PL389256A1 - Compressor heat pump with thermal accelerator - Google Patents

Compressor heat pump with thermal accelerator

Info

Publication number
PL389256A1
PL389256A1 PL389256A PL38925609A PL389256A1 PL 389256 A1 PL389256 A1 PL 389256A1 PL 389256 A PL389256 A PL 389256A PL 38925609 A PL38925609 A PL 38925609A PL 389256 A1 PL389256 A1 PL 389256A1
Authority
PL
Poland
Prior art keywords
working medium
temperature
evaporator
compressor
stream
Prior art date
Application number
PL389256A
Other languages
Polish (pl)
Other versions
PL224444B1 (en
Inventor
Błażej Oleszkiewicz
Original Assignee
Błażej Oleszkiewicz
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Błażej Oleszkiewicz filed Critical Błażej Oleszkiewicz
Priority to PL389256A priority Critical patent/PL224444B1/en
Priority to PCT/PL2010/000102 priority patent/WO2011046458A1/en
Publication of PL389256A1 publication Critical patent/PL389256A1/en
Publication of PL224444B1 publication Critical patent/PL224444B1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/02Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point using Joule-Thompson effect; using vortex effect
    • F25B9/04Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point using Joule-Thompson effect; using vortex effect using vortex effect
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

Przedmiotem wynalazku jest sprężarkowa pompa ciepła z akceleratorem termicznym, gdzie czynnikiem roboczym jest gaz propan- butan, który w temperaturze dolnego źródła, wynoszącej 5°C, ma prężność par na poziomie 4 barów. W obiegu czynnika roboczego, pomiędzy parownikiem (1), a sprężarką (10), umiejscowione jest urządzenie Vortex Tube (4). Czynnik roboczy w fazie ciekłej w parowniku (1) pobiera ciepło z dolnego źródła, paruje, co powoduje podniesienie ciśnienia w parowniku (1) do poziomu 4 barów. Czynnik roboczy w fazie gazowej o temperaturze 5°C i ciśnieniu 4 barów trafia za pośrednictwem zaworu regulacyjnego (2) do wejścia (3) urządzenia Vortex Tube (4), gdzie jest rozdzielany na dwa strumienie o niskim ciśnieniu, ciepły (5) o temperaturze 62°C i zimny (6) o temperaturze -35°C (stosunek objętości strumienia ciepłego do zimnego wynosi 4/6). Strumień zimny (6), poprzez zawór regulacyjny (7) i za pośrednictwem wymiennika ciepła (8) jest ocieplany do temperatury 5°C (korzystając z energii dolnego źródła), a następnie mieszany (9) ze strumieniem ciepłym (5), co w konsekwencji daje strumień czynnika roboczego trafiającego do sprężarki (10) o temperaturze 22°C. W kolejnym etapie czynnik roboczy trafia do skraplacza (11), gdzie jest skraplany i oddaje ciepło, a następnie, już w fazie ciekłej, poprzez zawór ekspansywny (12) trafia do parownika (1).The subject of the invention is a compressor heat pump with a thermal accelerator, where the working medium is propane-butane gas, which at the lower source temperature of 5°C has a vapor pressure of 4 bars. In the working medium circuit, between the evaporator (1) and the compressor (10), there is a Vortex Tube device (4). The working medium in the liquid phase in the evaporator (1) absorbs heat from the lower source, evaporates, which increases the pressure in the evaporator (1) to 4 bar. The working medium in the gaseous phase with a temperature of 5 ° C and a pressure of 4 bars goes through the control valve (2) to the inlet (3) of the Vortex Tube device (4), where it is divided into two streams of low pressure, warm (5) with a temperature 62°C and cold (6) at -35°C (the ratio of the volume of the hot to cold stream is 4/6). The cold stream (6), through the control valve (7) and through the heat exchanger (8), is warmed up to the temperature of 5°C (using the energy of the lower source), and then mixed (9) with the hot stream (5), which in consequently, it gives a stream of working medium going to the compressor (10) at a temperature of 22°C. In the next stage, the working medium goes to the condenser (11), where it is condensed and gives off heat, and then, already in the liquid phase, through the expansion valve (12) it goes to the evaporator (1).

PL389256A 2009-10-12 2009-10-12 Compressor heat pump with thermal accelerator PL224444B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PL389256A PL224444B1 (en) 2009-10-12 2009-10-12 Compressor heat pump with thermal accelerator
PCT/PL2010/000102 WO2011046458A1 (en) 2009-10-12 2010-10-11 The compression heat pump with thermal accelerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PL389256A PL224444B1 (en) 2009-10-12 2009-10-12 Compressor heat pump with thermal accelerator

Publications (2)

Publication Number Publication Date
PL389256A1 true PL389256A1 (en) 2011-04-26
PL224444B1 PL224444B1 (en) 2016-12-30

Family

ID=43385623

Family Applications (1)

Application Number Title Priority Date Filing Date
PL389256A PL224444B1 (en) 2009-10-12 2009-10-12 Compressor heat pump with thermal accelerator

Country Status (2)

Country Link
PL (1) PL224444B1 (en)
WO (1) WO2011046458A1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104792055A (en) * 2014-01-21 2015-07-22 广州九恒新能源有限公司 Air energy carbon dioxide heat pump type drying machine
CN104457027A (en) * 2014-12-02 2015-03-25 苟仲武 Improved compression heat pump working method and device
RU2717483C2 (en) * 2015-02-26 2020-03-23 Юрий Михайлович Примазон Vortex heat pump
CN105783320A (en) * 2016-05-09 2016-07-20 珠海格力节能环保制冷技术研究中心有限公司 Air conditioner system
CN105923674B (en) * 2016-06-07 2018-12-11 重庆大学 Supercritical CO2Heat pump driven double heat source seawater desalination systems
CN108773258A (en) * 2018-08-10 2018-11-09 大连民族大学 Electric vehicle heating system based on vortex tube
CN109916102A (en) * 2019-01-21 2019-06-21 江苏白雪电器股份有限公司 Auto-cascade cycle dual temperature system with vortex tube
CN110530045B (en) * 2019-07-09 2020-07-28 西安交通大学 Transcritical CO2System multifunctional defogging and dehumidifying system and control method
CN110530047B (en) * 2019-07-17 2020-10-27 西安交通大学 Double-vortex-tube-assisted transcritical CO2System and control method thereof
CN117387239B (en) * 2023-12-12 2024-05-03 珠海格力电器股份有限公司 Air conditioning system and related control method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1002754A1 (en) * 1981-06-08 1983-03-07 Московское Ордена Ленина, Ордена Октябрьской Революции И Ордена Трудового Красного Знамени Высшее Техническое Училище Им. Н.Э.Баумана Vortex-type refrigerator
US6250086B1 (en) * 2000-03-03 2001-06-26 Vortex Aircon, Inc. High efficiency refrigeration system
AU2001239966A1 (en) * 2000-03-03 2001-09-17 Vai Holdings, Llc. High efficiency refrigeration system
JP4665856B2 (en) * 2006-07-13 2011-04-06 株式会社富士通ゼネラル Vortex tube and refrigerant circuit using the same

Also Published As

Publication number Publication date
PL224444B1 (en) 2016-12-30
WO2011046458A1 (en) 2011-04-21

Similar Documents

Publication Publication Date Title
PL389256A1 (en) Compressor heat pump with thermal accelerator
Ma et al. Experimental study of a heat pump system with flash-tank coupled with scroll compressor
Yan et al. Energy and exergy analysis of a new ejector enhanced auto-cascade refrigeration cycle
JP4973872B2 (en) CO2 refrigerator
Liu et al. Theoretical investigation on an ejector–expansion refrigeration cycle using zeotropic mixture R290/R600a for applications in domestic refrigerator/freezers
Jeon et al. Performance characteristics of an R600a household refrigeration cycle with a modified two-phase ejector for various ejector geometries and operating conditions
Fan et al. Thermodynamic analysis of a modified solar assisted ejector-compression heat pump cycle with zeotropic mixture R290/R600a
Hao et al. Hybrid auto-cascade refrigeration system coupled with a heat-driven ejector cooling cycle
Lv et al. Solar-assisted auto-cascade heat pump cycle with zeotropic mixture R32/R290 for small water heaters
Chen et al. Theoretical investigation on the performance of an ejector enhanced refrigeration cycle using hydrocarbon mixture R290/R600a
NZ577589A (en) Heat pump with exhaust gas from combustion heater used to warm inlet air and fluid heated by combustion heater
Liu et al. Performance evaluation of an ejector subcooling refrigeration cycle with zeotropic mixture R290/R170 for low-temperature freezer applications
JP6328230B2 (en) Heat pump to use environmentally compatible refrigerant, its operating method and use of working fluid
Yan et al. Thermodynamic analysis on a modified ejector expansion refrigeration cycle with zeotropic mixture (R290/R600a) for freezers
Chen et al. A theoretical study of an innovative ejector enhanced vapor compression heat pump cycle for water heating application
Agrawal et al. Studies on a two-stage transcritical carbon dioxide heat pump cycle with flash intercooling
Fan et al. Theoretical study on a modified heat pump cycle with zeotropic mixture R32/R290 for district heating in cold region
KR101449899B1 (en) Economizer, Heat Pump and Cooling-heating System using thereof
Chen et al. Performance analysis of a modified zeotropic mixture (R290/R600) refrigeration cycle with internal subcooler for freezer applications
Zheng et al. Performance analysis of a novel vapor injection cycle enhanced by cascade condenser for zeotropic mixtures
Cui et al. Experimental investigation on an auto-cascade quasi two-stage compression heat pump system
CN103697627B (en) Double-temperature refrigerator coagulates two stages of compression heat pump
Tan et al. Performance assessment of a two-stage evaporation grade compression heat pump system for double temperature level drinking water production
Chen et al. Performance analysis of a modified autocascade refrigeration cycle with an additional evaporating subcooler
CN201088375Y (en) Refrigerating and heating dual-purpose blanket