PL243791B1 - Laminat aluminium-szkło i sposób jego wytwarzania - Google Patents

Laminat aluminium-szkło i sposób jego wytwarzania Download PDF

Info

Publication number
PL243791B1
PL243791B1 PL441553A PL44155322A PL243791B1 PL 243791 B1 PL243791 B1 PL 243791B1 PL 441553 A PL441553 A PL 441553A PL 44155322 A PL44155322 A PL 44155322A PL 243791 B1 PL243791 B1 PL 243791B1
Authority
PL
Poland
Prior art keywords
thickness
layer
diethylenetriamine
polymer resin
glass fibers
Prior art date
Application number
PL441553A
Other languages
English (en)
Other versions
PL441553A1 (pl
Inventor
Monika Ostapiuk
Jarosław Bieniaś
Patryk Jakubczak
Original Assignee
Lubelska Polt
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lubelska Polt filed Critical Lubelska Polt
Priority to PL441553A priority Critical patent/PL243791B1/pl
Publication of PL441553A1 publication Critical patent/PL441553A1/pl
Publication of PL243791B1 publication Critical patent/PL243791B1/pl

Links

Landscapes

  • Laminated Bodies (AREA)

Abstract

Przedmiotem wynalazku jest laminat aluminium-szkło i sposób jego wytwarzania. Laminat aluminium-szkło według wynalazku, charakteryzuje się tym, że w części środkowej laminatu znajdują się cztery jednakowe warstwy samonaprawiające się (4) o grubości od 1,5 mm do 2,3 mm każda, składające się z włókien szklanych wypełnionych roztworem dietylenotriaminy składającym się z wody w ilości 10% wagowo i dietylenotriaminy w ilości 90% wagowo i połączonych żywicą epoksydową. Do zewnętrznych powierzchni skrajnych warstw samonaprawiających się (4) przylega adhezyjnie warstwa żywicy polimerowej (3) o grubości od 10 µm do 30 µm, która nałożona jest na warstwę ceramiczną (2) o grubości od 8 µm do 15 µm znajdującą się na arkuszu blachy (1) ze stopu aluminium o grubości od 0,3 mm do 0,5 mm. Sposób wytwarzania laminatu aluminium-szkło, według wynalazku polega na tym, że na dwa arkusze blachy (1) ze stopu aluminium o grubości od 0,3 mm do 0,5 mm posiadające na obu powierzchniach warstwę ceramiczną (2) o grubości od 8 µm do 15 µm nakłada się obustronnie warstwę żywicy polimerowej (3) o grubości od 10 µm do 30 µm, po czym pozostawia się na czas 3 h w temperaturze 23°C. Następnie na jeden z arkuszy blachy (1) ze stopu aluminium o grubości od 0,3 mm do 0,5 mm posiadający na obu powierzchniach warstwę ceramiczną (2) o grubości od 8 µm do 15 µm i warstwę żywicy polimerowej (3) o grubości od 10 µm do 30 µm nakłada się kolejno cztery jednakowe warstwy włókien szklanych wypełnionych roztworem dietylenotriaminy składającym się z wody w ilości 10% wagowo i dietylenotriaminy w ilości 90% wagowo o grubości od 0,25 mm do 1 mm każda.

Description

Przedmiotem wynalazku jest laminat aluminium-szkło i sposób wytwarzania laminatu aluminium-szkło.
Znany i stosowany jest z amerykańskiego zgłoszenia patentowego nr US20130209764 A1 laminat kompozytowy z warstwą samonaprawiającą się, gdzie struktura kompozytowa zawiera wiele warstw materiału kompozytowego i co najmniej jedną warstwę materiału samonaprawiającego się.
Ponadto znany jest z amerykańskiego zgłoszenia patentowego nr US20090191402 A1 laminat, który zawiera pierwszą warstwę składającą się z żywicy elastomerowej i połączoną z nią warstwę samonaprawiającą się na bazie kapsułek. Laminat wykazuje samonaprawę kiedy zastosuje się działanie siły o niskiej energii działające na warstwy samonaprawiające się.
Znane są z amerykańskiego opisu patentowego nr US9127915 B1 lekkie materiały kompozytowe, które są odporne na działania energii balistycznej oraz są odporne na działanie ognia. Zawierają one w swojej strukturze półkrystaliczny termoplast i nanocząsteczki, które potrafią stworzyć samonaprawiającą się warstwę.
Z artykułu “Self-healing composites: A state-of-the-art review” autorstwa N. J. Kanu, E. Gupta, U. K. Vates I G.K. Singh w czasopiśmie Composite Part A:Applied Science and Manufacturing Volume 121, June 2019, Pages 474-486 znany jest proces zniszczenia i samozabliźniania w kompozytach poddanych różnym testom mechanicznym. Jako warstwy samonaprawiające się zastosowane były nanorurki węglowe.
W artykule “Recovery of Mode I self-healing interlaminar fracture toughness of fiber metal laminate by modified double cantilever beam test” Autorstwa L. Shanmugam, M. Naebe, J.K. Russell, J. Varley I.J. Yang w Composites Comunnications Volume 16, December 2019, Pages 25-29 przedstawiony został laminat metalowo-włóknisty składający się z cienkich blach metalowych oraz warstwy polimerowej samonaprawiającej się i warstwy polimerowej zawierającej włókna węglowe.
Artykuł “The interlaminar resistance of carbon fiber-Al laminate reinforced with hollow and core-shell microcapsules” M.D. Shokrian, K. Shelesh-Nezhad, R. Najjar I E. Bigdeli Theoretical and Applied Fracture Mechanics Volume 110, December 2020, 102778 przedstawia laminaty metalowo-włókniste na bazie aluminium i kompozytu węglowego zawierającego włókna węglowe, gdzie zastosowana jest warstwa mikrokapsułek jako samonaprawiająca się.
Celem wynalazku jest wytworzenie laminatu aluminium-szkło odpornego na uderzenia i zginanie wykorzystywanego na skrzydła samolotu.
Istotą laminatu aluminium-szkło posiadającego od zewnętrznej strony arkusz blachy ze stopu aluminium, który na obu powierzchniach posiada warstwę ceramiczną z nałożoną warstwą żywicy polimerowej, według wynalazku, jest to, że w części środkowej laminatu znajdują się cztery jednakowe warstwy samonaprawiające się o grubości od 1,5 mm do 2,3 mm każda, składające się z włókien szklanych wypełnionych roztworem dietylenotriaminy składającym się z wody w ilości 10% wagowo i dietylenotriaminy w ilości 90% wagowo i połączonych żywicą epoksydową. Do zewnętrznych powierzchni skrajnych warstw samonaprawiających się przylega adhezyjnie warstwa żywicy polimerowej o grubości od 10 μm do 30 μm. Warstwa żywicy polimerowej nałożona jest na warstwę ceramiczną o grubości od 8 μm do 15 μm znajdującą się na arkuszu blachy ze stopu aluminium o grubości od 0,3 mm do 0,5 mm, który na zewnętrznej powierzchni posiada warstwę ceramiczną o grubości od 8 μm do 15 μm z nałożoną warstwą żywicy polimerowej o grubości od 10 μm do 30 μm.
Istotą sposobu wytwarzania laminatu aluminium-szkło, według wynalazku, jest to, że na dwa arkusze blachy ze stopu aluminium o grubości od 0,3 mm do 0,5 mm posiadające na obu powierzchniach warstwę ceramiczną o grubości od 8 μm do 15 μm nakłada się obustronnie warstwę żywicy polimerowej o grubości od 10 μm do 30 μm, po czym pozostawia się na czas 3 h w temperaturze 23°C. Następnie na jeden z arkuszy blachy ze stopu aluminium o grubości od 0,3 mm do 0,5 mm posiadający na obu powierzchniach warstwę ceramiczną o grubości od 8 μm do 15 μm i warstwę żywicy polimerowej o grubości od 10 μm do 30 μm nakłada się kolejno cztery jednakowe warstwy włókien szklanych wypełnionych roztworem dietylenotriaminy składającym się z wody w ilości 10% wagowo i dietylenotriaminy w ilości 90% wagowo o grubości od 0,25 mm do 1 mm każda, przy czym każdą warstwę włókien szklanych laminuje się ręcznie żywicą epoksydową. Otrzymuje się cztery jednakowe warstwy samonaprawiające się o grubości od 1,5 mm do 2,3 mm każda, składające się z włókien szklanych wypełnionych roztworem dietylenotriaminy składającym się z wody w ilości 10% wagowo i dietylenotriaminy w ilości 90% wagowo i połączonych żywicą epoksydową. Następnie nakłada się drugi z arkuszy blachy ze stopu aluminium o grubości od 0,3 mm do 0,5 mm posiadający na obu powierzchniach warstwę ceramiczną o grubości od 8 μm do 15 μm i warstwę żywicy polimerowej o grubości od 10 μm do 30 μm. Następnie wykonuje się pakiet próżniowy i odsysa się powietrze do podciśnienia -0,08 MPa, po czym poddaje się całość procesowi utwardzania w czasie 3 h w temperaturze 23°C.
Korzystnie jest, gdy nakłada się kolejno cztery jednakowe warstwy włókien szklanych wypełnionych roztworem dietylenotriaminy składającym się z wody w ilości 10% wagowo i dietylenotriaminy w ilości 90% wagowo w kierunku ułożenia 0707070° albo 079079070° albo +457-457-457+45°.
Korzystnym skutkiem wynalazku jest to, że otrzymuje się laminat aluminium -szkło o wysokich właściwościach odpornościowych i absorpcyjnych na uderzenia o niskiej prędkości oraz na zginanie trzypunktowe. Zastosowana warstwa zawierająca włókna szklane wypełnione środkiem samonaprawiającym się hamuje rozwój pęknięć w laminacie i uzyskuje się po 24 h efekt samonaprawy laminatu. Właściwości laminatu wytworzonego sposobem według wynalazku umożliwiają wykorzystanie go w przemyśle lotniczym.
Wynalazek został przedstawiony w przykładzie wykonania na rysunku, który przedstawia przekrój poprzeczny laminatu.
Przykład 1
Sposób wytwarzania laminatu aluminium-szkło polegał na tym, że dwa arkusze blachy 1 ze stopu AlCu4Mgl w stanie utwardzenia T3 według normy PN-EN 515:2017-05 o wymiarach 300 x 400 mm i grubości 0,5 mm poddano procesowi utleniania anodowego poprzez metodę elektrochemiczną w wodnym roztworze kwasu chromowego (VI), gdzie proces anodowania przebiegał w sposób następujący: oczyszczanie papierem ściernym o gradacji od 1000 do 2000 i odtłuszczanie acetonem blach ze stopu aluminium, odtłuszczanie alkaliczne, płukanie i trawienie w kąpieli sulfochromowej, płukanie, anodowanie w kwasie chromowym -bezwodnik kwasu chromowego w temperaturze 35-45°C przy napięciu « 20 V oraz w czasie « 45 minut. Po procesie anodowania płukano w wodzie dwa arkusze blachy 1 przez 15 minut i pozostawiono do wysuszenia w temperaturze 23°C. Każdą warstwę ceramiczną 2 o grubości 10 μm wytworzoną na arkuszach blachy 1 powleczono warstwą środka uaktywniającego powierzchnię na bazie syntetycznej żywicy polimerowej o udziale masowym alkohol diacetonowy 35%, chromian strontu (VI) 1%, alkohol metylowy 1%, keton metylowo-etylowy - Butanon 25%, tetrahydrofuran 20%, 1-metoksypropan-2-ol 5%, żywica fenolowo-formaldehydowa 1%, eter glicydowy polimeru fenolowo-formaldehydowego 1%, żywica epoksydowa 5%, woda 5%, eter 3-(trimetoksysililo) propyloglicydylowy 1%, tworząc warstwę żywicy polimerowej 3 o grubości 20 μm. Następnie pozostawiono na czas 3 h w temperaturze 23°C. Po wysuszeniu na jeden z arkuszy blachy 1 posiadający na obu powierzchniach warstwę ceramiczną 2 i warstwę żywicy polimerowej 3 nałożono kolejno cztery jednakowe warstwy włókien szklanych wypełnionych roztworem dietylenotriaminy składającym się z wody w ilości 10% wagowo i dietylenotriaminy w ilości 90% wagowo w kierunku ułożenia 0°/0°/0°/0° o grubości 1 mm każda, przy czym każdą warstwę włókien szklanych laminowano ręcznie żywicą epoksydową. Otrzymano cztery jednakowe warstwy samonaprawiające się 4 o grubości 2,3 mm każda, składające się z włókien szklanych wypełnionych roztworem dietylenotriaminy składającym się z wody w ilości 10% wagowo i dietylenotriaminy w ilości 90% wagowo i połączonych żywicą epoksydową. Następnie nałożono drugi z arkuszy blachy 1 posiadający na obu powierzchniach warstwę ceramiczną 2 i warstwę żywicy polimerowej 3. Całość ułożono na formie aluminiowej i za pomocą pakietu próżniowego odessano powietrze do podciśnienia -0,08 MPa, po czym poddano całość procesowi utwardzania w temperaturze 23°C. Wewnątrz komory autoklawu nagrzewano i chłodzono pakiet próżniowy z prędkością 1°C/min. Cały proces utwardzania z nagrzewaniem i chłodzeniem przebiegał w czasie 3 h.
W wytworzonym laminacie aluminium-szkło w części środkowej znajdują się cztery, jednakowe warstwy samonaprawiające się 4 o grubości 2,3 mm każda, składające się z włókien szklanych wypełnionych roztworem dietylenotriaminy składającym się z wody w ilości 10% wagowo i dietylenotriaminy w ilości 90% wagowo i połączonych żywicą epoksydową. Do zewnętrznych powierzchni skrajnych warstw samonaprawiających się 4 przylega adhezyjnie warstwa żywicy polimerowej 3 o grubości 20 μm. Warstwa żywicy polimerowej 3 nałożona jest na warstwę ceramiczną 2 o grubości 10 μm znajdującą się na arkuszu blachy 1 ze stopu AlCu4Mgl o grubości 0,5 mm. Arkusz blachy 1 na zewnętrznej powierzchni posiada warstwę ceramiczną 2 o grubości 10 μm z nałożoną warstwą żywicy polimerowej 3 o grubości 20 μm.
Otrzymany laminat poddano badaniom na trzypunktowe zginanie, w którym po 24 h uzyskano właściwości samonaprawiające, polegające na przywróceniu integralności struktury. Laminat poddano badaniom na uderzenia o niskiej prędkości poniżej 5 m/s w zakresie energii 5 J i 10 J. Laminat charakteryzował się tym, że warstwa z włóknami szklanymi po uderzeniu została zniszczona, natomiast po 24 h pojawił się efekt samonaprawy struktury.
Przykład 2
Sposób wytwarzania laminatu aluminium-szkło polegał na tym, że dwa arkusze blachy 1 ze stopu AlCu4Mgl w stanie utwardzenia T3 według normy PN-EN 515:2017-05 o wymiarach 300 x 400 mm i grubości 0,3 mm poddano procesowi utleniania anodowego poprzez metodę elektrochemiczną w wodnym roztworze kwasu chromowego (VI), gdzie proces anodowania przebiegał w sposób następujący: oczyszczanie papierem ściernym o gradacji od 1000 do 2000 i odtłuszczanie acetonem blach ze stopu aluminium, odtłuszczanie alkaliczne, płukanie i trawienie w kąpieli sulfochromowej, płukanie, anodowanie w kwasie chromowym -bezwodnik kwasu chromowego w temperaturze 35°-45°C przy napięciu « 20 V oraz w czasie « 45 minut. Po procesie anodowania płukano w wodzie dwa arkusze blachy 1 przez 15 minut i pozostawiono do wysuszenia w temperaturze 23°C. Każdą warstwę ceramiczną 2 o grubości 8 μm wytworzoną na arkuszach blachy 1 powleczono warstwą środka uaktywniającego powierzchnię na bazie syntetycznej żywicy polimerowej o udziale masowym alkohol diacetonowy 35%, chromian strontu (VI) 1%, alkohol metylowy 1%, keton metylowo-etylowy - Butanon 25%, tetrahydrofuran 20%, 1-metoksypropan-2-ol 5%, żywica fenolowo-formaldehydowa 1%, eter glicydowy polimeru fenolowo-formaldehydowego 1%, żywica epoksydowa 5%, woda 5%, eter 3-(trimetoksysililo) propyloglicydylowy 1%, tworząc warstwę żywicy polimerowej 3 o grubości 10 μm. Następnie pozostawiono na czas 3 h w temperaturze 23°C. Po wysuszeniu na jeden z arkuszy blachy 1 posiadający na obu powierzchniach warstwę ceramiczną 2 i warstwę żywicy polimerowej 3 nałożono kolejno cztery jednakowe warstwy włókien szklanych wypełnionych roztworem dietylenotriaminy składającym się z wody w ilości 10% wagowo i dietylenotriaminy w ilości 90% wagowo w kierunku ułożenia 079079070° o grubości 0,25 mm każda, przy czym każdą warstwę włókien szklanych laminowano ręcznie żywicą epoksydową. Otrzymano cztery jednakowe warstwy samonaprawiające się 4 o grubości 1,5 mm każda, składające się z włókien szklanych wypełnionych roztworem dietylenotriaminy składającym się z wody w ilości 10% wagowo i dietylenotriaminy w ilości 90% wagowo i połączonych żywicą epoksydową. Następnie nałożono drugi z arkuszy blachy 1 posiadający na obu powierzchniach warstwę ceramiczną 2 i warstwę żywicy polimerowej 3. Całość ułożono na formie aluminiowej i za pomocą pakietu próżniowego odessano powietrze do podciśnienia -0,08 MPa, po czym poddano całość procesowi utwardzania w temperaturze 23°C. Wewnątrz komory autoklawu nagrzewano i chłodzono pakiet próżniowy z prędkością 1°C/min. Cały proces utwardzania z nagrzewaniem i chłodzeniem przebiegał w czasie 3 h.
W wytworzonym laminacie aluminium-szkło w części środkowej znajdują się cztery, jednakowe warstwy samonaprawiające się 4 o grubości 1,5 mm każda, składające się z włókien szklanych wypełnionych wodnym 10% wagowo roztworem dietylenotriaminy 90% wagowo i połączonych żywicą epoksydową. Do zewnętrznych powierzchni skrajnych warstw samonaprawiających się 4 przylega adhezyjnie warstwa żywicy polimerowej 3 o grubości 10 μm. Warstwa żywicy polimerowej 3 nałożona jest na warstwę ceramiczną 2 o grubości 8 μm znajdującą się na arkuszu blachy 1 ze stopu AlCu4Mgl o grubości 0,3 mm. Arkusz blachy 1 na zewnętrznej powierzchni posiada warstwę ceramiczną 2 o grubości 8 μm z nałożoną warstwą żywicy polimerowej 3 o grubości 10 μm.
Otrzymany laminat poddano badaniom na trzypunktowe zginanie, w którym po 24 h uzyskano właściwości samonaprawiające, polegające na przywróceniu integralności struktury. Laminat poddano badaniom na uderzenia o niskiej prędkości poniżej 1 m/s w zakresie energii 5J. Laminat charakteryzował się tym, że warstwa z włóknami szklanymi po uderzeniu została zniszczona, natomiast po 24 h pojawił się efekt samonaprawy struktury.
Przykład 3
Sposób wytwarzania laminatu aluminium-szkło polegał na tym, że dwa arkusze blachy 1 ze stopu AlCu4Mgl w stanie utwardzenia T3 według normy PN-EN 515:2017-05 o wymiarach 300 x 400 mm i grubości 0,5 mm poddano procesowi utleniania anodowego poprzez metodę elektrochemiczną w wodnym roztworze kwasu chromowego (VI), gdzie proces anodowania przebiegał w sposób następujący: oczyszczanie papierem ściernym o gradacji od 1000 do 2000 i odtłuszczanie acetonem blach ze stopu aluminium, odtłuszczanie alkaliczne, płukanie i trawienie w kąpieli sulfochromowej, płukanie, anodowanie w kwasie chromowym -bezwodnik kwasu chromowego w temperaturze 35°-45°C przy napięciu « 20 V oraz w czasie « 45 minut. Po procesie anodowania płukano w wodzie dwa arkusze blachy 1 przez 15 minut i pozostawiono do wysuszenia w temperaturze 23°C. Każdą warstwę ceramiczną 2 o grubości 12 μm wytworzoną na arkuszach blachy 1 powleczono warstwą środka uaktywniającego powierzchnię na bazie syntetycznej żywicy polimerowej o udziale masowym alkohol diacetonowy 35%, chromian strontu (VI) 1%, alkohol metylowy 1%, keton metylowo-etylowy - Butanon 25%, tetrahydrofuran 20%, 1-metoksypropan-2-ol 5%, żywica fenolowo-formaldehydowa 1%, eter glicydowy polimeru fenolowo-formaldehydowego 1%, żywica epoksydowa 5%, woda 5%, eter 3-(trimetoksysililo) propyloglicydylowy 1%, tworząc warstwę żywicy polimerowej 3 o grubości 30 μm. Następnie pozostawiono na czas 3 h w temperaturze 23°C. Po wysuszeniu na jeden z arkuszy blachy 1 posiadający na obu powierzchniach warstwę ceramiczną 2 i warstwę żywicy polimerowej 3 nałożono kolejno cztery jednakowe warstwy włókien szklanych wypełnionych roztworem dietylenotriaminy składającym się z wody w ilości 10% wagowo i dietylenotriaminy w ilości 90% wagowo w kierunku ułożenia +45°/-45°/-45°/+45° o grubości 1 mm każda, przy czym każdą warstwę włókien szklanych laminowano ręcznie żywicą epoksydową. Otrzymano cztery jednakowe warstwy samonaprawiające się 4 o grubości 2,3 mm każda, składające się z włókien szklanych wypełnionych roztworem dietylenotriaminy składającym się z wody w ilości 10% wagowo i dietylenotriaminy w ilości 90% i połączonych żywicą epoksydową. Następnie nałożono drugi z arkuszy blachy 1 posiadający na obu powierzchniach warstwę ceramiczną 2 i warstwę żywicy polimerowej 3. Całość ułożono na formie aluminiowej i za pomocą pakietu próżniowego odessano powietrze do podciśnienia -0,08 MPa, po czym poddano całość procesowi utwardzania w temperaturze 23°C. Wewnątrz komory autoklawu nagrzewano i chłodzono pakiet próżniowy z prędkością 1°C/min. Cały proces utwardzania z nagrzewaniem i chłodzeniem przebiegał w czasie 3 h.
W wytworzonym laminacie aluminium-szkło w części środkowej znajdują się cztery, jednakowe warstwy samonaprawiające się 4 o grubości 2,3 mm każda, składające się z włókien szklanych wypełnionych roztworem dietylenotriaminy składającym się z wody w ilości 10% wagowo i dietylenotriaminy w ilości 90% wagowo i połączonych żywicą epoksydową. Do zewnętrznych powierzchni skrajnych warstw samonaprawiających się 4 przylega adhezyjnie warstwa żywicy polimerowej 3 o grubości 30 μm. Warstwa żywicy polimerowej 3 nałożona jest na warstwę ceramiczną 2 o grubości 12 μm znajdującą się na arkuszu blachy 1 ze stopu AlCu4Mgl o grubości 0,5 mm. Arkusz blachy 1 na zewnętrznej powierzchni posiada warstwę ceramiczną 2 o grubości 12 μm z nałożoną warstwą żywicy polimerowej 3 o grubości 30 μm.
Otrzymany laminat poddano badaniom na trzypunktowe: zginanie, w którym po 24 h uzyskano właściwości samonaprawiające, polegające na przywróceniu integralności struktury. Laminat poddano badaniom na uderzenia o niskiej prędkości poniżej 2 m/s w zakresie energii 5 J. Laminat charakteryzował się tym, że warstwa z włóknami szklanymi po uderzeniu została zniszczona, natomiast po 24 h pojawił się efekt samonaprawy struktury.

Claims (5)

1. Laminat aluminium-szkło posiadający od zewnętrznej strony arkusz blachy (1) ze stopu aluminium, który na obu powierzchniach posiada warstwę ceramiczną (2) z nałożoną warstwą żywicy polimerowej (3) znamienny tym, że w części środkowej laminatu znajdują się cztery jednakowe warstwy samonaprawiające się (4) o grubości od 1,5 mm do 2,3 mm każda, składające się z włókien szklanych wypełnionych roztworem dietylenotriaminy składającym się z wody w ilości 10% wagowo i dietylenotriaminy w ilości 90% wagowo i połączonych żywicą epoksydową, przy czym do zewnętrznych powierzchni skrajnych warstw samonaprawiających się (4) przylega adhezyjnie warstwa żywicy polimerowej (3) o grubości od 10 μm do 30 μm, która nałożona jest na warstwę ceramiczną (2) o grubości od 8 μm do 15 μm znajdującą się na arkuszu blachy (1) ze stopu aluminium o grubości od 0,3 mm do 0,5 mm, który na zewnętrznej powierzchni posiada warstwę ceramiczną (2) o grubości od 8 μm do 15 μm z nałożoną warstwą żywicy polimerowej (3) o grubości od 10 μm do 30 μm.
2. Sposób wytwarzania laminatu aluminium-szkło znamienny tym, że na dwa arkusze blachy (1) ze stopu aluminium o grubości od 0,3 mm do 0,5 mm posiadające na obu powierzchniach warstwę ceramiczną (2) o grubości od 8 μm do 15 μm nakłada się obustronnie warstwę żywicy polimerowej (3) o grubości od 10 μm do 30 μm, po czym pozostawia się na czas 3 h w temperaturze 23°C, następnie na jeden z arkuszy blachy (1) ze stopu aluminium o grubości od 0,3 mm do 0,5 mm posiadający na obu powierzchniach warstwę ceramiczną (2) o grubości od 8 μm do 15 μm i warstwę żywicy polimerowej (3) o grubości od 10 μm do 30 μm nakłada się
PL 243791 Β1 kolejno cztery jednakowe warstwy włókien szklanych wypełnionych roztworem dietylenotriaminy składającym się z wody w ilości 10% wagowo i dietylenotriaminy w ilości 90% wagowo o grubości od 0,25 mm do 1 mm każda, przy czym każdą warstwę włókien szklanych laminuje się ręcznie żywicą epoksydową i otrzymuje się cztery jednakowe warstwy samonaprawiające się (4) o grubości od 1,5 mm do 2,3 mm każda, składające się z włókien szklanych wypełnionych roztworem dietylenotriaminy składającym się z wody w ilości 10% wagowo i dietylenotriaminy w ilości 90% wagowo i połączonych żywicą epoksydową, po czym nakłada się drugi z arkuszy blachy (1) ze stopu aluminium o grubości od 0,3 mm do 0,5 mm posiadający na obu powierzchniach warstwę ceramiczną (2) o grubości od 8 pm do 15 pm i warstwę żywicy polimerowej (3) o grubości od 10 pm do 30 pm, następnie wykonuje się pakiet próżniowy i odsysa się powietrze do podciśnienia -0,08 MPa, po czym poddaje się całość procesowi utwardzania w czasie 3 h w temperaturze 23°C.
3. Sposób, według zastrz. 2, znamienny tym, że nakłada się kolejno cztery jednakowe warstwy włókien szklanych wypełnionych roztworem dietylenotriaminy składającym się z wody w ilości 10% wagowo i dietylenotriaminy w ilości 90% wagowo w kierunku ułożenia 0707070°.
4. Sposób, według zastrz. 2, znamienny tym, że nakłada się kolejno cztery jednakowe warstwy włókien szklanych wypełnionych roztworem dietylenotriaminy składającym się z wody w ilości 10% wagowo i dietylenotriaminy w ilości 90% wagowo w kierunku ułożenia 079079070°.
5. Sposób, według zastrz. 2, znamienny tym, że nakłada się kolejno cztery jednakowe warstwy włókien szklanych wypełnionych roztworem dietylenotriaminy składającym się z wody w ilości 10% wagowo i dietylenotriaminy w ilości 90% wagowo w kierunku ułożenia +457-457-457+45°.
PL441553A 2022-06-27 2022-06-27 Laminat aluminium-szkło i sposób jego wytwarzania PL243791B1 (pl)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL441553A PL243791B1 (pl) 2022-06-27 2022-06-27 Laminat aluminium-szkło i sposób jego wytwarzania

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PL441553A PL243791B1 (pl) 2022-06-27 2022-06-27 Laminat aluminium-szkło i sposób jego wytwarzania

Publications (2)

Publication Number Publication Date
PL441553A1 PL441553A1 (pl) 2022-11-21
PL243791B1 true PL243791B1 (pl) 2023-10-09

Family

ID=84191834

Family Applications (1)

Application Number Title Priority Date Filing Date
PL441553A PL243791B1 (pl) 2022-06-27 2022-06-27 Laminat aluminium-szkło i sposób jego wytwarzania

Country Status (1)

Country Link
PL (1) PL243791B1 (pl)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL451054A1 (pl) * 2025-01-27 2025-08-04 Politechnika Lubelska Laminat samonaprawiający się i sposób jego wytwarzania
PL451053A1 (pl) * 2025-01-27 2025-09-01 Politechnika Lubelska Laminat samonaprawiający się i sposób jego wytwarzania
PL451051A1 (pl) * 2025-01-27 2025-09-01 Politechnika Lubelska Laminat samonaprawiający się i sposób jego wytwarzania
PL451055A1 (pl) * 2025-01-27 2025-09-01 Politechnika Lubelska Laminat samonaprawiający się i sposób jego wytwarzania
PL451052A1 (pl) * 2025-01-27 2025-09-01 Politechnika Lubelska Laminat samonaprawiający się i sposób jego wytwarzania

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL451054A1 (pl) * 2025-01-27 2025-08-04 Politechnika Lubelska Laminat samonaprawiający się i sposób jego wytwarzania
PL451053A1 (pl) * 2025-01-27 2025-09-01 Politechnika Lubelska Laminat samonaprawiający się i sposób jego wytwarzania
PL451051A1 (pl) * 2025-01-27 2025-09-01 Politechnika Lubelska Laminat samonaprawiający się i sposób jego wytwarzania
PL451055A1 (pl) * 2025-01-27 2025-09-01 Politechnika Lubelska Laminat samonaprawiający się i sposób jego wytwarzania
PL451052A1 (pl) * 2025-01-27 2025-09-01 Politechnika Lubelska Laminat samonaprawiający się i sposób jego wytwarzania

Also Published As

Publication number Publication date
PL441553A1 (pl) 2022-11-21

Similar Documents

Publication Publication Date Title
PL243792B1 (pl) Laminat aluminium-szkło i sposób jego wytwarzania
PL243791B1 (pl) Laminat aluminium-szkło i sposób jego wytwarzania
PL243790B1 (pl) Laminat aluminium-szkło i sposób jego wytwarzania
PL243177B1 (pl) Laminat magnez-szkło i sposób jego wytwarzania
Zhu et al. Characterization and properties of AA6061-based fiber metal laminates with different aluminum-surface pretreatments
Hu et al. Preparation and properties of Fibre–Metal Laminates based on carbon fibre reinforced PMR polyimide
Khan et al. Effect of various surface preparation techniques on the delamination properties of vacuum infused Carbon fiber reinforced aluminum laminates (CARALL): Experimentation and numerical simulation
Ji et al. Enhanced interfacial adhesion of CF/PEEK-titanium hybrid laminates via introducing micro-nano layers with multi-walled carbon nanotube networks
PL240796B1 (pl) Laminat magnez-szkło i sposób jego wytwarzania
Guo et al. Effect of surface morphology characteristic parameters on the shear strength of aluminum bonded joints
Ye et al. Low velocity impact response of fiber metal laminates with nano-patterned metal surfaces
PL245866B1 (pl) Laminat metal-szkło i sposób jego wytwarzania
Mandal et al. Investigation on para‐aramid fiber‐reinforced poly‐ether ketone‐ketone high‐performance composite for ballistic application
Yukimoto et al. Effects of mixed-mode ratio and step-shaped micro pattern surface on crack-propagation resistance of carbon-fiber-reinforced plastic/adhesive interface
JP2022140091A (ja) Frpと金属材の接着一体化物とその製造方法
PL243793B1 (pl) Laminat magnez-szkło i sposób jego wytwarzania
Ardakani et al. A study on the manufacturing of Glass-Fiber-Reinforced Aluminum Laminates and the effect of interfacial adhesive bonding on the impact behavior
He et al. Two-step strategy for use in improving the multiscale mechanical performances of fiber metal laminates: Applying multi-walled carbon nanotubes and metal surface treatment
PL243180B1 (pl) Laminat tytan-szkło i sposób jego wytwarzania
PL240798B1 (pl) Laminat aluminium-węgiel i sposób jego wytwarzania
Li et al. The feasibility research on shot-peen forming of the novel fiber metal laminates based on aluminum-lithium alloy
PL243178B1 (pl) Laminat magnez-szkło i sposób jego wytwarzania
PL243181B1 (pl) Laminat tytan-szkło i sposób jego wytwarzania
PL243179B1 (pl) Laminat tytan-szkło i sposób jego wytwarzania
Wang et al. CFRP/Al-FRML Based on Nano-compoiste Coating and Its Mechanical Properties