RO127505A2 - Process for structuring surfaces by means of laser radiation by near-field optical intensification effect - Google Patents

Process for structuring surfaces by means of laser radiation by near-field optical intensification effect Download PDF

Info

Publication number
RO127505A2
RO127505A2 ROA201001174A RO201001174A RO127505A2 RO 127505 A2 RO127505 A2 RO 127505A2 RO A201001174 A ROA201001174 A RO A201001174A RO 201001174 A RO201001174 A RO 201001174A RO 127505 A2 RO127505 A2 RO 127505A2
Authority
RO
Romania
Prior art keywords
micro
mask
optical
laser
laser beam
Prior art date
Application number
ROA201001174A
Other languages
Romanian (ro)
Other versions
RO127505B1 (en
Inventor
Marian Zamfirescu
Florin Jipa
Iulia Anghel
Original Assignee
Institutul Naţional De Cercetare-Dezvoltare Pentru Fizica Laserilor, Plasmei Şi Radiaţiei
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institutul Naţional De Cercetare-Dezvoltare Pentru Fizica Laserilor, Plasmei Şi Radiaţiei filed Critical Institutul Naţional De Cercetare-Dezvoltare Pentru Fizica Laserilor, Plasmei Şi Radiaţiei
Priority to ROA201001174A priority Critical patent/RO127505B1/en
Publication of RO127505A2 publication Critical patent/RO127505A2/en
Publication of RO127505B1 publication Critical patent/RO127505B1/en

Links

Landscapes

  • Laser Beam Processing (AREA)

Abstract

The invention relates to a process for structuring surfaces on extended areas by direct printing by using the laser ablation effect induced by the near-field intensification of the optical radiation. According to the invention, the process consists in manufacturing a micro-structural mask (1) by photopolymerization, then positioning the mask (1) on the surface of a material (2) to be structured and in irradiating it with a laser beam (3), by irradiation there being obtained micro-structures (4); the mask (1) comprises a support (5) and some focusing micro-optical elements (6), the structure of said elements (6) being formed of elements in the shape of cylinder or other structures with a geometry different from the spherical geometry, with micrometric and sub-micrometric dimensions, obtained from a transparent polymer material at the wavelength of the laser beam (3) used for the ablation; the material (2) to be processed may be the surface of a solid material or a thin film of a material deposited on a sub-layer (7), the mask (1) and material (2) to be processed are irradiated on a large surface with a single laser pulse or a laser beam (3) and, by the near-field intensification effect, the laser beam (3) is focused at the interface between the micro-optical elements (6) and the surface of the material (2), locally the optical irradiance exceeds the threshold of optical damage causing the laser ablation of the material (2), only at the surface, without affecting the mask (1); as a consequence of focusing the laser beam (3), the cylindrical micro-optical elements (6) generate line-shaped micro-structures (4) by the laser ablation, the layout thereof respecting the layout of the cylinders within the microstructured masks (1).

Description

PROCEDEU DE STRUCTURARE A SUPRAFEȚELOR CU RADIAȚIE LASER PRIN EFECT DE INTENSIFICARE OPTICA IN CÂMP APROPIATPROCESS FOR STRUCTURING LASER RADIATION SURFACES BY OPTICAL INTENSIFICATION EFFECT IN APPROPRIATE FIELD

Invenția se refera la un procedeu de structurare a suprafețelor pe arii extinse prin imprimare directa folosind efectul de ablatie laser indus prin intensificarea radiației optice in câmp apropiat, cu ajutorul unor elemente micro-optice de focalizare cu geometrie diferita de cea sferica, ce permit generarea de micro si nanostructuri cu diverse geometrii.The invention relates to a process for structuring surfaces on extended areas by direct printing using the laser ablation effect induced by intensifying optical radiation in the near field, with the help of micro-optical focusing elements with geometry different from the spherical one, which allow the generation of micro and nanostructures with different geometries.

Procesarea materialelor prin ablatie laser este o metoda versatila, aplicabila la o clasa larga de materiale: metale, materiale ceramice, semiconductori, polimeri, materiale biologice, etc. In scopul procesării acestora, tehnicile clasice de microfabricare cu laser constau in focalizarea radiației laser folosind componente optice, precum lentile sau obiective de microscop, de ale căror caracteristici depinde in mod direct rezoluția structurilor create prin ablatie laser. Geometria unei anumite structuri este formata fie prin menținerea fixa a probei si deplasarea fasciculului laser, fie prin translatarea sau rotirea probei si menținerea fixa a fasciculului laser. In oricare dintre cele doua situații, metoda de prelucrare este una secvențiala, scanarea probei necesitând un timp lung de procesare. Rezoluția structurii realizate depinde in acest caz nu doar de optica de focalizare, ci si de precizia sistemelor mecanice de scanare.Laser ablation material processing is a versatile method, applicable to a wide class of materials: metals, ceramic materials, semiconductors, polymers, biological materials, etc. For the purpose of processing, classical laser microfabrication techniques consist of focusing laser radiation using optical components, such as lenses or microscope lenses, whose characteristics directly depend on the resolution of structures created by laser ablation. The geometry of a particular structure is formed either by the fixed holding of the sample and the displacement of the laser beam, or by the translation or rotation of the sample and the fixed holding of the laser beam. In either case, the processing method is a sequential one, scanning the sample requiring a long processing time. The resolution of the realized structure depends in this case not only on the focusing optics, but also on the accuracy of the mechanical scanning systems.

O metoda recent dezvoltata de procesare paralela a materialelor pe arii extinse consta in utilizarea efectului de intensificare in câmp apropiat a radiației optice la interfața unor micro si nanosfere din material transparent la radiația laserului [1], sau chiar nanoparticule metalice depuse prin auto-organizare pe suprafața materialului de procesat [2]. In urma iradierii suprafeței depuse cu micro particule, fiecare micro-sfera actioneaza ca o microlentila. Dezavantajul utilizării microsferelor ca elemente micro-optice de focalizare consta in obținerea de geometrii cu structura periodica limitata la simetria hexagonala, data de așezarea pe suprafața a rețelei de microsfere auto-organizate.A recently developed method of parallel processing of materials over large areas consists of using the effect of intensifying in the near field optical radiation at the interface of microspheres and nanospheres of transparent material at laser radiation [1], or even metal nanoparticles deposited by self-organization on surface of the material to be processed [2]. Following the irradiation of the surface deposited with micro particles, each micro-sphere acts as a micro-lens. The disadvantage of using microspheres as micro-optical focusing elements was to obtain geometries with periodic structure limited to hexagonal symmetry, given the placement of self-organized microspheres on the surface.

£\-2 Ο 1 0-01174-2 5 -11- 2010 fi£ \ -2 Ο 1 0-01174-2 5-11-11 2010 at

Invenția consta in fabricarea unor masti microstructurate din polimer si utilizarea lor ca elemente micro-optice de focalizare a radiației laser la suprafața unui material solid (metal, semiconductor, dielectric). Procedeul conform invenției, înlătură limitarea la simetria hexagonala obtinuta la procesarea in câmp apropiat cu microsfere, precum si dezavantajul unui timp lung de procesare in cazul microprocesarilor laser secvențiale, cu scanare.The invention consists in the manufacture of microstructured masks of the polymer and their use as micro-optical elements for focusing the laser radiation on the surface of a solid material (metal, semiconductor, dielectric). The process according to the invention removes the limitation on the hexagonal symmetry obtained in the near field processing with microspheres, as well as the disadvantage of a long processing time in the case of sequential laser scanning processors.

Se da in continuate un exemplu de realizare a invenției, cu referire la figurile 1, 2, 3 si 4, care reprezintă:An example of the invention is given below, with reference to Figures 1, 2, 3 and 4, which represent:

- fig. 1, etapele procesării cu radiație optica intensificata in câmp apropiat cu masti microstructurate.FIG. 1, the processing stages with intensified optical radiation in the near field with microstructured masks.

- fig. 2, imaginea de microscop de forța atomica a unei masti realizate din polimer SU8 pe substrat de cuart.FIG. 2, the microscopic image of the atomic force of a mask made of polymer SU8 on the quartz substrate.

- fig. 3, simulările numerice ale propagării luminii prin masca cu elemente microoptice de focalizare din SU-8.FIG. 3, numerical simulations of light propagation through the mask with micro-optical focusing elements from SU-8.

- fig. 4, microstructuri pe un film de cupru, obținute prin efect de intensificare optica in câmp apropiat la interfața dintre elementele de focalizare ale unei masti transparente si filmul de cupru.FIG. 4, microstructures on a copper film, obtained by optical intensification in the field near the interface between the focusing elements of a transparent mask and the copper film.

Etapele procesării laser in câmp apropiat, conform invenție, sunt:The steps of laser processing in the near field, according to the invention, are:

a) Fabricarea unei masti microstructurate 1.a) Manufacture of a microstructured mask 1.

b) Poziționarea măștii pe suprafața unui material 2 ce urmeaza a fi structurat si iradierea cu un fascicul laser 3.b) Positioning the mask on the surface of a material 2 to be structured and irradiation with a laser beam 3.

c) In urma iradierii cu laserul 3 se obțin simultan microstructuri 4.c) Following laser irradiation 3 microstructures 4 are obtained simultaneously.

Fabricarea măștilor se face printr-un procedeu de fotopolimerizare: fie prin metode litografice, fie prin scriere directa laser, respectând o anumita geometrie prestabilita. Masca 1 este compusa dintr-un suport 5 si elemente micro-optice de focalizare 6 fabricate pe acel suport. Suportul 5 este din sticla, cuart, sau alt material transparent la lungimea de unda a radiației laser 3. Structura de elemente micro-optice de focalizare 6 este formata din elemente pe baza de cilindrii, sau alte structuri regulate sau neregulate, periodice sau neperiodice, cu geometrie predefinita, alta decât cea sferica, cu dimensiuni micrometrice si submicrometrice. Elementele micro-optice de focalizare 6 sunt obținute dintr-un material polimer, transparent la lungimea de unda a laserului 3 folosit pentru ablatie. Criteriul de alegere a materialului polimer pentru fabricarea elementelor micro-optice de focalizare 6 este dat de pragul de distrugere optica a polimerului. Pragul de distrugere optica a acestui material trebuie sa fie superior pragului de ablatie a materialului de procesat 2.Masks are manufactured using a photopolymerization process: either by lithographic methods or by direct laser writing, respecting a certain predetermined geometry. Mask 1 is composed of a support 5 and micro-optical focusing elements 6 made on that support. The support 5 is made of glass, quartz, or other transparent material at the wavelength of the laser radiation 3. The structure of micro-optical focusing elements 6 is composed of elements based on cylinders, or other regular or irregular, periodic or non-periodic structures, with predefined geometry, other than spherical, with micrometric and submicrometric dimensions. The micro-optical focusing elements 6 are obtained from a polymer material, transparent at the wavelength of the laser 3 used for ablation. The criterion of choice of the polymer material for the manufacture of the micro-optical focusing elements 6 is given by the optical destruction threshold of the polymer. The threshold of optical destruction of this material must be higher than the ablation threshold of the material to be processed 2.

(yl O 1 O - O 1 1 7 4 - - rf(yl O 1 O - O 1 1 7 4 - - rf

5 -11- 2010 7/5 -11- 2010 7 /

Materialul de procesat 2 poate fi suprafața unui material masiv, sau un film subțire de material depus pe un substrat 7. Masca 1 este așezata pe suprafața materialului de procesat 2, astfel incat elementele micro-optice de focalizare 6 sa fie in contact sau in proximitatea suprafeței materialului solid. Masca 1 si materialul de procesat 2 sunt iradiate pe arie mare, fie cu un singur puls laser, fie cu un tren de pulsuri laser 3, cu fluenta sub pragul de distrugere optica a materialului polimer din care sunt fabricate elementele optice de focalizare 6. Fluenta medie a fasciculului laser 3 este totodată mai mica decât pragul de distrugere a materialului de procesat 7. Prin efectul de intensificare optica in câmp apropiat, radiația laser 3 este focalizata la interfața dintre elementele micro-optice 6 si suprafața materialului 2. Local, iradianta optica depășește pragul de distrugere optica provocând ablatia laser a materialului doar la suprafața, fara a afecta masca.The material to be processed 2 may be the surface of a massive material, or a thin film of material deposited on a substrate 7. The mask 1 is placed on the surface of the material to be processed 2, so that the micro-optical focusing elements 6 are in contact or in proximity. surface of solid material. The mask 1 and the material to be processed 2 are irradiated on a large area, either with a single laser pulse or with a train of laser pulses 3, with the fluence below the optical destruction threshold of the polymer material from which the optical focusing elements are manufactured. 6. Fluence The average of the laser beam 3 is also lower than the destruction threshold of the material to be processed 7. By the optical intensification effect in the near field, the laser radiation 3 is focused at the interface between the micro-optical elements 6 and the surface of the material 2. Local, optical irradiation exceeds the optical destruction threshold, causing laser ablation of the material only at the surface, without affecting the mask.

Elementele micro-optice de focalizare 6 cu forma cilindrica generează prin ablatie laser, in urma focalizării radiației laser 3, microstructurile 4 de tip linie. Combinații de structuri cilindrice dispuse după un anumit aranjament prestabilit produce pe suprafața materialului 2, in urma iradierii laser, microstructuri 4 cu forma corespunzătoare dispunerii structurilor cilindrice. Dispunerea pe suprafața a structurilor 4 obținute prin ablatie laser respecta dispunerea cilindrilor din componenta măștilor microstructurate.The micro-optical focusing elements 6 with the cylindrical shape generate by laser ablation, following the focus of the laser radiation 3, the microstructures 4 of the line type. Combinations of cylindrical structures arranged according to a certain predetermined arrangement produce on the surface of the material 2, following laser irradiation, microstructures 4 with the shape corresponding to the arrangement of the cylindrical structures. The arrangement on the surface of the structures 4 obtained by laser ablation respected the arrangement of the cylinders in the component of the microstructured masks.

Se dau in continuare in legătură cu realizarea invenției, exemple de masti si microstructuri obținute prin procedeul de micro si nanostructurare laser.The following are given in connection with the invention, examples of masks and microstructures obtained by the process of micro and laser nanostructuring.

Figura 2 prezintă imaginea de microscop de forța atomica a unei masti din polimer SU-8 pe substrat de cuart si profilul transversal semi-eliptic al structurii polimerizate. Structurile au fost obținute folosind metoda scrierii directe prin fotopolimerizare indusa de efectul de absorbție bifotonica a radiație laser pulsate de la un laser Ti:Safir, cu durata de puls de ordinul femtosecundelor. Pentru generarea micro-structurilor optice in polimer s-a folosit un obiectiv de microscop cu apertura numerica de 0,5. Datorita parametrului confocal al fasciculului laser focalizat mai mare decât diametrul spotului minim in focar, si prin faptul ca fasciculul laser a fost focalizat la interfața dintre polimer si substrat, forma structurii fotopolimerizate are in secțiune un profil semi-eliptic. Prin translatarea in direcție XY a probei controlata de calculator se obține o anumita dispunere in plan a elementelor de focalizare, respectând un design prestabilit.Figure 2 shows the microscopic image of the atomic force of a SU-8 polymer mask on the quartz substrate and the semi-elliptical transverse profile of the polymerized structure. The structures were obtained using the method of direct writing by photopolymerization induced by the effect of biphotonic absorption of the laser radiation pulsed from a Ti: Sapphire laser, with the pulse duration of the order of femtoseconds. To generate the optical microstructures in the polymer, a microscope objective with a numerical aperture of 0.5 was used. Due to the confocal parameter of the focused laser beam larger than the minimum spot diameter in the focal point, and because the laser beam was focused at the interface between the polymer and the substrate, the shape of the photopolymerized structure has a semi-elliptical profile. By translating in the XY direction of the computer controlled sample, a certain arrangement of the focusing elements is obtained in the plane, respecting a predetermined design.

Figura 3 prezintă simulările numerice ale propagării luminii prin masca cu microelemente de focalizare din SU-8 cu secțiune semi-eliptica si distribuția de intensitate optica, demonstrând intensificarea cu un ordin de mărime a radiației laser la interfața dintre mascaFigure 3 shows the numerical simulations of light propagation through the microelement mask of SU-8 with semi-elliptical section and the optical intensity distribution, demonstrating the laser radiation at the interface between the mask by an order of magnitude.

^2010-01174-2 5 -11- 2010 transparenta si suprafața de procesat, in acest caz suprafața fiind un film de cupru cu grosimea de 50 nm depus pe substart de sticla.^ 2010-01174-2 5 -11- 2010 transparency and surface to be processed, in this case the surface being a 50 nm thick copper film deposited on glass substrate.

Figura 4 prezintă microstructuri pe un film de Cu, obținute pe arie mare cu un singur puls laser, prin ablatie in urma efectului de intensificare optica in câmp apropiat la interfața dintre elementele de focalizare ale măștii transparente si filmul de cupru.Figure 4 shows microstructures on a Cu film, obtained on a large area with a single laser pulse, by ablation following the optical intensification effect in the field near the interface between the focus elements of the transparent mask and the copper film.

Procedeul de micro si nanoprocesare laser are conform invenției următoarele avantaje:The process of micro and laser nanoprocessing has the following advantages according to the invention:

- permite procesarea in paralel de micro si nanostructuri pe o arie extinsa.- allows parallel processing of micro and nanostructures over an extended area.

- permite procesarea cu un singur puls laser cu fascicul expandat.- allows processing with a single laser pulse with expanded beam.

- reduce timpul de procesare cu laser a materialelor.- reduces the laser processing time of the materials.

- permite integrarea in producție de masa de microstructuri folosind aceeași masca.- allows the integration into the mass production of microstructures using the same mask.

REFERINȚE [1] Y. Zhou, Μ. H. Hong, JYH Fuh, L. Lu, B. S. Luk’yanchuk, Z. B. Wang, L. P. Shi, and T. C. Chong; Direct femtosecond laser nanopatterning of glass substrate by particleassisted near-field enhancement; Appl. Phys. Lett. 88, 023110 (2006).REFERENCES [1] Y. Zhou, Μ. H. Hong, J. Y. Fuh, L. Lu, B. S. Luk'yanchuk, Z. B. Wang, L. P. Shi, and T. C. Chong; Direct femtosecond laser nanopatterning of glass substrate by particleassisted near-field enhancement; Appl. Phys. Lett. 88, 023110 (2006).

[2] Alex Heltzel, Senthil Theppakuttai, S C Chen and John R Howell; Surface plasmonbased nanopatterning assisted by gold nanospheres; Nanotechnology, Voi. 19, pag. 025305 (2008).[2] Alex Heltzel, Senthil Theppakuttai, S C Chen and John R Howell; Surface plasmonbased nanopatterning assisted by gold nanospheres; Nanotechnology, Vol. 19, page 025305 (2008).

Claims (2)

REVENDICĂRI 1. Procedeu de structurare a suprafețelor cu radiație laser prin efect de intensificare optica in câmp apropiat, caracterizat prin aceea ca, in scopul procesării paralele a materialelor si obținerea de structuri pe suprafețe extinse, se folosesc măștii transparente microstructurate funcționând ca elemente micro-optice pentru focalizarea radiației laser.1. Process for structuring the surfaces with laser radiation through optical intensification effect in the near field, characterized in that, for the purpose of parallel processing of the materials and obtaining structures on extended surfaces, transparent microstructured masks are used as micro-optical elements for laser radiation focus. 2. Procedeu de structurare a suprafețelor cu radiație laser, conform revendicării 1, caracterizat prin aceea ca, in scopul obținerii de structuri cu geometrie oarecare predefinita se folosesc masti microstructurate fabricate in materiale transparente, cu geometrie prestabilita, alta decât cea sferica.2. Process for structuring the surfaces with laser radiation, according to claim 1, characterized in that microstructured masks made of transparent materials with predetermined geometry other than spherical geometry are used in order to obtain structures with some predefined geometry.
ROA201001174A 2010-11-25 2010-11-25 Process for structuring surfaces by means of laser radiation by near-field optical intensification effect RO127505B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
ROA201001174A RO127505B1 (en) 2010-11-25 2010-11-25 Process for structuring surfaces by means of laser radiation by near-field optical intensification effect

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
ROA201001174A RO127505B1 (en) 2010-11-25 2010-11-25 Process for structuring surfaces by means of laser radiation by near-field optical intensification effect

Publications (2)

Publication Number Publication Date
RO127505A2 true RO127505A2 (en) 2012-06-29
RO127505B1 RO127505B1 (en) 2015-06-30

Family

ID=46319362

Family Applications (1)

Application Number Title Priority Date Filing Date
ROA201001174A RO127505B1 (en) 2010-11-25 2010-11-25 Process for structuring surfaces by means of laser radiation by near-field optical intensification effect

Country Status (1)

Country Link
RO (1) RO127505B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112355484A (en) * 2020-09-28 2021-02-12 天津津航技术物理研究所 Surface periodic conical microstructure processing method based on Gaussian beam focusing direct writing

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112355484A (en) * 2020-09-28 2021-02-12 天津津航技术物理研究所 Surface periodic conical microstructure processing method based on Gaussian beam focusing direct writing
CN112355484B (en) * 2020-09-28 2022-10-18 天津津航技术物理研究所 Surface periodic conical microstructure processing method based on Gaussian beam focusing direct writing

Also Published As

Publication number Publication date
RO127505B1 (en) 2015-06-30

Similar Documents

Publication Publication Date Title
Lin et al. Realization of∼ 10 nm features on semiconductor surfaces via femtosecond laser direct patterning in far field and in ambient air
Sugioka et al. Ultrafast lasers—reliable tools for advanced materials processing
Duocastella et al. Bessel and annular beams for materials processing
Li et al. Laser nano-manufacturing–state of the art and challenges
JP5814371B2 (en) Laser micro / nano processing method
CN111014963B (en) Three-dimensional micromachining method for hard and brittle material
KR101501449B1 (en) Patterning Apparatus for Metal Nano Particle Using the Localized Surface Plasmon Resonance, and Patterning Method Using the Same
Rekštytė et al. Direct laser writing of microstructures on optically opaque and reflective surfaces
Liu et al. Porous microstructures induced by picosecond laser scanning irradiation on stainless steel surface
Duocastella et al. Sub-wavelength laser nanopatterning using droplet lenses
Liu et al. Photoetching of spherical microlenses on glasses using a femtosecond laser
Bhuyan et al. Ultrafast Bessel beams for high aspect ratio taper free micromachining of glass
Wen et al. Laser-nanomachining by microsphere induced photonic nanojet
Li et al. Realising high aspect ratio 10 nm feature size in laser materials processing in air at 800 nm wavelength in the far-field by creating a high purity longitudinal light field at focus
RO127505A2 (en) Process for structuring surfaces by means of laser radiation by near-field optical intensification effect
Leitz et al. Process investigations of optical trap assisted direct-write microsphere near-field nanostructuring
Meinertz et al. Fast fabrication of diffractive patterns on glass by excimer laser ablation
Afanasiev et al. Edge effect at the microsphere colloidal array in near-field particle lithography on polymer surfaces
Farid et al. Thin film enabling sub-250 nm nano-ripples on glass by low fluence IR picosecond laser irradiation
Bhuyan et al. Ultrafast laser micro and nano processing of transparent materials—from fundamentals to applications
Sugathan et al. Studies on surface pitting during laser assisted removal of translucent ellipsoidal particulates from metallic substrates
Rahman et al. First Step Toward Laser Micromachining Realization by Photonic Nanojet in Water Medium
Zhou et al. Enhanced photonic nanojets for submicron patterning
Mizeikis et al. Fabrication of Frequency-Selective Surface Structures by Femtosecond Laser Ablation of Gold Films.
Ulmeanu et al. Silicon bump arrays by near-field enhanced femtosecond laser irradiation in fluorine liquid precursors