W silowniach, zuzytkowywujacych ga¬ zy palne, np. gaz wielkopiecowy, w celu wytworzenia sily, ekonomiczne wyzyska¬ nie paliwa sprawia wiele trudnosci, po¬ niewaz zarówno doplyw gazu, jak i za¬ potrzebowanie sily ulegaja znacznym wa¬ haniom. Wahania te wystepuja niejedno¬ czesnie i od siebie niezaleznie.W zladach tego typu zaczeto stoso¬ wac mieszany sposób pracy. Zasadnicze obciazenie przekazano silnikom gazowym, chwilowe zas nadwyzki obciazenia po¬ krywano praca turbin parowych, zasila¬ nych para z kotlów, pod którymi spala¬ no czesc gazów.Dla skuteczniejszego wyrównania róz¬ nic pomiedzy doplywem gazu, a zuzyciem sily, stosowano przedewszystkiem kotly o wielkiej zawartosci wody, która jednak tylko do pewnego stopnia umozliwiala wyrównanie.Przy zastosowaniu kotlów tego typu wieksza czesc wahan w zuzyciu sily po¬ zostaje jednak niewyrównana. W ma¬ lym zaledwie stopniu liczyc przytem moz¬ na na wyrównanie róznic w doplywie gazu; z drugiej strony wobec malej za¬ wartosci ciepla w gazach wielkopieco¬ wych nie mozna myslec o wyrównaniu tych wahan w zbiornikach gazowych.Wynalazek niniejszy, wprowadzajac nowy czynnik do zladów takiego typu, usiluje usunac dotychczasowe trudnosci.Obyc sie przytem mozemy bez zbiorni¬ ków gazu albo przynajmniej znacznie zmniejszyc ich wymiary, redukujac jedno¬ czesnie granice wahan obciazenia poszcze¬ gólnych maszyn, co prowadzi do obnize-nia kosztów instalacji i zwiekszenia ogól¬ nego wspólczynnika sprawnosci.Wynalazek polega na tern, ze w in¬ stalacji, zlozonej z silników gazowych i kotlów parowych pomiedzy kotlami a turbina parowa ustawiamy znany za¬ sobnik ciepla, w postaci zamknietego izo¬ lowanego naczynia, zawierajacego wode albo inny plyn odpowiedni, znajdujacy sie pod cisnieniem i o temperaturze, od¬ powiadajacej temu cisnieniu. Zasobnik ten ustawia sie osobno od kotlów. Prze¬ strzen wodna zasobnika jest polaczona przewodem z przestrzenia parowa kotla.Poniewaz zasobnik jest ustawiony zu¬ pelnie osobno od kotlów, moze wiec byc znacznie wiekszy od przestrzeni wodnej kotlów o wielkiej przestrzeni wodnej.W celu zredukowania strat cieplnych wy¬ pada go starannie izolowac. Pozatem dzieki polaczeniom opisanym ponizej, spadek cisnienia w zasobniku moze byc nizszy, anizeli to w zwyklej pracy kotlów obecnie jest przyjete, co nie zmniejszy istotnie wspólczynnika sprawnosci turbi¬ ny parowej. Dzieki osobnemu zasobni¬ kowi, zamiast kotlów o wielkie| prze¬ strzeni wodnej, stosowac mozemy kotly oplomkowe, co pozwala znowu na pra¬ wie dowolnie wysokie cisnienie w kotle.Zasobnik moze byc zbudowany na ci¬ snienie mniejsze, anizeli cisnienie w kotle i wypada wówczas taniej.Dzialanie zasobnika jest latwo zrozu¬ miale. Jezeli, doplyw gazu w stosunku do zapotrzebowania sily jest nadmierny, to cisnienie w zasobniku wzrosnie. .W od¬ wrotnym wypadku cisnienie w zasobniku bedzie spadalo. Silniki gazowe obslugu¬ ja przytem obciazenie zasadnicze, turbina parowa przyjmuje nadwyzki obciazenia.Instalacje, urzeczywistniajace pomysl powyzszy, sa uwidocznione schematycznie na rysunku w trzech odmiennych sposo¬ bach wykonania.Przedstawiony na fig. 1 wielki piec (a) dostarcza czesc wytwarzanego gazu, po jego oczyszczeniu, przez przewód (b) do silników gazowych, napedzajacych np. pradnice, dmuchawy i t. d. Druga czesc gazów plynie odgalezieniem (d) do kotla 0), gdzie gaz ten zostaje spalony. Wy- fc tworzona w kotle (e) para dostaje sie przewodem (/) do zasobnika (g) ponizej jego poziomu wody. Zasobnik polaczo¬ ny jest przewodem (k) z turbina (7) albo z innym zuzywaczem pary (k).Cisnienie w kotle moze byc jednako¬ we z cisnieniem w zasobniku. W takim razie zawór w przewodzie (/) jest niepo¬ trzebny, wytworzona bowiem w kotle para sama przez sie bedzie przechodzila do zasobnika. Cisnienie w kotle moze jednak przewyzszac cisnienie w zasobni¬ ku, jezeli naprzyklad kotly powinny do¬ starczac pare o stalem cisnieniu na inne potrzeby. W takim razie w przewód la¬ czacy kociol z zasobnikiem ciepla, nalezy wstawic zawór regulacyjny, najlepiej dy¬ sze Laval'a, która ogranicza doplywiipary do zasobnika i moze byc regulowana sa¬ moczynnie, w zaleznosci naprzyklad od panujacego w zasobniku cisnienia.W razie potrzeby zasobnik (g) mozna zasilac para z innego kotla przewodem (/).Zawór {ni) przewodu gazowego moze byc uzalezniony od polozenia zbiornika gazu, od cisnienia gazu w przewodzie i t. d. Zawór zamyka sie samoczynnie, jesli cisnienie w zasobniku (g) doszlo do swej najwyzszej granicy.Fig. 2 przedstawia odmienna instala¬ cje, gdzie w odgalezieniu f/1) przewodu (/*) jest urzadzony silnik parowy (Z1), za¬ silany para bezposrednio z kotla.W przedstawionym na fig. 3 zladzie dwie -turbiny (i2, i) sa osadzone na wspól¬ nym wale. Przewód (J2) pary odlotowej turbiny (i2) prowadzi do zasobnika (g)} przewód zas parowy (h) laczy zasobnik z turbina (i).W ten sposób osiagamy calkowite wyzyskanie róznicy pomiedzy cisnieniem w kotle i w zasobniku. Obydwa prze¬ wody (/', h) lub jeden z nich polaczony jest z turbinami ruchomo. Para przeto moze odplywac z dowolnych stopni tur¬ biny (**), albo tez doplywac do róznych stopni turbiny (/), stosownie do cisnienia i ilosci pary. Najlatwiej uskutecznic to przez zaopatrzenie przewodów (/2) i (h) w odgalezienia, laczace sie z róznemi stopniami turbin. Odgalezienia te za¬ opatrzone przytem zostaja w zawory. Po¬ laczenie tego rodzaju moze byc zastoso¬ wane i w zladach, przedstawionych na fig. 1 i 2.Turbiny (j?) i (z) moga miec osobne waly, albo tez stanowic oddzielne stopnie jednej i tej samej turbiny. PLIn power plants that use flammable gases, for example blast furnace gas, to generate power, the economic use of fuel is difficult, since both the gas supply and the power requirement are subject to considerable fluctuations. These fluctuations occur inconsistently and independently of each other. In this type of wastes, a mixed method of work began to be used. The main load was transferred to the gas engines, while the temporary excess load was covered by the operation of steam turbines fed by steam from boilers under which some of the gases were burnt. For a more effective equalization of the differences between gas supply and power consumption, boilers with high water content, which, however, only to a certain extent made it possible to compensate. With the use of boilers of this type, however, most of the fluctuations in power consumption remain unbalanced. There is only a small count of it and one can compensate for the differences in the gas supply; on the other hand, due to the low heat content in blast furnace gases, one cannot think of equalizing these fluctuations in gas tanks. The present invention, by introducing a new factor to such types of deposits, tries to remove the hitherto difficulties. We can do this without gas tanks. or at least significantly reduce their dimensions, at the same time reducing the limits of load fluctuations of individual machines, which leads to reduction of installation costs and an increase in the overall efficiency factor. The invention is based on the fact that in an installation consisting of gas engines and steam boilers, between the boilers and the steam turbine we arrange a known heat reservoir in the form of a closed, insulated vessel containing water or another suitable fluid, under a pressure and temperature corresponding to this pressure. This tank is set up separately from boilers. The water space of the reservoir is connected by a conduit to the steam space of the boiler. As the reservoir is positioned completely separate from the boilers, it can therefore be much larger than the water space of boilers with large water space. In order to reduce heat losses, it must be carefully insulated. Moreover, thanks to the connections described below, the pressure drop in the reservoir may be lower than what is currently adopted in the normal operation of boilers, which will not significantly reduce the efficiency factor of the steam turbine. Thanks to a separate tray, instead of boilers by large | water space, we can use a water tube boiler, which again allows almost arbitrarily high pressure in the boiler. The reservoir can be built for a pressure lower than the pressure in the boiler and is then cheaper. Operation of the reservoir is easy to understand. If the gas supply is excessive in relation to the power requirement, the pressure in the reservoir will increase. Conversely, the pressure in the reservoir will drop. The gas engines operate at the base load, the steam turbine takes the excess load. The installations which implement the above idea are schematically illustrated in the figure in three different ways. The blast furnace (a) shown in Fig. 1 supplies part of the gas produced, after cleaning it, through the pipe (b) to gas engines, driving, for example, generators, blowers etc. The second part of the gases flows through the branch (d) to the boiler 0), where this gas is burnt. The steam generated in the boiler (e) gets through the line (/) to the tank (g) below its water level. The reservoir is connected by a conduit (k) to the turbine (7) or to another steam generator (k). The pressure in the boiler may be the same as the pressure in the reservoir. In this case, a valve in the line (/) is unnecessary, as the steam generated in the boiler will pass by itself to the reservoir. The pressure in the boiler, however, may exceed the pressure in the hopper, if, for example, the boilers should provide steam of constant pressure for other needs. In this case, a regulating valve, preferably Laval nozzles, should be inserted into the pipe connecting the boiler to the heat accumulator, which limits the steam supply to the accumulator and can be regulated strongly, depending, for example, on the pressure in the accumulator. needed, the tank (g) can be supplied with steam from another boiler through a pipe (/). The valve (ni) of the gas pipe can depend on the position of the gas tank, on the gas pressure in the pipe, and so on. The valve closes automatically if the pressure in the tank (g) is reached to its highest limit. 2 shows a different installation, where in branch f / 1) of the conduit (/ *) there is a steam engine (Z1), supplied with steam directly from the boiler. In the case of two turbines (i2, i) shown in Fig. they are mounted on a common shaft. The line (J2) of the exhaust steam of the turbine (i2) leads to the reservoir (g)} the steam line (h) connects the reservoir with the turbine (i). In this way, we achieve the full recovery of the difference between the pressure in the boiler and in the reservoir. Both lines (1, h) or one of them are connected to the movable turbines. The steam, therefore, may either escape from any of the turbine stages (**), or flow to different turbine stages (/), depending on the pressure and amount of steam. The easiest way to do this is to provide the pipes (/ 2) and (h) with branches that connect to the different stages of the turbines. These branches are provided with valves. A combination of this type can be used in the cases shown in Figures 1 and 2. The turbines (j ') and (z) may have separate shafts or may be separate stages of one and the same turbine. PL