PL437791A1 - Imaging method in nuclear magnetic resonance experiment - Google Patents

Imaging method in nuclear magnetic resonance experiment

Info

Publication number
PL437791A1
PL437791A1 PL437791A PL43779121A PL437791A1 PL 437791 A1 PL437791 A1 PL 437791A1 PL 437791 A PL437791 A PL 437791A PL 43779121 A PL43779121 A PL 43779121A PL 437791 A1 PL437791 A1 PL 437791A1
Authority
PL
Poland
Prior art keywords
sub
spatial distribution
tensor
spatial
calculated
Prior art date
Application number
PL437791A
Other languages
Polish (pl)
Inventor
Artur KRZYŻAK
Bogdan Figura
Original Assignee
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie
Uniwersytet Jagielloński W Krakowie
Krakowski Szpital Specjalistyczny Im. Jana Pawła Ii
Polski Bank Komórek Macierzystych Spółka Akcyjna
Śląski Uniwersytet Medyczny W Katowicach
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie, Uniwersytet Jagielloński W Krakowie, Krakowski Szpital Specjalistyczny Im. Jana Pawła Ii, Polski Bank Komórek Macierzystych Spółka Akcyjna, Śląski Uniwersytet Medyczny W Katowicach filed Critical Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie
Priority to PL437791A priority Critical patent/PL437791A1/en
Priority to PCT/EP2021/062240 priority patent/WO2022233440A1/en
Publication of PL437791A1 publication Critical patent/PL437791A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • G01R33/56Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
    • G01R33/563Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution of moving material, e.g. flow contrast angiography
    • G01R33/56341Diffusion imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/58Calibration of imaging systems, e.g. using test probes, Phantoms; Calibration objects or fiducial markers such as active or passive RF coils surrounding an MR active material

Landscapes

  • Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Vascular Medicine (AREA)
  • General Health & Medical Sciences (AREA)
  • Radiology & Medical Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

Sposób obrazowania w eksperymencie magnetycznego rezonansu jądrowego (MRJ), w którym stosuje się gradienty pola magnetycznego większe od gradientów używanych do obrazowania, w którym to sposobie oblicza się współczynniki tensora dyfuzji na podstawie przestrzennego rozkładu macierzy b(r) uzyskanego jako efekt kalibracji, charakteryzuje się tym, że: przeprowadza się kalibrację (201-203) dla co najmniej trzech różnych, niekolinearnych wektorów gradientu dyfuzji G<sub>d</sub>, ustalając dla każdego z wektorów G<sub>d</sub> wartość macierzy przestrzennej b) i macierzy teoretycznej bti dla każdego woksela o współrzędnej przestrzennej (r) w obrębie przestrzeni obrazowania; określa się (204) przestrzenny rozkład składowych tensora korekcji pola L(r) na podstawie co najmniej trzech układów równań (6), po jednym układzie równań (6) dla każdego wektora G: oblicza się (205) przestrzenny rozkład współczynników tensora dyfuzji (D<sub>r</sub>) z uwzględnieniem wspomnianego przestrzennego rozkładu składowych tensora korekcji pola L(r) na podstawie określonego wzoru; oblicza się (205) przestrzenny rozkład współczynników tensora dyfuzji (D<sub>r</sub>) z uwzględnieniem wspomnianego przestrzennego rozkładu składowych tensora korekcji pola L(r) na podstawie określonego wzoru.The method of imaging in the nuclear magnetic resonance (NMR) experiment, which uses magnetic field gradients larger than those used for imaging, in which the diffusion tensor coefficients are calculated on the basis of the spatial distribution of the b(r) matrix obtained as a result of calibration, is characterized by in that: calibration (201-203) is performed for at least three different, non-collinear diffusion gradient vectors G<sub>d</sub>, setting for each of the vectors G<sub>d</sub> the value of the spatial matrix b ) and the theoretical matrix bti for each voxel with spatial coordinate (r) within the imaging space; the spatial distribution of the components of the field correction tensor L(r) is determined (204) on the basis of at least three systems of equations (6), one system of equations (6) for each vector G: the spatial distribution of the diffusion tensor coefficients (D) is calculated (205) <sub>r</sub>) taking into account said spatial distribution of the components of the field correction tensor L(r) based on a specific formula; a spatial distribution of the diffusion tensor coefficients (D<sub>r</sub>) is calculated (205) taking into account said spatial distribution of the components of the field correction tensor L(r) based on the determined formula.

PL437791A 2021-05-06 2021-05-06 Imaging method in nuclear magnetic resonance experiment PL437791A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PL437791A PL437791A1 (en) 2021-05-06 2021-05-06 Imaging method in nuclear magnetic resonance experiment
PCT/EP2021/062240 WO2022233440A1 (en) 2021-05-06 2021-05-07 A correction method for diffusion tensor magnetic resonance imaging

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PL437791A PL437791A1 (en) 2021-05-06 2021-05-06 Imaging method in nuclear magnetic resonance experiment

Publications (1)

Publication Number Publication Date
PL437791A1 true PL437791A1 (en) 2022-11-07

Family

ID=83932020

Family Applications (1)

Application Number Title Priority Date Filing Date
PL437791A PL437791A1 (en) 2021-05-06 2021-05-06 Imaging method in nuclear magnetic resonance experiment

Country Status (2)

Country Link
PL (1) PL437791A1 (en)
WO (1) WO2022233440A1 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL385276A1 (en) 2008-05-26 2009-12-07 Instytut Fizyki Jądrowej Pan Im. Henryka Niewodniczańskiego Anisotropic diffusion phantom for calibration of the optional sequence of visualisation of MR, DTI and method of calibration of any MR tomograph
PL232529B1 (en) 2015-07-30 2019-06-28 Akademia Gorniczo Hutnicza Im Stanislawa Staszica W Krakowie Method for calibration of the diffusion imaging sequences in the dMRI-type experiment carried out on the MR tomograph

Also Published As

Publication number Publication date
WO2022233440A1 (en) 2022-11-10

Similar Documents

Publication Publication Date Title
Stockmann et al. In vivo B0 field shimming methods for MRI at 7 T
WO2020028257A3 (en) Deep learning techniques for magnetic resonance image reconstruction
Yang et al. Eddy current nulled constrained optimization of isotropic diffusion encoding gradient waveforms
US10690742B2 (en) Method and apparatus for calibrating center frequency of MR and MRI system
CN109765510A (en) A kind of radial superconduction shim coil and its design method with fillet
Schepkin et al. In vivo chlorine and sodium MRI of rat brain at 21.1 T
CN112711876A (en) Dipole uniform magnetic field coil design method capable of reducing magnetic shielding coupling effect
PL437791A1 (en) Imaging method in nuclear magnetic resonance experiment
US20080068015A1 (en) Magnetic resonance imaging method and apparatus
JP5481216B2 (en) Magnetic resonance imaging system
Niu et al. A novel design method of independent zonal superconducting shim coil
Hillenbrand et al. High-order MR shimming: a simulation study of the effectiveness of competing methods, using an established susceptibility model of the human head
Harris et al. Application and experimental validation of an integral method for simulation of gradient-induced eddy currents on conducting surfaces during magnetic resonance imaging
CN104820198B (en) HF pulse regulation methods and HF pulse regulation devices
Zikmund et al. Calibration procedure for triaxial magnetometers without a compensating system or moving parts
Bondarenko et al. The generalized method of quantitative description of the uniaxial anisotropy in weak ferromagnet rhombohedral calcite type structure crystals with S-state ions
Du et al. Active shim design of a 7 T highly homogeneous superconducting magnet for Lanzhou Penning trap
US6844801B2 (en) Methods and apparatus for adjusting center magnetic field of a magnetic field generator for MRI
Wintzheimer et al. A 50-channel matrix gradient system: A feasibility study
He et al. An optimized passive shimming method for bi-planar permanent MRI magnets
Mesri et al. Investigating the adverse effect of gradient nonuniformities on diffusion MRI measures: Do we need to worry?
US10156620B2 (en) Multifunctional superconducting coil providing electromagnetic interference shielding and shimming for magnetic resonance imaging system
Yao et al. The Optimal Design of Passive Shimming Elements for High Homogeneous Permanent Magnets Utilizing Sensitivity Analysis
Frollo et al. A least square method for measurement and optimisation in selected physical experiments
Matsuda et al. Field corrections of open MRI superconducting magnets