PL85220B1 - - Google Patents

Download PDF

Info

Publication number
PL85220B1
PL85220B1 PL1972157563A PL15756372A PL85220B1 PL 85220 B1 PL85220 B1 PL 85220B1 PL 1972157563 A PL1972157563 A PL 1972157563A PL 15756372 A PL15756372 A PL 15756372A PL 85220 B1 PL85220 B1 PL 85220B1
Authority
PL
Poland
Prior art keywords
acrylonitrile
catalyst
reactor
gases
propylene
Prior art date
Application number
PL1972157563A
Other languages
Polish (pl)
Original Assignee
Snam Progetti Spa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Snam Progetti Spa filed Critical Snam Progetti Spa
Publication of PL85220B1 publication Critical patent/PL85220B1/pl

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C253/00Preparation of carboxylic acid nitriles
    • C07C253/24Preparation of carboxylic acid nitriles by ammoxidation of hydrocarbons or substituted hydrocarbons
    • C07C253/26Preparation of carboxylic acid nitriles by ammoxidation of hydrocarbons or substituted hydrocarbons containing carbon-to-carbon multiple bonds, e.g. unsaturated aldehydes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/18Arsenic, antimony or bismuth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

Przedmiotem wynalazku jest sposób wytwarza¬ nia akrylonitrylu przy zastosowaniu jako surow¬ ców wyjsciowych propylenu, amoniaku i tlenu lub gazów zawierajacych tlen, z czesciowym zawraca¬ niem do obiegu produktów gazowych.Sposób wedlug wynalazku nadaje sie równiez do wytwarzania dowolnego nienasyconego nitry¬ lu.Znane sa sposoby wytwarzania akrylonitrylu z zastosowaniem katalizatorów opartych na anty¬ monie. Istnieje obszerna literatura patentowa, opi¬ sujaca synteze nienasyconych nitryli przy zastoso¬ waniu wspomnianych katalizatorów. Wymienic mozna przykladowo opis patentowy japonski nr 420 264, opisy patentowe belgijskie Nr Nr 592 434 i 620 025, opisy patentowe Stanów Zjednoczonych Ameryki Nr Nr 3 198 750, 3 200 081 i 3 338 952 oraz opis patentowy wloski Nr 859 097. Wymienione sposoby polegaja na stosowaniu katalizatora w zlozu stalym lub fluidalnym.Wiadomo, ze stosowanie katalizatora w zlozu stalym daje szereg korzysci w porównaniu ze sto¬ sowaniem katalizatora w zlozu fluidalnym, pozwa¬ lajac uniknac strat katalizatora, wywolywanych tarciem miedzy czasteczkami lub przenoszeniem go na zewnatrz reaktora oraz nie powoduje scierania niektórych .czesci aparatury.Wada stosowania znanego sposobu jest to, ze na skutek egzotermicznego charakteru reakcji syn¬ tezy, w procesach, w których stosuje sie kataliza- tor w zlozu stalym nalezy regulowac temperature reakcji w celu unikniecia przegrzan. Zazwyczaj wykorzystuje sie w tym celu pare, której nie mo¬ zna zawracac do reaktora syntezy, poniewaz pro¬ dukty reakcji sa zwykle poddawane obróbce wod¬ nym roztworem H2S04 w celu usuniecia amonia- . ku, a nastepnie obróbce woda dla odzyskania ule¬ gajacych kondensacji produktów takich jak akry¬ lonitryl, acetonitryl, akroleina, cyjanowodór.W tych warunkach para wprowadzona do reak¬ tora ulega kondensacji. Konieczne jest zatem ponowne wprowadzenie pary do reaktora, co po¬ woduje znaczny wzrost kosztów produkcji.Celem wynalazca jest ulatwienie termicznej re¬ gulacji procesu za^Domoca substancji, która mozna latwo zawracac do obiegu.Nieoczekiwanie stwierdzono, ze jesli wprowadzi sie do syntezy propylen, amoniak i tlen lub gaz zawierajacy tlen wraz z czesciowym zawróceniem do obiegu jednego lub wiecej gazów, opuszczaja¬ cych reaktor syntezy i nie ulegajacych kondensa¬ cji w wodzie, otrzymuje sie nieoczekiwany wzrost selektywnosci procesu wzgledem akrylonitrylu, a tym samym wzrost jego wydajnosci.Nie ulegajace kondensacji w wodzie gazy, opusz¬ czajace reaktor syntezy, stanowia zwlaszcza dwu¬ tlenek wegla, tlenek wegla, azot, argon i nasy¬ cone weglowodory o 1—4 atomów wegla. Konwer¬ sje propylenu okresla nastepujacy wzór: 85220S5220 Konwersja propylenu % = Selektywnosc wzgledem nastepujacy wzór: ilosc moli przerea- gowanego propylenu X ilosc moli propylenu wprowadzonego do reakcji X 100 akrylonitrylu okresla Selektywnosc %.= - ilosc moli wytworzonego akrylonitrylu ilosc moli przereagowane- go propylenu X 100 Wyniki otrzymane sposobem wedlug wynalazku, sa bardzo interesujace, poniewaz dodatkowo oprócz przewidywanego wzrostu konwersji wzra¬ sta równiez selektywnosc procesu, co jest zupel¬ nie nieoczekiwane.W sposobie wedlug wynalazku stosuje sie kata¬ lizatory zawierajace antymon, takie jak kataliza¬ tor zelazowo-antymonowy, cynowo-antymonowy, uranowo-antymonowy, cerowo-antymonowy i inne znane katalizatory, zawierajace antymon.Wspomniane katalizatory moga zawierac jako promotory niewielkie ilosci innych pierwiastków, takich jak srebro, miedz, mangan, nikiel lub inne znane promotory.Przebieg procesu prowadzonego sposobem we¬ dlug wynalazku jest przedstawiony na rysunku.Propylen doprowadzany przewodem 1, amoniak doprowadzany przewodem 2, tlen lub gazy zawie¬ rajace tlen doprowadzane przewodem 3 i gazy za¬ wracane do obiegu przewodem 15 wprowadza sie przewodem 4 do reaktora 5 zawierajacego katali¬ zator w stalym zlozu; produkty reakcji przewo¬ dem 6 wprowadza sie do kwasnej kolumny wy¬ mywajacej 7, z której przewodem 5 odprowadza¬ ny jest wodny roztwór (NH4)2S04, przy czym ko¬ lumna 7, pracuje w takiej temperaturze, ze pro¬ dukty organiczne nie ulegaja kondensacji. Gazy przewodem 10 przesyla sie do kolumny absorp¬ cyjnej 11 w której sa wymywane woda, wprowa¬ dzana do kolumny przewodem 12 podczas gdy przewodem 13 opuszcza kolumne wodny roztwór, zawierajacy caly wytworzony akrylonitryl, aceto- nitryl, akroleine i HCN.Roztwór ten poddaje sie dalszej obróbce w celu odzyskania i oczyszczenia akrylonitrylu. Przewo¬ dem 14 usuwa sie mieszanine, zawierajaca C3H6 i nieprzereagowany 02, CO i C02 powstale w cza¬ sie reakcji, oraz gazy obojetne. Mieszanine te od¬ prowadza sie czesciowo przewodem 16 a czesciowo zawraca do obiegu do reaktora przewodem 15.Ilosc gazów usuwanych przewodem 16 zalezy od zawartosci 02 w strumieniu 3 i ilosc CO i C02 wytworzonych w czasie reakcji. Ilosc mieszaniny gazów zawracanej do obiegu przewodem 15 jest okreslona koniecznoscia rozcienczenia mieszaniny reakcyjnej w celu unikniecia przegrzan zloza ka¬ talizatora i dlatego jest zmienna w zaleznosci od rodzaju stosowanego katalizatora, typu reaktora i wyboru surowca zasilajacego. W zasadzie stosu- 40 45 50 55 65 nek molowy gazu obojetnego do propylenu, z tym, ze jako gaz obojetny rozumie sie gazy znajdujace sie w strumieniu 15 lub w surowcu zasilajacym w C3H6 (strumien 1) lub 02 (strumien 3) waha sie w granicach 3—50, korzystnie 5—20.Jako rozpuszczalnik reagujacych gazów stosuje sie dowolnie substancje, nie reagujace w warun¬ kach amonoutleniania propylenu, takie jak na przyklad N2, CO, C02, lzejsze weglowodory para¬ finowe, Ar.Przyklad I. Przygotowuje sie katalizator w nastepujacy sposób: 1200 g acetonu zelazowego Fe(N03)3 • 9H20 stapia sie w temperaturze 70°C i dodaje malymi porcjami, mieszajac 455 g Sb203.Calosc suszy sie i spieka w temperaturze 250°C Proszek miesza sie z 20% wagowymi kwasnego weglanu amonu i 5% wagowymi stearyny. Mase nawilza sie 3% wody i wytlacza w celu otrzyma¬ nia malych cylinderków o srednicy 3 mm i dlu¬ gosci 4—5 mm.Katalizator aktywuje sie, ogrzewajac go w pie¬ cu muflowym w ciagu 4 godzin w temperaturze 100°C, nastepnie w ciagu 12 godzin temperature podnosi sie do 300°C, nastepnie w ciagu 4 godzin do 650°C i wreszcie w ciagu 1 godziny do 800°C.Ta temperature utrzymuje sie w ciagu 2 godzin.Reakcje amonoutleniania prowadzi sie w warun¬ kach odpowiadajacych warunkom podanym w ta¬ blicy I. W przypadku prób zawracania do obie¬ gu gazów przy zastosowaniu mikroreaktora, roz¬ puszczalne produkty reakcji i amoniak adsorbuje sie, wprowadzajac je przez belkotke do 0,5 N roz¬ tworu H2S04 a gazy zawierajace azot i niewielkie ilosci tlenu, tlenku wegla, propanu i dwutlenku wegla odzyskuje sie w butli Mariotta, przez która wprowadza sie je ponownie do reaktora w po¬ trzebnej ilosci.W przypadku reaktora o dlugosci 1 m i sredni¬ cy 2,54 cm, gazy uchodzace w reaktorze, po absorpcji w 0,5 N H2S04 przechodza do pojem¬ nego naczynia i stad sa czesciowo zawracane do obiegu przy pomocy pompy przeponowej. Prze¬ prowadzono analize chromatograficzna wszystkich mieszanin gazowych wprowadzanych i opuszcza¬ jacych reaktor oraz gazów zawracanych do obie¬ gu. Wyniki podane w tablicy I wskazuja, ze pro¬ wadzac proces sposobem wedlug wynalazku oprócz oczywistego poprawienia konwersji nastepuje wzrost selektywnosci wzgledem akrylonitrylu.Przyklad II. Katalizator wytwarza sie z 900 g roztworu azotanu zelazowego o stezeniu 45% wagowych, który ogrzewa sie do temperatu¬ ry 80°C i dodaje sie.do niego drobnymi porcjami 322 g Sb203, utrzymujac temperature okolo 100°C.Osobno w 100 ml wody i 50 ml 120 objetosci nadtlenku wodoru rozpuszcza sie 4,7 g wolframia- nu amonu (NH4)20 • 12W03 • 5H20 i 7 g kwasu tellurowego H2Te04. Roztwór ten dodaje sie do poprzednio przygotowanej zawiesiny i calosc su-' szy sie przez ogrzanie do temperatury 250°C przy ciaglym mieszaniu. Sproszkowana mase miesza sie z 10°/o wagowymi mocznika, calosc nawilza sie i wytlacza w postaci malych cylinderków o dlu-85220 gosci 5 mm i srednicy 3 mm. Pozostale operacje zwiazane z przygotowaniem katalizatora prowadzi sie jak opisano w przykladzie I.Reakicje prowadzi sie w stalych warunkach, od¬ powiadajacych warunkom podanym w tablicy II i w sposób opisany w przykladzie I.Wyniki w tablicy 2 w odniesieniu do selektyw¬ nosci procesu wzgledem akrylonitrylu, sa równiez znacznie wyzsze przy prowadzeniu procesu z za¬ wracaniem do obiegu niekondensujacych sie pro¬ duktów reakcji.Przyklad III. Katalizator wytwarza sie w sposób opisany w przykladzie I. Reakcje amo- 6 noutleniania prowadzi sie w stalych warunkach odpowiadajacych warunkom eksperymentalnym podanym w tablicy III i w sposób opisany w przykladzie I.W ciagu 50 godzin prowadzenia procesu w dwóch próbach zawracano do obiegu cala ilosc gazu.W celu unikniecia znacznego wzrostu ilosci gazów zawracanych do obiegu, w czasie prób absorbo¬ wano otrzymany w czasie reakcji C02 wapnem oraz okresowo wypuszczano czesc gazów. Gaz, za¬ wracany do obiegu w drugiej próbie zawieral glównie azot, który stopniowo wzbogaca sie w propylen, tlen i CO zawarty w gazie opuszcza¬ jacym reaktor.Tablica I Predkosc objetosciowa C3H6 cm3/cm3 katalizatora godzine Stosunki molowe w mie¬ szaninie wyjsciowej: NH3/C3H6 Powietrze C3H6 woda C3H6 gaz zawracany do obiegu C3H6 Temperatura reakcji w °C Calkowita konwersja C3H6 w °/o molowych Selektywnosc wzgledem akrylonitrylu w °/o mo¬ lowych Wydajnosc akrylonitrylu w °/o molowych Mikroreaktor 50 1,2 12,5 0 470 89,6 71,7 64,3 50 1,2 12,5 0 472 94 • 78,2 73,6 Reaktor o dlugosci 1 m i srednicy 2,54 cm * 1,2 0 460 64,2 68,9 44,2 . 30 1,2 0 462 83 76,3 63,2 Tablica II Predkosc objetosciowa C3H6 cm3/cm3 katalizatora/ /godzine Stosunki molowe w mie¬ szaninie wyjsciowej NH3/C3H6 Powietrze C3H6 Woda/C3H6 Gaz zawracany do obiegu C3H6 Temperatura reakcji w °C Calkowita konwersja C3H6 w *Vo molowych Selektywnosc wzgledna akrylonitrylu w °/o molo¬ wych Wydajnosc akrylonitrylu w °/o molowych Mikroreaktor 50 1,2 12,5 0 470 89,6 71,7 64,3 50 1,2 12,5 0 472 94 78,2 73,6 Reaktor o dlugosci 1 cm i srednicy 2,54 cm 1,2 0 460 64,2 68,9 44,2 1,2 0 462 83 76,3 63,285220 Tablica III Predkosc objetosciowa cm8 C3H6/cm3 katalizatora/godzi¬ ne Stosunki molowe w miesza¬ ninie wyjsciowej NH3/C3H6 Tlen/C3H6 Woda/C3H6 Gaz zawracany do obiegu/ /C3H6 Temperatura reakcji w C Calkowita konwersja C3H6 w °/o molowych Selektywnosc wzgledem akrylonitrylu w °/o molo¬ wych Wydajnosc akrylonitrylu w °/o molowych Mikroreaktor 50 1,3 2,5 0,3 475 100 72,7 72,7 50 1,3 2,5 0 ,3 475 100 82,1 82,1 8 PL PL PLThe present invention relates to a process for the production of acrylonitrile using propylene, ammonia and oxygen as starting materials or oxygen-containing gases, with partial recycle of gaseous products. The process of the invention is also applicable to the production of any unsaturated nitrile. There are methods for the preparation of acrylonitrile using antimony-based catalysts. There is extensive patent literature describing the synthesis of unsaturated nitriles using the catalysts mentioned. Mention may be made, for example, of Japanese patent no. 420 264, Belgian patents no. 592 434 and 620 025, US patents no. 3 198 750, 3 200 081 and 3 338 952 and Italian patent no. 859 097. The mentioned methods are It is known that the use of a solid bed catalyst offers several advantages over the use of a fluidized bed catalyst, avoiding loss of the catalyst due to friction between particles or carried outside the reactor, and not It causes abrasion in some parts of the apparatus. A disadvantage of using the known method is that, due to the exothermic nature of the synthesis reaction, in solid bed catalyst processes the temperature of the reaction must be controlled in order to avoid overheating. Usually, steam is used for this purpose, and cannot be recycled to the synthesis reactor, since the reaction products are usually treated with an aqueous solution of H 2 SO 4 to remove ammonia. then treated with water to recover condensable products such as acrylonitrile, acetonitrile, acrolein, hydrogen cyanide. Under these conditions, the vapor introduced into the reactor condenses. It is therefore necessary to reintroduce the steam into the reactor, which causes a significant increase in the production costs. The inventor's aim is to facilitate the thermal regulation of the process for the incorporation of a substance that can be easily recycled. It was surprisingly found that if propylene is introduced into the synthesis, ammonia and oxygen or an oxygen-containing gas together with the partial recycle of one or more gases leaving the synthesis reactor and not condensing in water, the result is an unexpected increase in the selectivity of the acrylonitrile process and thus an increase in its yield. On condensation in water, the gases leaving the synthesis reactor are, in particular, carbon dioxide, carbon monoxide, nitrogen, argon and saturated hydrocarbons having 1-4 carbon atoms. The propylene conversion is determined by the following formula: 85220S5220 Propylene conversion% = Selectivity with respect to the following formula: moles of propylene reacted X moles of propylene introduced into the reaction X 100 acrylonitrile determines Selectivity% = - moles of acrylonitrile produced acrylonitrile X 100 The results obtained by the process according to the invention are very interesting because, in addition to the expected increase in conversion, the selectivity of the process also increases, which is quite unexpected. The process according to the invention uses catalysts containing antimony, such as an iron catalyst. -antimony, tin-antimony, uranium-antimony, cerium-antimony and other known catalysts containing antimony. These catalysts may contain as promoters small amounts of other elements such as silver, copper, manganese, nickel or other known promoters. the method of the invention is illustrated in the drawing: Propylene in line 1, ammonia in line 2, oxygen or oxygen-containing gases in line 3, and recycle gases in line 15 are fed through line 4 to reactor 5 containing the catalyst in a solid bed; the reaction products are fed through line 6 to the acid wash column 7, from which the aqueous solution of (NH4) 2SO4 is discharged through line 5, while column 7 is operated at such a temperature that the organic products do not undergo condensation. The gases are sent through line 10 to the absorption column 11 in which the water is washed, introduced into the column through line 12, while line 13 leaves the column with an aqueous solution containing all of the acrylonitrile, acetonitrile, acrolein and HCN produced. further processed to recover and purify the acrylonitrile. In line 14, the mixture containing C3H6 and unreacted O2, CO and CO2 formed during the reaction, and inert gases are removed. This mixture is partly withdrawn via line 16 and partly recycled to the reactor via line 15. The amount of gas removed via line 16 depends on the O2 content in stream 3 and the amount of CO and CO 2 produced during the reaction. The amount of the recycle gas mixture through line 15 is determined by the need to dilute the reaction mixture to avoid overheating of the catalyst bed and therefore varies with the type of catalyst used, the type of reactor and the choice of feed. In principle, the molar ratio of inert gas to propylene, except that an inert gas is understood to be the gases in stream 15 or in the feed in C3H6 (stream 1) or 02 (stream 3) varying from In the range of 3 to 50, preferably 5-20. As a solvent for the reacting gases, any substances which do not react under the conditions of ammonoxidation of propylene, such as, for example, N2, CO, CO2, lighter paraffinic hydrocarbons, Ar, are used. The catalyst is prepared as follows: 1200 g of iron acetone Fe (NO3) 3 • 9H20 is melted at 70 ° C and added in small portions, stirring 455 g of Sb203. The whole is dried and baked at 250 ° C. The powder is mixed with 20% % by weight of acid ammonium carbonate and 5% by weight of stearin. The mass is moistened with 3% of water and extruded to obtain small cylinders 3 mm in diameter and 4-5 mm long. The catalyst is activated by heating it in a muffle furnace for 4 hours at 100 ° C, then Within 12 hours the temperature rises to 300 ° C, then within 4 hours to 650 ° C and finally within 1 hour to 800 ° C. This temperature remains for 2 hours. The ammonoxidation reactions are carried out under conditions corresponding to conditions given in Table I. In the case of attempts to recycle gases using a microreactor, the soluble reaction products and ammonia are adsorbed by introducing them through a bubbler into a 0.5 N solution of H 2 SO 4 and the gases containing nitrogen and small amounts the amounts of oxygen, carbon monoxide, propane and carbon dioxide are recovered in the Mariotta bottle, through which they are reintroduced into the reactor in the required amount. In the case of a reactor with a length of 1 m and a diameter of 2.54 cm, gases escaping in the reactor, after absorption in 0.5 N H2SO4 trans to a capacious vessel and hence are partially recycled by means of a diaphragm pump. A chromatographic analysis of all gas mixtures entering and exiting the reactor and of recycle gases was carried out. The results given in Table I show that in carrying out the process according to the invention, in addition to the obvious improvement in conversion, there is an increase in the selectivity with respect to acrylonitrile. The catalyst is prepared from 900 g of 45% by weight ferric nitrate solution which is heated to 80 ° C and 322 g of Sb2O3 are added in small portions, maintaining the temperature around 100 ° C. Separately in 100 ml of water and 50 ml of 120 volumes of hydrogen peroxide dissolve 4.7 g of ammonium tungsten (NH4) 20 • 12W03 • 5H2O and 7 g of telluric acid H2Te04. This solution is added to the previously prepared suspension and it is dried by heating to 250 ° C with constant stirring. The powdered mass is mixed with 10% by weight of urea, the whole is moistened and extruded in the form of small cylinders with a length of 5 mm and a diameter of 3 mm. The rest of the catalyst preparation operations are carried out as described in Example I. The reactions are carried out under constant conditions corresponding to those in Table II and as described in Example 1. The results in Table 2 with regard to the acrylonitrile selectivity of the process. they are also significantly higher in the recycle of non-condensing reaction products. Example III. The catalyst was prepared as described in Example I. The amoxidation reactions were carried out under steady-state conditions corresponding to the experimental conditions given in Table III, and the entire amount of gas was recycled over the course of 50 hours of running the two runs in two runs. In order to avoid a significant increase in the amount of recycled gases, the lime obtained during the reaction was absorbed during the tests and a part of the gases was periodically released. The gas recycled in the second test contained mainly nitrogen, which was gradually enriched with propylene, oxygen and CO contained in the gas leaving the reactor. Table I Volumetric speed C3H6 cm3 / cm3 of catalyst hour Molar ratios in the starting mixture: NH3 / C3H6 Air C3H6 Water C3H6 Recycle gas C3H6 Reaction temperature in ° C Total C3H6 conversion in% by mole Selectivity with respect to acrylonitrile in% by mole Acrylonitrile yield in% by mole Microreactor 50 1.2 12.5 0 470 89.6 71.7 64.3 50 1.2 12.5 0 472 94 • 78.2 73.6 1 m long reactor 2.54 cm in diameter * 1.2 0 460 64.2 68.9 44.2. 30 1.2 0 462 83 76.3 63.2 Table II Volume speed C3H6 cm3 / cm3 catalyst / / hour Molar ratios in the starting mixture NH3 / C3H6 Air C3H6 Water / C3H6 Recycle gas C3H6 Reaction temperature in ° C Total conversion of C3H6 to mole mole Relative selectivity of acrylonitrile in mole mole Yield of acrylonitrile mole mole Microreactor 50 1.2 12.5 0 470 89.6 71.7 64.3 50 1.2 12.5 0 472 94 78.2 73.6 1 cm long reactor with a diameter of 2.54 cm 1.2 0 460 64.2 68.9 44.2 1.2 0 462 83 76.3 63.285 220 Table III Volumetric speed cm8 C3H6 / cm3 catalyst / hour Molar ratios in the starting mixture NH3 / C3H6 Oxygen / C3H6 Water / C3H6 Recycle gas / / C3H6 Reaction temperature in C. mole mole Yield of acrylonitrile in mole moles Microreactor 50 1.3 2.5 0.3 475 100 72.7 72.7 50 1.3 2.5 0.3 475 100 82.1 82.1 8 EN PL PL

Claims (1)

1. Zastrzezenie patentowe Sposób wytwarzania akrylonitrylu na drodze amonoutleniania propylenu w obecnosci kataliza¬ tora na bazie antymonu, z zawracaniem do obiegu gazów poreakcyjnych, znamienny tym, ze do prze¬ strzeni reakcyjnej zawraca sie czesc strumienia gazów opuszczajacych reaktor syntezy, zawieraja¬ cych co najmniej jeden gaz nie ulegajacy konden¬ sacji w wodzie taki jak C02, CO, N2, Ar i nasy¬ cone weglowodory o 1—4 atomach wegla, w ilo¬ sci 3—50 moli, korzystnie 5—20 moli na 1 mol propylenu. R 9. Z 24_v85220 Fiq 3 18 15 5^ C'TT\ 0 4 1 Z -f 5 r / 7 / + ^ ^^X;:- 5 6 15 16 14 n 12 10 111 FIG. 6 13 PL PL PLClaim 1. A process for the production of acrylonitrile by ammonoxidation of propylene in the presence of an antimony-based catalyst with recycling of post-reaction gases, characterized in that part of the gas stream leaving the synthesis reactor containing at least one gas that does not condense in water, such as CO 2, CO, N 2, Ar, and saturated hydrocarbons having 1 to 4 carbon atoms, in an amount of 3 to 50 moles, preferably 5-20 moles, per mole of propylene. R 9. Z 24_v85220 Fiq 3 18 15 5 ^ C'TT \ 0 4 1 Z -f 5 r / 7 / + ^ ^^ X;: - 5 6 15 16 14 n 12 10 111 FIG. 6 13 EN EN EN
PL1972157563A 1971-09-02 1972-08-31 PL85220B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
IT2815271 1971-09-02

Publications (1)

Publication Number Publication Date
PL85220B1 true PL85220B1 (en) 1976-04-30

Family

ID=11223041

Family Applications (1)

Application Number Title Priority Date Filing Date
PL1972157563A PL85220B1 (en) 1971-09-02 1972-08-31

Country Status (22)

Country Link
JP (1) JPS5250771B2 (en)
AR (1) AR192468A1 (en)
AT (1) AT321882B (en)
AU (1) AU470600B2 (en)
BE (1) BE787978A (en)
BR (1) BR7206031D0 (en)
CA (1) CA982606A (en)
CH (1) CH545277A (en)
CS (1) CS187360B2 (en)
DD (1) DD100713A5 (en)
ES (1) ES406314A1 (en)
FR (1) FR2151945A5 (en)
GB (1) GB1379629A (en)
HU (1) HU166002B (en)
LU (1) LU65962A1 (en)
NL (1) NL7211979A (en)
PL (1) PL85220B1 (en)
RO (1) RO65674A (en)
SE (1) SE405967B (en)
SU (1) SU652885A3 (en)
TR (1) TR17721A (en)
ZA (1) ZA725972B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS533789B2 (en) * 1973-11-16 1978-02-09
JPS5214643A (en) * 1975-07-24 1977-02-03 Shin Etsu Chem Co Ltd Fillers for use in synthetic resins

Also Published As

Publication number Publication date
CH545277A (en) 1973-12-15
JPS4834820A (en) 1973-05-22
LU65962A1 (en) 1973-01-15
AT321882B (en) 1975-04-25
ZA725972B (en) 1973-05-30
SE405967B (en) 1979-01-15
TR17721A (en) 1975-07-23
HU166002B (en) 1974-12-28
DD100713A5 (en) 1973-10-05
FR2151945A5 (en) 1973-04-20
RO65674A (en) 1979-07-15
AR192468A1 (en) 1973-02-21
NL7211979A (en) 1973-03-06
BE787978A (en) 1972-12-18
AU470600B2 (en) 1976-03-25
DE2243016B2 (en) 1975-06-26
JPS5250771B2 (en) 1977-12-27
CA982606A (en) 1976-01-27
GB1379629A (en) 1975-01-02
AU4546872A (en) 1974-02-14
BR7206031D0 (en) 1973-09-25
DE2243016A1 (en) 1973-03-15
CS187360B2 (en) 1979-01-31
ES406314A1 (en) 1975-07-16
SU652885A3 (en) 1979-03-15

Similar Documents

Publication Publication Date Title
US5288473A (en) Process for elimination of waste material during manufacture of acrylonitrile
US5457223A (en) Process for elimination of waste material during manufacture of acrylonitrile
US3686267A (en) Ammoxidation of saturated hydrocarbons
CA1114399A (en) Process for preparing acrylonitrile
JP3976824B2 (en) Production method of acrylonitrile
JP2610009B2 (en) Method for reducing the content of nitrous oxide in exhaust gases, especially in exhaust gases of synthetic processes involving nitric acid oxidation
KR20100099230A (en) Method of making mixed metal oxide catalysts for ammoxidation and/or oxidation of lower alkane hydrocarbons
Kiel et al. Performance of silica-supported copper oxide sorbents for SOx/NOx-removal from flue gas: II. Selective catalytic reduction of nitric oxide by ammonia
PL85220B1 (en)
CN109772356B (en) Acrylonitrile catalyst and preparation method and application thereof
US3996294A (en) Oxidizing methane to formaldehyde
US4035410A (en) Catalysts and processes for the preparation of unsaturated nitriles
US3164628A (en) Method for preparing acrylonitrile
US3293279A (en) Preparation of unsaturated nitriles by a catalytic process
JPS6247580B2 (en)
US2496660A (en) Production of aromatic nitriles
US4965393A (en) Process for producing acrylonitrile
Brazdil et al. Kinetic isotope effect in the ammoxidation of propane over an alumina supported vanadium antimony oxide catalyst
US3309395A (en) Production of acrylonitrile or methacrylonitrile
JPS62132832A (en) Production of methacrylic acid and/or methacrolein
US2805244A (en) Production of acrylonitrile
SU475765A3 (en) Method for producing unsaturated aliphatic dinitriles
US3394167A (en) Production of acrylonitrile and methacrylonitrile
US3383329A (en) Preparation of unsaturated nitriles by a catalytic process
SU410003A1 (en)