PL428936A1 - Method of preparing three-dimensional structures of molybdenum disulfide - Google Patents

Method of preparing three-dimensional structures of molybdenum disulfide

Info

Publication number
PL428936A1
PL428936A1 PL428936A PL42893619A PL428936A1 PL 428936 A1 PL428936 A1 PL 428936A1 PL 428936 A PL428936 A PL 428936A PL 42893619 A PL42893619 A PL 42893619A PL 428936 A1 PL428936 A1 PL 428936A1
Authority
PL
Poland
Prior art keywords
molybdenum disulfide
functionalized
minutes
iron
iii
Prior art date
Application number
PL428936A
Other languages
Polish (pl)
Other versions
PL241558B1 (en
Inventor
Ewa Mijowska
Karolina Wenelska
Original Assignee
Zachodniopomorski Uniwersytet Technologiczny W Szczecinie
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zachodniopomorski Uniwersytet Technologiczny W Szczecinie filed Critical Zachodniopomorski Uniwersytet Technologiczny W Szczecinie
Priority to PL428936A priority Critical patent/PL241558B1/en
Publication of PL428936A1 publication Critical patent/PL428936A1/en
Publication of PL241558B1 publication Critical patent/PL241558B1/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Physical Vapour Deposition (AREA)
  • Catalysts (AREA)

Abstract

Przedmiotem zgłoszenia jest sposób otrzymywania przestrzennych struktur disiarczku molibdenu, który charakteryzuje się tym, że funkcjonalizuje się disiarczek molibdenu nanocząstkami tlenku żelaza (III) na drodze chemicznego osadzania z fazy gazowej, następnie sfunkcjonalizowany kilkuwarstwowy disiarczek molibdenu umieszcza się w piecu, w atmosferze gazu obojętnego i poddaje się redukcji wodorem w temperaturze co najmniej 800°C przez minimum 10 minut, po czym poddaje się działaniu etylenu przez 1 - 30 minut, otrzymując rurki o średnicy około 120 nanometra. Jako gaz obojętny stosuje się na przykład argon lub azot. Korzystnie disiarczek molibdenu funkcjonalizuje się w następujący sposób: łączy się eksfoliowany disiarczek molibdenu i octanu żelaza (III) w stosunku wagowym 1:1 Następnie dodaje się do mieszaniny alkohol etylowy w stosunku 1:50 i poddaje się ją działaniu sondy ultradźwiękowej przez od 0,5 - 3 godzin, po czym ogrzewa się w próżni 2,5 x 10-2 mbar w temperaturze 440°C przez 1 - 30 minut.The subject of the application is a method of obtaining spatial structures of molybdenum disulfide, which is characterized by the fact that molybdenum disulfide is functionalized with iron (III) oxide nanoparticles by chemical vapor deposition, then functionalized multi-layer molybdenum disulfide is placed in a furnace under an inert gas atmosphere and subjected to reduction with hydrogen at a temperature of at least 800 ° C for a minimum of 10 minutes followed by treatment with ethylene for 1 - 30 minutes to provide tubes with a diameter of about 120 nanometers. Argon or nitrogen, for example, is used as the inert gas. Preferably molybdenum disulfide is functionalized as follows: the exfoliated molybdenum disulfide and iron (III) acetate are combined in a weight ratio of 1: 1. Ethyl alcohol is then added to the mixture in a ratio of 1:50 and subjected to an ultrasonic probe for 0.5 - 3 hours, then it is heated under a vacuum of 2.5 x 10-2 mbar at 440 ° C for 1 - 30 minutes.

PL428936A 2019-02-18 2019-02-18 Method of preparing three-dimensional structures of molybdenum disulfide PL241558B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL428936A PL241558B1 (en) 2019-02-18 2019-02-18 Method of preparing three-dimensional structures of molybdenum disulfide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PL428936A PL241558B1 (en) 2019-02-18 2019-02-18 Method of preparing three-dimensional structures of molybdenum disulfide

Publications (2)

Publication Number Publication Date
PL428936A1 true PL428936A1 (en) 2020-08-24
PL241558B1 PL241558B1 (en) 2022-10-24

Family

ID=72143202

Family Applications (1)

Application Number Title Priority Date Filing Date
PL428936A PL241558B1 (en) 2019-02-18 2019-02-18 Method of preparing three-dimensional structures of molybdenum disulfide

Country Status (1)

Country Link
PL (1) PL241558B1 (en)

Also Published As

Publication number Publication date
PL241558B1 (en) 2022-10-24

Similar Documents

Publication Publication Date Title
JP4560077B2 (en) Powder for magnetic core and method for producing powder for magnetic core
Tomie et al. Prospective growth region for chemical vapor deposition synthesis of carbon nanotube on C–H–O ternary diagram
Lee et al. Growth kinetics of W5Si3 layer in WSi2/W system
EP2259290A3 (en) Methods of fabricating oxide layers on silicon carbide layers utilizing atomic oxygen
Ohtsu et al. Investigation of admixed gas effect on plasma nitriding of AISI316L austenitic stainless steel
US20030116229A1 (en) High temperature gaseous oxidation for passivation of austenitic alloys
Xing et al. Time dependence of microstructure and hardness in plasma carbonized Ti–6Al–4V alloys
JP2008308701A (en) Tantalum carbide-covered carbon material and process for producing the same
PL428936A1 (en) Method of preparing three-dimensional structures of molybdenum disulfide
Suzuki et al. Threefold atmospheric-pressure annealing for suppressing graphene nucleation on copper in chemical vapor deposition
PL428934A1 (en) Method of preparing three-dimensional structures of molybdenum disulfide
JP2012237062A (en) Method for manufacturing machine part
US9617159B2 (en) Process for synthesizing reduced graphene oxide on a substrate from seedlac
Maruyama et al. STM and XPS studies of early stages of carbon nanotube growth by surface decomposition of 6H–SiC (000-1) under various oxygen pressures
CN102659451B (en) CVD (Chemical Vapor Deposition) SiC/SiO2 gradient antioxidant composite coating and preparation method thereof
Yang et al. Wettability and bloodcompatibility of aC: N: H films deposited by PIII-D
CN109920718A (en) A method of preparing graphene-boron nitride laminated film
CN103993215B (en) Serve as the selective oxidation of the modified MCrAlY composition for being loaded with high-level ceramics of particular oxides formation obstacle
Bhalerao et al. Defect-dependent annealing behavior of multi-walled carbon nanotubes
Suess et al. Age of tektites
JP2952949B2 (en) Ferritic stainless steel pipe for high purity gas
Haider et al. Carbon diffusion in 304L austenitic stainless steel at 650-750℃ in carburizing environment
Kharatyan et al. Growth kinetics of Mo3Si layer in the Mo5Si3/Mo diffusion couple
Ueda et al. Effect of Annealing in Hydrogen Atmosphere on Carbon Nanocap Formation in Surface Decomposition of 6H-SiC (000-1)
CN109448948B (en) Fe/CNT (carbon nanotube) annular magnetic powder core composite material and preparation method thereof