RO127522A2 - Process for microencapsulation of probiotic bacteria by drying with ultrasonic spraying - Google Patents

Process for microencapsulation of probiotic bacteria by drying with ultrasonic spraying Download PDF

Info

Publication number
RO127522A2
RO127522A2 ROA201001172A RO201001172A RO127522A2 RO 127522 A2 RO127522 A2 RO 127522A2 RO A201001172 A ROA201001172 A RO A201001172A RO 201001172 A RO201001172 A RO 201001172A RO 127522 A2 RO127522 A2 RO 127522A2
Authority
RO
Romania
Prior art keywords
drying
product
micro
probiotic bacteria
bacteria
Prior art date
Application number
ROA201001172A
Other languages
Romanian (ro)
Inventor
Alexandrina Toma
Ionuţ Alexandru Ciric
Szabolcs Ştefan Lanyi
Beata Abraham
Ştefan Dima
Simon Bela
Bodrogi Attila
Original Assignee
Ica Research & Development S.R.L.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ica Research & Development S.R.L. filed Critical Ica Research & Development S.R.L.
Priority to ROA201001172A priority Critical patent/RO127522A2/en
Publication of RO127522A2 publication Critical patent/RO127522A2/en

Links

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Abstract

The invention relates to a process for microencapsulation of probiotic bacteria through a process of drying by ultrasonic pulverization with a frequency of 120 kHz, in the drying chamber of a SonoDry750 installation, at temperatures ranging from minimum 130°C and maximum 170°C, a depression of 250 mm water gauge and a circulating air flow of maximum 80 m/h. The process ensures upper characteristics to the microencapsulated product and efficiency in using the same as addition to functional products destined to human nourishment.

Description

PROCEDEU DE MICROINCAPSULARE A BACTERIILOR PROBIOTICE PRIN USCARE CU PULVERIZARE ULTRASONICAPROCESS FOR MICROINCAPSULATION OF PROBIOTIC BACTERIA BY DRYING WITH ULTRASONIC SPRAYING

Prezenta propunere de invenție se refera la un procedeu de microincapsulare a bacteriilor probiotice, avand la baza uscarea cu pulverizare ultrasonica. Domeniul caruia i se adreseaza propunerea de invenție ii constituie aplicarea biotehnologiilor pentru obținerea de preparate microbiologice, de bacterii probiotice, benefice pentru sanatatea oamenilor. Ele sunt utilizate in fabricarea produselor lactate cu proprietăți funcționale si cu grad ridicat de siguranța alimentara..The present invention relates to a process of microencapsulation of probiotic bacteria, based on ultrasonic spray drying. The field to which the proposal for invention is addressed is the application of biotechnologies to obtain microbiological preparations, probiotic bacteria, which are beneficial for human health. They are used in the manufacture of dairy products with functional properties and with a high degree of food safety.

Microogranismele probiotice pot fi definite ca fiind microorganisme aflate sau introduse la nivel intestinal care au un efect benefic asupra organismului gazda, prin îmbunătățirea echilibrului microflorei intestinale (Fuller 1991; Goldin 1998; Costin si Segal 1999; Gismondo et al. 1999). Numeroase beneficii aduse sănătății umane au fost identificate ca datorându-se consumului de produse probiotice. Dintre acestea sunt mai des amintite sunt efectele antimutagenice si anticarcinogenice, proprietățile antiinfectioase, imunostimulatoare, de reducere a colesterolului seric, de diminuare a intoleranței la lactoză precum și de îmbunătățire a randamentului de utilizare a principiilor nutriționale (Costin si Segal, 1999). Specii de Lactobacillus acidophilus, Lactobacillus casei, Bifidobacterium bifidum, Bifidobacterium longum, Bifidobacterium breve, Bifidobacterium infantis si Bifidobacterium lactis sunt cele mai utilizate bacterii considerate a fi probiotice.Probiotic microogranisms can be defined as microorganisms that are or are introduced into the gut that have a beneficial effect on the host organism, by improving the balance of the intestinal microflora (Fuller 1991; Goldin 1998; Costin and Segal 1999; Gismondo et al. 1999). Numerous benefits to human health have been identified as being due to the consumption of probiotic products. Of these, the most frequently mentioned are the antimutagenic and anticarcinogenic effects, the anti-infectious, immunostimulatory properties, the reduction of serum cholesterol, the reduction of lactose intolerance and the improvement of the use of nutritional principles (Costin and Segal, 1999). Species of Lactobacillus acidophilus, Lactobacillus casei, Bifidobacterium bifidum, Bifidobacterium longum, Bifidobacterium patent, Bifidobacterium infantis and Bifidobacterium lactis are the most commonly used bacteria considered to be probiotics.

Cercetările efectuate asupra viabilității și capacității de supraviețuire a bacteriilor probioice in tractul gastrointestinal si in produsele alimentare (in special in produsle lactate acide) au aratat faptul ca, in general, viabilitatea microorganismelor scade dramatic datorita expunerii la factorii de mediu neprielnici cum ar fi acizii, ionii hidrogen, oxigenul molecular sau diverși componenti antibacterieni (Dave si Shah 1997, Kailasapathy si Rybka, 1997; Hamilton-Miller et al, 1999). în plus, efectul benefic al microorganismelor probiotice apare atunci când ele ajung in intestinul gros in număr suficient și viabile, după ce au rezistat condițiilor de mediu mai sus amintite (Gilliland, 1989). Numărul minim de celule probiotice (ufc/g) care trebuie sa existe in produs la momentul consumului pentru apariția unui efect terapeutic a fost cuantificat sub denumirea de “minimum of bio-value” (MBV) (Mortazavian et al. 2006). Internațional Dairy Federation (IDF) recomanda ca acest indice sa fie mai mare de 107 ufc/g, pana in ultimul moment de valabilitate a produsului alimentar probiotic. In alte tari, precum Argentina, Paraguay si Brazilia standardul este de minimum 106 ufc/g dar se refera doar la bifidobacterii, iar in Japonia numărul total de celule probiotice trebuie obligatoriu sa depaseasca valoarea de 107 ufc/g. De asemenea literatura consemnează 106 ufc/g (cu referire stricta la microorganismele probiotice) ca fiind valoare minima pentru care un produs poate fi denumit probiotic, iar in cazul in care se face referire doar la bifidobacterii ca microorganisme probiotice valoarea minima consemnata si acceptata este de 107 ufc/g.Research on the viability and survival of probiotic bacteria in the gastrointestinal tract and in food (especially in acidic dairy products) has shown that, in general, the viability of microorganisms dramatically decreases due to exposure to harmful environmental factors such as acids, Hydrogen ions, molecular oxygen or various antibacterial components (Dave and Shah 1997, Kailasapathy and Rybka, 1997; Hamilton-Miller et al, 1999). In addition, the beneficial effect of probiotic microorganisms occurs when they reach the large intestine in sufficient and viable numbers, after having withstood the above environmental conditions (Gilliland, 1989). The minimum number of probiotic cells (ufc / g) that must exist in the product at the time of consumption for the occurrence of a therapeutic effect has been quantified as "minimum of bio-value" (MBV) (Mortazavian et al. 2006). The International Dairy Federation (IDF) recommends that this index be higher than 10 7 cfu / g, until the last validity of the probiotic food. In other countries, such as Argentina, Paraguay and Brazil the standard is at least 10 6 cfu / g but refers only to bifidobacteria, and in Japan the total number of probiotic cells must be in excess of 10 7 cfu / g. Also the literature records 10 6 cfu / g (with strict reference to probiotic microorganisms) as the minimum value for which a product can be called probiotic, and in case reference is made only to bifidobacteria as probiotic microorganisms the minimum value recorded and accepted is of 10 7 cfu / g.

In afara de indicele MBV, a mai fost definit si indicele Dl („daily intake”) care se refera la cantitatea totala zilnica de bacterii probiotice introduse in mod conștient si voluntar in organism, indice care este de asemenea determinant pentru eficacitatea unui tratament cu probiotice. Valoarea minima a lui Dl a fost stabilita la 109 celule viabile pe zi. (Shah et al. 1995, Kurman si Rasic, 1991). Tipul mediului de cultura utilizat in numararea bacteriilor probiotice este de asemenea considerat ca fiind un factor deosebit de important in determinarea viabilității acestor celule, mai ales datorita gradului de selectivitate diferit al diverselor medii utilizate.In addition to the MBV index, the Dl (daily intake) index, which refers to the total daily amount of probiotic bacteria introduced consciously and voluntarily into the body, has also been defined, an index that is also determining for the effectiveness of a probiotic treatment. . The minimum value of Mr was set at 10 9 viable cells per day. (Shah et al. 1995, Kurman and Rasic, 1991). The type of culture medium used in counting probiotic bacteria is also considered to be a particularly important factor in determining the viability of these cells, especially due to the different degree of selectivity of the various media used.

Pierderea viabilității bacteriilor in produsele alimentare (si in special in podusele fermentate) precum si acțiunea acizilor si a sărurilor biliare din tractul gastrointestinal a determinat numeroase studii si cercetări pentru gasirea unor metode noi si eficiente de îmbunătățire a viabilității bacteriilor probiotice.The loss of viability of bacteria in food (and especially in fermented pods) as well as the action of acids and bile salts in the gastrointestinal tract has led to numerous studies and researches to find new and efficient methods to improve the viability of probiotic bacteria.

Microincapsularea reprezintă una dintre cele mai noi si eficiente metode de menținere a viabilității bacteriilor probiotice la ora actuala. Din punct de vedere microbiologic, microincapsularea poate fi definita ca fiind procesul de captare/inglobare a celulelor de microorganisme prin acoperirea acestora cu unul sau mai multe straturi din anumiti hidrocoloizi, pentru delimitarea si protejarea celulei de acțiunea mediului exterior, intr-un mod in care celula sa poata fi eliberata in mediul intestinal (Sultana et al.,2000, Krasaekoopt et al., 2003,; Picot si Lacroix, 2003).Micro-encapsulation is one of the newest and most effective methods of maintaining the viability of probiotic bacteria at the present time. From a microbiological point of view, micro-encapsulation can be defined as the process of capturing / incorporating the cells of microorganisms by covering them with one or more layers of certain hydrocolloids, in order to delimit and protect the cell from the action of the external environment, in a way in which the cell can be released into the intestinal environment (Sultana et al., 2000, Krasaekoopt et al., 2003,; Picot and Lacroix, 2003).

Operația de microincapsulare reprezintă o metoda eficienta de creșterea a viabilității microorganismelor si ea are o importanta practica deosebita.Micro-encapsulation operation is an efficient method of increasing the viability of microorganisms and it has an important practice.

încapsularea este definita in general ca o acțiune de acoperire perfecta a unei substanțe intr-o alta substanța ce formează învelișul exterior, capsula in sine. Microincapsularea îencapsulation is generally defined as an action of perfect coating of one substance into another substance that forms the outer shell, the capsule itself. Microencapsulation

V 2 Ο 1 O - Ο 1 1 7 2 - 2'ι -11- 2010V 2 Ο 1 O - Ο 1 1 7 2 - 2'ι -11- 2010

realizarea operației de încapsulare la nivel micro (capsule cu dimensiuni mai mici de 1 mm si ajungând pana la 2-4pm).performing the micro-encapsulation operation (capsules smaller than 1 mm and reaching 2-4pm).

Așadar încapsularea reprezintă o protecție prin acoperire a unei substanțe cu o valoare superioara învelișului capsulei, dar care, fata de acest înveliș, este de natura labila, ușor distructibila in anumite condiții de mediu.Therefore, the encapsulation represents a protection by covering a substance with a higher value of the capsule shell, but which, compared to this shell, is labile in nature, easily destructible under certain environmental conditions.

Spre sfârșitul secolului al nouăsprezecelea un farmacist, Upjohn, a brevetat ceea ce si astazi numim procedeul de drajeifiere. Particule relativ mari de substanța solida sunt așezate intr-un mixer de forma cilindrica si se pulverizează deasupra acestora o soluție lichida. In general soluția lichida este o soluție de zahar in apa, iar procesul in sine presupune mai multe pulverizări si evaporări consecutive pana când învelișul de zahar atinge caracteristicile dorite. Procesul este utilizat si astazi pe scara larga in tehnologia farmaceutica cu scopul de a realiza un înveliș dulce pentru drajeurile anumitor medicamente. In industria alimentara acest procedeu s-a extins rapid la diverse tipuri si mărci de bomboane.Towards the end of the nineteenth century a pharmacist, Upjohn, patented what we now call the dredging process. Relatively large particles of the solid substance are placed in a cylindrical-shaped mixer and a liquid solution is sprayed on top of them. In general, the liquid solution is a sugar solution in water, and the process itself involves several consecutive sprays and evaporation until the sugar coating reaches the desired characteristics. The process is still widely used today in pharmaceutical technology in order to make a sweet coating for certain medicines. In the food industry this process has expanded rapidly to various types and brands of sweets.

începând cu sfârșitul secolului al nouăsprezecelea au fost studiate diverse procedee de încapsulare de către comunitatea științifica internaționala, plecând de la drajeifierea lui Upjohn, menționând metode precum uscarea prin pulverizare, deshidratarea cu solvenți, încapsularea prin extrudare, încapsularea in pat fluidizat, extruderea centrifugala, coacervarea, formarea clatratilor, procedeul de pulverizare răcire si ajungandu-se astazi la metode precum uscarea prin pulverizare cu ajutorul ultrasunetelor, metoda utilizata la microincapsularea unor materiale biologice.Since the end of the nineteenth century, various encapsulation processes have been studied by the international scientific community, starting with Upjohn's dredging, mentioning methods such as spray drying, solvent dehydration, extrusion encapsulation, fluidized bed encapsulation, extruded fluid bed , the formation of clathrates, the process of cooling spray and reaching today methods such as spray drying using ultrasound, the method used to micro-encapsulate biological materials.

Majoritatea specialiștilor considera ca pionieratul in domeniul microincapsularii a fost realizat in al treilea deceniu al secolului nostru de către Național Cash Register Company (Dayton, Ohio). Folosind procedeul chimic numit coacervare (separare de faza), Național Cash Register a dezvoltat o metoda de a absorbi un colorant intr-un înveliș de gelatina reticulata. Procesul omologat de aceștia a fost extins la scara comerciala in 1954 pentru producerea primei harții autoimprimante. In 1981 producția de hârtie autoimprimanta la nivel mondial atinsese deja 500000 de tone pe an.Most specialists believe that pioneering micro-encapsulation was accomplished in the third decade of our century by the National Cash Register Company (Dayton, Ohio). Using the chemical process called co-preservation (phase separation), the National Cash Register has developed a method of absorbing a dye in a cross-linked gelatin coating. The process approved by them was extended to commercial scale in 1954 for the production of the first self-printing paper. In 1981, the production of self-printing paper worldwide reached already 500,000 tons per year.

Descoperirea celor de la Național Cash Register si noul proces de coacervare au generat in jurul lor un mare interes in anii '50 iar procesul de încapsulare in sine a început sa se extindă si in alte domenii precum agricultura, industria cosmetica, electronica si industria alimentara. Procesul de coacervare in sine a fost studiat si, in anumite domenii, a fost considerat nu numai aplicabil cat mai ales economic in comparație cu procesele folosite anterior. In alte domenii insa procesul nu a fost aplicat datorita limitărilor tehnice pe care acesta le dovedea. Insa acest procedeu isi rezerva meritul de a fi deschizător de drum către viitoarele tehnologii de încapsulare pe care noi astazi le aplicam si le dezvoltam.The discovery of the National Cash Register and the new co-preservation process generated great interest around them in the 1950s and the encapsulation process itself began to extend to other areas such as agriculture, cosmetics, electronics and food. The co-preservation process itself has been studied and, in some areas, was considered not only applicable especially economically compared to the processes used previously. In other areas, however, the process was not applied due to the technical limitations that it proved. But this process reserves the merit of being a roadblock to the future encapsulation technologies that we apply and develop today.

Pentru încapsularea organismelor vii, a bacteriilor in special, se folosesc ca metode de baza emulsionarea-gelifierea, extrudarea sau uscarea prin pulverizare si, mai nou, utilizarea patului fluidizat.For the encapsulation of living organisms, bacteria in particular, emulsification-gelling, extrusion or spray drying and, more recently, the use of fluidized bed are used as basic methods.

Toate aceste procedee tehnice mai mult sau mai puțin avansate trebuie susținute insa de utilizarea unor polimeri cat mai performanți si adaptați consumului uman direct. Siguranța consumului, proprietățile de gelifiere precum si rezistenta la acțiunile sucului gastric si a sărurilor biliare sunt principalele criterii de alegere a biopolimerilor incapsulanti.All these more or less advanced technical procedures must be supported by the use of polymers that are as efficient as possible and adapted to direct human consumption. Consumption safety, gelling properties as well as resistance to actions of gastric juice and bile salts are the main criteria for choosing encapsulating biopolymers.

In momentul de fata pe primul loc ca utilizare in scopuri de Încapsulare a organismelor vii este alginatul (de sodiu sau de calciu). Sunt de asemena testate substanțe precum amidonul, xantanul, gelanul, caragenanul, gelatina, chitosanul, faina de roșcova, proteinele de zer si chiar clorura de calciu.At the moment in the first place as use for the purpose of encapsulation of living organisms is alginate (sodium or calcium). Also tested are substances such as starch, xanthan, gelane, carrageenan, gelatin, chitosan, rosemary flour, whey protein and even calcium chloride.

In cadrul ICA Research & Development București s-au efectuat lucrări de microincapsulare a bacteriilor probiotice prin metoda clasica a gelifieii si a extrudării simple, apoi prin uscare prin pulverizare.Within the ICA Research & Development Bucharest, microincapsulation of probiotic bacteria was performed by the classical method of gelation and simple extrusion, then by spray drying.

S-a concluzionat ca primele doua tehnici de încapsulare (extrudarea si emulsionarea) nu sunt fiabile pentru aplicații industriale, iar produsul rezultat in urma aplicării acestor tehnici nu poate fi utilizat in scopul urmărit ( microcapsulele obținute erau neuniforme, foarte higroscopice si foarte greu de uscat).It was concluded that the first two encapsulation techniques (extrusion and emulsification) are not reliable for industrial applications, and the product resulting from the application of these techniques cannot be used for the intended purpose (the microcapsules obtained were uneven, very hygroscopic and very difficult to dry).

Tehnica uscării prin pulverizare a generat insa rezultate net superioare. In funcție de biopolimerul incapsulant sau de amestecul de biopolimeri, in funcție de concentrația acestora si natura gelului generat, aceasta tehnica a condus la obținerea de produse omogene din punct de vedere structural si compozițional, dar si la rezultate ușor reproductibile.The spray drying technique has generated much better results. Depending on the encapsulating biopolymer or the mix of biopolymers, depending on their concentration and the nature of the gel generated, this technique has led to obtaining homogeneous products from a structural and compositional point of view, but also to easily reproducible results.

CV2 0 1 0 - 0 1 1 7 2 -2 h -11- 2010CV2 0 1 0 - 0 1 1 7 2 -2 h -11- 2010

Avantajul uscării prin pulverizare consta de asemenea si in faptul ca aceasta poate fi aplicata cu ușurința si la nivel industrial.The advantage of spray drying also lies in the fact that it can be easily and industrially applied.

Uscarea prin pulverizare este probabil una dintre cele mai vechi tehnici de încapsulare si este si in prezent cea mai utilizata tehnica de preparare a aditivilor alimentari stabili uscati si in special a aromelor alimentare. Aromele obținute prin acest procedeu sunt disponibile pe piața inca din anii '30. Procesul este economic, flexibil, adaptabil utilizării industriale, un avantaj constituindu-l si faptul ca pe piața exista o gama larga de utilaje concepute special in acest scop. In general procedeul se realizează in trei etape. O aroma, de obicei un ulei (dar se pot utiliza si arome hidrosolubile) este amestecat cu un polimer comestibil precum gelatina, gumele vegetale, amidon modificat, dextrina sau proteine negelifiante, de obicei intr-un raport de 1:4 (aroma: substanțe de fixare). Se adauga un emulsionant si amestecul este omogenizat pentru a se produce o emulsie ulei in apa cu o ușoara structura micelara. Emulsia este atomizata si uscata utilizând una dintre metodele in care un aerosol se introduce intr-o coloana de aer cald, aflata intr-o camera de uscare. Picaturile capata o forma sferica, cu uleiul de aroma gravitând in centrul picăturii iar soluția apoasa formează învelișul particulei. Evaporarea rapida a apei din înveliș face ca temperatura sa se mențină sub punctul de fierbere al apei chiar si in coloanele cu aer fierbinte cu temperaturi deosebit de ridicate. Din fericire expunerea la temperaturi ridicate in camera de uscare este foarte scurta, de ordinul catorva secunde. Aromele hidrosolubile (sau alte ingrediente alimentare) pot fi de asemenea fixate sau imobilizate cu ajutorul anumitor hidrocoloizi, dar aceste particule nu prezintă o separație bine definita intre substanța de încapsulat si substanța incapsulanta. Se menționează unele cazuri in care cele doua substanțe au realizat un amestec omogen înainte de uscare.Spray drying is probably one of the oldest encapsulation techniques and is currently the most widely used technique for preparing dry stable food additives and especially food flavorings. The flavors obtained by this process are available on the market since the 1930s. The process is economical, flexible, adaptable to industrial use, an advantage also being the fact that there is a wide range of machines specially designed for this purpose. Generally the process is carried out in three stages. An aroma, usually an oil (but water-soluble aromas may be used) is mixed with an edible polymer such as gelatin, vegetable gums, modified starch, dextrin or non-reducing proteins, usually in a ratio of 1: 4 (aroma: substances for fixing). An emulsifier is added and the mixture is homogenized to produce an oil emulsion in the water with a slight micellar structure. The emulsion is atomized and dried using one of the methods in which an aerosol is introduced into a hot air column, located in a drying chamber. The drops take on a spherical shape, with the aroma oil gravitating to the center of the drop and the aqueous solution forms the particle shell. Rapid evaporation of the water from the casing causes the temperature to remain below the boiling point of the water even in the hot air columns with particularly high temperatures. Fortunately, the exposure to high temperatures in the drying room is very short, about a few seconds. Water-soluble flavors (or other food ingredients) can also be fixed or immobilized with the aid of certain hydrocolloids, but these particles do not have a well-defined separation between the encapsulating substance and the encapsulating substance. There are mentioned some cases in which the two substances made a homogeneous mixture before drying.

Particulele uscate prin pulverizare au de obicei dimensiuni sub 100pm, fapt care le conferă o foarte buna solubilitate sau dispersabilitate in apa. Daca este necesar, particulele uscate prin pulverizare se pot obține gata aglomerate sau granulate, precum in cazul amestecurilor uscate, unde se cere si o cat mai mare uniformitate a dimensiunilor particulelor componente.The spray-dried particles usually have dimensions below 100pm, which gives them a very good solubility or dispersibility in water. If necessary, the spray-dried particles can be obtained ready to be agglomerated or granulated, as in the case of dry mixtures, where a greater uniformity of the dimensions of the component particles is required.

Odata cu apariția aromelor uscate prin pulverizare, fenomenul oxidativ a fost redus semnificativ la fel ca si fenomenul de evaporare a substanțelor volatile. Straturile de acoperire de natura coloidala polimerica dovedesc a realiza o anumita protecție asupra straturilor interne de substanța activa. Inițial, pentru acest tip de substanțe, termenul folosit a fost de arome captive sau arome protejate. Mai apoi, la începutul anilor 50 s-a consacrat termenul de arome încapsulate.With the appearance of aromas dried by spray, the oxidative phenomenon was significantly reduced as well as the evaporation phenomenon of volatile substances. The coatings of polymeric colloidal nature prove to achieve a certain protection on the inner layers of the active substance. Initially, for this type of substances, the term used was captive or protected flavors. Later, in the early 1950s, the term encapsulated flavors was established.

Metode de microincapsulare a bacteriilor probioticeMicroincapsulation methods of probiotic bacteria

Tehnologia încapsulării probioticelor se poate împărți in doua părți:The probiotics encapsulation technology can be divided into two parts:

a) Microincapsularea probioticelor in soluția încapsulantă (microincapsularea propriu-zisa)a) Microencapsulation of probiotics in the encapsulating solution (microencapsulation itself)

b) Uscarea capsulelor umede obținute, in scopul obținerii de pudra sau granule.b) Drying of the wet capsules obtained, in order to obtain powder or granules.

a) Microincapsularea propriu-zisaa) Microencapsulation itself

Tehnicile de extrudare sau emulsionare, denumite si metoda picăturii si respectiv metoda in doua faze sunt doua dintre principiile de baza a încapsulării.Extrusion or emulsification techniques, also called droplet method and two-phase method respectively, are two of the basic principles of encapsulation.

Tehnica prin extrudare.Extrusion technique.

Metoda extrudării este tehnica cea mai veche si cea mai des utilizata pentru producerea capsulelor de hidrocoloid. In general este o metoda ieftina si ușor de folosit la nivel de laborator, fiind totodată si metoda care afectează in cea mai mica măsura viabilitatea celulelor bacteriene. Se spune ca termenii definitorii pentru acesta metoda sunt biocompatibilitatea si flexibilitatea (Tanaka et al., 1984, Martinsen et al 1989). Din păcate acesta tehnica nu poate fi aplica in producția industriala, datorita greutății cu care se formează particulele si vitezei reduse de lucru.The extrusion method is the oldest and most frequently used technique for the production of hydrocolloid capsules. In general, it is a cheap and easy to use method at the laboratory level, being also the method that affects the viability of bacterial cells to a small extent. The defining terms for this method are said to be biocompatibility and flexibility (Tanaka et al., 1984, Martinsen et al. 1989). Unfortunately this technique cannot be applied in industrial production, due to the weight with which the particles are formed and the reduced working speed.

Tehnica prin emulsionareEmulsification technique

Tehnica de emulsionare a fost aplicata cu succes pentru microincapsularea bacteriilor lactice probiotice. Spre deosebire de tehnica extrudării, acesta tehnica poate fi ușor transpusa la nivel industrial, iar dimensiunea particulelor este considerabil mai mica (25um-2 mm).The emulsification technique has been successfully applied for microencapsulation of probiotic lactic bacteria. Unlike the extrusion technique, this technique can be easily transposed at industrial level, and the particle size is considerably smaller (25um-2 mm).

Metoda necesita insa costuri ridicate pentru realizarea unor capsule de calitate buna, in comparație cu metoda extrudării datorita in primul rând folosirii unui ulei pentru formarea emulsiei. In acesta tehnica, o cantitate mica de amestec polimer-celule este adăugată unui volum mare de ulei (se pateu folosi ulei de soia , de floare soarelui, de porumb sau orice alt ulei de natura vegetala). Soluția rezultata trebuie omogenizata apoi printr-o agitare adecvata, pana când se formează o emulsie apaHowever, the method requires high costs for making good quality capsules, compared to the extrusion method due primarily to the use of an oil to form the emulsion. In this technique, a small amount of polymer-cell mixture is added to a large volume of oil (soybean oil, sunflower oil, corn or any other vegetable oil may be used). The resulting solution should then be homogenized by appropriate stirring, until a water emulsion is formed

Og-2 O 1 0 - 0 1 1 7 2 - - \12 h -11- 2010 in ulei. Pentru o omogenizare cat mai buna se pot adauga emulgatori precum Tween 80, in concentrații 0,2% (recomandare făcuta de Sheu si Marshal, 1993). Odată emulsia formata, polimerul solubil este insolubilizat prin adăugare de clorura de calciu. Dimensiuni cat mai mici ale particulelor de apa din emulsie vor conduce la dimensiuni mici ale capsulelor obținute.Og-2 O 1 0 - 0 1 1 7 2 - - \ 12 h -11- 2010 in oils. For a better homogenization, emulsifiers such as Tween 80 can be added in 0.2% concentrations (recommendation made by Sheu and Marshal, 1993). Once the emulsion is formed, the soluble polymer is insolubilized by the addition of calcium chloride. Smaller sizes of water particles in the emulsion will lead to small capsule sizes obtained.

b) Uscarea capsulelor umede obținute, cu scopul obținerii de pudra sau granuleb) Drying of the wet capsules obtained, in order to obtain powder or granules

Uscarea capsulelor obținute cu scopul obținerii de pudra sau granule poate fi realizata prin diferite metode. Dintre aceste metode cele mai importante sunt liofilizarea, uscarea prin pulverizare si uscarea in pat fluidizat. In general procesul de uscare in sine afectează intr-o anumita măsura granulele formate, reducând viabilitatea acestora. In procesul de liofilizare temperatura afectează foarte puțin produsul finit, in comparație cu celelalte procese de uscare. Aceasta metoda este insa scumpa si greu de adaptat la nivel de utilizare industriala.Drying of the capsules obtained for the purpose of obtaining powder or granules can be done by different methods. Of these, the most important methods are lyophilization, spray drying and fluidized bed drying. In general, the drying process itself affects to a certain extent the granules formed, reducing their viability. In the freeze-drying process the temperature affects very little the finished product, compared to the other drying processes. However, this method is expensive and difficult to adapt to industrial use.

Metoda cea mai eficienta pentru obținerea de capsule a fost considerata uscarea prin pulverizare, deoarece aceasta are costuri relativ scăzute si poate fi utilizata pentru uscarea unor volume mari de soluții. In acest caz se înregistrează însă o scădere a viabilității microorganismelor încapsulate, datorita deshidratării si încălzirii simultane.The most efficient method for obtaining capsules was considered spray drying, as it has relatively low costs and can be used for drying large volumes of solutions. In this case, however, there is a decrease in the viability of the encapsulated microorganisms, due to the simultaneous dehydration and heating.

Se pare insa ca o soluție pentru utilizarea acestei metode este cea prezentata de Picot si Lacroix in 2003. Procedura a fost considerata ca fiind economica datorita faptului ca a reușit menținerea viabilității celulelor intr-un foarte mare procent. Metoda consta in acoperirea unor picături de grăsime lactata ce conține in interior bacterii probiotice liofilizate cu polimeri proveniți din rândul proteinelor zerului, in condițiile utilizării odată cu uscarea prin pulverizare a anumitor emulgatori. Dimensiunile particulelor de cultura liofilizata stau la baza dimensiunilor particulelor obținute in urma procesului de uscare. Pentru o încapsulare buna, aceste particule trebuie sa fie mai mari decât celulele (2-4pm) dar mai mici decât particulele de grăsime ce urmează a le îngloba (10-15pm)..However, it seems that a solution for using this method is the one presented by Picot and Lacroix in 2003. The procedure was considered to be economical due to the fact that it managed to maintain the viability of the cells in a very large percentage. The method consisted of coating drops of milk fat containing probiotic bacteria lyophilized with polymers from among the whey proteins, when used with spray drying of certain emulsifiers. The particle size of the lyophilized culture is based on the particle size obtained from the drying process. For proper encapsulation, these particles must be larger than the cells (2-4pm) but smaller than the fat particles to be incorporated (10-15pm).

Procedeul propus pentru brevetare se refera la prepararea soluției microincapsulate conținând bifidobacterii si uscarea preparatului intr-o instalație de uscare prin pulverizare cu ultrasunete.The patented process refers to the preparation of the micro-encapsulated solution containing the bifidobacteria and the drying of the preparation in an ultrasonic spray drying plant.

Experimentele de obținere a bacteriilor probiotice (bifidobacteriilor) microincapsulate s-au realizat pe o instalație de laborator, SonoDry750, la care alimentarea cu produs in camera de uscare se realizează prin pulverizare cu o diiza ultrasonica.The experiments for obtaining microincapsulated probiotic bacteria (bifidobacteria) were performed on a laboratory facility, SonoDry750, where the product supply in the drying chamber is made by spraying with an ultrasonic dialysis.

Instalație de uscare prin pulverizare cu ultrasuneteUltrasonic spray drying plant

In cazul acestui procedeu de uscare a capsulelor obținute, temperatura este factorul determinant al procesului, fiind factor restrictiv, si care prezenta atât o limita inferioară cât și una superioară.In the case of this drying process of the obtained capsules, the temperature is the determining factor of the process, being a restrictive factor, and which had both an upper and lower limit.

Limita inferioara este realizată de procesul de uscare în sine, acesta ne- putându-se realiza complet decât în cazul în care o temperatură minimă de uscare este atinsă. Acest minim de temperatură este determinat prin analiza procesului de uscare si ea este este suficientă daca pe pereții turnului de uscare nu se vor lipi particule de produs decât în cantități nesemnificative și daca vasul de recuperare a fazei lichide, situat imediat sub turnul de uscare, vaji let gol la sfârșitul unui proces de uscare.The lower limit is achieved by the drying process itself, which can only be achieved completely if a minimum drying temperature is reached. This minimum temperature is determined by the analysis of the drying process and it is sufficient if the particles of the drying tower will not stick to product particles only in insignificant quantities and if the liquid phase recovery vessel, located immediately below the drying tower, is leaking. leave empty at the end of a drying process.

^-2 0 1 0 - 0 1 1 7 2 -- U h -11- 2010^ -2 0 1 0 - 0 1 1 7 2 - U h -11- 2010

Limita superioară de temperatură se determina prin analiza viabilității bifidobacteriilor din pulberea recuperată. Importanta este relația dintre temperatura de uscare si viabilitatea bacteriilor, astfel incat trebuie aleasa cea mai mică temperatură la care procesul de uscare se realizează bine în uscătorul SonoDry750.The upper temperature limit is determined by analyzing the viability of the bifidobacteria in the recovered powder. Important is the relationship between the drying temperature and the viability of the bacteria, so the lowest temperature at which the drying process is performed well in the SonoDry750 dryer must be chosen.

Microcapsulele de bifidobacterii s-au obtinut prin realizarea unui preparat compus din:The microcapsules of the bifidobacteria were obtained by making a preparation consisting of:

Soluție % strength Ringer% Strength Ringer solution

11% preparat bacterian liofilizat11% lyophilized bacterial preparation

2% maltodextrine.2% maltodextrine.

Factorii variabili din experimente au fost: frecventa duzei de ultrasonare, temperaturile de intrare si de ieșire din camera de uscare, puterea optima aplicată duzei de ultrasonare utilizata pentru alimentarea camerei de uscare, debitul de aer circulant.The variable factors in the experiments were: frequency of the ultrasound nozzle, inlet and outlet temperatures from the drying chamber, the optimum power applied to the ultrasonic nozzle used to supply the drying chamber, the flow of circulating air.

Alegerea variantei optime a fost condiționată de optimizarea procesului tehnologic pentru obținerea randamentului maxim in produs, si de viabilitatea bacteriilor microincapsulate.The choice of the optimum variant was conditioned by the optimization of the technological process for obtaining the maximum yield in the product, and by the viability of micro-encapsulated bacteria.

Exemplu nr. 1.Example no. 1.

Frecventa diizei de pulverizare a produsului in camera de uscare in instalația SonoDry750 - 60 kHz temperaturi de intrare a aerului in instalație 90, 130 , 150°, 170 °C.Frequency of the product spray spray in the drying chamber in the SonoDry750 - 60 kHz installation air inlet temperatures 90, 130, 150 °, 170 ° C.

temperatura de ieșire a aerului din intalatie a fost reglata automat, in funcție de debitul produsului si viteza de uscare, si a fost cuprinsa intre 70 si 96/- 5°C.The air outlet temperature from the inlet was automatically adjusted, depending on the product flow rate and drying speed, and was between 70 and 96 / - 5 ° C.

Preparatul supus uscării: Soluție % strength Ringer; 11% preparat bacterian liofilizat; 2% maltodextrine, 2% alginat de sodiu puterea optima aplicată duzei de ultrasonare utilizata pentru alimentarea camerei de uscare cu produs ... 11 wați;Preparation subjected to drying:% strength Ringer solution; 11% lyophilized bacterial preparation; 2% maltodextrin, 2% sodium alginate the optimum power applied to the ultrasonic nozzle used to supply the drying chamber with product ... 11 watts;

- debitul de aer circulant în instalația de uscare prin pulverizare , maxim, 80 m3/h;- the flow of circulating air in the spray drying plant, maximum, 80 m 3 / h;

presiune ...-250mm coloana de apapressure ... - 250mm water column

STABILIZARE A TEMPERATURIITEMPERATURE STABILIZATION

L'lHl UL US< ARE A PREPARATUl tllL'lHl UL US <ARE A PREPARATUl tll

Z'>HA DE PRE’.ATIPEZ '> MUST PRE'.ATIPE

ZOHA tJEZOHA tJE

STABILIZARE A TEMP.TEMP STABILIZATION.

ΖΛΠΑ CE IJSi.fifiE A PREPARATULUIΖΛΠΑ WHAT IJSi.fifiE OF THE PREPARATION

PREGATIULPrepare

STABILIZĂRI A TEMPERATURIITEMPERATURE STABILIZATION

Figura nr. 3 . Diagrama procesului de uscare în uscătorul SonoDry750, cu duiza de 60kHzFigure no. 3 . Diagram of the drying process in the SonoDry750 dryer, with 60kHz duct

Din diagramă se poate observa faptul ca s-au realizat trei procese de uscare succesive, fiecare diferind de cel anterior prin temperatură.From the diagram it can be observed that three successive drying processes were carried out, each differing from the previous one by temperature.

în urma testării s-a concluzionat faptul că temperatura de 130°C nu este potrivită, deoarece s-au întâmpinat dificultăți in uscarea produsului. Reglarea temperaturii de inț erului la 150°C aAfter the test it was concluded that the temperature of 130 ° C is not suitable, as there were difficulties in drying the product. Setting the starting temperature at 150 ° C a

CV 2 0 1 0 - 0 1 1 7 2 -2 Ί -11- 2010 condus la rezultate mai bune din punct de vedere fizic. Preparatul a fost mai uscat, dar s-a produs o peliculă pe partea superioară a turnului de uscare. Din punct de vedere al procesului de uscare, la 170°C s-au obținut rezultatele dorite, adică un preparat uscat, nelipicios. Viabilitatea bacteriilor după uscare a fost insa mai mica.CV 2 0 1 0 - 0 1 1 7 2 -2 Ί -11- 2010 led to better physical results. The preparation was drier, but a film was produced on the top of the drying tower. From the point of view of the drying process, at 170 ° C the desired results were obtained, ie a dry, non-sticky preparation. However, the viability of the bacteria after drying was lower.

Tabel nr. 1 Viabilitatea bacteriilor lactice din produsul obtinut prin aplicarea diferitelor regimuri de uscare cu duza de 60 KHZTable no. 1 Viability of lactic bacteria from the product obtained by applying different drying regimes with 60 KHZ nozzle

Nr. crt. Nr. crt. Temperatura de intrare a aerului (°C) Air inlet temperature (° C) Viabilitatea inițiala (cfu/g) - viInitial viability (cfu / g) - v i Viabilitatea preparatului obținut (cfu/g) - vf Viability of the preparation obtained (cfu / g) - v f Grad de scădere a viabilității (v/Vf) Decreased viability (v / Vf) 1. 1. 130 130 95 x 10lu 95 x 10 lu 28 x 10a 28 x 10 a 34 34 2. 2. 150 150 95 x 10lu 95 x 10 lu 24 x 10y 24 x 10 y 39 39 3. 3. 170 170 95x 10w 95x 10 w 23 x 10a 23 x 10 a 41 41

Microcapsule obținute nu trebuie să depășească dimensiunea de 30 de micrometri, pentru a nu fi detectate de papilele gustative, atunci când sunt introduse în diferite produse.The microcapsules obtained must not exceed the size of 30 micrometers, in order not to be detected by the taste buds, when introduced into different products.

Duza de 60kHz poate genera capsule de dimensiuni sub limita sau apropiate de 30 de microni.The 60kHz nozzle can generate capsules below the limit size or close to 30 microns.

Deși rezultatele privind viabilitatea bacteriilor in cazul utilizării duzei de 60 kHz sunt bune( tabel nr. 1), s-a constatat ca microincapsularea nu s-a realizat complet, lucru demonstrat prin testul de simulare a tractului gastrointestinal [în urma cultivării pe mediu MRS-NNLP, in anaerobioză, nici un preparat din cele trei nu a prezentat activitate biologica la diluția D(-5)].Although the results regarding the viability of bacteria in the case of 60 kHz nozzle use are good (table no. 1), it was found that the microencapsulation was not completely performed, as demonstrated by the gastrointestinal tract simulation test [following MRS-NNLP cultivation in anaerobiosis, none of the three showed biological activity at dilution D (-5)].

Exemplu nr. 2. Frecventa duzei de pulverizare a produsului in camera de uscare in instalația SonoDry750 - 120 kHz temperaturi de intrare a aerului in instalație 130 , 150°, 170 °C.Example no. 2. Frequency of the spray nozzle of the product in the drying chamber in the SonoDry750 - 120 kHz installation air inlet temperatures 130, 150 °, 170 ° C.

temperatura de ieșire a aerului din intalatie a fost reglata automat, in funcție de debitul produsului si viteza de uscare, si a fost cuprinsa intre 70 si 96/- 5°C.The air outlet temperature from the inlet was automatically adjusted, depending on the product flow rate and drying speed, and was between 70 and 96 / - 5 ° C.

- Preparatul supus uscării: Soluție % strength Ringer; 11% preparat bacterian liofilizat; 2% maltodextrine, 1% alginat de sodiu puterea optima aplicată duzei de ultrasonare utilizata pentru alimentarea camerei de uscare cu produs ... 11 wați;- Preparation subjected to drying:% strength Ringer solution; 11% lyophilized bacterial preparation; 2% maltodextrin, 1% sodium alginate the optimum power applied to the ultrasonic nozzle used to supply the drying chamber with product ... 11 watts;

- debitul de aer circulant în instalația de uscare prin pulverizare , maxim, 80 m3/h;- the flow of circulating air in the spray drying plant, maximum, 80 m 3 / h;

presiune ...-250mm coloana de apapressure ... - 250mm water column

- debitul optim setat pentru pompa seringa de 10 ml este 4ml/min In acest caz a fost exclusa varianta de uscare in regim minimal, cu temperatura de intrare a aerului de 90°C. S-a menținut constant debitul produsului lichid, la 4ml/min.- the optimum flow rate set for the 10 ml syringe pump is 4ml / min. In this case, the drying option was excluded in a minimal regime, with the air inlet temperature of 90 ° C. The flow rate of the liquid product was maintained at 4 ml / min.

Experimentul in care temperatura aerului la intrarea in camera de uscare a fost 130°C, utilizând o frecventa a ultrasunetelor de 120 KHz, a evidențiat un regim de uscare nesatisfacator, datorita lipirii produsului pe partea superioara a camerei de uscare.The experiment in which the air temperature at the entrance to the drying chamber was 130 ° C, using an ultrasound frequency of 120 KHz, revealed an unsatisfactory drying regime, due to the product sticking on the top of the drying chamber.

Aplicarea unui proces de uscare la care temperatura de intrare a aerului în camera de uscare a fost setată la 150°C ( figura nr. 4) s-a desfășurat in condiții bune, fără ca produsul să fie lipit de pereții uscătorului iar randamentul a fost mai bunThe application of a drying process at which the air inlet temperature in the drying chamber was set to 150 ° C (figure no. 4) was carried out in good conditions, without the product being stuck to the dryer walls and the yield was better.

cv-2 0 10-01172cv-2 0 10-01172

4 -11- 2010 *1 S » '--ț4 -11- 2010 * 1 S »'--ț

Figura nr.4. Diagrama procesului de uscare în uscătorul SonoDry750, la 150 °C si la 170°CFigure 4. Diagram of the drying process in the dryer SonoDry750, at 150 ° C and 170 ° C

In cazul variantei de proces tehnologic cu ridicarea temperaturii aerului la intrarea in camera de uscare la 170 °C, uscarea a decurs in condiții foarte bune, dar o parte din produsul obtinut, cu particole foarte mici, au trecut de primul ciclon si au aderat pe vasul de separare a celui de-al doilea ciclon. în figura 4. sunt prezente ciclurile de uscare la 150°C și la 170°C.In the case of the technological process variant with raising the air temperature at the entrance to the drying room at 170 ° C, the drying proceeded in very good conditions, but part of the obtained product, with very small particles, passed through the first cyclone and joined the the second cyclone separation vessel. In Figure 4. the drying cycles at 150 ° C and 170 ° C are present.

Se poate observa că ciclul de uscare la 170°C este ușor mai instabil decât cel la 150°C.Viabilitatea bacteriilor probiotice după procesul de microincapsulare si uscare este prezrntata in tabelul nr.2.It can be observed that the drying cycle at 170 ° C is slightly more unstable than at 150 ° C. The viability of probiotic bacteria after the microincapsulation and drying process is presented in table no.2.

Tabel nr. 2. Viabilitatea bacteriilor lactice din produsul obtinut prin aplicarea diferitelor regimuri de uscare cu dOza de 120 KHZTable no. 2. Viability of lactic bacteria from the product obtained by applying different drying regimes with a dose of 120 KHZ

Nr. crt. Nr. crt. Temperatura de uscare a amestecului (°C) Drying temperature a of the mixture (° C) Viabilitatea inițiala (cfu/g) - Vi Initial viability (cfu / g) - Vi Viabilitatea preparatului obținut (cfu/g) Vf Viability of the preparation obtained (cfu / g) Vf Grad de scădere a viabilității (v(/vf)Decreased viability (v ( / v f )) Randament obtinut % (cantitate produs uscat g/100ml produs lichid) Yield obtained % (quantity of product dry g / 100ml liquid product) 1. 1. 130 130 165 x 1O1U 165 x 1O 1U 82 x 10a 82 x 10 a 20 20 2,21 2.21 2. 2. 150 150 165 x 1O1U 165 x 1O 1U 21 x 10a 21 x 10 a 78 78 2,93 2.93 3. 3. 170 170 165 x 10w 165 x 10 w 1 x 10a 1 x 10 a 1650 1650 2,88 2.88

Se constata astfel ca regimul optim de temperatura a aerului utilizat in procesul de uscare este de 150°C±10°C. Aceasta valoare asigura un proces satisfăcător atât din punct de vedre al randamentelor obținute cât și din punct de vedere microbiologic.It is thus found that the optimum temperature regime of the air used in the drying process is 150 ° C ± 10 ° C. This value ensures a satisfactory process both from the point of view of the obtained yields and from the microbiological point of view.

Varianta optima de microincapsulare a bacteriilor probiotice prin uscare este aceea in care se utilizează, pentru alimentarea produsului in camera de uscare, o duza de pulverizare ultrasonica, avand o frecventa de 120kHz. In produsul supus uscării se utizileaza alginat in proporție de 1%.The optimum microincapsulation variant of probiotic bacteria by drying is the one in which an ultrasonic spray nozzle, with a frequency of 120kHz, is used to supply the product in the drying chamber. In the product subject to drying, alginate is used in proportion of 1%.

Tehnologia de microincapsulareMicro-encapsulation technology

Procesul tehnologic privind microincapsularea bacteriilor probiotice se desfasoara conform schemei tehnologice prezentate in figura nr. 5The technological process regarding the micro-encapsulation of probiotic bacteria is carried out according to the technological scheme presented in figure no. 5

Noutatea propunerii de invenție consta in aplicarea unui procedeu de uscare a microcapsulelor de bacterii probiotice(bifidobacterii) intr-o instalație de uscare prin pulverizareThe novelty of the invention proposal was to apply a drying process of microcapsules of probiotic bacteria (bifidobacteria) in a spray drying plant.

^-2010-01172^ -2010 to 01,172

4 -11- 2010 ultrasonica. Prin acest sistem are loc si o emulsifiere al preparatului biologic cu bacterii probiotice, ceea ce determina obținerea unor microcapsule de dimensiuni mici, de cca. 30 pm. Dimensiunea microcapsulelor este importanta in cazul utilizării acestora la fabricarea produselor lactate, prin adaos direct in produsul finit sau in laptele ce urmeaza a fi fermentat, deoarece ele nu trebuie sa fie detectate de papilele gustative.4 -11- 2010 ultrasonic. Through this system there is also an emulsification of the biological preparation with probiotic bacteria, which results in obtaining microcapsules of small size, of approx. 30 pm. The size of the microcapsules is important when used in the manufacture of dairy products, by directly adding them to the finished product or milk to be fermented, because they do not have to be detected by the taste buds.

Din punct de vedere al randamentului la uscarea microcapsulelor, temperatura optima este cuprinsa intre 150-170°C, iar d.p.v . al viabilității bacteriilor după procesul de uscare, temperatura optima este cuprinsa in intervalul 130-150 °C. Frecventa optima a duzei de pulverizare ultrasonica a produsului in camera de uscare din instalația SonoDry750 este de 120 kHz.From the point of view of the efficiency when drying the microcapsules, the optimum temperature is between 150-170 ° C, and d.p.v. of the viability of bacteria after the drying process, the optimum temperature is in the range 130-150 ° C. The optimum frequency of the ultrasonic spray nozzle of the product in the drying chamber of the SonoDry750 is 120 kHz.

^2 0 1 0 - 0 1 1 7 2 2 4 -11- 2010^ 2 0 1 0 - 0 1 1 7 2 2 4 -11- 2010

BibliografieBibliography

1. Brigidi P., Swennen E., Vitali B., Rossi M., 2003, „PCR detection of Bifidobacterium străin and Streptococcus thermophilus in feces of human subjects after oral bacteriotherapy and yogurt consumption”. IntJfood Microbiol, 81:203-2091. Brigidi P., Swennen E., Vitali B., Rossi M., 2003, "PCR detection of Bifidobacterium foreign and Streptococcus thermophilus in feces of human subjects after oral bacteriotherapy and yogurt consumption". IntJfood Microbiol, 81: 203-209

2. Chem, M. J., Chen, K., N., 2007. „Applications of Probiotic Encapsulation in Dairi Products in Encapsulation and Controlled Release Technologies in Food Systems”, Edited by J. M. Lakkis, Blackwell Publishing Ltd., ., p. 83-1102. Chem, M.J., Chen, K., N., 2007. "Applications of Probiotic Encapsulation in Dairi Products in Encapsulation and Controlled Release Technologies in Food Systems," Edited by JM Lakkis, Blackwell Publishing Ltd., p. 83 -110

3. Costin G. M., 2007, „Aspecte generale privind sistemul digestiv, funcțiile microflorei intestinale si produsele lactate funcționale in „Produse lactate funcționale, Editor G. M. Costin, Editura Academica, Galați3. Costin G. M., 2007, "General aspects regarding the digestive system, the functions of the intestinal microflora and functional dairy products in" Functional dairy products, Editor G. M. Costin, Academica Publishing House, Galați

4. Elli, M., Callegari, M. L., Ferrari S., Cattivelli D., Soldi S., Morelli L., Goupil Feuillerat, N., Antoine, J-M., 2006, „Survival of yogurt bacteria in human gut”. Appl Environ Microbiol, 72:5113-51174. Elli, M., Callegari, M. L., Ferrari S., Cactivelli D., Soldi S., Morelli L., Goupil Feuillerat, N., Antoine, J-M., 2006, "Survival of yogurt bacteria in human gut." Appl Environ Microbiol, 72: 5113-5117

5. Fuller M. F., 1991, „In vitro digestion for Pigs and Poultry”, C.A.B Internațional, Oxfordshire5. Fuller M. F., 1991, "In vitro digestion for Pigs and Poultry", C.A.B International, Oxfordshire

6. Hou, R. C. W., Lin Μ. Y., Wang M. C., Tzen J. T. C., 2003, „Increase of viabilitz of entrapped cells of Lactobacillus delbruekii ssp. Bulgaricus in artificial oii emulsions”. Journal of Dairz Science 86: 424-4286. Hou, R. C. W., Lin Μ. Y., Wang M. C., Tzen J. T. C., 2003, "Increase of viability of entrapped cells of Lactobacillus delbruekii ssp. Bulgaricus in artificial oii emulsions." Journal of Dairz Science 86: 424-428

7. Krul C., Humbold C., Philipp C., et aii. 2002, „Metabolism of sinigrin (2-propenyl glucozinolate) by the human colonie microflora in a dynamic in vitro large intestinal model”. Carcinogenesis; 23:10117. Krul C., Humbold C., Philipp C., et aii. 2002, "Metabolism of sinigrin (2-propenyl glucosinolate) by the human microflora colony in a dynamic in vitro large intestinal model". Carcinogenesis; 23: 1011

8. Lindwall S., Fonden, R., 1984, „Passage and survival of L.Acidophilus in the human gastrointestinal tract”. Annu.Bull.Int. Dairy Fed. 21, 1798. Lindwall S., Fonden, R., 1984, "Passage and survival of L. Acidophilus in the human gastrointestinal tract". Annu.Bull.Int. Dairy Fed. 21, 179

9. Maitrot, H., Chou, Paquin C., Lacroix C., Champagne, C. P., 1997. „Production of concentrated freeze-dried cultures of Bifidobacterium longum in k-carrageenan-locust bean gum gel”. Biotechnology Techniques 11 (7): 527-5319. Maitrot, H., Chou, Paquin C., Lacroix C., Champagne, C. P., 1997. "Production of concentrated freeze-dried cultures of Bifidobacterium longum in k-carrageenan-locust bean gum gel." Biotechnology Techniques 11 (7): 527-531

10. Makivnokko H., Nurmi J., Nurminem P., Stowell J., Rautonen N., 2005. „In vitro effect on poydextrose by colonie bacteria and Caco-2 cell cyclooxigenase gene expresion”. Nutr. Cancer 52:93-10310. Makivnokko H., Nurmi J., Nurminem P., Stowell J., Rautonen N., 2005. "In vitro effect on poydextrose by colony bacteria and Caco-2 cell cyclooxigenase gene expression". Nutr. Cancer 52: 93-103

11. Makivuokko, H., Saarinen, M., Ouwehand, A., and Rautonen, N., 2006, „Effects of lactose on colon microbial community structure and function in a four-stage semicontinous culture system”. Biosci. Biotechnol. Biochem., 70, 2056-206311. Makivuokko, H., Saarinen, M., Ouwehand, A., and Rautonen, N., 2006, "Effects of lactose on colon microbial community structure and function in a four-stage semicontinous culture system." Biosci. Biotechnol. Biochem., 70, 2056-2063

12. Makivuokko, H., Kettunen H., Saaarinen M., Kamiwaki, T., Yokoyama Y., Stowel J., Rautonen, N., 2007. „The effect of cocoa and polydextrose on bacterial fermentation in gastrointestinal tract simulation”. Biosci. Biotechnol. Biochem., 71 (8), 1834-184312. Makivuokko, H., Kettunen H., Saaarinen M., Kamiwaki, T., Yokoyama Y., Stowel J., Rautonen, N., 2007. "The effect of cocoa and polydextrose on bacterial fermentation in gastrointestinal tract simulation" . Biosci. Biotechnol. Biochem., 71 (8), 1834-1843

13. Marteau P., Minekus M., Havenaaar R., Huis In’t Veld J. H. J. 1997. „Survival of lactic acid bacteria in an dynamic model of the stomach and small intestine:validation and the effects of bille”, J. Dairy.Sci. 80:1033-104113. Marteau P., Minekus M., Havenaaar R., Huis In't Veld J. H. 1997. "Survival of lactic acid bacteria in a dynamic model of the stomach and small intestine: validation and the effects of bile", J. Dairy .Sci. 80: 1033-1041

14. Marteau P., Minekus M., Havebaar R., Huis in’t Veld J.H., 1997, „Survival of lactic acid bacteria in a dynamic model of the stomach and small intestine; validation and effects of bile”, J. Dairy Sci. 80 , 1031-103714. Marteau P., Minekus M., Havebaar R., Huis in in Veld J.H., 1997, “Survival of lactic acid bacteria in a dynamic model of the stomach and small intestine; validation and effects of bile ”, J. Dairy Sci. 80, 1031–1037

15. Marteau P., Gerhardt M. F., Myara A., Bouvier E., Trivin F., Rambaud J. C.,1995, „Metabolism of bile salts by alimentary bacteria during transit in the human small intestine”, Microb. Ecol. Health Dis. (8), 151-15715. Marteau P., Gerhardt M. F., Myara A., Bouvier E., Trivin F., Rambaud J. C., 1995, "Metabolism of bile salts by food bacteria during transit in the human small intestine," Microb. Ecol. Health Dis. (8), 151-157

16. Ouwehand A. C., Salminen S., Arvola T., Ruresco T., Isolauri E, 2004. „Microbiota composition of the intestinal mucosa: association with fecal microbiota”. Microbiol Immunol, 48: 497-50016. Ouwehand A. C., Salminen S., Arvola T., Ruresco T., Isolauri E, 2004. "Microbiota composition of the intestinal mucosa: association with fecal microbiota". Microbiol Immunol, 48: 497-500

17. San, W and Griffiths, M.W., 2000. „Survival of bifidobacteria in yogurt and simulated gastric juse following immobilization in gellan-xanthan beads”. Internațional Journal of Food Microbiology 6T. 172517. San, W and Griffiths, M.W., 2000. "Survival of bifidobacteria in yogurt and simulated gastric juse following immobilization in gellan-xanthan beads." International Journal of Food Microbiology 6T. 1725

18. Tannock G. W., Tangerman A., van Schaik A., McConnell M. A., 1994 „Deconjugaison of bile acids by lactobacilli in the mouse small bowel”. Appl. Environ. Microbiol. 60 3419-342018. Tannock G. W., Tangerman A., van Schaik A., McConnell M. A., 1994 "Deconjugation of bile acids by lactobacilli in the mouse small bowel". Appl. Environ. Microbiol. 60 3419-3420

19. Zoetendal E. G., von Wright A., Vilppomen-Salmela T., Ben Amor, K., Akkermans, A. D. L., de Vos W. M., 2002. „Mucosa associated bacteria in the human gastrointestinal tract uniformly19. Zoetendal E. G., von Wright A., Vilppomen-Salmela T., Ben Amor, K., Akkermans, A. D. L., de Vos W. M., 2002. „Mucosa-associated bacteria in the human gastrointestinal tract uniformly

0--2 Ο 1 Ο - Ο 1 1 7 2 - - α0--2 Ο 1 Ο - Ο 1 1 7 2 - - α

4 -11- 2010 5 distributed along the colon and differ from the comunity recovered from feces”. Appl. Environ Microbiol, 68:3401-34074 -11- 2010 5 distributed along the colon and different from the community recovered from feces ”. Appl. Environ Microbiol, 68: 3401-3407

20. Bergmaier D, Champagne CP, Lacroix C, (2003). Exopolysaccharide production during batch cultures with free and immobilized Lactobacillus rhamnosus RW-9595M. J20. Bergmaier D, Champagne CP, Lacroix C, (2003). Exopolysaccharide production during batch cultures with free and immobilized Lactobacillus rhamnosus RW-9595M. J

21. Bergmaier D, Champagne CP, Lacroix C, (2005). Growth and exopolysaccharide production during free and immobilized cell chemostat culture of Lactobacillus rhamnosus RW-9595M. J Appl Microbiol 98: 272-284.21. Bergmaier D, Champagne CP, Lacroix C, (2005). Growth and exopolysaccharide production during free and immobilized cell chemostat culture of Lactobacillus rhamnosus RW-9595M. J Appl Microbiol 98: 272–284.

22. Chan, E. S., Zhang, Z., Bioincapsulation by compression coating of probiotic bacteria for their protection in an acidic medium, Process Biochemistry, (2005) Voi. 40, No. 10, p 3346-335122. Chan, E. S., Zhang, Z., Bioincapsulation by compression coating of probiotic bacteria for their protection in an acidic medium, Process Biochemistry, (2005) Vol. 40, No. 10, p 3346-3351

23. Chen, K., Chen, M., Liu, J., Lin, C., Ahiu, H., Optimisation of Incorporated Prebiotics as Coating Materials for Probiotic Microincapsulation, Journal of Food Science, (2005), Voi 70, Issue 5, M260-M26623. Chen, K., Chen, M., Liu, J., Lin, C., Ahiu, H., Optimization of Incorporated Prebiotics as Coating Materials for Probiotic Microincapsulation, Journal of Food Science, (2005), Vol. 70, Issue 5, M260-M266

24. Ciric Al “Techniques used for encapsulation of probiotic bacteria” (prezentare) la Al IXlea simpozion cu participare internaționala de chimia coloizilor si suprafețelor, Galați, mai 200824. Ciric Al “Techniques used for encapsulation of probiotic bacteria” (presentation) at the 9th symposium with international participation in the chemistry of colloids and surfaces, Galați, May 2008

25. Ciric Al Costin G.M. Ph.D Microincapsularea bacteriilor probiotice.. Principii generale. Structura microcapsulelor. in Bulletin de Informare in Industria Laptelui, nr. 4/2007, Ed. Academica, Galați25. Ciric Al Costin G.M. Ph.D Microincapsulation of probiotic bacteria. General principles. Structure of microcapsules. in the Information Bulletin on the Milk Industry, no. 4/2007, Academica Ed., Galați

26. Ciric Al Tehnici de încapsulare a produselor alimentare in Bulletin de Informare in Industria Laptelui, nr 1/2004, Ed. Academica, Galați26. Ciric Al Food Encapsulation Techniques in the Milk Industry Information Bulletin, no 1/2004, Academica Ed., Galați

27. Ciric, Al Cercetări asupra produselor sinbiotice in Bulletin de Informare in Industrial Laptelui, no 1/2003, p 58 - 66 , Ed. Academica, Galați27. Ciric, Al Research on symbiotic products in the Information Bulletin on Industrial Milk, no 1/2003, p 58 - 66, Academica Ed., Galați

28. Costin G.M., (2005), “Produse lactate fermentate, Editura Academica, p.187-21628. Costin G.M., (2005), “Fermented Dairy Products, Academic Publishing House, p.187-216

29. Costin G.M., Segal R., (1999), “Alimente funcționale, Editura Academica, p. 113-15329. Costin G.M., Segal R., (1999), “Functional foods, Academic Publishing House, p. 113-153

30. Costin GM, Segal R (1999). Alimente funcționale. Alimentele si sănătatea, Ed.Academica Galați30. Costin GM, Segal R (1999). Functional foods. Food and Health, Galați Academy Ed

31. Daniells, S., Omega-3 encapsulation in chitosan gets study boost, http://www.foodnaviqator.com/news/nq.asp?id=79355-chitosan-omeq32.a-encapsulation31. Daniells, S., Omega-3 encapsulation in chitosan gets study boost, http://www.foodnaviqator.com/news/nq.asp?id=79355-chitosan-omeq32.a-encapsulation

33. Dave Rl, Shah NP (1996). Evalution of media for selective enu meration of Streptococcus thermophilus, Lactobacillus delbruekii spp. bulgaricus, Lactobacillus acidophilus and bifi- dobaceria. J Dairy Sci. 79: 1529-1539.33. Dave Rl, Shah NP (1996). Evaluation of media for selective enu meration of Streptococcus thermophilus, Lactobacillus delbruekii spp. Bulgaricus, Lactobacillus acidophilus and bifi- dobaceria. J Dairy Sci. 79: 1529-1539.

34. Dellaglio F, de Roissard H, Torriani S, Curk MC, Janssens D (1994) Caracteristiques generales des bacteries lactiques. în : Bacteries lactiques. Voi 1. De Roissard H et Luquet FM (ed.). Lorica: Uriage. 25-116.34. Dellaglio F, de Roissard H, Torriani S, Curk MC, Janssens D (1994) General characteristics of lactic acid bacteria. in: Lactic acid bacteria. Vol. 1. De Roissard H and Luquet FM (ed.). Lorica: Uriage. 25-116.

35. Dima St Ph. D, Beliciu C, Cîrîc Al Studiul folosirii alginatilor in procesul de bioincapsulare prin emulsionare gelifiere , în voi. “ Alimentele in Mileniul III”, p. 250-256, Ed. Academica, Galați, 200035. Dima St. Ph. D, Beliciu C, Cîrîc Al The study of the use of alginates in the process of bioincapsulation by gel emulsification, in you. "Food in the Third Millennium", pages 250-256, Academica Ed., Galați, 2000

36. Dima St., Bahrim G, „Intelligent invertase micro and nanocapsules make and use”, (2007), Roumanian Biotechnological Letters, 12, 3, p. 3287-329336. Dima St., Bahrim G, "Intelligent invertase micro and nanocapsules make and use", (2007), Roumanian Biotechnological Letters, 12, 3, pp. 3287-3293

37. Dima St., Bahrim G, Gheteu M, “A new procedure for the bioencapsulation of the enzymes with hydrocolloids “, Annals of University of Timișoara, series CHEMISTRY 12(3) 2003, p.857-86237. Dima St., Bahrim G, Gheteu M, "A new procedure for the bioencapsulation of enzymes with hydrocolloids", Annals of the University of Timisoara, CHEMISTRY series 12 (3) 2003, p.857-862

38. Dimantov A, Greenberg M, Kesselman E.,Shimoni (2003). Study of high amylase corn starch as food grade enteric coating in a microcapsule modei systems. Innov. Food Science and Technol.5:93-10038. Dimantov A, Greenberg M, Kesselman E., Shimoni (2003). Study of high amylase corn starch as food grade enteric coating in a microcapsule modei systems. Innov. Food Science and Technol.5: 93-100

39. Dimantov A, Kesselman E, Shamanic E (2004) Surface charracterization and dissolution properties of high amylase starch pectin coatings. Food Hydrocol. 18: 29-3739. Dimantov A, Kesselman E, Shamanic E (2004) Surface charracterization and dissolution properties of high amylase starch pectin coatings. Food Hydrocol. 18: 29-37

ce 2 D 1 Ο - Ο 1 1 7 2 - 2 4 -11- 2010ce 2 D 1 Ο - Ο 1 1 7 2 - 2 4 -11- 2010

TT

40. Doleyres, Υ., Lacroix, C., Technologies with free and immobilised cells for probiotic bifidobacteria production and protection, Internațional Diary Journal, 15 (2005)973-98840. Doleyres, Υ., Lacroix, C., Technologies with free and immobilized cells for probiotic bifidobacteria production and protection, International Diary Journal, 15 (2005) 973-988

41. Fuller R (1991). Probiotics in human medicine. Gut 32: 439-442.41. Fuller R (1991). Probiotics in human medicine. Gut 32: 439-442.

42. Gilliland SE (1989).Areview of potențial benefits to consumers. J. Dairy Sci. 72: 24832494.42. Gilliland SE (1989). Review of potential benefits to consumers. J. Dairy Sci. 72: 24832494.

43. Gismondo MR, Drago L, LombardiA(1999). Review of probiotics available to modify gastrointestinal flora. Int J Antimicrob Agents. 12: 287-29243. Gismondo MR, Drago L, LombardiA (1999). Review of probiotics available to modify gastrointestinal flora. Int J Antimicrob Agents. 12: 287-292

44. Goldin BR (1998). Health benefits of probiotics. British J Nutr. 80: 203-207.44. Goldin BR (1998). Health benefits of probiotics. British J Nutr. 80: 203-207.

45. Gouin S (2004). Microencapsulation-industrial appraisal of existing technologies and trend. Trends Food Sci Technol. 15: 330-34745. Gouin S (2004). Microencapsulation-industrial appraisal of existing technologies and trends. Trends Food Sci Technol. 15: 330-347

46. Groboillot A, Boadi DK, Poncelet D, Neufeld RJ, (1994). Immobilization of cells for application in the food industry. Crit Rev Biotechnol 14: 75-107.46. Groboillot A, Boadi DK, Poncelet D, Neufeld RJ, (1994). Immobilization of cells for application in the food industry. Crit Rev Biotechnol 14: 75-107.

47. Kailasapathy K, Rybka S (1997). L. acidophilus and Bifidobacterium spp.: their therapeutic potențial and survival in yogurt. Aust J Dairy Technol. 52: 28-3547. Kailasapathy K, Rybka S (1997). L. acidophilus and Bifidobacterium spp .: their therapeutic potential and survival in yogurt. Aust J Dairy Technol. 52: 28-35

48. Kailasapathy, K., Godward, G., Talwalkar, A., Micro-encapsulation of probiotic bacteria with alginate-starch as a dairy food delivery system, Session 73, Dairy Foods: Probiotics and bioactive components in milk ,9:00 AM - 10:45 AM, 2002-06-18 Room 21248. Kailasapathy, K., Godward, G., Talwalkar, A., Micro-encapsulation of probiotic bacteria with alginate-starch as a dairy food delivery system, Session 73, Dairy Foods: Probiotics and bioactive components in milk, 9:00 AM - 10:45 AM, 2002-06-18 Room 212

49. Kailasapathy, K., Microencapsulation of Probiotic Bacteria: Technology and Potențial Applications, Curr.lssues Intest. Microbiol. (2002) 3:39-4849. Kailasapathy, K., Microencapsulation of Probiotic Bacteria: Technology and Potential Applications, Curr.lssues Intest. Microbiol. (2002) 3: 39-48

50. Krasaekoopt W, Bhandari B, Deeth H (2004). The influence of coating materials on some properties of alginate beads and survivability of microencapsulated probiotic bacteria. Int Dairy J 14: 737-74350. Krasaekoopt W, Bhandari B, Deeth H (2004). The influence of coating materials on some properties of alginate beads and survivability of microencapsulated probiotic bacteria. Int Dairy J 14: 737-743

51. Krasaekoopt W, Bhandari B, Deeth H (2003) Evaluation of encapsulation tehniques of probiotics for yogurt, Int Dairy J. 13:3-1351. Krasaekoopt W, Bhandari B, Deeth H (2003) Evaluation of encapsulation techniques of probiotics for yogurt, Int Dairy J. 13: 3-13

52. Krasaekoopt, W., Bhandari, B., Deeth, H., Evaluation of encapsulation techniques of probiotics for yoghurt, Internațional Diary Journal, 13 (2003) p 3-1352. Krasaekoopt, W., Bhandari, B., Deeth, H., Evaluation of encapsulation techniques of probiotics for yoghurt, International Diary Journal, 13 (2003) p 3-13

53. Kritchevsky D (1995). Epidemiology of fiber, resistant starch and colorectal cancer. Eur J Cancer Prev. 4: 345-35253. Kritchevsky D (1995). Epidemiology of fiber, resistant starch and colorectal cancer. Eur J Cancer Prev. 4: 345-352

54. Lankaputhra WEV, Shah NP (1995) Survival of Lactobacillus acidophilus and Bifidobacterium spp. in the presence of acid and bile salts. Cult. Dairy Prod. J. 30:2-7.54. Lankaputhra WEV, Shah NP (1995) Survival of Lactobacillus acidophilus and Bifidobacterium spp. In the presence of acid and bile salts. Worship. Dairy Prod. J. 30: 2-7.

55. Lee Kl, Heo TR (2000). Survival of Bifudobacterium longum immobilized in calcium alginate beads in simulated gastric juices and bile salt solution. Appl Environ Microbiol. 66: 869-97355. Lee Kl, Heo TR (2000). Survival of Bifudobacterium longum immobilized in calcium alginate beads in simulated gastric juices and bile salt solution. Appl Environ Microbiol. 66: 869-973

56. Lee K, Moon SH, (2003). Growth kinetics of Lactococcus lactis ssp. Diacetylactis harboring different plasmid content. Current Microbiol 47: 17-21.56. Lee K, Moon SH, (2003). Growth kinetics of Lactococcus lactis ssp. Diacetylactis harboring different plasmid content. Current Microbiol 47: 17-21.

57. Martien A, Skjak-Braek C, Smidsrod (1989), Alginate as immobilization material: 1. correlation betwen chemical and physicalproperties of alginate gel beads. Biotechnol. Bioeng 33:798957. Martien A, Skjak-Braek C, Smidsrod (1989), Alginate as immobilization material: 1. correlation betwen chemical and physicalproperties of alginate gel beads. Biotechnol. Bioeng 33: 7989

58. Masson F, Lacroix C, Paquin C (1994) Direct measurement of pH profiles in gel beads immobilizing Lactobacillus helveticus using a pH sensitive microelectrode. Biotechnol. Tech. 8:551556.58. Masson F, Lacroix C, Paquin C (1994) Direct measurement of pH profiles in immobilizing gel beads using Lactobacillus helveticus using a pH sensitive microelectrode. Biotechnol. Tech. 8: 551 556.

59. Mortazavian, AM, Sohrabvandi S (2006c). Probiotics and food Probiotic products. Eta Publication, Iran59. Mortazavian, AM, Sohrabvandi S (2006c). Probiotics and food Probiotic products. And Publication, Iran

Λ- 2010-01172-- I2010- 2010-01172-- I

4 -11- 20104-11-11, 2010

60. Palacios, Ρ., Burgos, J., Hoz, L., Sanz B., Ordonez, J. A., (1991), Study of substances released by ultrasonic treatment from Bacillus stearothermophilus spores, J. AppI.Bacteriol. 71, 44545160. Palacios, Ρ., Burgos, J., Hoz, L., Sanz B., Ordonez, J. A., (1991), Study of substances released by ultrasonic treatment from Bacillus stearothermophilus spores, J. AppI.Bacteriol. 71, 445451

61. PicotA, Lacroix C (2003). Effect of micronization on viability and thermotolerance of probiotic freeze-dried cultures. IntDairyJ. 13: 455-46261. PicotA, Lacroix C (2003). Effect of micronization on viability and thermotolerance of probiotic freeze-dried cultures. IntDairyJ. 13: 455-462

62. Picot A, Lacroix C (2003). Effect of dinamic loop mixer operating conditions on O/W emulsion used for cell encapsulation. Le lait 83: 237-25062. Picot A, Lacroix C (2003). Effect of dynamic loop mixer operating conditions on O / W emulsion used for cell encapsulation. Milk 83: 237-250

63. Rueckert A, Ronimus RS, Morgan HW, (2005). Development of a rapid detection and enumeration method for thermophilic bacilli in milk powders. J Microbiol Methods 60: 155-167.63. Rueckert A, Ronimus RS, Morgan HW, (2005). Development of a rapid detection and enumeration method for thermophilic bacilli in milk powders. J Microbiol Methods 60: 155-167.

64. Sala F,J., Burgos J., Condon, S., Lopez, P., Raso, J., (1997) “Effect of heat and ultrasound on microorganisms and enzymes , in GOULD G. W., (Ed), New methods of food preservation, Blackie Academie, Proffesional, London, p.176-20464. Sala F, J., Burgos J., Condon, S., Lopez, P., Raso, J., (1997) “Effect of heat and ultrasound on microorganisms and enzymes, in GOULD GW, (Ed), New methods of food preservation, Blackie Academie, Proffesional, London, p.176-204

65. Sendra, E., Fazos, P., Lario.Z., Fernandez-Lopez.J., Sayas-Barberă, E., Perez-Alvarez, J,A., Incorporation of citrus fibers in fermented milk containing probiotic bacteria, Food Microbiology, 25(2008), 13-2165. Sendra, E., Fazos, P., Lario.Z., Fernandez-Lopez.J., Sayas-Barberă, E., Perez-Alvarez, J, A., Incorporation of citrus fibers into fermented milk containing probiotic bacteria , Food Microbiology, 25 (2008), 13-21

66. Shah NP, Lankaputhra WEV, Britz M, Kyle WSA (1995). Survival of Lactobacillus acidophilus and Bifidobacterium longum in commercial yoghurt during refrigerated storage. Int DairyJ. 5: 515-52166. Shah NP, Lankaputhra WEV, Britz M, Kyle WSA (1995). Survival of Lactobacillus acidophilus and Bifidobacterium longum in commercial yoghurt during refrigerated storage. You're DairyJ. 5: 515-521

67. Shah NP, Rarula RR (2000). Microencapsulation of probiotic bac teria and their survival in frozen fermented dairy desserts. Aust J Dairy Technol. 55: 139-14467. Shah NP, Rarula RR (2000). Microencapsulation of probiotic bac teria and their survival in frozen fermented dairy desserts. Aust J Dairy Technol. 55: 139-144

68. Sheu TY, Marshall RT (1991) Improveing culture viability in frozen desserts by microencapsulation. J Dairy Sci 74:107-11168. Sheu TY, Marshall RT (1991) Improve culture viability in frozen desserts by microencapsulation. J Dairy Sci 74: 107-111

69. Sheu TY, Marshall RT (1993) Microentrapment of lactobacilli in calcium alginate gel, J. Food sci.54:557-56169. Sheu TY, Marshall RT (1993) Microentrapment of lactobacilli in calcium alginate gel, J. Food sci.54: 557-561

70. Sultana K, Godward G, Reynolds N, Arumugaswamy R, Peiris P, Kailasapathy K (2000). Encapsulation of probiotic bacteria with alginate-starch and evaluation of survival in simulated gastrointestinal conditions and in yoghurt. Int J Food Microbiol. 62:47-5570. Sultana K, Godward G, Reynolds N, Arumugaswamy R, Peiris P, Kailasapathy K (2000). Encapsulation of probiotic bacteria with alginate-starch and evaluation of survival in simulated gastrointestinal conditions and in yoghurt. Int J Food Microbiol. 62: 47-55

71. Sunohara H, Ohno T, Shibata N, Seki K (1995). Process for producing capsule and capsule obtained thereby. US Patent. 5: 478-57071. Sunohara H, Ohno T, Shibata N, Seki K (1995). Process for producing capsules and capsules obtained thereby. US Patent. 5: 478-570

72. Tanaka H, Masatose M., Veleky IA (1984), Diffusion characteristics of substrates in calcum alginatebeads. Biotechnol Bioeng. 26: 53-5872. Tanaka H, Masatose M., Veleky IA (1984), Diffusion characteristics of substrates in calcium alginatebeads. Biotechnol Bioeng. 26: 53-58

73. Truelstrup-Hansen L, Allan-Wojtas PM, Jin YL, Paulson AT (2002). Survival of free and calcium-alginate microencapsulated Bifidobacterium ssp in simulated gastrointestinal conditions. Food Microbiol. 19, 35-45573. Truelstrup-Hansen L, Allan-Wojtas PM, Jin YL, Paulson AT (2002). Survival of free and calcium-alginate microencapsulated Bifidobacterium ssp in simulated gastrointestinal conditions. Food Microbiol. 19, 35-455

74. Vaughan, E, E., Heilig, H,G,H,J., Ben-Amor, K., dVos, W., Diversity, vitality and activities of intestinal lactic acid bacteria and bifidobacteria asessed by molecular aproaches, FEMS Microbiology Reviews, 29 (2005) 477-49074. Vaughan, E, E., Heilig, H, G, H, J., Ben-Amor, K., dVos, W., Diversity, vitality and activities of intestinal lactic acid bacteria and bifidobacteria assayed by molecular aproaches, FEMS Microbiology Reviews, 29 (2005) 477-490

75. Wenrong S, Griffiths MW (2000). Survival of bifidobacteria in yogurt and simulated gastric juice following immobllization in gellan-xanthan beads. Int J Food Microbiol. 61: 17-2675. Wenrong S, Griffiths MW (2000). Survival of bifidobacteria in yogurt and simulated gastric juice following immobilization in gellan-xanthan beads. Int J Food Microbiol. 61: 17-26

76. US Patent No 6,592,86376. U.S. Patent No. 6,592,863

77. US Patent No. 5,897,89777. U.S. Patent No. 5,897,897

Claims (9)

REVENDICĂRI 1. Procedeu de microincapsulare a bacteriilor probiotice prin uscare, avand la baza pulverizarea ultrasonica a produsului microincapsulat care intra in camera de uscare a unei instalației de uscare SonoDry750.1. Process for micro-encapsulating probiotic bacteria by drying, based on the ultrasonic spray of the micro-encapsulated product entering the drying room of a SonoDry750 drying plant. 2. Produsul pentru uscat se obține prin microincapsularea bacteriilor probiotice (bifidobacteriilor) intr-un amestec de soluție % strength Ringer; 11-12 % preparat bacterian liofilizat; 1- 2% maltodextrine, 1-2 % alginat de sodiu.2. The dry product is obtained by micro-encapsulating probiotic bacteria (bifidobacteria) in a mixture of% strength Ringer's solution; 11-12% lyophilized bacterial preparation; 1- 2% maltodextrine, 1-2% sodium alginate. 3. Alimentarea cu produs de bacterii probiotice microincapsulate in camera de uscare a instalației se realizează printr-o duza de pulverizare ultrasonica cu o frecventa de 120 kHz.3. The supply of micro-encapsulated probiotic bacterial product into the drying chamber of the installation is made by an ultrasonic spray nozzle with a frequency of 120 kHz. 4. Limitele de temperatura la intrarea produsului in camera de uscare a instalației, conform procedeului de la pct. 1 sunt de min.130 0 C si max. 170° C4. The temperature limits at the entrance of the product in the drying room of the installation, according to the procedure from item 1 are of min. 130 0 C and max. 170 ° C 5. Temperatura de ieșire a aerului din intalatie funcție de debitul produsului si viteza de uscare, conform procedeului de la pct. 1 este cuprinsa intre 70 si 96/- 5°C.5. The outlet temperature of the inlet air depending on the product flow rate and the drying speed, according to the procedure from item 1 is between 70 and 96 / - 5 ° C. 6. Debitul de aer circulant în instalația de uscare prin pulverizare, conform procedeului de la pct. 1 este de maxim 80 m3/h;6. The flow of circulating air in the spray drying plant, according to the procedure from item 1 is maximum 80 m 3 / h; 7. Presiunea de lucru conform procedeului de la pct. 1 este de ...-250mm coloana de apa7. The working pressure according to the procedure from item 1 is ... - 250mm water column 8. Procedeul de microincapsulare a bacteriilor probiotice intr-o instalație de uscare prin pulverizare ultrasonica, care funcționează la parametrii conform pct. 3-7, asigura o viabilitate a produsului uscat cuprinsa intre 20 si 28%.8. The process of micro-encapsulation of probiotic bacteria in an ultrasonic spray drying plant, operating at the parameters according to points 3-7, ensures a viability of the dry product between 20 and 28%. 9. Concentrația de bacterii probiotice viabile in produsul microincapsulat, conform pct. 8, este cuprinsa intre 109 si 1010 bacterii /gram.9. The concentration of viable probiotic bacteria in the micro-encapsulated product, according to point 8, is between 10 9 and 10 10 bacteria / gram.
ROA201001172A 2010-11-24 2010-11-24 Process for microencapsulation of probiotic bacteria by drying with ultrasonic spraying RO127522A2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
ROA201001172A RO127522A2 (en) 2010-11-24 2010-11-24 Process for microencapsulation of probiotic bacteria by drying with ultrasonic spraying

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
ROA201001172A RO127522A2 (en) 2010-11-24 2010-11-24 Process for microencapsulation of probiotic bacteria by drying with ultrasonic spraying

Publications (1)

Publication Number Publication Date
RO127522A2 true RO127522A2 (en) 2012-06-29

Family

ID=46319372

Family Applications (1)

Application Number Title Priority Date Filing Date
ROA201001172A RO127522A2 (en) 2010-11-24 2010-11-24 Process for microencapsulation of probiotic bacteria by drying with ultrasonic spraying

Country Status (1)

Country Link
RO (1) RO127522A2 (en)

Similar Documents

Publication Publication Date Title
Frakolaki et al. A review of the microencapsulation techniques for the incorporation of probiotic bacteria in functional foods
Kailasapathy Microencapsulation of probiotic bacteria: technology and potential applications
Liu et al. Protective approaches and mechanisms of microencapsulation to the survival of probiotic bacteria during processing, storage and gastrointestinal digestion: A review
Silva et al. Symbiotic microencapsulation to enhance Lactobacillus acidophilus survival
Martín et al. Microencapsulation of bacteria: A review of different technologies and their impact on the probiotic effects
Rashidinejad et al. Co-encapsulation of probiotics with prebiotics and their application in functional/synbiotic dairy products
Dianawati et al. Survival of microencapsulated probiotic bacteria after processing and during storage: a review
Burgain et al. Encapsulation of probiotic living cells: From laboratory scale to industrial applications
Chávarri et al. Encapsulation technology to protect probiotic bacteria
Manojlović et al. Encapsulation of probiotics for use in food products
Kent et al. Probiotic bacteria in infant formula and follow-up formula: Microencapsulation using milk and pea proteins to improve microbiological quality
Vivek et al. A comprehensive review on microencapsulation of probiotics: Technology, carriers and current trends
Xing et al. Effect of porous starch concentrations on the microbiological characteristics of microencapsulated Lactobacillus acidophilus
Xie et al. Polysaccharides, proteins, and their complex as microencapsulation carriers for delivery of probiotics: A review on carrier types and encapsulation techniques
Amin et al. Microencapsulation-the future of probiotic cultures
Petrović et al. Protection of probiotic microorganisms by microencapsulation
Krasaekoopt et al. Properties and applications of different probiotic delivery systems
Amiri et al. Development of Lactobacillus acidophilus LA5-loaded whey protein isolate/lactose bionanocomposite powder by electrospraying: A strategy for entrapment
Oberoi et al. Microencapsulation: An overview for the survival of probiotic bacteria
Feucht et al. Microencapsulation of lactic acid bacteria (LAB)
Panghal et al. Microencapsulation for delivery of probiotic bacteria
Hathi et al. Methodological advances and challenges in probiotic bacteria production: Ongoing strategies and future perspectives
Nooshkam et al. New technological trends in probiotics encapsulation for their stability improvement in functional foods and gastrointestinal tract
Radosavljević et al. Encapsulation technology of lactic acid bacteria in food fermentation
Vandamme et al. Microencapsulation of probiotics