PL44806B1 - - Google Patents

Download PDF

Info

Publication number
PL44806B1
PL44806B1 PL44806A PL4480659A PL44806B1 PL 44806 B1 PL44806 B1 PL 44806B1 PL 44806 A PL44806 A PL 44806A PL 4480659 A PL4480659 A PL 4480659A PL 44806 B1 PL44806 B1 PL 44806B1
Authority
PL
Poland
Prior art keywords
source
function
scale
shield
energy
Prior art date
Application number
PL44806A
Other languages
English (en)
Filing date
Publication date
Application filed filed Critical
Publication of PL44806B1 publication Critical patent/PL44806B1/pl

Links

Description

Przedmiotem wynalazku jest suwak przezna¬ czony do obliczania w sposób dokladny, szyb¬ ki i latwy, oslon majacych ochraniac personel w czasie manipulowania z substancjami radio¬ aktywnymi wysylajacymi promieniowanie gam¬ ma albo promienie X.Nalezy tu rozwiazac nastepujace zagadnienia badz ze wzgledu na zastosowanie takich oslon, badz tez na ich wykorzystania: obliczenie grubosci scianek oslon, wykona¬ nych z danego materialu w funkcji odle¬ glosci operatora od zródla promieniowania i natezenia oraz energii promieniowania gam¬ ma wysylanych przez to zródlo, minimalna odleglosc operatora od zródla pro¬ mieniowania o znanym natezeniu i energii promieniowania przy uwzglednieniu zastoso¬ wania oslony o znanej skutceznosci absorbeji promieniowania gamma lub tez bez uzycia tej oslony, maksymalne natezenie promieniowania zród¬ la, jakie moze byc wykorzystane przy zasto¬ sowaniu danego systemu ochrony.Istniejace przyrzady rachunkowe nie pozwa¬ laja na szybkie rozwiazywanie takich zagadnien i odnosza sie tylko do przypadków szczególnych w zastosowaniu jedynie do niektórych zwyklych pierwiastków promieniotwórczych.Znane suwaki rachunkowe wedlug patentu amerykanskiego nr 1.609.972 (F. A. Sherrer i tow.), umozliwiaja obliczenie oslabienia pro¬ mieniowania, ale wymagaja znajomosci innych danych, jak skuteczny przekrój materialu oslo¬ ny, efekt promieniowania rozproszonego itd.Koncepcja suwaka wedlug wynalazku opiera sie na matematycznym ujeciu natezenia promie¬ niowania R w danym punkcie, które obejmuje nastepujace parametry:A —: aktywnosc zródla promieniowania, E — wspólczynnik znany „build np.", wyra¬ zajacy skutecznosc rozproszenia promie¬ niowania, I-(E)— natezenie promieniowania jednostkowe¬ go strumienia fotonów energii E; li — liniowy wspólczynnik absorbcji oslony, x — grubosc oslony, r — odleglosc zródla promieniowania (przyje¬ tego jako punktowe) od operatora.Uwzgledniajac powyzsze oznaczenia równanie na natezenie promieniowania R mozna napisac w postaci: AB I (E) e ~~VX R= (1) 4jtr* 1 1 albo przyjmujac k'= i C = — 4jt r mozna napisac: R = k'ABC21 (E) e ~~M'X (2) Przyjmujac: R — w milirentgenach na godz.A — w milicurie E — w megaelekronowoltach \x — w (centymetrach)-1 r i x w cm. oraz wspólczynnik absorbcji liniowej w powie¬ trzu m* wyrazony w cmwl, to równanie (1) przy¬ bierze postac: Ha ABE e ~lAX R =k (3) r2 przy k = 1,685.108 Otrzymuje sie wiec równanie o pieciu niewia¬ domych R, x, r, A i E; wiedzac cztery z nich mozna okreslic piata niewiadoma. Suwak we¬ dlug wynalazku pozwala na rozwiazanie tych pieciu rodzajów równan, z których kazde pole¬ ga na okresleniu jednej niewiadomej znajac pozostale cztery.Równanie (3) mozna napisac w postaci: Br2 jia B E - =k (4) A e*x a po wprowadzeniu dwóch funkcji posrednich otrzymuje sie: kjj,fl B E Yi= ^ = f(E,x) i e ¦*. '¦ ":" : : ' .'. *'L Rr* i Y2 = = g (r, R, A), A przy czym wartosc funkcji Y2 = g(r, R, A) roz¬ dziela sie na dwie czesci przez wprowadzenie r* funkcji y= A Jia BE Funkcja Yi =k = f(E, x) eHX ' w której wartosci k, E, \x, \ia i nawet B sa na ogól niezalezne od x, przedstawia zmiennosc oslabienia promieniowania monoenergetycznego w funkcji grubosci scianek oslony.Badanie tej funkcji, która mozna napisac w postaci: Lvi = Lk + Lu* + LB + LE|xx, prowadzi we wspólrzednych semilogarytmicz- nych do wykreslenia ukladu krzywych b, wy raznie prostolinijnych.Rr2 Podobnie funkcja yz = = g(r,R,A) przed- A stawia zmiennosc natezenia promieniowania w funkcji odleglosci r operatora od zródla pro¬ mieniowania i aktywnosci zródla. Funkcja r* y = — która mozna napisac w postaci Ly = A = 2Lr — LA pozwala na wykreslenie wspólrzed¬ nych logarytmicznych ukladu prostych równo¬ leglych, które sa prostymi izoaktywnosci, gdzie wartosc A jest stala.Ustalenie w ten sposób charakterystyk pro¬ stych, przedstawiajacych funkcje yi, pozwala okreslic cztery parametry x, r, A i E, które wchodza do równania na promieniowanie R.Moze to byc wykonane przy kombinacji kla¬ sycznych zasad monogramu ze skrzyzowaniem i suwaka logarytmicznego.Suwak rachunkowy wedlug wynalazku wy¬ róznia sie tym, ze posiada stala plytke, zaopa¬ trzona na jednej powierzchni w uklad charak¬ terystyk krzywych, przedstawiajacy funkcje k Lia BE, Yi = f(E, x)= przy czym Yi jest eHX przedstawiona na osi odcietych podzielonej lo¬ garytmicznie, a x — na osi rzednych podzielo¬ nej liniowo; ta os rzednych jest nakreslona na ruchomej czesci suwaka przesuwajacej sie rów¬ nolegle do osi odcietych; druga strona tej plyt¬ ki zawiera podzialke logarytmiczna funkcji R, przed która przesuwa sie ruchoma linijka; na tej linijce jest wykreslony w ukladzie wspól- +- 2 —rzednych logarytmicznych uklad charakterystyk r* prostych przedstawiajacy funkcje y = —, przy A czym y jest naniesione na tej linijce jako od¬ ciete, a r jako rzedne na ruchomej czesci su¬ waka bedacej odpowiednikiem takiej czesci z drugiej strony.Poza tym suwak wedlug wynalazku, posiada na tylnej stronie krzywe przedstawiajace zmia¬ ny, w funkcji energii, calkowitego skutecznego przekroju makroskopowego róznych materialów oslony; na czesci ruchomej suwaka — skale energii w MeV, a na linijce — podwójna serie krzywych dajacych z jednej strony przez bez¬ posrednie odczytywanie i dla róznych materia¬ lów oslony równowazne grubosci scianek oslo¬ ny z olowiu w funkcji energii, a z drugiej stro¬ ny przez nomogramy pozwalajace rozwiazac za¬ gadnienie ochrony odnoszace sie do zródel, nie bedacych punktami.Wedlug wynalazku, materialami do wykonywa¬ nia oslony, dla których podaje sie krzywe i z których odczytuje sie grubosci scianek oslony materialów równowazne grubosci sciankom olo¬ wiu sa to zelazo, aluminium beton (zwykly lub ciezki) i woda. Odpowiednie krzywe, wykreslo¬ ne na odwrotnej stronie linijki suwaka sa umieszczone parametry w odniesieniu do ener¬ gii fotonów.W odmianie suwaka zastosowano na tylnej stronie linijki krzywe izoenergii odpowiadajace pewnej liczbie zwyklych pierwiastków promie¬ niotwórczych.Poniewaz beton zachowuje sie wyraznie jak aluminium, wiec mozna poslugiwac sie tym samym ukladem krzywych; podzialke scianek oslony podano w stosunku do gestosci jej ma¬ terialu.Cale zagadnienie dotyczace tych materialów traktuje sie w odniesieniu do olowiu.Jezeli dana jest grubosc scianek oslony, to porównuje sie ja z równowazna grubosci scian¬ ki z olowiu i obliczenia prowadzi sie jak z oslona z olowiu.Przy okreslaniu grubosci scianek oslony naj¬ pierw oznacza sie równowazna grubosc scianek oslony z olowiu, a nastepnie dokonuje sie za¬ miane na grubosc scianek z materialu wybra¬ nego.Co sie tyczy wykorzystania suwaka do obli¬ czenia natezenia promieniowania pochodzacego ze zródel nie bedacych punktami, to jest moz¬ liwe przez odniesienie do pojecia zródla punk¬ towego o tej samej aktywnosci.Przy oznaczeniu litera li natezenia promie¬ niowania odpowiadajacego zródlu niepuaktowe- mu, którego aktywnosc jest równomiernie roz- lozona, a w tych samych warunkach ochrony oznacza sie litera Ig natezenie promieniowania zródla punktowego o tej samej aktywnosci, to Ii stosunek — okresla wspólczynnik korekcji, któ- 12 rego znajomosc pozwala okreslic za posred¬ nictwem zródla punktowego, zagadnienia ochro¬ ny dotyczace zródel niepunktowych.Suwak wedlug wynalazku mozna stosowac w przypadku zródel promieniowania dajacych sie sprowadzic (upodobnic), z punktu widzenia ochrony, badz do zródel liniowych, badz do zródel plaskich kolowych.Ma odwrotnej stronie linijki suwaka sa wy¬ kreslone krzywe, przedstawiajace zmiany wspól- Ii czynnika korekcji = F w funkcji grubosci If scianek oslony, wyrazonej w srednich swobod¬ nych przebiegach oraz w funkcji pozornej sred¬ nicy zródla.Przez pozorna srednice zródla nalezy rozu¬ miec: 1 Dla zródel liniowych o stosunku—s gdzie 2 a jest dlugoscia zródla i a — odleglosc od zródla do punktu pomiaru wzietego na prostopadlej przechodzacej przez srodek zródla. d Dla zródel plaskich kolowych o stosunku a gdzie d jest srednica zródla i a — odlegloscia od zródla do punktu pomiaru wzietego na pro¬ stopadlej do plaszczyzny zródla przechodzacej przez srodek tego zródla.W tych warunkach grubosc scianek oslony nalezy obliczac w srednich o swobodnych prze¬ biegach. Jest to parametr bezwymiarowy b = 2x, w którym: 2 oznacza calkowity makroskopowy przekrój skuteczny scianki oslony, a x — grubosc tej scianki.Dla okreslenia calkowitego makroskopowego przekroju skutecznego, znajac energie fotonów i rodzaj materialu oslony, wartosc 2 okresla sie metoda skrzyzowania. W tym celu nalezy poslugiwac sie z jednej strony skala kalibrowa¬ na w jednostkach energii, znajdujaca sie na przedniej stronie suwaka (biegacza), a z dru¬ giej strony — krzywymi wykreslonymi na - ? -przedniej stronie linijki, które przedstawiaja dla kazdego materialu oslony zmiany wartosci 2 w funkcji energii fotonów.Obliczanie wartosci b = Hx wykonuje sie na przedniej stronie linijki suwaka. W tym celu suwak jest zaopatrzony w dwie skale logaryt¬ miczne wykonane jedna na linijce i druga na biegaczu, które pozwalaja na obliczenie wartosci iloczynu 2x przez zwykle dodanie dlugosci skal., Wobec tego, ze wartosci x odczytuje sie na skali biegacza, b odczytuje sie na odpowiada¬ jacej skali linijki. W kazdym razie polozenie przecinka nie jest sprecyzowane i podzialka „1" np. moze przedstawiac wartosci 1, 10 lub 100.Na rysunku uwidoczniono schematycznie, ty¬ tulem przykladu suwak wedlug wynalazku do obliczania oslon ochronnych przed zródlem pro¬ mieniowania, przy czym fig. 1 przedstawia tyl¬ na strone linijki suwaka wyposazonego w bie¬ gacz, fig. 2 — przednia strone tej linijki zao¬ patrzona w biegacz i w linijke, fig. 3, 4 i 5 przedstawiaja uklad linii wykresu nakreslony na tylnej stronie linijki, który umozliwia przez bezposrednie odczytanie okreslic w funkcji e- nergii odpowiednie grubosci scianki oslony z olowiu, równowazne grubosci takiej scianki z zelaza, aluminium, betonu Z albo wody, fig. 6 i 7 — równiez nakreslone na tylnej stronie linijki nomogramy umozliwiajace rozwiazanie zadania ochrony w odniesieniu do zródel nie- punktowych (zródla plaskie kolowe dla fig. 6 i zródla liniowe dla fig. 7), a fig. 8, 0 i 10 — tylna strone linijki podczas dokonywania róz¬ nych obliczen, opisanych ponizej.Jak widac z fig. 1, suwak wedlug wynalazku posiada plytke 1, zaopatrzona w uklad krzy¬ wych charakterystyk 2 przedstawiajacych zmia¬ ne oslabienia aktywnosci fotonów gamma w funkcji grubosci scianki oslony dla róznych wartosci energii E tych fotonów (0,5, 0,6 itd. 3,5—3 MeV).Wartosc grubosci x scianki z olowiu powo¬ dujaca oslabienie tej aktywnosci odczytuje sie na osi 3 naniesionej na plaszczyznie 4 biega¬ cza przezroczystego 5, mogacego poruszac sie równolegle do dlugiego boku linii.Celem rozszerzenia mozliwosci stosowania tej skali, wykonanej w stosunku do scianki z olo¬ wiu, na inne ewentualne materialy ochronne, jak uran, stosuje sie zasade przyblizonego do¬ bierania równowaznych grubosci scianki przez zastosowanie nastepujacego równania: dpb Xe-XPb» gdzie xe i de oznaczaja odpowiednio grubosc scianek oslony z olowiu i gestosc olowiu, a Xe i dc oznaczaja odpowiednio grubosc scianki oslony i gestosc jej z innego materialu, niz olów.Plaszczyzna 4 biegacza w konsekwencji po¬ siada druga os 6, przesunieta w stosunku do osi poprzedniej: os 3 dla oslon olowiowych, a os 6 dla oslon uranowych. W tym wykonaniu oslony uzywa sie tylko tych dwóch osi dla ulat¬ wienia odczytywania.Jak widac z fig. 2 druga strona suwaka za¬ wiera ruchoma linijke 7, na której wykreslono wiazke prostych linii izoaktywnosci 8 dla ak¬ tywnosci A od 10 mikrocurie do 10* curie.Wartosc odleglosci r zródla promieniowania od operatora odczytuje sie na drugiej po¬ wierzchni 9 biegacza 5 wedlug jednej z dwóch osi 10 lub 11 odpowiednio dla olowiu lub ura¬ nu, jak dla plaszczyzny 4 tego biegacza.Dolna krawedz 12 linijki posiada skale loga¬ rytmiczna 13 (która sluzy jednoczesnie do kon- r2 strukcji ukladu krzywych yi = f(E, x) i y —) A dajaca wartosci natezenia promieniowania R w milirentgenach na godz. (reper 14) albo w rentgenach na godzine (reper 15). Oprócz te¬ go, na plaszczyznie 4 biegacza 5 (fig. 1) jest nakreslona skala 16 energii, rozciagajaca sie w tym szczególowym przykladzie od 0,5 do 3 MeV; na przezroczystych czesciach linii rów¬ niez sa wygrawerowane dwie skale 17 i 18; skala 17 jest wykalibrowana w srednich prze¬ biegach swobodnych, a skala 18 — w cm olo¬ wiu. Na linii jest jeszcze wygrawerowana ska¬ la logarytmiczna 19, podajaca wartosci calko¬ witego makroskopowego przekroju skutecznego oslony, której to skali odpowiada na plaszczyz¬ nie 4 biegacza skala logarytmiczna 20 wykali¬ browana w grubosciach (podajaca wartosci gru¬ bosci).Wreszcie, na plaszczyznie linii oznaczonej cyfra 1 siec krzywych 21 przedstawia w funk¬ cji energii zmiany calkowitego makroskopowego przekroju skutecznego 2 dla róznych materia¬ lów oslon; woda, beton lekki Zt, aluminium, beton ciezki, zelazo, olów, uran.Dla przykladu opisano sposób uzycia suwaka wedlug wynalazku dla rozwiazania dwóch róz¬ nych zadan.Przyjmujac, ze zródlo punktowe o sile 100 curie wysyla promieniowanie gamma o mocy 1 MeV. Jakie jest natezenie promieniowania — 4 —w odleglosci 1 m od zródla, gdy sie umiesci przed zródlem promieniowania oslone zelazna o grubosci scianek 25 cm? Nalezy wykonac na* stepujace czynnosci.. Do okreslenia grubosci scianek z olowiu równowaznej oslonie zelaznej umieszcza sie ruchoma linijke 7 w ten sposób, aby reper olowiu 18 przecinal na podzialce 25 pozioma skale wykalibrowana w grubosci scian¬ ki oslony z zelaza na tylnej stronie linijki 7 (fig. 8). Na przecieciu linii prostej energii 1 MeV i reperu olowiu odczytuje sie wynik, np. 12 cm grubosci scianki oslony z olowiu. Obli¬ czenie natezenia promieniowania z oslona olo¬ wiana o grubosci scianki 12 cm dokonuje sie w sposób nastepujacy: Przesuwa sie biegacz na plaszczyznie 1 w ten sposób, aby wartosc x —12 odczytana na osi 3 wygrawerowanej na plaszczyznie 4 biegacza, odpowiadala przez skrzyzowanie linii wartosci energii E —1 MeV fotonów gamma odczytanej na odpowiedniej krzywej wiazki 2.Wspólrzedne znalezionego punktu sprawdza¬ ja równanie: Yi - f(Et x) Odwraca sie wiec linie i przesuwa sie linijke 7, nie dotykajac biegacza w ten sposób, aby wartosc r = 100 cm (odleglosc zródla promie¬ niowania od operatora) odczytana na osi 10 wygrawerowanej na plaszczyznie 9 biegacza, odpowiadala wartosci A = 100 curie (aktyw¬ nosc zródla) odczytanej na linijce. Wspólrzedne znalezionego punktu sprawdzaja równanie: r* A Wartosc natezenia promieniowania R od¬ czytuje sie na podzialce 13 w milirentgenach na godzine naprzeciwko reperu 14 (albo w rent¬ genach na godzine naprzeciwko reperu 15), np. 14 mr/h w wybranym przykladzie.Drugi przyklad zastosowania suwaka doty¬ czy obliczenia natezenia promieniowania na osi symetrii zródla niepunktowego monokinetycz- nego.Przyjmujac, ze zródlo plaskie kolowe o sred¬ nicy 100 cm i calkowitej aktywnosci gamma 10 curie wysyla promieniowanie gamma o energii 1,5 MeV. Jezeli to zródlo jest umieszczone w oslonie olowianej o grubosci scianek 10 cm, równoleglej do plaszczyzny zródla, to takie jest natezenie promieniowania w odleglosci 1 m od zródla na prostopadlej przechodzacej przez jego srodek? Suwakiem posluguje sie w nastepujacy spo¬ sób: Rozpoczyna sie od rozwiazania zadania za¬ kladajac, ze zródlo jest punktowe i posiada aktywnosc calkowita = 10 curie. Postepujac jak poprzednio znajduje sie natezenie promie¬ niowania = 65 mr/h. Nastepnie okresla sie grubosc scianek oslony b wyrazona w srednich przebiegach swobodnych. Aby to uczynic prze¬ suwa sie biegacz na tylnej stronie linijki w ten sposób, aby reper energii przecial krzywa olo¬ wiu na podzialce 1,5 MeV (fig. 9). Naprzeciw¬ ko podzialki 10 skali logarytmicznej biegacza odczytuje sie na skali linii b = 6. Wreszcie, aby odszukac wspólczynnik korekcji, uzywa sie su- d waka w ten sposób, ze krzywa 1 prze- a cina skale 17 na podzialce 6. Na przecieciu skali b i skali „F" odczytuje sie wartosc 0,63 (fig. 10). Gestosc promieniowania zródla kolo¬ wego równa sie 65X0,63 = 40 mr/h, mnozenie to wykonuje sie za pomoca skal logarytmicz¬ nych 19 i 20 wykreslonych na linijce i biega¬ czu. PL

Claims (5)

  1. Zastrzezenia patentowe 1. Suwak do obliczania oslon ochronnych przed promieniowaniem zródla radioaktyw¬ nego, znamienny tym, ze posiada stala plyt¬ ke, zaopatrzona na jednej stronie w uklad k E B ji« krzywych funkcji Yi = f(E, x)= , e* gdzie k jest wspólczynnik liczbowy, zalezny od wybranych jednostek, (E) energia foto¬ nów, (B) wspólczynnik zwany „build up", Ha i M sa to odpowiednie wspólczynniki ab- sorbeji liniowej powietrza i materialu sta¬ nowiacego oslone, Yi jest przedstawiona we¬ dlug osi odcietych z podzialka logarytmicz¬ na, a {x) jest odczytywane na osi rzednych z podzialka liniowa, przy czym os jest wy¬ kreslona na przezroczystym biegaczu, moga¬ cym przesuwac sie równolegle do osi odcie¬ tych a druga strona tej plytki zawiera podzial¬ ka logarytmiczna, która przedstawia funkcje natezenia promieniowania (R), przed która przesuwa sie ruchoma linijka i na tej linij- - ce jest wykreslony w ukladzie wspólrzed¬ nych logarytmicznych uklad charakterystyk r* przedstawiajacych funkcje y = -, gdzie A — 5 .—, r jest odlegloscia zródla promieniowania od operatora i (A) — aktywnoscia zródla, war¬ tosc (y) jest naniesiona na tej linijce jako odcieta i (r) jako rzedna na przezroczystym biegaczu, bedacym odpowiednikiem poprzed¬ niego.
  2. 2. Suwak wedlug zastrz. 1, znamienny tym, ze jego tylna strona zawiera krzywe, przed¬ stawiajace zmiany funkcji energii fotonów calkowitego makroskopowego przekroju sku¬ tecznego scianek oslony z róznych materia¬ lów.
  3. 3. Suwak wedlug zastrz. 1 i 2, znamienny tym, ze jego tylny biegacz zawiera skale energii kalibrowana 'liniowo w megaelektronowol- tach i skale grubosci scianek oslony kalibro¬ wana logarytmicznie w centymetrach.
  4. 4. Suwak wedlug zastrz. 1—3, znamienny tym, ze jego linijka zawiera na stronie tylnej podwójny uklad krzywych, umozliwiajacy z jednej strony przez bezposrednie odczyta¬ nie równowazne grubosci scianki olowianej dla róznych materialów w funkcji energii, a z drugiej strony — nomogramy pozwalaja¬ ce rozwiazac zadanie ochrony odnoszace sie do zródel niepunktowych. 5. Suwak wedlug zastrz. 1—4, znamienny tym, ze jego tylna strona zawiera krzywe izoe- nergii odpowiadajace pewnym zwyklym pierwiastkom promieniotwórczym. Commissariat a 1'Energie Atomiaue Zastepca: mgr inz. Adolf Towpik rzecznik patentowyDo opisu patentowego nr 44606 Ark. 1 Fig. 3 ^S125 ' ! ' I ¦ I ¦ I ' 100 Fig.
  5. 5 V i 1? V ^ °o6 °<* °rL f ,r.. .^,Tft.ffVTffl Fig. 7 Fig.8 M«vDo opisu patentowego nr 44806 Ark. 2 r(<~nr 19 16 Fig 9 i—i—i—i t rr i¦ i i i ; i T7"|-rpi- Fig.10 BIBLIO" :" *¦ iUn P.W.H. wzór jednoraa. zarn. TOfflc, Oittfir^aTtCT*8lTTv.61. 100 egz. Al pism. ki. lit. PL
PL44806A 1959-08-19 PL44806B1 (pl)

Publications (1)

Publication Number Publication Date
PL44806B1 true PL44806B1 (pl) 1961-06-15

Family

ID=

Similar Documents

Publication Publication Date Title
Williams et al. Theoretical spectra of luminescent solids
Prince International Tables for Crystallography, Volume C: Mathematical, physical and chemical tables
Case Introduction to the theory of neutron diffusion
CN106199676B (zh) 一种伽玛探测器无源效率刻度方法
Ebert et al. Two-photon decay rates of heavy quarkonia in the relativistic quark model
Gutsche et al. Ab initio three-loop calculation of the W-exchange contribution to nonleptonic decays of double charm baryons
Srivastava et al. Effect of finite radar pulse volume on turbulence measurements
Adams The mean photon path length in extremely opaque media
Chakraborty et al. H bb vertex at four loops and hard matching coefficients in SCET for various currents
Kirn et al. The attenuation of gamma rays at oblique incidence
PL44806B1 (pl)
Howells A graphical method of estimating absorption factors for single crystals
Hoover et al. Irreversibility in the Galton board via conservative classical and quantum hamiltonian and gaussian dynamics
Muga et al. Specific luminescence studies in plastic scintillators
Egbert et al. DS02 fluence spectra for neutrons and gamma rays at Hiroshima and Nagasaki with fluence-to-kerma coefficients and transmission factors for sample measurements
SE7906100L (sv) Anordning for bestemning av inre strukturer i en kropp genom spridd stralning
Izyumov et al. Scattering of polarized neutrons by ferromagnets and antiferromagnets
Groot Cross section computation of trihedral corner reflectors with the geometrical optics approximation
Mozley et al. Multiple scattering of 600-MeV electrons in thin foils
Patra et al. Attenuation correction for the assay of Uranium (VI) Solutions in large cylindrical containers by gamma ray spectrometry
Hassan et al. Position and velocity sensitivities at the triangular libration points in the restricted problem of three bodies when the bigger primary is an oblate body
Naylor et al. A graphical method for the production of isodose curves from central axis and transverse data
Anoshina et al. Modeling a Scintillation Hodoscope for Muonography
Askri et al. Estimating external exposure from different source geometries in soil contaminated by gamma-ray emitting radionuclides: A computational model combining Monte Carlo simulation and mathematical transformation
Lee et al. Novel phenomena in charged Bose liquid