PL9991B1 - Electrode for electric welding by means of a light arc. - Google Patents
Electrode for electric welding by means of a light arc. Download PDFInfo
- Publication number
- PL9991B1 PL9991B1 PL9991A PL999123A PL9991B1 PL 9991 B1 PL9991 B1 PL 9991B1 PL 9991 A PL9991 A PL 9991A PL 999123 A PL999123 A PL 999123A PL 9991 B1 PL9991 B1 PL 9991B1
- Authority
- PL
- Poland
- Prior art keywords
- materials
- electrode
- coating
- metal core
- light arc
- Prior art date
Links
- 238000003466 welding Methods 0.000 title claims description 4
- 239000000463 material Substances 0.000 claims description 19
- 238000000576 coating method Methods 0.000 claims description 15
- 239000011248 coating agent Substances 0.000 claims description 14
- 229910052751 metal Inorganic materials 0.000 claims description 9
- 239000002184 metal Substances 0.000 claims description 9
- 239000000956 alloy Substances 0.000 claims description 6
- 229910052799 carbon Inorganic materials 0.000 claims description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 5
- 229910045601 alloy Inorganic materials 0.000 claims description 5
- 239000011230 binding agent Substances 0.000 claims description 5
- 238000007670 refining Methods 0.000 claims description 5
- 238000005275 alloying Methods 0.000 claims description 4
- 239000003795 chemical substances by application Substances 0.000 claims description 4
- 238000002844 melting Methods 0.000 claims description 4
- 230000008018 melting Effects 0.000 claims description 4
- 239000000203 mixture Substances 0.000 claims description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 2
- 229910052752 metalloid Inorganic materials 0.000 claims description 2
- -1 metalloid metal compounds Chemical class 0.000 claims description 2
- 229910052760 oxygen Inorganic materials 0.000 claims description 2
- 239000001301 oxygen Substances 0.000 claims description 2
- 239000000843 powder Substances 0.000 claims description 2
- 239000010454 slate Substances 0.000 claims description 2
- 239000003638 chemical reducing agent Substances 0.000 claims 3
- 230000002378 acidificating effect Effects 0.000 claims 1
- 150000001875 compounds Chemical class 0.000 claims 1
- 238000004519 manufacturing process Methods 0.000 claims 1
- 238000000034 method Methods 0.000 claims 1
- 150000002222 fluorine compounds Chemical class 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 229920001353 Dextrin Polymers 0.000 description 1
- 239000004375 Dextrin Substances 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 239000004111 Potassium silicate Substances 0.000 description 1
- 239000004115 Sodium Silicate Substances 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 150000001721 carbon Chemical class 0.000 description 1
- 229910052620 chrysotile Inorganic materials 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 235000019425 dextrin Nutrition 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 235000001727 glucose Nutrition 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- NNHHDJVEYQHLHG-UHFFFAOYSA-N potassium silicate Chemical compound [K+].[K+].[O-][Si]([O-])=O NNHHDJVEYQHLHG-UHFFFAOYSA-N 0.000 description 1
- 229910052913 potassium silicate Inorganic materials 0.000 description 1
- 235000019353 potassium silicate Nutrition 0.000 description 1
- 235000015424 sodium Nutrition 0.000 description 1
- 229910052911 sodium silicate Inorganic materials 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- CWBIFDGMOSWLRQ-UHFFFAOYSA-N trimagnesium;hydroxy(trioxido)silane;hydrate Chemical compound O.[Mg+2].[Mg+2].[Mg+2].O[Si]([O-])([O-])[O-].O[Si]([O-])([O-])[O-] CWBIFDGMOSWLRQ-UHFFFAOYSA-N 0.000 description 1
Description
Otaczanie powloka ogniotrwala elek¬ trod do spawania elektrycznego jest juz znane. Doswiadczenie wykazalo, ze ognio- trwalosc powloki elektrody nie potrzebuje byc tak doskonala, jak to mniemano daw¬ niej. Sadzono mianowicie, ze powloka mu¬ si miec mniej wiecej taka sama ogniotrwa- losc albo ten sam punkt topnienia, co i sa¬ ma sztaba metalowa. Pokazuje sie jednak, ze mniemanie to nie jest zupelnie sluszne i ze wogóle wystarcza, jezeli otaczajaca elektrode mieszanina wytrzymuje tempe¬ rature okolo 1000°C. Praca elektrody zale¬ zy od ozywionego krazenia powietrza oko¬ lo luku swietlnego, wskutek czego powloka elektrody ochladza sie. Umozliwia to po¬ slugiwanie sie stosunkowo cienkiemi po¬ wlokami o nizszym punkcie topliwosci.Ale elektrody mozna bylo stosowac w rozmaitych polozeniach roboczych, a mia¬ nowicie w kierunku od dolu do góry, pozio¬ mo, albo zgóry nadól, nie potrzeba zmie¬ niac grubosci powloki. Zamiast tego mozna dostosowac w odpowiedniej mierze jej ogniotrwalosc do rodzaju roboty.Powloka elektrody powinna byc mecha¬ nicznie tak wytrzymala, aby znosila mani¬ pulacje, wykonywane niezawsze zbyt o- stroznie. Osiaga sie to kosiztem obnizenia ogniotrwalosci, a równiez i wymaganej dawniej porowatosci.Jako glówne skladniki materjalu po-wloki, posiadajacego potrzebna ognio- trwalosc, mozna z korzyscia stosowac lu¬ pek, chryzotyl, chryzolit albo pochodne tych materjalów, albo mieszanine mecha¬ niczna skladników chemicznych tychze w odpowiednim stosunku.Dla uzyskania potrzebnej ogniotrwalo- sci powloki nalezy obrobic wspomniane materjaly jakimkolwiek znanym srodkiem wiazacym, jak np. krzemianem sodu albo potasu, glukoza, dekstryna i t. d.Przy wyrobie elektrod nalezy z jednej strony zachowac wlasnosci chemiczne pod¬ legajacego stapianiu metalu elektrody, z drugiej zas strony nadac mu pewne wla¬ snosci nowe. W tym celu do materjalu po¬ wloki dodaje sie wegiel w takiej postaci, aby pod wplywem luku swietlnego podczas spawania reagowal on w temperaturze nie wyzszej od punktu topienia powloki elek¬ trody lub dodanych materjalów stopo¬ wych. Wegla tego uzywa sie w takiej ilo¬ sci, aby materjaly stopowe mogly wnikac w tworzywo spawane, a ewentualnie gina¬ cy wegiel elektrody byl zastepowany no¬ wym, lub nawet aby w stopionym metalu ilosc wegla ulegala pewnej zwyzce.Aby utrzymac sklad chemiczny stopio¬ nego metalu elektrody lub nawet powiek¬ szyc zawartosc poszczególnych skladni¬ ków, albo zapomoca danego materjalu elektrody spawac te lub inne stopy, do ma¬ terjalu powloki dodaje sie w odpowied¬ niej ilosci i postaci (np. w formie proszku) nadajace sie do tego stopy albo takie ich polaczenia, które przy redukcji daja za¬ mierzone skladniki stopu. Naleza tu zwiaz¬ ki kwasowe, tlenowe albo metaloidowe me¬ tali.Wreszcie potrzebny jest silny srodek rafinacyjny do usuniecia ze stopionego metalu znajdujacych sie jeszcze ewentual¬ nie w nim; gazów i wolnych tlenków. W tym celu okazaly sie szczególnie korzystne zwiazki fluorowe, a mianowicie polaczenie fluoru z glinem, wapniem, magnezem i t. d.Najlepiej jest dodawac do zwiazków fluo¬ rowych materjaly, wytwarzajace spoiwo, celem korzystnego rozdzielenia ich w po¬ wloce. Przy wyrobie elektrod najwlasci¬ wiej jest .postepowac w ten sposób, ze sztabe metalowa otacza sie bezposrednio najpierw materjalem redukujacym, stopo¬ wym i rafinujacym zapomoca stosownego spoiwia, a nastepnie naklada sie materjaly glówne: lupek, chryzolit i t. d. równiez za¬ pomoca odpowiedniego srodka wiazacego. PL PLEnveloping the refractory coating of electric welding electrodes is already known. Experience has shown that the flame resistance of the electrode coating does not need to be as perfect as previously believed. Namely, it was believed that the coating must have about the same refractoriness or the same melting point as a small metal bar. It shows, however, that this notion is not entirely correct and that it is generally sufficient if the mixture surrounding the electrode withstands a temperature of about 1000 ° C. The operation of the electrode depends on the energized circulation of air around the light arc, as a result of which the coating of the electrode cools. This makes it possible to use relatively thin coatings with a lower melting point. But the electrodes could be used in a variety of working positions, namely from bottom to top, horizontally or from above, there is no need to change coating thickness. Instead, its refractoriness may be adapted to the type of work. The electrode coating should be mechanically strong enough to withstand manipulations that are not always carried out with too careful care. This is achieved with the cost of reducing the refractoriness as well as the previously required porosity. As the main components of the coating material, which has the required fire resistance, it is possible to use luka, chrysotile, chrysolite or derivatives of these materials, or a mixture of mechanical components. In order to obtain the required refractoriness of the coating, treat the mentioned materials with any known binder, such as sodium or potassium silicate, glucose, dextrin, etc. When making the electrodes, on the one hand, the chemical properties of the metal subject to fusion must be preserved electrodes, on the other hand, to give it some new properties. For this purpose, carbon is added to the coating material in such a form that, under the influence of the luminous arc during welding, it reacts at a temperature not higher than the melting point of the electrode coating or the alloys added. This carbon is used in such an amount that the alloy materials can penetrate into the welded material, and possibly the decaying electrode carbon is replaced with new carbon, or even that the amount of carbon in the molten metal is slightly increased. metal of the electrode, or even increase the content of individual components, or weld these or other alloys with the electrode material, the coating material is added in an appropriate amount and form (e.g. in the form of a powder) suitable for this purpose alloys or combinations thereof which, on reduction, give the intended alloy constituents. These include acid, oxygen or metalloid metal compounds. Finally, a strong refining agent is required to remove from the molten metal which may still be present in it; gases and free oxides. For this purpose, fluorine compounds have proven to be particularly advantageous, namely the combination of fluorine with aluminum, calcium, magnesium, etc. It is best to add binder-forming materials to the fluorine compounds in order to advantageously separate them in the bag. When producing the electrodes, it is best to proceed in such a way that the metal bar is immediately surrounded by a reducing, alloying and refining material using a suitable binder, and then the main materials are applied: slate, chrysolite, and hence also using a suitable means binding. PL PL
Claims (4)
Publications (1)
| Publication Number | Publication Date |
|---|---|
| PL9991B1 true PL9991B1 (en) | 1929-03-30 |
Family
ID=
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| PT95255A (en) | ELECTRODE WITH BASIC METALLIC NUCLEUS AND ITS MANUFACTURING PROCESS | |
| US3020610A (en) | Method of welding aluminum and other metals | |
| BR102013006119A2 (en) | Temperature measuring device in cast metal | |
| PL9991B1 (en) | Electrode for electric welding by means of a light arc. | |
| JP2011156588A (en) | Coated arc-welding electrode for ductile cast iron | |
| US3320100A (en) | Submerged arc flux composition and method of making the same | |
| US2547432A (en) | Coated welding rod | |
| US2686134A (en) | Coating of welding rod | |
| US1905081A (en) | Covered welding rod | |
| US1953382A (en) | Welding rod | |
| US1972067A (en) | Coated welding electrode | |
| US2514386A (en) | Electrode coating composition | |
| Majidian et al. | Introducing chrome-free alumina-based bricks for the copper making furnaces | |
| US2927856A (en) | Multi-purpose alloys of controlled homogeneity | |
| JP2011098367A (en) | Flux for build-up welding and build-up welding method | |
| JPS6251716B2 (en) | ||
| CN114012307B (en) | Braze-coated wire and preparation method thereof | |
| PL31124B1 (en) | A method of producing chrome-containing coatings welded to the workpiece | |
| US2033730A (en) | Electrode | |
| JPH1071491A (en) | Ceramic backing material for carbon dioxide gas arc welding | |
| SU47017A1 (en) | Method of making metal electrode coating for arc welding | |
| Swaminathan et al. | Vanadic Hot Corrosion-Creep Interaction of Superni-C 276 in the Temperature Range 650-750° C | |
| SU643265A1 (en) | Flux for oxygen-lance cutting | |
| US2796345A (en) | Process of producing lead-zinc alloys | |
| US2168129A (en) | Method of making alloys of copper and nickel |