PL428877A1 - Method for producing powder kesterite of Cu₂SnZnS₄ type, intended for production of active layers in thin film photovoltaic cells - Google Patents

Method for producing powder kesterite of Cu₂SnZnS₄ type, intended for production of active layers in thin film photovoltaic cells

Info

Publication number
PL428877A1
PL428877A1 PL428877A PL42887719A PL428877A1 PL 428877 A1 PL428877 A1 PL 428877A1 PL 428877 A PL428877 A PL 428877A PL 42887719 A PL42887719 A PL 42887719A PL 428877 A1 PL428877 A1 PL 428877A1
Authority
PL
Poland
Prior art keywords
kesterite
cu2snzns4
hours
photovoltaic cells
intended
Prior art date
Application number
PL428877A
Other languages
Polish (pl)
Other versions
PL241416B1 (en
Inventor
Jerzy Franciszek Janik
Mariusz Drygaś
Katarzyna Kapusta
Original Assignee
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie filed Critical Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie
Priority to PL428877A priority Critical patent/PL241416B1/en
Publication of PL428877A1 publication Critical patent/PL428877A1/en
Publication of PL241416B1 publication Critical patent/PL241416B1/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

Przedmiotem zgłoszenia jest sposób wytwarzania proszkowego kesterytu typu Cu2SnZnS4, przeznaczonego do produkcji, warstw czynnych w cienkowarstwowych ogniwach fotowoltaicznych, który polega na tym, że najpierw rozdrabnia się materiały odpadowe i zużyte wyroby w postaci dwuskładnikowych brązów cynowych Cu+Sn i dwuskładnikowych mosiądzów Cu+Zn, o znanym typie i na podstawie składu chemicznego tych materiałów określa się zawartość rzeczywistą pojedynczych metali Cu, Sn i Zn w mieszaninie, dążąc do uzyskania zawartości teoretycznej występującej w kesterycie, a mianowicie stosunku molowego Cu:Sn:Zn = 2:1:1. W przypadku niedoboru metali Zn i Sn uzupełnia się brakującą ilość w stosunku do teoretycznej poprzez dodatek proszków czystych metali Sn i Zn. Następnie rozdrobnione materiały wsadowe mieli się w wysokoenergetycznym młynie kulowym z dodatkiem cieczy dyspergującej w postaci wysokowrzących ciekłych węglowodorów alifatycznych lub aromatycznych wybranych z grupy obejmującej heksan, toluen i ksylen w czasie od 30 minut do 100 godzin, przy prędkości obrotowej młyna 200 do 1100 obr/min, po czym do mieszaniny dodaje się siarkę elementarną w ilości od stechiometrycznej do 100% nadmiaru w stosunku do ilości teoretycznej siarki występującej w kesterycie typu Cu2SnZnS4 i dalej mieli przez 30 minut do 100 godzin przy prędkości obrotowej młyna kulowego 200 - 1100 obr/min. Po zakończeniu procesu odparowuje się ciecz dyspergującą, a uzyskaną mieszaninę ogrzewa się w atmosferze gazu obojętnego w temperaturze od 400 do 700°C przez okres od 0,5 do 36 godzin, uzyskując proszkowy czysty kesteryt o średniej wielkości krystalitów w zakresie od 10 do 200 nm.The subject of the application is a method of producing Cu2SnZnS4 type powdered kesterite intended for the production of active layers in thin-film photovoltaic cells, which consists in first shredding waste materials and used products in the form of Cu + Sn two-component tin bronze and Cu + Zn two-component brass, of known type and on the basis of the chemical composition of these materials, the actual content of the single metals Cu, Sn and Zn in the mixture is determined in order to obtain the theoretical content of the kesterite, namely the molar ratio of Cu: Sn: Zn = 2: 1: 1. In the case of a deficiency of metals Zn and Sn, the missing amount in relation to the theoretical amount is supplemented by the addition of pure metal powders Sn and Zn. Then, the comminuted charge materials were ground in a high-energy ball mill with the addition of a dispersing liquid in the form of high-boiling liquid aliphatic or aromatic hydrocarbons selected from the group consisting of hexane, toluene and xylene for 30 minutes to 100 hours, at a rotational speed of the mill of 200 to 1100 rpm. elemental sulfur is then added to the mixture in an amount ranging from stoichiometric to 100% excess in relation to the theoretical amount of sulfur present in the Cu2SnZnS4 kesterite, and further ground for 30 minutes to 100 hours at a rotational speed of the ball mill of 200-1100 rpm. After completion of the process, the dispersing liquid is evaporated, and the resulting mixture is heated in an inert gas atmosphere at a temperature of 400 to 700 ° C for 0.5 to 36 hours, obtaining pure kesterite powder with an average crystallite size in the range of 10 to 200 nm .

PL428877A 2019-02-11 2019-02-11 Method for producing powder kesterite of Cu₂SnZnS₄ type, intended for production of active layers in thin film photovoltaic cells PL241416B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL428877A PL241416B1 (en) 2019-02-11 2019-02-11 Method for producing powder kesterite of Cu₂SnZnS₄ type, intended for production of active layers in thin film photovoltaic cells

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PL428877A PL241416B1 (en) 2019-02-11 2019-02-11 Method for producing powder kesterite of Cu₂SnZnS₄ type, intended for production of active layers in thin film photovoltaic cells

Publications (2)

Publication Number Publication Date
PL428877A1 true PL428877A1 (en) 2019-10-21
PL241416B1 PL241416B1 (en) 2022-09-26

Family

ID=68238710

Family Applications (1)

Application Number Title Priority Date Filing Date
PL428877A PL241416B1 (en) 2019-02-11 2019-02-11 Method for producing powder kesterite of Cu₂SnZnS₄ type, intended for production of active layers in thin film photovoltaic cells

Country Status (1)

Country Link
PL (1) PL241416B1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010135622A1 (en) * 2009-05-21 2010-11-25 E. I. Du Pont De Nemours And Company Copper zinc tin chalcogenide nanoparticles
US20120055554A1 (en) * 2009-05-21 2012-03-08 E.I. Du Pont De Nemours And Company Copper zinc tin chalcogenide nanoparticles
US20120100664A1 (en) * 2010-10-26 2012-04-26 International Business Machines Corporation Fabricating kesterite solar cells and parts thereof
US8366975B2 (en) * 2010-05-21 2013-02-05 E I Du Pont De Nemours And Company Atypical kesterite compositions
US20130037111A1 (en) * 2011-08-10 2013-02-14 International Business Machines Corporation Process for Preparation of Elemental Chalcogen Solutions and Method of Employing Said Solutions in Preparation of Kesterite Films
PL406175A1 (en) * 2013-11-21 2015-05-25 Stanley Aleksander Rokicki Carrying composite of photovoltaic cells
US20180069146A1 (en) * 2016-09-02 2018-03-08 International Business Machines Corporation Minimizing Tin Loss During Thermal Processing of Kesterite Films
WO2018065156A1 (en) * 2016-10-07 2018-04-12 Haldor Topsøe A/S KESTERITE MATERIAL OF CZTS, CZTSe OR CZTSSe TYPE
PL229752B1 (en) * 2014-10-27 2018-08-31 Politechnika Slaska Photovoltaic dye cell and method for producing it

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010135622A1 (en) * 2009-05-21 2010-11-25 E. I. Du Pont De Nemours And Company Copper zinc tin chalcogenide nanoparticles
US20120055554A1 (en) * 2009-05-21 2012-03-08 E.I. Du Pont De Nemours And Company Copper zinc tin chalcogenide nanoparticles
US8366975B2 (en) * 2010-05-21 2013-02-05 E I Du Pont De Nemours And Company Atypical kesterite compositions
US20120100664A1 (en) * 2010-10-26 2012-04-26 International Business Machines Corporation Fabricating kesterite solar cells and parts thereof
US20130037111A1 (en) * 2011-08-10 2013-02-14 International Business Machines Corporation Process for Preparation of Elemental Chalcogen Solutions and Method of Employing Said Solutions in Preparation of Kesterite Films
PL406175A1 (en) * 2013-11-21 2015-05-25 Stanley Aleksander Rokicki Carrying composite of photovoltaic cells
PL229752B1 (en) * 2014-10-27 2018-08-31 Politechnika Slaska Photovoltaic dye cell and method for producing it
US20180069146A1 (en) * 2016-09-02 2018-03-08 International Business Machines Corporation Minimizing Tin Loss During Thermal Processing of Kesterite Films
WO2018065156A1 (en) * 2016-10-07 2018-04-12 Haldor Topsøe A/S KESTERITE MATERIAL OF CZTS, CZTSe OR CZTSSe TYPE

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WOJSKOWA AKADEMIA TECHNICZNA IM. JAROSŁAWA DĄBROWSKIEGO, ADVANCES IN CZTS THIN FILMS AND NANOSTRUCTURED, 201S *

Also Published As

Publication number Publication date
PL241416B1 (en) 2022-09-26

Similar Documents

Publication Publication Date Title
Hages et al. Controlled grain growth for high performance nanoparticle-based kesterite solar cells
McCarthy et al. Solution‐Phase Conversion of Bulk Metal Oxides to Metal Chalcogenides Using a Simple Thiol–Amine Solvent Mixture
Yang et al. Solution-processed highly efficient Cu2ZnSnSe4 thin film solar cells by dissolution of elemental Cu, Zn, Sn, and Se powders
Zhang et al. Metal–metal chalcogenide molecular precursors to binary, ternary, and quaternary metal chalcogenide thin films for electronic devices
TW201224071A (en) A selenium/Group 1b/Group 3a ink and methods of making and using same
CN102741450B (en) Cu-in-ga-se quaternary alloy sputtering target
Zhang et al. Cation substitution induced structural transition, band gap engineering and grain growth of Cu2CdxZn1− xSnS4 thin films
Takei et al. Crystallographic and optical properties of CuSbS2 and CuSb (S1-xSex) 2 solid solution
Yin et al. Controllable Colloidal Synthesis of Tin (II) Chalcogenide Nanocrystals and Their Solution‐Processed Flexible Thermoelectric Thin Films
Nolas et al. Synthesis, crystal structure and electrical properties of the tetrahedral quaternary chalcogenides CuM2InTe4 (M= Zn, Cd)
Wibowo et al. Crystallization of Cu2ZnSnSe4 compound by solid state reaction using elemental powders
WO2011066203A1 (en) Preparation of copper zinc tin sulfide
Chen et al. Low-temperature growth of Na doped CIGS films on flexible polymer substrates by pulsed laser ablation from a Na containing target
CN102476791A (en) Method for preparing copper indium diselenide nanometer powder
Tsega et al. The performance of the donor and acceptor doping in the Cu-rich Cu2ZnSnSe4 bulks with different Zn/Sn ratios
Ju et al. Anion-exchanged porous SnTe nanosheets for ultra-low thermal conductivity and high-performance thermoelectrics
Sun et al. High-sulfur Cu2ZnSn (S, Se) 4 films by sulfurizing as-deposited CZTSe film: The evolutions of phase, crystallinity and S/(S+ Se) ratio
Alruqobah et al. Potassium treatments for solution-processed Cu (In, Ga)(S, Se) 2 solar cells
Singh et al. Fabrication of band gap tuned Cu2Zn (Sn1-xGex)(S, Se) 4 absorber thin film using nanocrystal-based ink in non-toxic solvent
Johnson et al. First principles calculations of the optoelectronic properties of magnesium substitutes in Lead based ABX3 compounds
Feng et al. Influence of annealing temperature on CZTS thin film surface properties
Li et al. Transmission electron microscopy analysis for the process of crystallization of film from sputtered Zn/CuSn precursor
PL428877A1 (en) Method for producing powder kesterite of Cu₂SnZnS₄ type, intended for production of active layers in thin film photovoltaic cells
PL428878A1 (en) Method for producing powder kesterite of Cu₂SnZnS₄ type
Dejene Material and device properties of Cu (In, Ga) Se2 absorber films prepared by thermal reaction of InSe/Cu/GaSe alloys to elemental Se vapor