PL424419A1 - Method for obtaining bioactive polymer-ceramic composite biomaterial - Google Patents

Method for obtaining bioactive polymer-ceramic composite biomaterial

Info

Publication number
PL424419A1
PL424419A1 PL424419A PL42441918A PL424419A1 PL 424419 A1 PL424419 A1 PL 424419A1 PL 424419 A PL424419 A PL 424419A PL 42441918 A PL42441918 A PL 42441918A PL 424419 A1 PL424419 A1 PL 424419A1
Authority
PL
Poland
Prior art keywords
amount
volume
weight
mixture
polymer
Prior art date
Application number
PL424419A
Other languages
Polish (pl)
Other versions
PL235354B1 (en
Inventor
Agnieszka Sobczak-Kupiec
Klaudia Pluta
Dagmara Malina
Katarzyna Bialik-Wąs
Bożena Tyliszczak
Anna Drabczyk
Wioletta Florkiewicz
Sonia Kudłacik-Kramarczyk
Original Assignee
Politechnika Krakowska im. Tadeusza Kościuszki
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Politechnika Krakowska im. Tadeusza Kościuszki filed Critical Politechnika Krakowska im. Tadeusza Kościuszki
Priority to PL424419A priority Critical patent/PL235354B1/en
Publication of PL424419A1 publication Critical patent/PL424419A1/en
Publication of PL235354B1 publication Critical patent/PL235354B1/en

Links

Landscapes

  • Materials For Medical Uses (AREA)

Abstract

Przedmiotem zgłoszenia jest sposób otrzymywania bioaktywnego biomateriału kompozytowego polimerowo-ceramicznego, zwłaszcza do rekonstrukcji tkanki chrzęstnej, polega na tym, że wodny roztwór polimeru syntetycznego, którym jest poli(winylopirolidon), o stężeniu od 5 do 20% wag., w ilości od 10 do 75% obj. w stosunku do całej kompozycji, łączy się w temperaturze otoczenia, przy ciągłym mieszaniu, z wodnym roztworem polimeru naturalnego, korzystnie żelatyny, o stężeniu od 2 do 10% wag., w ilości od 10 do 75% obj. w stosunku do całej kompozycji, po czym do mieszaniny roztworów wprowadza się, przy ciągłym mieszaniu, fosforan wapnia o strukturze hydroksyapatytu, pochodzenia naturalnego lub syntetycznego, o ziarnach o wielkości poniżej 200 µm, w ilości od 2,5 do 10% wag. kompozycji, uzyskaną mieszaninę poddaje się homogenizacji, następnie do mieszaniny dozuje się, przy ciągłym mieszaniu, czynnik sieciujący, którym jest korzystnie diakrylan poli(glikolu etylenowego) o średniej masie cząsteczkowej wynoszącej 700, w ilości takiej, aby stosunek całkowitej objętości mieszaniny reakcyjnej do objętości dodanego czynnika sieciującego wynosił od 1:0,1 do 1:0,2 oraz fotoinicjator, którym jest 2-hydroksy-2-metylo-propiofenon, w ilości takiej, aby stosunek całkowitej objętości mieszaniny reakcyjnej, uwzględniając objętość czynnika sieciującego, do objętości dodanego fotoinicjatora mieścił się w zakresie od 1 : 0,015 do 1 : 0,300, po czym dokładnie wymieszaną kompozycję poddaje się polimeryzacji w polu promieniowania UV w dawce od 0,2 do 0,8 J/cm2.The subject of the application is a method for obtaining a bioactive polymer-ceramic composite biomaterial, especially for the reconstruction of cartilage tissue, consists in the fact that the aqueous solution of the synthetic polymer, which is poly (vinylpyrrolidone), in a concentration of 5 to 20% by weight, in an amount of 10 to 75% vol relative to the entire composition, is combined at ambient temperature, with constant stirring, with an aqueous solution of natural polymer, preferably gelatin, at a concentration of 2 to 10% by weight, in an amount of 10 to 75% by volume. relative to the entire composition, then calcium phosphate of hydroxyapatite structure, of natural or synthetic origin, with grains smaller than 200 μm, is introduced into the mixture of solutions in an amount of 2.5 to 10% by weight. composition, the resulting mixture is homogenised, then the cross-linking agent is metered into the mixture, which is preferably polyethylene glycol diacrylate with an average molecular weight of 700, in an amount such that the ratio of the total volume of the reaction mixture to the volume added the crosslinking agent was from 1: 0.1 to 1: 0.2 and the photoinitiator, which is 2-hydroxy-2-methyl-propiophenone, in an amount such that the ratio of the total volume of the reaction mixture, taking into account the volume of the crosslinking agent, to the volume of added photoinitiator it ranged from 1: 0.015 to 1: 0.300, after which the thoroughly mixed composition is subjected to polymerization in a UV field at a dose of 0.2 to 0.8 J / cm2.

PL424419A 2018-01-30 2018-01-30 Method for obtaining bioactive polymer-ceramic composite biomaterial PL235354B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL424419A PL235354B1 (en) 2018-01-30 2018-01-30 Method for obtaining bioactive polymer-ceramic composite biomaterial

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PL424419A PL235354B1 (en) 2018-01-30 2018-01-30 Method for obtaining bioactive polymer-ceramic composite biomaterial

Publications (2)

Publication Number Publication Date
PL424419A1 true PL424419A1 (en) 2019-08-12
PL235354B1 PL235354B1 (en) 2020-06-29

Family

ID=67549905

Family Applications (1)

Application Number Title Priority Date Filing Date
PL424419A PL235354B1 (en) 2018-01-30 2018-01-30 Method for obtaining bioactive polymer-ceramic composite biomaterial

Country Status (1)

Country Link
PL (1) PL235354B1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL442978A1 (en) * 2022-11-29 2024-06-03 Politechnika Krakowska im. Tadeusza Kościuszki Method for obtaining a composite with a polymer matrix containing hydroxyapatite and composite with a polymer matrix containing hydroxyapatite
PL442979A1 (en) * 2022-11-29 2024-06-03 Politechnika Krakowska im. Tadeusza Kościuszki Method of obtaining a two-layer bioactive composite coating and two-layer bioactive composite coating
PL442980A1 (en) * 2022-11-29 2024-06-03 Politechnika Krakowska im. Tadeusza Kościuszki Method of obtaining a bioactive composite and bioactive composite

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101584887A (en) * 2008-07-31 2009-11-25 华南理工大学 HA/chitosan/PVP semi-interpenetrating polymer network frame preparing method
CN101612419A (en) * 2008-07-31 2009-12-30 华南理工大学 The preparation method of HA/ collagen/PVP semi-interpenetrating polymer network frame
CN106222723A (en) * 2016-08-17 2016-12-14 林春梅 A kind of implant composite biological coatings and preparation technology thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101584887A (en) * 2008-07-31 2009-11-25 华南理工大学 HA/chitosan/PVP semi-interpenetrating polymer network frame preparing method
CN101612419A (en) * 2008-07-31 2009-12-30 华南理工大学 The preparation method of HA/ collagen/PVP semi-interpenetrating polymer network frame
CN106222723A (en) * 2016-08-17 2016-12-14 林春梅 A kind of implant composite biological coatings and preparation technology thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HASNAIN M SAQUIB, ALGINATE-BASED BIPOLYMERIC-NANOBIOCERAMIC COMPOSITE MATRICES FOR SUSTAINED DRUG RELEASE, 2016 *

Also Published As

Publication number Publication date
PL235354B1 (en) 2020-06-29

Similar Documents

Publication Publication Date Title
PL424419A1 (en) Method for obtaining bioactive polymer-ceramic composite biomaterial
Peak et al. Printing therapeutic proteins in 3D using nanoengineered bioink to control and direct cell migration
Shahini et al. 3D conductive nanocomposite scaffold for bone tissue engineering
Takagi et al. Premixed calcium–phosphate cement pastes
Vashist et al. Interpenetrating biopolymer network based hydrogels for an effective drug delivery system
Fujishiro et al. Preparation and compressive strength of α‐tricalcium phosphate/gelatin gel composite cement
BR0113001A (en) Absorbents and process to produce them; absorbable buildings and articles
Usta et al. Behavior and properties of neat and filled gelatins
WO2010000384A2 (en) Pmma paste
Cieśla et al. The effect of poly (vinyl alcohol) type and radiation treatment on the properties of starch-poly (vinyl alcohol) films
Comeau et al. Printability of methacrylated gelatin upon inclusion of a chloride salt and hydroxyapatite nano‐particles
Rabiee Development of hydroxyapatite bone cement for controlled drug release via tetracycline hydrochloride
Lewis et al. Evaluation of two novel aluminum-free, zinc-based glass polyalkenoate cements as alternatives to PMMA bone cement for use in vertebroplasty and balloon kyphoplasty
Majekodunmi et al. Poly (acrylic acid) modified calcium phosphate cements: the effect of the composition of the cement powder and of the molecular weight and concentration of the polymeric acid
EP3254709B1 (en) Two component polymethacrylate bone cement in paste form
Cai et al. The effect of remnant preservation on tibial tunnel enlargement in anterior cruciate ligament reconstruction with polyethylene terephthalate artificial ligament in a large animal model
Andrusova et al. Polymer–Mineral Compounds for Cementless Hip Replacement
JP2018131597A5 (en)
Mazy et al. Tough gel adhesive is an effective method for meniscal repair in a bovine cadaveric study
Kandemir et al. Rheological characterization of Agarose and Poloxamer 407 (P407) based hydrogels
PL432720A1 (en) Method of obtaining hydrogel dressing material
CN106730039B (en) 3D printing material for medical bone tissue repair and preparation method thereof
PL439847A1 (en) Method of introducing hydrophobic medicinal active substances forming a system with a pH-sensitive nanocarrier into hydrophilic matrix of a hydrogel dressing
PL439845A1 (en) Method of introducing hydrophobic medicinal active substances forming a system with a thermosensitive nanocarrier into hydrophilic matrix of a hydrogel dressing
Zainon et al. Effect of Printing Temperature and Layer Thickness of Polymeric Scaffold on Bioactivity for Bone Tissue Engineering