul a început cu barbotarea gazelor reziduale cu conținut de SO2 in apa din barbotor pentru saturarea acesteia cu SO2. Apoi, s-a pornit alimentarea aerului in coloana, s-a introdus apa in coloana si a fost cuplata alimentarea coloanei cu SO2. Experimentul propriu zis a început in momentul in care s-a intraodus in coloana cele 50 g de calcar si s-a pornit cronometrarea duratei de desulfurizare. Pe parcursul experimentului s-a masurat la intervale regulate concentrația SO2 in gazele reziduale si concentrația SO2 la ieșirea din coloana de desulfurizare, pH-ul si temparatura suspensiei, precum si concentrația totala a ionilor SO3(-2) si HSO3 (-1). Experimentul s-a încheiat in momentul in care concentrația SO2 la ieșirea din coloana de desulfurizare a crescut peste 200 ppm. Măsurătorile efectuate au aratat ca: a) pH-ul suspensiei a variat in timpul experimentului intre 4.8 si 5,6; b) temperatua medie a suspensiei a fost 45°C c) concentrația totala a ionilor SO3(-2) si HSO3 (-1) a variat intre 350 si 450 mg SO2/L; d) concentrația medie a SO2 in gazele colectate din conducta de aductie a gazelor reziduale la absorberul industrial a fost 5600 mg/Nm . Experimentul a fost încheiat după 21,7 ore, când s-a inregistarat o concentrație de 210 mg SO2/Nm3. Din bilanțul de materiale s-a constatat ca din gazele reziduale au fost extrase 23,43 g de SO2, adica randamentul de desulfurare a fost de 23,43/24,41 x 100 = 96,0%. întrucât raportul molar CaO din calcar / SO2 din gaze a fost 1/1, randamentul de consum al calcarului a fost același.ν 2 0 1 5 - - 0 0 0 9 9 1 2 -02- 2015 the two gases were chosen at the values indicated to conduct the experiment under hydrodynamic conditions similar to those of the industrial absorber and to allow the complete oxidation of SO 2 at SO3. Thus, the total flow of 400 1 / h corresponds to a volumetric flow of gas of approximately 51 m 3 / m 2 -h or to a linear gas velocity through the limestone suspension of 0.014 m / s. The concentration of the limestone suspension was 30%, ie 50 g of limestone and 117 ml of water. The experiment started with the bubbling of the residual gases containing SO2 in the water from the bubble to saturate it with SO2. Then, the air supply was started in the column, the water was introduced into the column and the column supply was coupled with SO2. The experiment itself began when the 50 g of limestone was introduced into the column and the timing of the desulfurization time began. During the experiment, the SO2 concentration in the waste gases and the SO2 concentration at the exit from the desulphurization column, the pH and the temperature of the suspension, as well as the total concentration of SO3 (-2) and HSO3 (-1) ions were measured at regular intervals. The experiment ended when the SO2 concentration at the exit from the desulfurization column increased over 200 ppm. The measurements made showed that: a) the pH of the suspension varied during the experiment between 4.8 and 5.6; b) the average temperature of the suspension was 45 ° C c) the total concentration of SO3 (-2) and HSO3 (-1) ions varied between 350 and 450 mg SO2 / L; d) The average SO2 concentration in the gases collected from the waste gas pipeline to the industrial absorber was 5600 mg / Nm. The experiment was completed after 21.7 hours, when a concentration of 210 mg SO2 / Nm 3 was recorded. From the material balance it was found that from the waste gases 23.43 g of SO2 were extracted, that is the desulfurization yield was 23.43 / 24.41 x 100 = 96.0%. Since the molar ratio CaO in limestone / SO 2 in gas was 1/1, the yield efficiency of the limestone was the same.
Exemplul 2. Un experiment identic a fost efectuat cu o proba de 50 g calcar magnezitic avand compoziția: 35,3 % CaO, 19,3 % MgO (din care cel puțin 30% se gaseste sub forma de Mg(OH)2) si 5,9% insolubile. Dimensiunea medie a particulei de calcar magnezitic a fost 30 pm, iar capacitatea teoretica de neutralizare a SO2 a fost 712,2 kg SO2 /1 calcar magnezitic brut sau 35,61 g SO2 /50 g calcar magnezitic brut. Măsurătorile efectuate au la sfârșitul experimentului aratat ca: a) pH-ul suspensiei a variat in timpul experimentului intre 4,0 si 6,0; b) temperatua medie a suspensiei a fost 47°C c) concentrația totala a ionilor SO3(-2) si HSO3 (-1) a variat intre 400 si 550 mg SO2/L; d) concentrația medie a SO2 in gazele colectate din conducta de aductie a gazelor reziduale la a ) mg/Nm3.Example 2. An identical experiment was performed with a sample of 50 g magnesitic limestone having the composition: 35.3% CaO, 19.3% MgO (of which at least 30% is in the form of Mg (OH) 2 ) and 5.9% insoluble. The average particle size of magnesite, limestone was 30, and the theoretical capacity to neutralize the SO 2 was 712.2 kg SO 2/1 crude magnesite, limestone and 35.61 g SO 2/50 g of crude magnesite, limestone. The measurements made at the end of the experiment showed that: a) the pH of the suspension varied during the experiment between 4.0 and 6.0; b) the average temperature of the suspension was 47 ° C c) the total concentration of SO3 (-2) and HSO3 (-1) ions varied between 400 and 550 mg SO 2 / L; d) the average SO 2 concentration in the gases collected from the waste gas pipeline at a) mg / Nm 3 .
^—“Eundatia MIR Timișoara aricica Miron^ - “Eundatia MIR Timisoara aricaica Miron
Λ - 2 0 1 5 - - 0 0 0 9 9 I 2 -12- 201!Λ - 2 0 1 5 - - 0 0 0 9 9 I 2 -12- 201!
Experimentul a fost încheiat după 31,3 ore, când s-a inregistarat o concentrație de 210 mg SO2/Nm3. Din bilanțul de materiale s-a constatat ca din gazele reziduale au fost extrase 35,06 g de SO2, adica randamentul de desulfurare a fost de 35,06 /35,61 x 100 = 98,4 %. întrucât raportul molar CaO din calcar / SO2 din gaze a fost 1/1, randamentul de consum al calcarului magnezitic a fost același.The experiment was completed after 31.3 hours, when a concentration of 210 mg SO 2 / Nm 3 was recorded. From the balance of materials it was found that 35.06 g of SO 2 were extracted from the waste gas, that is the desulfurization yield was 35.06 / 35.61 x 100 = 98.4%. As the molar ratio CaO in limestone / SO 2 in gas was 1/1, the consumption yield of magnesitic limestone was the same.
Din rezultatele celor doua experimente rezulta ca: a) o tona de calcar magnezitic neutralizează 712,2 x 0,984 = 700,8 kg SO2, iar o tona de calcar filler neutralizează 588,2 x 0,96= 564,7 kg SO2. Reducerea consumului fizic de agent de desulfurizare in cazul folositii calcarului magnezitic este de (700,8 - 564,7)/ 700,8 x 100 = 19,4 %. Toate consumurile energetice pentru efectuarea tuturor fazelor tehnologice ale procesului de desulfurizare a gazelor reziduale se vor reduce tot cu 19,4 %. Reactivitatea calcarului magnezitic fata de calcarul filler este mai mare cu (98,4 - 96,0)/98,4 x 100 = 2,4%, adica, in condițiile unui consum de agent de desulfurizare mai mic cu 19,4 % se poate atinge in randament de desulfurizare cu 2,4 % mai mare.From the results of the two experiments it follows that: a) one ton of magnesitic limestone neutralizes 712.2 x 0.984 = 700.8 kg SO 2 , and one ton of filler limestone neutralizes 588.2 x 0.96 = 564.7 kg SO 2 . The reduction of the physical consumption of desulfurizing agent in the use of magnesitic limestone is (700.8 - 564.7) / 700.8 x 100 = 19.4%. All energy consumption for all the technological phases of the process of desulfurization of waste gases will be reduced by 19.4%. The reactivity of the magnesitic limestone to the filler limestone is higher (98.4 - 96.0) / 98.4 x 100 = 2.4%, that is, under the conditions of a lower desulphurisation agent consumption of 19.4%. can achieve a desulphurisation yield of 2.4% higher.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ROA201500099A RO130748B8 (en) | 2015-02-12 | 2015-02-12 | Process of wet desulphurization of acid spent gases while recycling the suspension resulting therefrom |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ROA201500099A RO130748B8 (en) | 2015-02-12 | 2015-02-12 | Process of wet desulphurization of acid spent gases while recycling the suspension resulting therefrom |
Publications (4)
Publication Number | Publication Date |
---|---|
RO130748A0 true RO130748A0 (en) | 2015-12-30 |
RO130748A3 RO130748A3 (en) | 2016-08-30 |
RO130748B1 RO130748B1 (en) | 2017-06-30 |
RO130748B8 RO130748B8 (en) | 2017-08-30 |
Family
ID=54979982
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
ROA201500099A RO130748B8 (en) | 2015-02-12 | 2015-02-12 | Process of wet desulphurization of acid spent gases while recycling the suspension resulting therefrom |
Country Status (1)
Country | Link |
---|---|
RO (1) | RO130748B8 (en) |
-
2015
- 2015-02-12 RO ROA201500099A patent/RO130748B8/en unknown
Also Published As
Publication number | Publication date |
---|---|
RO130748A3 (en) | 2016-08-30 |
RO130748B8 (en) | 2017-08-30 |
RO130748B1 (en) | 2017-06-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3919394A (en) | Process for the removal of oxides of sulfur from a gaseous stream | |
CN105817134A (en) | Chemical process wet-method desulphurization technology | |
CN102489132B (en) | Novel dual-alkali desulfurization method for removal of sulfur dioxide from flue gas and generation of elemental sulfur as byproduct | |
CN102357337A (en) | Desulphurization technology through sodium-calcium dual-alkali method | |
CN102284238A (en) | Bialkali-method flue-gas desulphurization process | |
CN106512678A (en) | Flue gas desulfurization and decarbonization device and flue gas desulfurization and decarbonization method | |
CN104959012A (en) | Magnesium-calcium based wet method desulphurization system and method for removing sulfur dioxide in flue gas and producing gypsum | |
CN103585869A (en) | Flue gas purifying method with recyclable alkali absorption liquid | |
CN107572554A (en) | A kind of clean energy-saving type produces salt producing craft | |
CA2097996C (en) | Method of sulfur dioxide removal from gaseous streams with alpha-hemihydrate gypsum product formation | |
CN102639211B (en) | Flue gas desulphurisation | |
CN101898822A (en) | System and method for softening water for use in a scrubber | |
CN204543981U (en) | Removing sulfur dioxide in flue gas also produces the magnesium-calcium base wet-process desulphurization system of gypsum | |
CN101869804A (en) | Desulfuration process of sintering flue gas of semidry-method recirculating fluidized bed | |
US3961021A (en) | Method for removing sulfur dioxide from combustion exhaust gas | |
CN202962254U (en) | Device for purifying harmful substances in smoke generated during boiler combustion | |
CN101862590A (en) | Desulfuration process for sintering flue gas | |
CN112225239A (en) | Method for producing and co-processing flue gas desulfurization waste liquid by sodium-alkali method through aluminum oxide | |
CN101480565B (en) | Method for recycling product of magnesium used refractory material after flue gas desulfurization | |
CN210993707U (en) | Magnesium-added limestone wet flue gas desulfurization system | |
CN1320945C (en) | Method for carrying out flue gas desulfurization by using mineral powder of magnesite | |
TW201838917A (en) | Method for separating calcium sulfate and calcium carbonate from desulfurized gypsum waste generated in flue gas desulfurization process with which the purities of the separated calcium sulfate and calcium carbonate are 90% and 100%, respectively | |
RO130748A0 (en) | Process of wet desulphurization of acid spent gases and integrated technology for recycling the suspension resulting therefrom | |
CN105833700A (en) | Ammonia process-gypsum process desulfurization technique | |
CN203315977U (en) | System for removing sulfur dioxide from exhaust gas |