PL78883B1 - - Google Patents

Download PDF

Info

Publication number
PL78883B1
PL78883B1 PL15970872A PL15970872A PL78883B1 PL 78883 B1 PL78883 B1 PL 78883B1 PL 15970872 A PL15970872 A PL 15970872A PL 15970872 A PL15970872 A PL 15970872A PL 78883 B1 PL78883 B1 PL 78883B1
Authority
PL
Poland
Prior art keywords
speed
output signal
signal
ratio
counting member
Prior art date
Application number
PL15970872A
Other languages
Polish (pl)
Original Assignee
Siemens Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Ag filed Critical Siemens Ag
Publication of PL78883B1 publication Critical patent/PL78883B1/pl

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/19Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path
    • G05B19/21Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path using an incremental digital measuring device
    • G05B19/25Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path using an incremental digital measuring device for continuous-path control
    • G05B19/251Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path using an incremental digital measuring device for continuous-path control the positional error is used to control continuously the servomotor according to its magnitude
    • G05B19/253Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path using an incremental digital measuring device for continuous-path control the positional error is used to control continuously the servomotor according to its magnitude with speed feedback only
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/33Director till display
    • G05B2219/33268D-A, A-D
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/34Director, elements to supervisory
    • G05B2219/34046Analog multiplier
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/34Director, elements to supervisory
    • G05B2219/34156Slope control, delta x, y proportional to x, y
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/41Servomotor, servo controller till figures
    • G05B2219/41021Variable gain
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/43Speed, acceleration, deceleration control ADC
    • G05B2219/43015Calculate square root x

Landscapes

  • Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Position Or Direction (AREA)
  • Control Of Electric Motors In General (AREA)
  • Stopping Of Electric Motors (AREA)
  • Control Of Direct Current Motors (AREA)

Description

Uprawniony z patentu: Siemens Aktiengesellschaft, Monachium, (Repu¬ blika Federalna Niemiec i Berlin Zachodni) Uklad zasilania elektrycznego silnika obrabiarki Przedmiotem wynalazku jest uklad zasilania ele¬ ktrycznego silnika z automatyczna zarówno regu¬ lacja predkosci jak i polozenia, przeznaczony do sterowania obrabiarek. Uklady zasilania silnika obrabiarki powinny posiadac duza wartosc wzmoc¬ nienia konieczna przy malych odchyleniach polo¬ zenia, celem uzyskania odpowiedniej wartosci sy¬ gnalu sterujacego. Wzmocnienie to przy wiekszych odchyleniach polozenia i liniowej zaleznosci mie¬ dzy wyjsciowym sygnalem regulatora polozenia, a sygnalem sterujacym predkosc, prowadzi do przesterowania ukladu.Wada takiego ukladu polega na tym, ze przy zmniejszeniu wartosci wzmocnienia, dla malych od¬ chylen polozenia nie mozna uzyskac zadanej war¬ tosci sygnalu prowadzacego.Celem wynalazku jest wyeliminowanie powyzszej wady przy jednoczesnym uzyskaniu sygnalu ste¬ rujacego predkosc, wynikajacego z odchylenia po¬ lozenia.Cel ten uzyskano za pomoca ukladu wedlug wy¬ nalazku, który polega na tym, ze regulator polo¬ zenia polaczony jest z regulatorem predkosci za posrednictwem czlonu liczacego o parabolicznej charakterystyce wielkosci wyjsciowej w stosunku do wejsciowej.Uklad wedlug wynalazku polega równiez na tym, ze czlon liczacy wlaczony jest miedzy konwerte¬ rem cyfrowo-analogowym, który znajduje sie za czescia cyfrowa regulatora polozenia i analogo- 10 15 30 wym regulatorem predkosci, przy czym czlon li¬ czacy zawiera dwa wzmacniacze, które w obwo¬ dzie sprzezenia zwrotnego maja wlaczone elektro¬ niczne czlonymnozace. x W ukladzie wedlug wynalazku do wejsc czlonów mnozacych jest doprowadzony odpowiednim zna¬ kiem sygnal wyjsciowy wzmacniaczy. Ponadto w ukladzie wedlug wynalazku równolegle do czlo¬ nów mnozacych w ukladzie sprzezenia zwrotnego wlaczone sa regulowane oporniki. W ukladzie we¬ dlug wynalazku do czlonu liczacego sterujacego posuw w kierunku dwóch osi, podany jest dodat¬ kowo kazdorazowo najwiekszy sygnal wyjsciowy, który stanowi sygnal sterujacy predkosc tak, aby stosunek wypadkowego sygnalu wyjsciowego do najwiekszego sygnalu wyjsciowego byl równy sto¬ sunkowi sygnalów wejsciowych czlonu mnozace¬ go.Dzieki ukladowi wedlug wynalazku rozruch sil¬ nika do zadanego polozenia odbywa sie przy ma¬ ksymalnym momencie hamujacym, co zapewnia minimalny czas rozruchu.Uklad wedlug wynalazku zapewnia przy jedno¬ czesnym ruchu narzedzia w kierunku dwóch osi wspólrzednych, (na przyklad przy obrabianiu po¬ wierzchni skosnych) równy stosunek nadaznosci do skladowej predkosciowej w obu osiach ruchu na¬ rzedzia, co eliminuje bledy konturowa powstajace przyv obrabianiu takich powierzchni. 78 8833 Uklad wedlug wynalazku zapewnia mozliwosc zaprogramowania szybkosci posuwu w ukladzie start-stop, gdyz silnik kazdorazowo samoczynnie zatrzymuje sie zgodnie z optymalna charakterysty¬ ka. 5 Przedmiot wynalazku jest przedstawiony w przy¬ kladzie wykonania na rysunku, na którym fig. 1 przedstawia schemat blokowy ukladu napedowe¬ go z analogowa regulacja predkosci i cyfrowa re¬ gulacja polozenia, fig. 2 — uklad czlonu liczacego io o parabolicznej charakterystyce przenoszenia, to znaczy o parabolicznym stosunku miedzy wyjscio¬ wym sygnalem As regulatora predkosci, a prowa¬ dzacym Vs sygnalem predkosci, fig. 3 — wykres zaleznosci: prowadzacego Vs sygnalu predkosci w 15 funkcji sygnalu bledu (nadaznosci) As przy róz¬ nych charakterystykach, fig. 4 — powiekszony fragment wykresu z fig. 3 w poblizu poczatku osi wspólrzednych, fig. 5 — uklad sterowania silnika obrabiarki dla obróbki powierzchni skosnych przy 20 ruchu narzedzia w dwóch kierunkach, fig. 6 — wy¬ kres ilustrujacy powstawanie bledu konturowego przy parabolicznej zaleznosci miedzy odchyleniem polozenia, a prowadzacym sygnalem predkosci.Na fig. 1 silnik pradu stalego 7 napedza wal 25 10, z którym sprzezona jest sztywno pradniczka tachometryczna 8 oraz czujnik impulsowy 9. Sy¬ gnal pradniczki 8 odpowiada predkosci rzeczywis¬ tej silnika nist i wraz z prowadzacym Vs sygnalem predkosci odpowiadajacym predkosci zadanej ns, 30 podany zostaje na wejscie regulatora predkosci 5, który poprzez zespól tyrystorowy 6 steruje bezpo¬ srednio obrotami silnika 7. Oprócz regulacji analo¬ gowej istnieje jeszcze regulacja cyfrowa, realizuja¬ ca zadawanie predkosci. W tym celu w czujniku 35 impulsowym 9 na kazdy jednostkowy kat obrotu przebytej drogi wytworzony zostaje jeden impuls.Czestotliwosc si tych impulsów porównywana jest w liczniku róznicowym regulatora 2 z czestotliwos¬ cia sB generatora lub interpelatora 1, a wiec z za- 40 dana do przebycia droga. W zaleznosci od istnie¬ jacej róznicy obu ciagów impulsów, w liczniku re¬ gulatora 2 wytworzony zostaje wyjsciowy sygnal bledu As, który poprzez konwertor cyfrowo-ana- logowy 3 i czlon liczacy 4 dochodzi do regulatora 45 predkosci 5 jako prowadzacy n^Vs sygnal pred¬ kosci, powodujac korekcje biegu silnika 7. Zada¬ niem czlonu liczacego 4 jest wytworzenie prabo- licznej zaleznosci pomiedzy sygnalem bledu As 7. wyjscia regulatora polozenia 2, a sygnalem Vs 50 lub na na wejsciu regulatora predkosci 5, wedlug zaleznosci: Vs=k \/~KV Jesli przy zachowaniu tej zaleznosci nastapi na- 55 gle wstrzymanie ciagu impulsów ss, wówczas na¬ ped zatrzymuje sie w zakresie przebytej drogi, odpowiadajacej sygnalowi As. Wielkosc prowa¬ dzaca nB (^Vs) jest tak dobrana, ze zapewnia sta¬ ly moment hamowania az do zatrzymania silnika. 60 Na fig. 2, na jedno z wejsc wzmacniacza 41 podawany jest poprzez regulowany opornik Rl sygnal As z regulatora polozenia 2. Do tego sa¬ mego wejscia przez regulowany opornik R3 docho¬ dzi ponadto sygnal wyjsciowy z ukladu mnozace- 65 883 4 go 43 na przyklad z halotronu. Jedno wejscie ukladu mnozacego 43 jest bezposrednio polaczo¬ ne z wyjsciem wzmacniacza 41, drugie zas przez diode 44. Drugie wejscie wzmacniacza 41 przez opornik R0 polaczone jest z masa ukladu. Wzmac¬ niacz jest tak dopasowany, ze prady plynace przez opornik Rl i R3 kompensuja sie i otrzymuje sie wówczas zaleznosc: - r ri przy R2=oo.Wyjscie wzmacnicza 41 polaczone jest ponadto ze wzmacniaczem-inwertorem 42, którego sygnal wyjsciowy, równiez przez diode 45, podany Jest na drugie wejscie ukladu mnozacego 43, dzieki cze¬ mu uzyskuje sie zgodnosc znaków obu sygnalów As i Vs.Poniewaz przedstawione na fig. 3 charakterystyki Ve=f (As) ukladu wedlug fig. 2 wskazuja nie¬ skonczenie wielkie wzmocnienie w punkcie zero¬ wym, dlatego w galezi sprzezenia zwrotnego wzmacniacza 41 znajduje sie dodatkowy regulowa¬ ny opornik R2, narzucajacy przebieg Vm. Naloze¬ nie obu charakterystyk Ve i Vm daje wypadkowa charakterystyke tVs=f (As), która przy wystar¬ czajacym wzmocnieniu w punkcie zerowym, zapew¬ nia jednoczesnie przy duzych odchyleniach poloze¬ nia, nie przekroczenie dopuszczalnej wartosci pro¬ wadzacego sygnal predkosci.Lustrzanym odbiciem krzywych przedstawionych na fig. 3 sa charakterystyki dla ujemnych odchy¬ len polozenia (nie pokazane na rysunku).Przy sterowaniu ruchem narzedzi obrabiarki je¬ dnoczesnie w dwóch kierunkach zgodnie z osiami wspólrzednych, powstac moze blad konturowy, wy¬ nikajacy z parabolicznej charakterystyki omawia¬ nego ukladu zasilania silnika. Celem wyeliminowa¬ nia tego, stosunki róznicy dróg do predkosci sa identyczne dla obu osi posuwu narzedzia. Ilustru¬ je to fig. 6, wedlug której przejscie z punktu PI do P2 wymaga przebycia drogi Ax lub Ay. Na skutek parabolicznej zaleznosci miedzy droga a predkoscia otrzymuje sie dla predkosci Vy przy wiekszej róznicy drogi mniejsza wartosc, niz przy zaleznosci proporcjonalnej. Wskutek tego, wektor wypadkowy predkosci V lezy poza zadanym kon¬ turem PI i P2. Skladowe predkosci w kierunku obu osi wspólrzednych sa proporcjonalne do kaz¬ dorazowej róznicy wartosci zadanej i rzeczywistej, co eliminuje bledy konturowe. Uklad taki przedsta¬ wiony jest na fig. 5. Oznaczenia podzespolów sa takie same co na fig. poprzednich, przy czym ozna¬ czenia a i b odpowiadaja osi x i y.Uzyskanie zadanego stosunku wspomnianych wielkosci zapewnione jest przez doprowadzenie do kazdego czlonu mnozacego 43a i 43b w galezi sprzegania zwrotnego wzmacniaczy 41a i 41b odpo¬ wiedniego sygnalu, który kazdorazowo odpowiada najwiekszej skladowej predkosci Vx lub Vy. Diody 44ab i 45ab polaczone sa ze soba wylacznikiem 45.W ten sposób, na jedno z wejsc czlonów mnoza¬ cych dziala kazdorazowo najwieksza wartosc, dzie-78 883 ki czemu stosunek skladowych predkosci odpowia¬ da znowu stosunkowi róznicy dróg.Zaleznosc ta zostanie obcenie okreslona analitycz¬ nie (VxVy): 3. Uklad wedlug zastrz. 1, znamienny tym, ze czlon liczacy (4) zawiera dwa wzmacniacze (41), (42), które w obwodzie sprzezenia zwrotnego maja wlaczone elektroniczne czlony mnozace (43).Rl ASy R3 VxVy + R2 Vy Rl R3 R2 -? As^ ASy Asx W ten sposób uzyskana zostala ponownie zadana zaleznosc miedzy poszczególnymi skladowymi re¬ gulatora polozenia, a prowadzaca wielkoscia pred¬ kosci. PLSubject of the patent: Siemens Aktiengesellschaft, Munich, (Federal Republic of Germany and West Berlin) Electric motor power supply system of a machine tool The invention relates to an electric motor power supply system with automatic regulation of both speed and position, intended for the control of machine tools. The power supply systems of the machine tool motor should have a large amplification value necessary for small position deviations in order to obtain the appropriate value of the control signal. This amplification, with larger deviations of the position and the linear dependence between the position regulator output signal and the speed control signal, leads to an overload of the system. The disadvantage of such a system is that when the gain value is reduced, the desired position cannot be obtained for small deviations of the position. The aim of the invention is to eliminate the above drawback while at the same time obtaining the speed control signal resulting from the position deviation. This aim is achieved by a system according to the invention which consists in the fact that the position controller is connected is with the speed controller via a counting member with a parabolic characteristic of the output quantity in relation to the input quantity. The system according to the invention also consists in the fact that the counting member is connected between the digital-to-analog converter, which is located behind the digital part of the position regulator and the analogue 10 15 30 speed regulator, member The counting unit contains two amplifiers which have an electronic coupler connected in the feedback circuit. In the system according to the invention, the output signal of the amplifiers is fed with a suitable sign to the inputs of the multipliers. Moreover, in the circuit according to the invention, regulated resistors are connected in parallel to the multipliers in the feedback circuit. In the system according to the invention, the largest output signal in each case is given, which is the speed control signal, to the control element that controls the feed in the direction of two axes, so that the ratio of the resultant output signal to the largest output signal is equal to the ratio of the input signals Thanks to the system according to the invention, the motor is started to the desired position with a minimum braking torque, which ensures a minimum start-up time. The system according to the invention provides for the simultaneous movement of the tool in the direction of two coordinate axes (for example at machining oblique surfaces) equal ratio of the follow-up to the speed component in both axes of the tool movement, which eliminates contour errors occurring when machining such surfaces. 78 8833 The system according to the invention provides the possibility of programming the feed rate in the start-stop system, because the motor each time automatically stops according to the optimal characteristics. The subject matter of the invention is presented in an example of an embodiment in the drawing, in which Fig. 1 shows a block diagram of a drive system with analog speed control and digital position control, Fig. 2 - a counting member system with parabolic transmission characteristics, means about the parabolic ratio between the output signal As of the speed controller and the velocity signal leading Vs, Fig. 3 - diagram of the dependence of the speed signal leading Vs as a function of the error signal (transmission) As with different characteristics, Fig. 4 - enlarged part of the diagram from fig. 3 near the beginning of the coordinate axes, fig. 5 - control system of the machine tool for machining inclined surfaces with the movement of the tool in two directions, fig. 6 - graph showing the formation of a contour error with a parabolic relationship between the deviation 1, the DC motor 7 drives the shaft 25 10, to which it is rigidly coupled tachometric generator 8 and impulse sensor 9. The signal of the generator 8 corresponds to the actual engine speed nist and together with the speed signal Vs leading Vs corresponding to the required speed ns 30 is fed to the input of the speed regulator 5, which controls directly via thyristor unit 6 the speed of the engine 7. In addition to the analog control, there is also a digital control which realizes the speed reference. For this purpose, one pulse is generated for each unit angle of rotation of the distance traveled in the pulse sensor 9. The frequency of these pulses is compared in the differential counter of the controller 2 with the frequency sB of the generator or interpellator 1, i.e. road. Depending on the existing difference between the two pulse sequences, the output error signal As is generated in the regulator 2 counter, which, through the digital-analog converter 3 and the counting member 4, reaches the speed regulator 45 as leading signal pred ¬ bones, causing correction of the engine 7. The task of the calculating member 4 is to create a test relationship between the error signal As 7. of the position regulator output 2 and the signal Vs 50 or on the input of the speed regulator 5, according to the relationship: Vs = k \ / ~ KV If, while maintaining this dependency, there is a sudden stop of the pulse train ss, then the acceleration stops in the range of the distance traveled, corresponding to the signal As. The lead value nB (Vs) is selected such that it provides a constant braking torque until the motor stops. 60 In Fig. 2, the signal As from the positioner 2 is fed to one of the inputs of the amplifier 41 via the adjustable resistor R1. The output signal from the multiplier 43 is also connected to the same input via the adjustable resistor R3. for example from a hall effect. One input of the multiplier 43 is directly connected to the output of the amplifier 41, the other through the diode 44. The second input of the amplifier 41 is connected to the ground of the circuit through a resistor R0. The amplifier is adjusted in such a way that the currents flowing through the resistor R1 and R3 are compensated and the following relationship is obtained: - r ri at R2 = o. The output of the amplifier 41 is also connected with the amplifier-inverter 42, the output of which is also connected via a diode 45, is given to the second input of the multiplier 43, thanks to which the signs of both signals As and V are consistent, because the characteristics Ve = f (As) of the system shown in Fig. 3 according to Fig. 2 indicate an infinite great gain in the zero point, therefore, in the feedback section of the amplifier 41 there is an additional adjustable resistor R2, which imposes the course Vm. The imposition of both Ve and Vm characteristics gives the resultant characteristic tVs = f (As), which, with a sufficient gain at the zero point, at the same time ensures that, in case of large position deviations, not exceeding the permissible value of the speed signal driving the signal. The curves shown in Fig. 3 reflect the characteristics for negative position deviations (not shown in the figure). When controlling the movement of the machine tools simultaneously in two directions in accordance with the coordinate axes, a contour error may arise, resulting from the parabolic characteristic. ¬ the engine supply system. To eliminate this, the path difference to speed ratios are identical for both tool feed axes. This is illustrated in FIG. 6, where the transition from P1 to P2 requires a path Ax or Ay. As a result of the parabolic relationship between the road and the speed, for the velocity Vy, with the greater difference in the road, a lower value is obtained than for the proportional relationship. Consequently, the resultant vector of velocity V lies outside the given contours P1 and P2. The speed components in the direction of both coordinate axes are proportional to each difference between the set point and the actual value, which eliminates contour errors. Such a system is shown in Fig. 5. The designations of the subassemblies are the same as in the previous Figures, with the symbols a and b corresponding to the x and y axes. Obtaining the predetermined ratio of these quantities is ensured by leading to each multiplier term 43a and 43b in feedback branches of the amplifiers 41a and 41b of the respective signal which each corresponds to the highest velocity component Vx or Vy. The diodes 44ab and 45ab are connected with each other by the switch 45. Thus, the highest value in each case affects one of the inputs of the multiplier, i.e. 78,883, so that the ratio of the speed components again corresponds to the ratio of the road difference. This dependence will be determined analytically (VxVy): 3. System according to claim The method of claim 1, characterized in that the counting member (4) comprises two amplifiers (41), (42) which have electronic multiplier (43) connected in the feedback circuit. R1 ASy R3 VxVy + R2 Vy R1 R3 R2 -? As ^ ASy Asx In this way, the predetermined relationship between the individual components of the position regulator and the leading value of the speed was obtained. PL

Claims (2)

1. Zastrzezenia patentowe 1. Uklad zasilania elektrycznego silnika obrabiar¬ ki z automatyczna regulacja predkosciowa, zna¬ mienny tym, ze regulator polozenia (2) polaczony jest z regulatorem predkosci (5) za posrednictwem czlonu liczacego (4) o parabolicznej charakterysty¬ ce wielkosci wyjsciowej w stosunku do wejsciowej. 1. Patent claims 1. Electric power supply system of the machine tool motor with automatic speed control, characterized in that the position controller (2) is connected to the speed controller (5) by means of a counting member (4) with a parabolic size characteristic output versus input. 2. Uklad wedlug zastrz. 1, znamienny tym, ze czlon liczacy (4) wlaczony jest miedzy konwerto¬ rem cyfrowo-analogowym (3), który znajduje sie za czescia cyfrowa regulatora polozenia (2), a przed -analogowym regulatorem predkosci (5). 15 20 25 Rl R3 Rl R3 Vx+ Rl Vx+ R2 Rl R2 4. Uklad wedlug zastrz. 3, gnamlfiny tym, ze do wejsc czlonów mnozacych (43) jest doprowadzo¬ ny odpowiednim znakiem sygnal wyjsciowy wzmacniaczy (41), (42). 5. Uklad wedlug zastrz. 1—4, znamienny tym, ze równolegle do czlonów mnozacych (43) wlaczone sa regulowane oporniki (Rl), (R2) w ukladzie sprze¬ zenia zwrotnego. 6. Uklad wedlug zastrz. 1, gmMni«nny tym, ze do czlonu liczacego (41a), (41b) sterujacego posuw w kierunku dwóch osi, podany jest dodatkowo kazdorazowo najwiekszy sygnal wyjsciowy ze skla¬ dowych (Vx), (Vy), stanowiacych sygnal sterujacy predkosc, tak aby stosunek wypadkowego sygnalu wyjsciowego do najwiekszego sygnalu wyjsciowego byl równy stosunkowi sygnalów wejsciowych czlo¬ nu liczacego (41a), (41b).KI. 42r1,ll/32 21c,59/01 78 883 MKP G05b 11/32; H02p 5/00- iUO Ss^j(* ^J* li_Dsft -^ AS AS -E—(^J-§-^ j!L Figi 43 R3- R2 I X# ooiCTiirl 41 42 -o y^k-tTAT Fig.2 m A [mm] II LminJ 10000 7500 5000 2500 -I 1000-U -»m 5 10 15 20 Fig.3 25 as [mm]KI. 42ri,ll/32 21c,59/01 78883 MKP G05b 1132 H02p 5/00 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 as [mm] Fig.A isx «a^4 » s=f| +l A»l W/ AX Vy' Fig 6 2 Fig.5 CZYlUttlA Urzedu Patentawr^ci flMIif lzer7- ., i , PL2. System according to claim The method of claim 1, characterized in that the counting member (4) is connected between the digital-to-analog converter (3), which is located downstream of the digital part of the position controller (2), and the pre-analog speed controller (5). System according to claim 15 20 25 R1 R3 R1 R3 Vx + R1 Vx + R2 R1 R2. 3, gnamlphine in that the output signal of the amplifiers (41), (42) is fed to the inputs of the multipliers (43) with a corresponding sign. 5. System according to claim A method as claimed in any one of claims 1-4, characterized in that adjustable resistors (R1), (R2) in the feedback circuit are connected parallel to the multipliers (43). 6. System according to claim 1, gmMni, due to the fact that the largest output signal from the components (Vx), (Vy), constituting the signal controlling the speed, is additionally given to the counting member (41a), (41b) which controls the feed in the direction of two axes, so such that the ratio of the resultant output signal to the largest output signal is equal to the ratio of the input signals of the counting unit (41a), (41b) .KI. 42r1, II / 32 21c, 59/01 78 883 MKP G05b 11/32; H02p 5 / 00- iUO Ss ^ j (* ^ J * li_Dsft - ^ AS AS -E - (^ J-§- ^ j! L Figi 43 R3- R2 IX # ooiCTiirl 41 42 -oy ^ k-tTAT Fig. 2 m A [mm] II LminJ 10000 7500 5000 2500 -I 1000-U - »m 5 10 15 20 Fig. 3 25 as [mm] KI. 42ri, II / 32 21c, 59/01 78883 MKP G05b 1132 H02p 5 / 00 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 as [mm] Fig. A isx «a ^ 4» s = f | + l A »l W / AX Vy 'Fig 6 2 Fig. 5. flMIif lzer7-., i, PL
PL15970872A 1972-01-15 1972-12-20 PL78883B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19722201924 DE2201924B2 (en) 1972-01-15 1972-01-15 Position control of machine tools with shaped velocity loop - velocity feedback operates on regulator with predetermined characteristic

Publications (1)

Publication Number Publication Date
PL78883B1 true PL78883B1 (en) 1975-06-30

Family

ID=5833132

Family Applications (1)

Application Number Title Priority Date Filing Date
PL15970872A PL78883B1 (en) 1972-01-15 1972-12-20

Country Status (6)

Country Link
JP (2) JPS4880970A (en)
BE (1) BE794061A (en)
CS (1) CS158595B2 (en)
DE (1) DE2201924B2 (en)
IT (1) IT978104B (en)
PL (1) PL78883B1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51151895U (en) * 1975-05-29 1976-12-04
DE2751276A1 (en) * 1977-11-16 1979-05-17 Hirschmann Geraetebau Gmbh & C Control circuit setting movable component in certain position - has position pick=up whose signal is compared with signal representing required position
DD138449B1 (en) * 1978-08-21 1980-08-27 Siegfried Schleicher STORAGE CIRCUIT FOR OVERFLOW-FREE AND TIME-SAVING POSITIONING
US4315200A (en) * 1978-08-29 1982-02-09 Canon Kabushiki Kaisha Servo control apparatus

Also Published As

Publication number Publication date
JPS4880970A (en) 1973-10-30
JPS5392589U (en) 1978-07-28
DE2201924A1 (en) 1973-07-19
BE794061A (en) 1973-05-02
IT978104B (en) 1974-09-20
DE2201924B2 (en) 1976-02-05
CS158595B2 (en) 1974-11-25

Similar Documents

Publication Publication Date Title
US5442268A (en) Torque oscillation compensation using torque emulator/observer feedback
US2565293A (en) Control system
DE2201390A1 (en) Coordinated voltage regulation
CN1307782C (en) Control constant adjusting apparatus
PL78883B1 (en)
US2687612A (en) Peak holding fuel control for internal-combustion engines
US3497778A (en) Part positioning device and plural stepping motor control therefor
US2701328A (en) Antihunt means for electric motor follow-up systems
US3458791A (en) Adjustable speed drive system with friction compensation
US3114869A (en) Servo motor speed control system
US2830249A (en) Servomechanisms
US1863302A (en) Regulator system
US5204605A (en) Position-controlled actuator
US3249841A (en) Dynamic brake system
US2869059A (en) Follow-up control systems
US2256463A (en) Speed regulating system
JPS6337597B2 (en)
US1882788A (en) Motor-control system
US2714185A (en) Anti-hunt means for electric motor follow-up system
US3016883A (en) Hydro-electric servo mechanisms
US3007257A (en) Target position generator for radar trainer
RU2092964C1 (en) Method and device for controlling stepping-motor drive
US20240025534A1 (en) Method for controlling an aircraft control engine, control device and aircraft
US3344333A (en) Device for controlling the contactors of an electric motor
DE504593C (en) Process for the power distribution of a double generator working on two independent alternating current networks, driven with alternating power, consisting of a synchronous and an asynchronous machine with a commutator rear machine