PL156407B1 - A method of self-supporting ceramic block production - Google Patents

A method of self-supporting ceramic block production

Info

Publication number
PL156407B1
PL156407B1 PL1987267781A PL26778187A PL156407B1 PL 156407 B1 PL156407 B1 PL 156407B1 PL 1987267781 A PL1987267781 A PL 1987267781A PL 26778187 A PL26778187 A PL 26778187A PL 156407 B1 PL156407 B1 PL 156407B1
Authority
PL
Poland
Prior art keywords
oxidation reaction
reaction product
vapor
phase oxidant
parent metal
Prior art date
Application number
PL1987267781A
Other languages
Polish (pl)
Other versions
PL267781A1 (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Publication of PL267781A1 publication Critical patent/PL267781A1/en
Publication of PL156407B1 publication Critical patent/PL156407B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/65Reaction sintering of free metal- or free silicon-containing compositions
    • C04B35/652Directional oxidation or solidification, e.g. Lanxide process

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Products (AREA)
  • Catalysts (AREA)
  • Slide Fasteners, Snap Fasteners, And Hook Fasteners (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Professional, Industrial, Or Sporting Protective Garments (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Producing Shaped Articles From Materials (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Furnace Charging Or Discharging (AREA)

Abstract

1. Sposób wytwarzania wyrobu ceramicznego, majacego stopniowana mikrostrukture, charakteryzujaca sie istnieniem wielu stref rózniacych sie od siebie skladem i/lub jedna lub kilkoma innymi wlasciwosciami, przez utlenianie metalu macierzystego, polega jacy na ogrzewa- niu metalu macierzystego w obecnosci utleniacza w fazie pary, poddaniu reakcji roztopionego metalu z utleniaczem przy odpowiedniej temperaturze, aby powstal produkt reakcji utleniania, który jest w styku z i rozciaga sie pomiedzy roztopionym metalem a utleniaczem w fazie pary, nastepnie transportowaniu w tej temperaturze roztopionego metalu poprzez produkt reakcji utleniania w kierunku do utleniacza w fazie pary, tak ze produkt reakcji utleniania stale powstaje na powierzchni miedzyfazowej pomiedzy utleniaczem w fazie pary a poprzednio wytworzonym produktem reakcji utleniania, dzieki czemu powstaje stopniowo coraz wieksza ilosc produktu reakcji utleniania i kolejno kontynuowaniu tej reakcji przez czas wystarczajacy dla wytworzenia wyrobu ceramicznego, znamienny tym, ze warunki procesu zmienia sie tak, aby strefa produktu reakcji utleniania wytworzona po zmianie róznila sie pod wzgledem skladu i/lub jednej lub kilku innych wlasciwosci od strefy produktu reakcji utleniania wytworzonej przed zmiana. PL PL1. A method of producing a ceramic body having a graduated microstructure characterized by multiple zones differing in composition and/or one or more other properties by oxidation of a parent metal, comprising heating the parent metal in the presence of a vapor-phase oxidant, reacting the molten metal with the oxidant at a suitable temperature to form an oxidation reaction product that is in contact with and extends between the molten metal and the vapor-phase oxidant, then transporting the molten metal through the oxidation reaction product towards the vapor-phase oxidant at that temperature such that the oxidation reaction product is continuously formed at the interface between the vapor-phase oxidant and the previously formed oxidation reaction product, thereby gradually producing more and more oxidation reaction product, and subsequently continuing the reaction for a time sufficient to form a ceramic body, characterized in that the process conditions are changed so that the oxidation reaction product zone produced after the change differs in composition and/or one or more other properties from the oxidation reaction product zone produced before the change. PL PL

Description

Przedmiotem wynalazku jest sposób wytwarzania wyrobu ceramicznego przez utlenianie roztopionego metalu macierzystego utleniaczem w fazie pary, przy czym wyrób ten ma wiele stref różniących się od siebie jedną lub kilkoma właściwościami.The present invention relates to a method of producing a ceramic product by oxidizing a molten parent metal with a vapor-phase oxidant, the ceramic product having a plurality of zones differing in one or more properties.

W ostatnich latach pojawiło się rosnące zainteresowanie zastępowaniem metali materiałami ceramicznymi ze względu na to, że pewne właściwości materiałów ceramicznych są lepsze niż metali. Istnieje jednak kilka znanych ograniczeń lub trudności w takim zastępowaniu, np. różnorodność skali, możliwość wytwarzania skomplikowanych kształtów, uzyskiwanie właściwości żądanych dla końcowego zastosowania oraz koszty. Wiele z tych ograniczeń lub trudności wyeliminowano poprzez sposoby według wynalazków opisanych w zgłoszeniach patentowych omówionych poniżej, które przedstawiają nowe sposoby niezawodnego wytwarzania materiałów ceramicznych, łącznie z kształtowymi kompozytami.In recent years, there has been increasing interest in replacing metals with ceramics due to the fact that certain properties of ceramics are superior to metals. There are, however, a number of known limitations or difficulties in such substitution, e.g., a variety of scales, the ability to produce complex shapes, achieving the desired end-use properties, and cost. Many of these limitations or difficulties have been overcome by the methods of the inventions described in the patent applications discussed below, which represent new methods of reliably producing ceramic materials, including shaped composites.

Następujące zgłoszenia patentowe opisują nowe sposoby wytwarzania wyrobów ceramicznych przez utlenianie metalu macierzystego w celu wytworzenia materiału polikrystalicznego złożonego z produktu reakcji utleniania i ewentualnie składników metalicznych; (A) opis patentowy US nr 4713 360, (B) zgłoszenie US nr 822 999 z 27 stycznia 1986, (C) zgłoszenie PL nr P 257 812 oraz (D) zgłoszenie PL nr P 267 780 .The following patent applications describe new methods of producing ceramic articles by oxidizing a parent metal to produce a polycrystalline material composed of an oxidation reaction product and optional metallic components; (A) U.S. Patent No. 4,713,360, (B) U.S. Patent Application No. 822,999 filed January 27, 1986, (C) PL Application No. P 257,812, and (D) PL Application No. P 267,780.

Przedmiotowe zgłoszenie nawiązuje do całości opisów wszystkich wymienionych zgłoszeń patentowych.The application in question refers to all descriptions of all the above-mentioned patent applications.

Jak wyjaśniono w tych zgłoszeniach patentowych, nowe polikrystaliczne materiały ceramiczne lub polikrystaliczne ceramiczne materiały kompozytowe wytwarza się przez reakcję utleniania pomiędzy metalem macierzystym a utleniaczem w fazie pary, to znaczy materiałem zamienionym w parę lub normalnie gazowym, tworzącym atmosferę utleniającą. Sposób ten jest ogólnie opisany w wymienionym powyżej opisie patentowym (A). Według tego ogólnego procesu metal macierzysty np. aluminium, ogrzewa się do podwyższonej tempratury powyżej jego tempratury topnienia, ale poniżej temperatury topnienia produktu reakcji utleniania, aby wytworzyć roztopiony metal macierzsty, który reaguje po zetknięciu z utleniaczem w fazie pary tworząc produkt reakcji utleniania. Przy tej temperaturze produkt reakcji utleniania lub przynajmniej jego część jest w styku z i rozciąga się pomiędzy roztopionym metalem macierzystym a utleniaczem i roztopiony metal jest przeciągany lub transportowany poprzez powstały produkt reakcji utleniania i w kierunku do utleniacza. Transportowany metal roztopiony tworzy dodatkowy produkt reakcji utleniania po zetknięciu się z utleniaczem na powierzchni poprzednio wytworzonego produktu reakcji utleniania. Gdy proces ten trwa, dodatkowy metal jest transportowany poprzez takie tworzenie polikrystalicznego prduktu reakcji utleniania, przez co ciągle „rośnie struktura ceramiczna ze złączonych krystalitów. Końcowy wyrób ceramiczny może zawierać składniki metaliczne, takie jak, np. nieutlenione składniki metalu macierzstego i/lub puste przestrzenie.As explained in these patent applications, the new polycrystalline ceramics or polycrystalline ceramic composite materials are prepared by an oxidation reaction between a parent metal and a vapor-phase oxidant, i.e., a vaporized or normally gaseous material that forms an oxidizing atmosphere. This method is generally described in the above-mentioned Patent (A). In this general process, the parent metal, e.g., aluminum, is heated to an elevated temperature above its melting point but below the melting point of the oxidation reaction product to form a molten parent metal which reacts upon contact with the vapor-phase oxidant to form the oxidation reaction product. At this temperature, the oxidation reaction product, or at least a portion thereof, is in contact with and extends between the molten parent metal and the oxidant, and the molten metal is dragged or transported through the resulting oxidation reaction product and toward the oxidant. The transported molten metal forms additional oxidation reaction product upon contact with the oxidant on the surface of the previously formed oxidation reaction product. As the process continues, additional metal is transported through the formation of a polycrystalline oxidation reaction product, thereby continually "growing the ceramic structure from the interconnected crystallites. The final ceramic article may contain metallic components such as, for example, unoxidized parent metal components and / or voids.

W przypadku tlenku jako produktu reakcji utleniania odpowiednimi utleniaczami są tlen lub mieszaniny gazowe zawierające tlen (łącznie z powietrzem), przy czym powietrze jest zwykle korzystne z oczywistych względów ekonomicznych. Jednakże we wszystkich zgłoszeniach patentowych określenie „utlenianie zastosowano w szerokim sensie podobnie jak w przedmiotowym zgłoszeniu i określenie to odnosi się do utraty elektronów przez metal na rzecz utleniacza , którym może być jeden lub kilka pierwiastków lub związków. Jako utleniacz, jak wyjaśniono poniżej bardziej szczegółowo, mogą służyć zatem pierwiastki inne niż tlen lub związki.For the oxide as an oxidation reaction product, suitable oxidants are oxygen or oxygen-containing gas mixtures (including air), with air usually being preferred for obvious reasons of economy. In all patent applications, however, the term "oxidation is used in a broad sense as in the present application, and the term refers to the loss of electrons from a metal to an oxidant which may be one or more elements or compounds. Thus, elements other than oxygen or compounds may serve as the oxidant, as explained below in more detail.

W pewnych przypadkach metal macierzysty może wymagać obecności jednej lub kilku domieszek w celu uzyskania korzystnego wpływu lub ułatwiania wzrostu produktu reakcji utleniania, przy czym domieszki stosuje się jako składniki stopowe metalu macierzystego. Przykładowo, w przypadku aluminium jako metalu macierzystego i powietrza jako utleniacza, domieszki takie jak magnez i krzem, by wymienić tylko dwa z dużej klasy materiałów domieszkującyh, są wprowadzane stopowo w aluminium i wykorzystywane jako metal macierzysty. Wynikowy produkt reakcji utleniania zawiera tlenek glinowy, typowy tlenek glinowy alfa.In some instances, the parent metal may require the presence of one or more dopants in order to benefit or promote the growth of the oxidation reaction product, the dopants being used as parent metal alloying components. For example, in the case of aluminum as the parent metal and air as the oxidant, dopants such as magnesium and silicon, to name but a few of the high-class doping materials, are alloyed into the aluminum and used as the parent metal. The resulting oxidation reaction product contains alumina, typically alpha alumina.

Wymienione wyżej zgłoszenie patentowe (B) opisuje dalsze rozwinięcie oparte na odkryciu, że odpowiednie warunki wzrostu jak opisano powyżej dla metali macierzystych wymagających domieszek można powodować przez nakładanie jednego lub kilku materiałów domieszkujących na powierzchnię lub powierzchnie metalu macierzystego, przez co unika się konieczności stapiania metalu macierzystego z materiałami domieszkującymi, np. metalami takimi jak magnez, cynk, krzem, w przypdku, gdy metalem macierzystym jest aluminium, a utleniaczem jest powietrze. Przy tym ulepszeniu łatwo jest stosować metale dostępne w handlu lub stopy, które w innym przypadku nie zawierały by albo nie miały by odpowiednio domieszkowanego składu. Odkrycie to jest korzystne również dlatego, że wzrost ceramiczny można uzyskać w jednym lub kilku wybranych obszarach powierzchni metalu macierzystego, a nie w sposób nieokreślony, przez co proces jest wykorzystywany bardziej skutecznie, np. przez domieszkowanie tylko jednej powierzchni lub tylko części powierzchni metalu macierzystego.The above-mentioned patent application (B) describes a further development based on the discovery that suitable growth conditions as described above for the parent metals requiring doping can be produced by applying one or more dopant materials to the parent metal surface or surfaces, thus avoiding the need to fuse the parent metal. with doping materials, e.g. metals such as magnesium, zinc, silicon, where the parent metal is aluminum and the oxidant is air. With this improvement, it is easy to use commercially available metals or alloys which would otherwise not contain or would not have a suitably doped composition. This finding is also advantageous in that ceramic growth can be obtained in one or more selected areas of the parent metal surface rather than indefinitely whereby the process is used more efficiently, e.g. by doping only one surface or only a portion of the parent metal surface.

Nowe ceramiczne wyroby kompozytowe i sposoby , ich ' wytwarzania opisano i zastrzeżono w wymienionym wyżej zgłoszeniu patentowym (C), gdzie wykorzystuje się reakcję utleniania dla wytworzenia ceramicznych wyrobów kompozytowych zawierających zasadniczo obojętny wypełniacz infiltrowany przez polikrystaliczną osnowę ceramiczną. Metal macierzysty usytuowany przy masie przepuszczalnego wypełniacza ogrzewa się, aby powstał roztopiony metal macierzsty, który reaguje z utleniaczem w fazie pary, jak opisano powyżej, tworząc produkt reakcji utleniania. Gdy produkt reakcji utleniania rośnie i infiltruje w sąsiedni materiał wypełniacza, roztopiony metal macierzysty jest przeciągany poprzez poprzednio wytworzony produkt reakcji utleniania w masę wypełniacza i reaguje z utleniaczem tworząc dodatkowy produkt reakcji utleniania na powierzchni poprzednio wytworzonego produktu, jak opisano powyżej. Uzyskiwany rosnący produkt reakcji utleniania infiltruje lub obejmuje złoże i daje w wyniku powstanie ceramicznego wyrobu kompozytowego z polikrystalicznej osnowy ceramicznej obejmującej wypełniacz. Jak opisano w zgłoszeniu patentowym (D), w połączeniu z metalem macierzystym można zastosować modyfikator procesu, aby uszlachetnić mikrostrukturę wynikowego produktu w porównaniu z produktem z procesu bez modyfikacji. Takie uszlachetnienie może powodować ulepszone właściwości, takie jak odporność na kruche pękanie.The novel ceramic composite articles and methods for making them are described and claimed in the above-mentioned Patent Application (C), which uses an oxidation reaction to produce ceramic composite articles containing an essentially inert filler infiltrated by a polycrystalline ceramic matrix. The parent metal disposed against the mass of permeable filler is heated to form a molten parent metal which reacts with the vapor-phase oxidant as described above to form the oxidation reaction product. As the oxidation reaction product grows and infiltrates adjacent filler material, molten parent metal is dragged through the previously formed oxidation reaction product into the mass of filler and reacts with the oxidant to form additional oxidation reaction product on the surface of the previously formed product as described above. The resulting growing oxidation reaction product infiltrates or encompasses the bed and results in a polycrystalline ceramic matrix composite ceramic body including filler. As described in Patent Application (D), a process modifier can be used in conjunction with the parent metal to refine the microstructure of the resulting product compared to the product from the process without modification. This refinement can result in improved properties such as fracture toughness.

Wymienione wyżej zgłoszenia patentowe opisują wytwarzanie produktów reakcji utleniania łatwo „hodowanych do żądanych grubości dotychczas uważanych za trudne, jeżeli nie niemożliwe do osiągnięcia za pmocą konwencjonalnych sposobów obróbki ceramicznej.The above-mentioned patent applications describe the preparation of oxidation reaction products readily "grown to the desired thicknesses heretofore considered difficult, if not impossible, by conventional ceramic processing methods."

Wynalazek dotyczy dalszego ulepszenia sposobu „hodowania wyrobu ceamicznego zawierającego wiele obszarów umieszczonych ściśle obok siebie, które różnią się od siebie jedną lub kilkoma właściwościami, takimi jak skład lub mierzalne parametry, przez co unika się konieczności dodatkowej obróbki dla uzyskania spójnego niejednorodnego wyrobu ceramicznego.The invention relates to a further improvement of the method of "growing a ceramic product having a plurality of closely adjacent areas that differ in one or more properties, such as composition or measurable parameters, thereby avoiding the need for additional processing to obtain a coherent heterogeneous ceramic product.

Sposób wytwarzania wyrobu ceramicznego mającego stopniowaną mikrostrukturę, charakteryzującą się istnieniem wielu stref różniących się od siebie składem i/lub jedną lub kilkoma innymi właściwościami, przez utlenianie metalu macierzystego, polegający na ogrzewaniu metalu macierzystego w obecności utleniacza w fazie pary i poddaniu reakcji roztopionego metalu z utleniaczem przy odpowiedniej temperaturze, aby powstał produkt reakcji utleniania, który jest w styku z i rozciąga się pomiędzy roztopionym metalem a utleniaczem w fazie pary, następnie transportowaniu w. tej temperaturze roztopionego metalu poprzez produkt reakcji utleniania w kierunku do utleniacza w fazie pary, tak że produkt reakcji utleniania stale powstaje na powierzchni międzyfazowej pomiędzy utleniaczem w fazie pary a poprzednio wytworzonym produktem reakcji utleniania, dzięki czemu powstaje stopniowo coraz większa ilość produktu reakcji utleniania i kolejno kontynuowaniu tej reakcji przez czas wystarczający dla wytworzenia wyrobu ceramicznego, według wynalazku charakteryzuje się tym, że warunki procesu zmienia się tak, aby strefa produktu reakcji utleniania wytworzona po zmianie różniła się pod względem składu i/lub jednej lub kilku innych właściwości od strefy produktu reakcji utleniania wytworzonej przed zmianą.A method of producing a ceramic article having a graduated microstructure characterized by the existence of multiple zones of differing composition and / or one or more other properties by oxidizing the parent metal by heating the parent metal in the presence of a vapor-phase oxidant and reacting the molten metal with the oxidant at a suitable temperature to form an oxidation reaction product which is in contact with and extends between the molten metal and the vapor-phase oxidant, then transporting the molten metal at that temperature through the oxidation reaction product towards the vapor-phase oxidant, such that the reaction product oxidation continuously arises at the interface between the vapor-phase oxidant and the previously formed oxidation reaction product, whereby an increasing amount of oxidation reaction product is gradually formed and the reaction is subsequently continued for a sufficient time to produce and a ceramic article according to the invention is characterized in that the process conditions are varied such that the oxidation reaction product zone formed after the change differs in composition and / or one or more other properties from the oxidation reaction product zone formed prior to the change.

Przed ogrzewaniem wypełniacz orientuje się względem metalu macierzystego tak, że produkt reakcji utleniania infiltruje w wypełniacz tworząc wyrób ceramiczny zawierający produkt reakcji utleniania i wypełniacz.Prior to heating, the filler is oriented relative to the parent metal such that the oxidation reaction product infiltrates the filler to form a ceramic article containing the oxidation reaction product and filler.

W sposobie według wynalazku stosuje się źródło drugiego utleniacza w fazie pary, a zmiana warunków procesu polega na zastępieniu utleniacza w fazie pary tym drugim utleniaczem w fazie pary i prowadzeniu reakcji metalu macierzystego z tym drugim utleniaczem w fazie pary, aby powstała strefa zawierająca produkt reakcji utleniania metalu macierzystego i drugiego utleniacza w fazie pary.The process of the invention employs a second vapor-phase oxidant source, and changing the process conditions by replacing the vapor-phase oxidant with the second vapor-phase oxidant and reacting the parent metal with the second vapor-phase oxidant to provide a zone containing the oxidation reaction product. parent metal and a second vapor-phase oxidant.

Ponadto stosuje się modyfikator procesu, a zmiana warunków procesu polega na połączeniu metalu macierzystego z tym modyfikatorem i kontynuowaniu reakcji utleniania, aby wytworzyć strefę zawierającą produkt reakcji utleniania metalu macierzystego i utleniacza w fazie pary, posiadającą mikrostrukturę uszlachetnioną w porównaniu z produktem reakcji utleniania wytworzonym przed zmianą warunków.In addition, a process modifier is used, and the modification of the process conditions consists in combining the parent metal with that modifier and continuing the oxidation reaction to produce a zone containing the parent metal oxidation reaction product and vapor-phase oxidant having a microstructure refined compared to the oxidation reaction product produced prior to the change. conditions.

Jako metal macierzysty stosuje się metal wybrany z grupy złożonej z aluminium, tytanu, cyrkonu, hafnu, krzemu i cyny.The parent metal is a metal selected from the group consisting of aluminum, titanium, zirconium, hafnium, silicon, and tin.

Jako utleniacz w fazie pary stosuje się utleniacz wybrany z grupy złożonej z powietrza i gazowego azotu.The vapor-phase oxidant used is an oxidant selected from the group consisting of air and nitrogen gas.

Zmiana warunków procesu polega na zmianie temperatury do innej wartości temperatury i na kontynuowaniu reakcji utleniania przy tej temperaturze, aby wytworzyć strefę zawierającą produkt reakcji utleniania wytworzony przy zmienionej temperaturze.Changing the process conditions consists of changing the temperature to a different temperature and continuing the oxidation reaction at that temperature to create a zone containing the oxidation reaction product produced at the altered temperature.

W sposobie według wynalazku zmiana warunków procesu polega na (1) zastosowaniu źródła drugiego utleniacza w fazie pary i zastąpieniu utleniacza w fazie pary tym drugim utleniaczem w fazie pary oraz prowadzeniu reakcji metalu macierzystego z drugim utleniaczem w fazie pary, aby wytworzyć strefę zawierającą produkt reakcji utleniania metalu macierzystego i drugiego utleniacza w fazie pary i/lub (2) zastosowaniu źródła modyfikatora procesu i połączeniu metalu macierzystego z tym modyfikatorem oraz kontynuowaniu reakcji utleniania, aby wytworzyć strefę zawierającą produkt reakcji utleniania metalu macierzystego i utleniacza w fazie pary posiadającą mikrostrukturę uszlachetnioną w porównaniu z produktem reakcji utleniania wytworzonym przed zmianą, i/lub (3) zmianie temperatury i kontynuowaniu reakcji przy zmienionej temperaturze, aby wytworzyć strefę zawierającą produkt reakcji utleniania wytworzony przy zmienionej temperaturze.In the method of the invention, the altering of the process conditions consists of (1) using a source of a second vapor-phase oxidant and replacing the vapor-phase oxidant with this second vapor-phase oxidant, and reacting the parent metal with a second vapor-phase oxidant to form a zone containing the oxidation reaction product. the parent metal and a second vapor-phase oxidant and / or (2) using a source of the process modifier and combining the parent metal with the modifier and continuing the oxidation reaction to form a zone containing the oxidation reaction product of the parent metal and the vapor-phase oxidant having a microstructure refined compared to an oxidation reaction product produced before the change and / or (3) temperature change and continued reaction at the altered temperature to form a zone containing the oxidation reaction product produced at the altered temperature.

Zmianę warunków procesu przeprowadza się co najmniej dwa razy. Otrzymuje się wyrób ceramiczny posiadający przynajmniej dwa obszary produktu reakcji utleniania, które różnią się od siebie pod względem jednej lub kilku właściwości i oddzielnie wynikają z odpowiednich procesów reakcji utleniania następujących przed i po określonej zmianie. Według‘wynalazku właściwość lub właściwości, które są różne dla wielu obszarów produktu reakcji utleniania, mogą różnić się składem lub mierzalnymi parametrami.The process conditions are changed at least twice. A ceramic article is obtained having at least two regions of oxidation reaction product which differ in one or more properties and which result separately from the respective oxidation reaction processes occurring before and after the specified change. According to the 'invention, a property or properties that are different for many regions of the oxidation reaction product may differ in composition or in measurable parameters.

Według wynalazku metal macierzysty, który może być domieszkowany (jak wyjaśniono poniżej bardziej szczegółowo)* i jest prekursorem produktu reakcji utleniania, kształtuje się w postaci wlewka, kęsa, pręta, płyty-itp. i umieszcza się w zestawie złożonym ze złoża obojętnego, tygla lub innego pojemnika ogniotrwałego. Zestaw taki ogrzewa się w obecności utleniacza w · fazie pary do temperatury powyżej temperatury topnienia metalu macierzstego, ale poniżej tmperatury topnienia produktu reakcji utleniania, aby powstał roztopiony metal macierzysty. Przy tej temperaturze roztopiony metal macierzysty reaguje z utleniaczem w fazie pary tworząc warstwę produktu reakcji utleniania. Jednakże w pewnych przypadkach, kiedy stosuje się pewne domieszki, np. magnez jako domieszkę metalu macierzystego aluminium-krzem i kiedy jako utleniacz stosuje się powietrze, przed powstaniem produktu reakcji utleniania może nastąpić wytwarzanie cienkiej warstwy spinelu, np. spinelu magnezowo-glinowego, który powstaje zasadniczo w całości w warstwie inicjacji.According to the invention, the parent metal, which may be doped (as explained below in more detail) * and is a precursor to the oxidation reaction product, is shaped as an ingot, billet, rod, plate, etc. and is placed in an assembly of an inert bed, crucible or other refractory container. The assembly is heated in the presence of a vapor-phase oxidant to a temperature above the melting point of the parent metal but below the melting point of the oxidation reaction product to form a molten parent metal. At this temperature, the molten parent metal reacts with the vapor-phase oxidant to form a layer of oxidation reaction product. However, in some cases, when certain dopants, e.g., magnesium are used as an aluminum-silicon parent metal admixture, and when air is used as the oxidant, formation of a thin layer of spinel, e.g., magnesium aluminum spinel, may occur prior to formation of the oxidation reaction product. essentially entirely in the initiation layer.

Przy tej temperaturze lub w tym zakresie temperatur roztopiony metal jest transportowany w i poprzez produkt reakcji utleniania (jak opisano w zgłoszeniach patentowych) oraz w kierunku do utleniacza w fazie pary. Roztopiony metal macierzysty nadal reaguje z utleniaczem w fazie pary na powierzchni międzyfazowej pomiędzy poprzednio wytworzonym produktem reakcji utleniania a utleniaczem w fazie pary, tworząc stopniowo coraz grubszą warstwę produktu reakcji utleniania.At this temperature or within this temperature range, the molten metal is transported in and through the oxidation reaction product (as described in the patent applications) and towards the vapor-phase oxidant. The molten parent metal continues to react with the vapor-phase oxidant at the interface between the previously formed oxidation reaction product and the vapor-phase oxidant to gradually form an increasingly thicker layer of oxidation reaction product.

Odkryto, że jeden lub kilka warunków procesu można zmieniać podczas tego stopniowego procesu, tak że produkt reakcji utleniania powstały po lub w wyniku takiej zmiany różni się pod względem jednej lub kilku właściwości od produktu reakcji utleniania wytworzonego przed zmianą. Właściwość lub właściwości mogą różnić się pod względem składu, np. azotek w stosunku do tlenku, albo pod względem mieszalnych parametrów takich jak twardość lub odporność na kruche pękanie, albo pod względem parametrów metalograficznych mikrostruktury. Jedną lubkilka właściwości można zmieniać raz lub kilka razy. Otrzymany spoisty wyrób zawiera przynajmniej dwie strefy, z których każda zawiera produkt reakcji utleniania metalu macierzystego i utleniacza w fazie pary.It has been found that one or more process conditions may be changed during this staged process such that the oxidation reaction product formed after or by such a change differs in one or more properties from the oxidation reaction product formed prior to the change. The property or properties may vary in composition, e.g. nitride to oxide, or in miscible parameters such as hardness or fracture toughness, or in terms of the metallographic parameters of the microstructure. One or more properties can be changed one or more times. The resulting cohesive article comprises at least two zones each containing the product of oxidation of the parent metal and of the vapor-phase oxidant.

Zmianę warunków procesu można zrealizować dowolnym z kilku sposobów lub poprzez kombinację środków. Zmiana taka może obejmować (1) zastosowanie drugiego utleniacza w fazie pary i zastępienie pierwotnego utleniacza w fazie pary tym drugim utleniaczem w fazie pary, (2) zastosowanie jednego lub kilku modyfikatorów procesu i połączenie metalu macierzystego z modyfikatorem procesu, aby wytworzyć uszlachetnioną mikrostrukturę lub (3) zwiększanie lub zmniejszanie temperatury reakcji albo też kombinacje sposobów (1), (2) lub (3).Changing the process conditions can be accomplished by any of several ways or by a combination of measures. Such alteration may include (1) using a second vapor-phase oxidant and replacing the primary vapor-phase oxidant with this second vapor-phase oxidant, (2) using one or more process modifiers and combining the parent metal with a process modifier to produce an upgraded microstructure, or ( 3) increasing or decreasing the reaction temperature, or a combination of methods (1), (2) or (3).

Zgodnie z jednym przykładem wykonania wynalazku źródło drugiego utleniacza w fazie pary stosuje się, aby zrealizować zmianę. Reakcja utleniania pomiędzy roztopionym metalem macierzystym a pierwotnym utleniaczem w fazie pary jest kontynuowana przez czas wystarczający dla powstania warstwy lub strefy zawierającej produkt reakcji utleniania metalu macierzystego i pierwotnego utleniacza w fazie pary oraz nieutlenione składniki metaliczne. Pierwotny utleniacz w fazie pary zastępuje się następnie drugim utleniaczem w fazie pary i utlenianie roztopionego metalu macierzystego kontynuuje się z drugim utleniaczem w fazie pary. Reakcję tę kontynuuje się przez czas wystarczający dla powstania strefy produktu reakcji utleniania metalu macierzystego i drugiego utleniacza w fazie pary o żądanej grubości. Wyrób ceramiczny jest więc złożony ze spoistej kombinacji odpowiednich produktów reakcji utleniania. Przykładowo, aluminiowy metal macierzysty może najpierw reagować z powietrzem, aby powstał tlenek glinowy. Następnie proces można zmieniać przez zastosowanie gazowego azotu i powstaje wtedy azotek aluminium. Warunki procesu można odwrócić. Otrzymany wyrób ceramiczny stanowi spoisty monolit.In accordance with one embodiment of the invention, a source of the second vapor-phase oxidant is used to effect the change. The oxidation reaction between the molten parent metal and the primary vapor-phase oxidant is continued for a time sufficient to form a layer or zone containing the parent metal oxidation reaction product and primary vapor-phase oxidant and non-oxidized metal components. The primary vapor phase oxidant is then replaced with a second vapor phase oxidant, and oxidation of the molten parent metal is continued with the second vapor phase oxidant. The reaction is continued for a time sufficient to create a zone of the parent metal oxidation reaction product and a second vapor-phase oxidant of the desired thickness. The ceramic article is thus composed of a coherent combination of suitable oxidation reaction products. For example, an aluminum parent metal may first react with air to form alumina. The process can then be altered by the use of nitrogen gas to form aluminum nitride. The process conditions can be reversed. The obtained ceramic product is a cohesive monolith.

Według innego przykładu wykonania wynalazku zmiana polega na połączeniu modyfikatora procesu (jak opisano w zgłoszeniu patentowym (D)) z metalem macierzystym. W przypadku stosowania aluminiowego metalu macierzystego i powietrza jako utleniacza odpowiednie modyfikatory obejmują nikiel, żelazo, kobalt, cyrkon, tytan, niob, miedź i chrom. Modyfikator korzystnie jest w postaci proszku lub materiału cząstkowego i jest rozproszony na lub w styku z jedną lub kilkoma powierzchniami metalu macierzystego albo powstającego wyrobu ceramicznego. Niemodyfikowany proces reakcji utleniania jest kontynuowany przez czas wystarczający dla powstania warstwy lub strefy zawierającej produkt reakcji utleniania z reakcji niemodyfikowanej, o żądanej grubości. Następnie z metalem macierzystym łączy się odpowiednią ilość modyfikatora procesu i dalszy proces reakcji utleniania modyfikuje się wytwarzając mikrostrukturę ceramiczną, która jest uszlachetniona w stosunku do struktury wytwarzanej przed połączeniem. Ten modyfikowany proces kontynuuje się przez czas wystarczający dla powstania strefy uszlachetnionego produktu reakcji utleniania o żądanej grubości. Wyrób ceramiczny złożony jest więc ze spoistej kombinacji różnych mikrostruktur.According to another embodiment of the invention, the alteration consists in combining a process modifier (as described in Patent Application (D)) with the parent metal. When using an aluminum parent metal and air as the oxidant, suitable modifiers include nickel, iron, cobalt, zirconium, titanium, niobium, copper, and chromium. The modifier is preferably in the form of a powder or particulate material and is dispersed at or in contact with one or more surfaces of the parent metal or the resulting ceramic body. The unmodified oxidation reaction process is continued for a time sufficient to form a layer or zone containing the unmodified oxidation reaction product of the desired thickness. An appropriate amount of a process modifier is then combined with the parent metal, and the further oxidation reaction process is modified to produce a ceramic microstructure that is refined relative to that produced prior to assembly. This modified process is continued for a time sufficient to create a zone of refined oxidation reaction product of the desired thickness. The ceramic product is thus composed of a coherent combination of different microstructures.

Należy rozumieć, według wynalazku, że w pewnych przypadkach określone zmienione warunki procesu wynikające z określonego wybranego sposobu zmiany mogą niszczyć lub degenerować początkową strefę lub jedną albo kilka poprzednich stref produktu reakcji utleniania. Przykładowo, pewne warunki utleniania będą zasadniczo niszczyć pewne produkty reakcji utleniania. Z tego względu trzeba uważać, by zapewnić kompatybilność stosowanych warunków reakcji utleniania ze strefą lub strefami produktu reakcji utleniania wytworzonego przed określoną zmianą. Ponadto, ponieważ reakcje utleniania według wynalazku przeprowadza się przy wysokich temperaturach, przy projektowaniu określonego systemu trzeba starać się uwzględnić różnice współczynników rozszerzalności cieplnej pomiędzy zestawionymi lub sąsiednimi strefami oddzielnych produktów reakcji utleniania. Duża różnica rozszerzalności cieplnej pomiędzy strefami może spowodować pęknięcie jednej strefy. Jednakże pewne niedopasowanie rozszerzalności cieplnej pomiędzy sąsiednimi strefami może powodować własne naprężenia wstępne w wyrobie ceramicznym jak przy poddawaniu strefy wewnętrznej produktu reakcji utleniania ściskaniu przez wytworzenie wokół niej strefy produktu reakcji utleniania, który ma większy współczynnik rozszerzalności cieplnej. Takie naprężenia wstępne mogą w pewnych końcowych zastosowaniach dawać w wyniku lepsze właściwości produktu końcowego.It should be understood, in accordance with the invention, that in some cases the specific altered process conditions resulting from the particular variation method selected may destroy or degenerate the initial zone or one or more preceding zones of the oxidation reaction product. For example, certain oxidation conditions will substantially destroy certain oxidation reaction products. Therefore, care must be taken to ensure that the oxidation reaction conditions used are compatible with the zone or zones of the oxidation reaction product produced prior to the particular change. In addition, since the oxidation reactions of the invention are carried out at high temperatures, care must be taken in designing a particular system to take into account differences in thermal expansion coefficients between juxtaposed or adjacent zones of separate oxidation reaction products. A large difference in thermal expansion between zones can cause one zone to rupture. However, some mismatch in thermal expansion between adjacent zones may create intrinsic preloads in the ceramic article such as by compressing the inner zone of the oxidation reaction product by forming a zone of oxidation reaction product around it that has a higher coefficient of thermal expansion. Such prestressing may result in improved end product properties in certain end applications.

Jak wyjaśniono w zgłoszeniach patentowych, materiały domieszkujące stosowane w połączeniu z metalem macierzystym mają korzystny wpływ na proces reakcji utleniania, zwłaszcza w systemach, gdzie stosuje się aluminium jako metal macierzysty. Dlatego w pewnych przypadkach oprócz modyfikatora trzeba stosować materiał domieszkujący. Domieszkę lub domieszki stosowane w połączeniu lub w związku z metalem macierzystym (1) można stosować jako składniki stopowe metalu macierzystego (2) można nakładać na przynajmniej część powierzchni metalu macierzystego lub (3) można wprowadzać w część lub całość wypełniacza lub w formę wstępną, albo też można stosować dowolną kombinację dwóch lub więcej sposobów (1), (2) lub (3). Przykładowo, domieszkę stopową można stosować oddzielnie lub w połączeniu z drugą domieszką podawaną z zewnątrz. W przypadku sposobu (3), kiedy dodatkową domieszkę lub domieszki podaje się do wypełniacza, podawanie takie może odbywać się w dowolny odpowiedni sposób jak opisano w zgłoszeniach patentowych.As explained in the patent applications, the dopant materials used in conjunction with the parent metal have a beneficial effect on the oxidation reaction process, especially in systems where aluminum is used as the parent metal. Therefore, in some cases, a doping material must be used in addition to the modifier. The dopant or dopants used in combination or in conjunction with the parent metal (1) may be used as alloying components of the parent metal (2) may be applied to at least a portion of the surface of the parent metal, or (3) may be incorporated in some or all of the filler or preform, or also, any combination of two or more methods (1), (2) or (3) can be used. For example, an alloyed dopant may be used alone or in combination with a second externally applied dopant. In the case of method (3), where the additional dopant or dopants are applied to the filler, such administration may be in any suitable manner as described in the patent applications.

Funkcja lub funkcje określonego materiału domieszkującego mogą zależeć od wielu czynników. Czynniki takie obejmują przykładowo określoną kombinację domieszek, kiedy stosuje się dwie lub więcej domieszek, zastosowanie domieszki podawanej z zewnątrz w połączeniu z domieszką stopową z metalem prekursora, stężenie stosowanej domieszki, środowisko utleniające, warunki procesu i jak stwierdzono powyżej typ i stężenie zastosowanego metalu modyfikującego.The function or functions of a particular dopant material can depend on many factors. Such factors include, for example, a specific combination of dopants when two or more dopants are used, the use of an externally applied dopant in combination with an alloyed dopant with the precursor metal, the concentration of dopant used, the oxidizing environment, process conditions and, as noted above, the type and concentration of modifying metal used.

Domieszki użyteczne dla aluminiowego metalu macierzystego, zwłaszcza gdy utleniaczem jest powietrze, obejmują magnez, cynk, krzem, albo oddzielnie, albo w połączeniu z innymi domieszkami opisanymi poniżej. Metale te, albo odpowiednie źródło tych metali można wprowadzać stopowo w metal macierzysty na bazie aluminium zę stężeniami dla każdego z nich 0,1-10% wagowych całkowitego ciężaru wynikowego metalu ' domieszkowanego.Te materiały domieszku ce lub odpowiednie ich źródło (na przykład, MgO, ZnO lub SiO2) można stosować zewnętrznie na metal macierzysty. Strukturę ceramiczną -z tlenku glinowego można zatem uzyskać dla metalu macierzystego aluminium-krzem przy zastosowaniu powietrza jako utleniacza używając MgO jako domieszkę w ilości większej niż około .0,0008 g na gram metalu macierzystego, który ma być utleniany i większej niż 0,003 g na cm2 metalu macierzystego, na który nakłada się MgO. Jednakże potrzebne stężenie domieszki, jak omówiono powyżej, może zależeć od typu, obecności i stężenia metalu modyfikującego.Dopants useful for an aluminum parent metal, particularly when the oxidant is air, include magnesium, zinc, and silicon, either alone or in combination with other dopants described below. These metals, or a suitable source of these metals, may be alloyed into the aluminum-based parent metal at concentrations for each of 0.1-10% by weight of the total weight of the resulting 'doped metal. These dopant materials or a suitable source thereof (e.g., MgO (ZnO or SiO2) may be used externally to the parent metal. An alumina ceramic structure can thus be obtained for the aluminum-silicon parent metal using air as the oxidant using MgO as a dopant in an amount greater than about .0.0008 g per gram of parent metal to be oxidized and greater than 0.003 g per cm 2 of the parent metal to which MgO is applied. However, the desired dopant concentration, as discussed above, may depend on the type, presence, and concentration of the modifying metal.

Dodatkowe przykłady materiałów domieszkujących dla aluminiowego metalu macierzystego obejmują sód, german, cynę, ołów, lit, wapń, bor, fosfor i itr, które można stosować oddzielnie lub w połączeniu z jedną lub kilkoma domieszkami zależnie od utleniacza, typu i ilości metalu modyfikującego oraz od warunków procesu. Pierwiastki ziem rzadkich, takie jak cer, lantan, prazeodym, neodym i samar są również użytecznymi domieszkami, znowu zwłaszcza gdy są stosowane w połączeniu z innymi domieszkami. Wszystkie te materiały domieszkujące, jak wyjaśniono w zgłoszeniach patentowych, skutecznie wspomagają wzrost polikrystalicznego produktu reakcji utleniania dla systemów z metalem macierzystym na bazie aluminium.Additional examples of dopant materials for an aluminum parent metal include sodium, germanium, tin, lead, lithium, calcium, boron, phosphorus, and yttrium, which may be used alone or in combination with one or more dopants depending on the oxidant, type and amount of modifying metal, and process conditions. Rare earth elements such as cerium, lanthanum, praseodymium, neodymium and samarium are also useful dopants, again especially when used in conjunction with other dopants. All of these dopant materials, as explained in the patent applications, are effective in promoting polycrystalline oxidation reaction product growth for aluminum-based parent metal systems.

Przykład . Spoisty wyrób ceramiczny zawierający strefę tlenku glinowego i strefę azotku glinu wytwarzano sposobem według wynalazku przez zmienianie składu utleniacza w fazie pary podczas wytwarzania wyrobu ceramicznego.An example. A cohesive ceramic article containing an alumina zone and an aluminum nitride zone was produced by the process of the invention by varying the composition of the vapor-phase oxidant during the manufacture of the ceramic article.

Cylindryczny wlewek ze stopu aluminium z Belmont Metals Inc. o składzie podanym niżej i o średnicy 25,4 mm oraz o wysokości 12,7 mm umieszczono w złożu z cząstek tlenku glinowego zawartych w tyglu ogniotrwałym, tak że jedna powierzchnia kołowa wlewka była odsłonięta do atmosfeery i usytuowana zasadniczo na jednym poziomie ze złożem. Zestaw taki umieszczono w piecu indukcyjnym z kontrolowaną atmosferą. Wlewek ogrzewano w przepływie tlenu (400 cm3/min.) do temperatury powierzchni 1000°C (pomiar za pmocą pirometru optycznego) przez 1 godzinę. Utlenianie w tlenie przeprowadzano w wymienionych wyżej warunkach przez 7 godzin. Następnie dopływ atmosfery przełączono na gaz formujący złożony z 96% azotu i 4% wodoru i kontynuowano utlenianie przez 5 godz. w gazie formującym. Uzyskany w wyniku wyrób ceramiczny został przekrojony, aby ujawnić spoistą strukturę zawierającą sąsiednie strefy. Rentgenowska analiza dyfrakcyjna oddzielnych stref potwierdziła obecność tlenku glinowego w pierwszej strefie i azotku glinu w późniejszej strefie.Aluminum alloy cylindrical ingot from Belmont Metals Inc. having the composition given below and having a diameter of 25.4 mm and a height of 12.7 mm was placed in a bed of alumina particles contained in a refractory crucible such that one circular surface of the ingot was exposed to the atmosphere and was substantially level with the bed. The set up was placed in an induction furnace with controlled atmosphere. The ingot was heated under a flow of oxygen (400 cm3 / min) to a surface temperature of 1000 ° C (measured with an optical pyrometer) for 1 hour. Oxidation in oxygen was carried out under the above-mentioned conditions for 7 hours. The atmosphere was then switched to a forming gas of 96% nitrogen and 4% hydrogen and the oxidation continued for 5 hours. in forming gas. The resulting ceramic article has been sectioned to reveal a coherent structure containing adjacent zones. X-ray diffraction analysis of the separate zones confirmed the presence of alumina in the first zone and aluminum nitride in the downstream zone.

Na figurze 1 przedstawiono mikrofotografię w powiększeniu 200 X pokazującą strefę tlenku glinowego 2 i strefę azotku glinu 4 bez żadnej nieciągłości w fizycznej mikrostrukturze.Figure 1 is a photomicrograph at a 200X magnification showing the alumina zone 2 and the aluminum nitride zone 4 without any discontinuity in the physical microstructure.

Skład stopu aluminium stanowiącego metal macierzysty (nominalny): 3,7% cynk; 3,9% miedź; 1,1% żelazo; 8,3% krzem; 0,19% magnez; 0,04% nikiel; 0,02% cyna; 0,04% chrom; 0,20% mangan; 0,08% tytan; reszta aluminium.Parent metal alloy composition (nominal): 3.7% zinc; 3.9% copper; 1.1% iron; 8.3% silicon; 0.19% magnesium; 0.04% nickel; 0.02% tin; 0.04% chromium; 0.20% manganese; 0.08% titanium; the rest of the aluminum.

FIG. IFIG. AND

Zakład Wydawnictw UP RP. Nakład 90 egz.Department of Publishing of the UP RP. Circulation of 90 copies

Cena 5000 zł.Price PLN 5,000.

Claims (9)

Zastrzeżenia patentowePatent claims 1. Sposób wytwarzania wyirobu ceramicznego, mającego stopniowaną mikrostrukturę, charakteryzującą się istnieniem wielu stref różniących się od siebie składem i/lub jedną lub kilkoma innymi właściwościami, przez utlenianie metalu macierzystego, polegjący na ogrzewaniu metalu macierzystego w obecności utleniacza w fazie pary, poddaniu reakcji roztopionego metalu z utleniaczem przy odpowiedniej temperaturze, aby powstał produkt reakcji utleniania, który jest w styku z i rozciąga się pomiędzy roztopionym metalem a utleniaczem w fazie pary, następnie transportowaniu w tej temperaturze roztopionego metalu poprzez produkt reakcji utleniania w kierunku do utleniacza w fazie pary, tak że produkt reakcji utleniania stale powstaje na powierzchni międzyfazowej pomiędzy utleniaczem w fazie pary a poprzednio wytworzonym produktem reakcji utleniania, dzięki czemu powstaje stopniowo coraz większa ilość produktu reakcji utleniania i kolejno kontynuowaniu tej reakcji przez czas wystarczający dla wytworzenia wyrobu ceramicznego, znamienny tym, że warunki procesu zmienia się tak, aby strefa produktu reakcji utleniania wytworzona po zmianie różniła się pod względem składu i/lub jednej lub kilku innych właściwości od strefy produktu reakcji utleniania wytworzonej przed zmianą.A method of producing a ceramic product having a graduated microstructure characterized by the existence of multiple zones differing in composition and / or one or more other properties by oxidizing the parent metal by heating the parent metal in the presence of a vapor-phase oxidant, reacting a molten metal with the oxidant at a suitable temperature to form an oxidation reaction product which is in contact with and extends between the molten metal and the vapor-phase oxidant, then transporting the molten metal at that temperature through the oxidation reaction product towards the vapor-phase oxidant so that the oxidation reaction product is constantly formed at the interface between the vapor-phase oxidant and the previously formed oxidation reaction product, whereby an increasing amount of oxidation reaction product is gradually formed and the reaction is subsequently continued for a sufficient time to produce A ceramic product, characterized in that the process conditions are varied such that the oxidation reaction product zone formed after the change differs in composition and / or one or more other properties from the oxidation reaction product zone formed prior to the change. 2. Sposób według zastrz. 1, znamienny tym, że przed ogrzewaniem wypełniacz orientuje się względem metalu macierzystego tak, że produkt reakcji utleniania infiltruje w wypełniacz tworząc wyrób ceramiczny zawierający produkt reakcji utleniania i wypełniacz.2. The method according to p. The method of claim 1, wherein prior to heating, the filler is oriented relative to the parent metal such that the oxidation reaction product infiltrates the filler to form a ceramic article comprising the oxidation reaction product and the filler. 3. Sposób według zastrz. 1 albo 2, znamienny tym, że stosuje się źródło drugiego utleniacza w fazie pary, a zmiana warunków procesu polega na zastąpieniu utleniacza w fazie pary tym drugim utleniaczem w fazie pary i prowadzeniu reakcji metalu macierzystego z tym drugim utleniaczem w fazie pary, aby powstała strefa zawierająca produkt reakcji utleniania metalu macierzystego i drugiego utleniacza w fazie pary.3. The method according to p. The process of claim 1 or 2, wherein the source of the second vapor-phase oxidant is used, and the process conditions are changed by replacing the vapor-phase oxidant with the second vapor-phase oxidant and reacting the parent metal with the second vapor-phase oxidant to form a zone. comprising a parent metal oxidation reaction product and a second vapor-phase oxidant. 4. Sposób według zastrz. 1 albo 2, znamienny tym, że stosuje się modyfikator procesu, a zmiana warunków procesu polega na połączeniu metalu macierzystego z tym modyfikatorem i kontynuowaniu reakcji utleniania, aby wytworzyć strefę zawierającą produkt reakcji utleniania metalu macierzystego i utleniacza w fazie pary, posiadającą mikrostrukturę uszlachetnioną w porównaniu z produktem reakcji utleniania wytworzonym przed zmianą warunków.4. The method according to p. The process as claimed in claim 1 or 2, wherein the process modifier is used and the modification of the process conditions consists of combining the parent metal with the modifier and continuing the oxidation reaction to produce a zone containing the oxidation reaction product of the parent metal and the vapor-phase oxidant having a microstructure refined compared to with the oxidation reaction product produced before the conditions changed. 5. Sposób według zastrz. 1 albo 2, znamienny tym, że jako metal macierzysty stosuje się metal wybrany z grupy złożonej z aluminium, tytanu, cyrkonu, hafnu, krzemu i cyny.5. The method according to p. The method of claim 1 or 2, wherein the parent metal is a metal selected from the group consisting of aluminum, titanium, zirconium, hafnium, silicon and tin. 6. Sposób według zastrz. 1 albo 2, znamienny tym, że jako utleniacz w fazie pary stosuje się utleniacz wybrany z grupy złożonej z powietrza i gazowego azotu.6. The method according to p. The process of claim 1 or 2, wherein the vapor-phase oxidant is an oxidant selected from the group consisting of air and nitrogen gas. 7. Sposób według zastrz. 1 albo 2, znamienny tym, że zmiana warunków procesu polega na zmianie temperatury do innej wartości temperatury i na kontynuowaniu reakcji utleniania przy tej temperaturze, aby wytworzyć strefę zawierającą produkt reakcji utleniania wytworzony przy zmienionej temperaturze.7. The method according to p. The process of claim 1 or 2, wherein the changing of the process conditions consists in changing the temperature to a different temperature value and continuing the oxidation reaction at that temperature to produce a zone containing the oxidation reaction product produced at the altered temperature. 8. Sposób według zastrz. 1 albo 2, znamienny tym, że zmiana warunków procesu polega na zastosowaniu źródła drugiego utleniacza w afazie pary i zastąpieniu utleniacza w fazie pary tym drugim utleniaczem w fazie pary oraz prowadzeniu reakcji metalu macierzstego z drugim utleniaczem w fazie pary, aby wytworzyć strefę zawierającą produkt reakcji utleniania metalu macierzystego i drugiego utleniacza w fazie pary i/lub zastosowaniu źródła modyfikatora procesu i połączeniu metalu macierzystego z tym modyfikatorem oraz kontynuowaniu reakcji utleniania, aby wytworzyć strefę zawierającą produkt reakcji utleniania metalu macierzystego i utleniacza w fazie pary posiadającą mikrostrukturę uszlachetnioną w porównaniu z produktem reakcji utleniania wytworzonym przed zmianą, i/lub zmianie temperatury i kontynuowaniu reakcji przy zmienionej temperaturze, aby wytworzyć strefę zawierającą produkt reakcji utleniania wytworzony przy zmienionej temperaturze.8. The method according to p. The process of claim 1 or 2, wherein the variation of the process conditions consists of using a second vapor-phase oxidant source and replacing the vapor-phase oxidant with this second vapor-phase oxidant, and reacting the parent metal with a second vapor-phase oxidant to form a zone containing the reaction product. oxidizing the parent metal and the second vapor-phase oxidant and / or using a process modifier source and combining the parent metal with the modifier and continuing the oxidation reaction to produce a zone containing the parent metal oxidation reaction product and vapor-phase oxidant having a microstructure refined compared to the reaction product oxidation produced prior to the change and / or temperature change and continuing the reaction at the altered temperature to form a zone containing the oxidation reaction product produced at the altered temperature. 156407 3156407 3 9. Sposób według zastrz. 1 albo 2, znamienny tym, że. zmianę warunków procesu przeprowadza się co najmniej dwa razy.9. The method according to p. The method of claim 1 or 2, characterized in that changing the process conditions is done at least twice. * * ** * *
PL1987267781A 1986-09-16 1987-09-16 A method of self-supporting ceramic block production PL156407B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US06/907,928 US4882306A (en) 1986-09-16 1986-09-16 Method for producing self-supporting ceramic bodies with graded properties

Publications (2)

Publication Number Publication Date
PL267781A1 PL267781A1 (en) 1988-07-21
PL156407B1 true PL156407B1 (en) 1992-03-31

Family

ID=25424868

Family Applications (1)

Application Number Title Priority Date Filing Date
PL1987267781A PL156407B1 (en) 1986-09-16 1987-09-16 A method of self-supporting ceramic block production

Country Status (30)

Country Link
US (1) US4882306A (en)
EP (1) EP0261063B1 (en)
JP (1) JP2593887B2 (en)
KR (1) KR880003858A (en)
CN (1) CN87106324A (en)
AT (1) ATE74340T1 (en)
BG (1) BG60013B2 (en)
BR (1) BR8704672A (en)
CA (1) CA1313749C (en)
CS (1) CS275394B2 (en)
DD (1) DD279465A5 (en)
DE (1) DE3777928D1 (en)
DK (1) DK166671B1 (en)
ES (1) ES2036595T3 (en)
FI (1) FI88020C (en)
GR (1) GR3005074T3 (en)
HU (1) HU204235B (en)
IE (1) IE60082B1 (en)
IL (1) IL83806A (en)
IN (1) IN168823B (en)
MX (1) MX170550B (en)
NO (1) NO175677C (en)
NZ (1) NZ221743A (en)
PH (1) PH25451A (en)
PL (1) PL156407B1 (en)
PT (1) PT85705B (en)
RU (1) RU1782229C (en)
TR (1) TR24722A (en)
YU (1) YU172087A (en)
ZA (1) ZA876908B (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5420085A (en) * 1985-02-04 1995-05-30 Lanxide Technology Company, Lp Methods of making composite aluminum nitride ceramic articles having embedded filler
US5242710A (en) * 1990-06-25 1993-09-07 Lanxide Technology Company, Lp Methods for making self-supporting composite bodies and articles produced thereby
US6113982A (en) * 1990-06-25 2000-09-05 Lanxide Technology Company, Lp Composite bodies and methods for making same
IL98530A (en) * 1990-06-25 1996-06-18 Lanxide Technology Co Ltd Methods for making selfsupporting composite bodies and articles produced thereby using vapor-phase parent metals and solid oxidants
US5674562A (en) * 1990-06-25 1997-10-07 Lanxide Technology Company, Lp Method for making self supporting composite bodies
US5503122A (en) * 1992-09-17 1996-04-02 Golden Technologies Company Engine components including ceramic-metal composites
US5525374A (en) * 1992-09-17 1996-06-11 Golden Technologies Company Method for making ceramic-metal gradient composites
US5509555A (en) * 1994-06-03 1996-04-23 Massachusetts Institute Of Technology Method for producing an article by pressureless reactive infiltration
US6045628A (en) * 1996-04-30 2000-04-04 American Scientific Materials Technologies, L.P. Thin-walled monolithic metal oxide structures made from metals, and methods for manufacturing such structures
US5814164A (en) 1994-11-09 1998-09-29 American Scientific Materials Technologies L.P. Thin-walled, monolithic iron oxide structures made from steels, and methods for manufacturing such structures
US5855955A (en) * 1995-06-07 1999-01-05 Lanxide Technology Company L.P. Method for making self-supporting composite bodies
JP2765543B2 (en) * 1995-12-26 1998-06-18 株式会社日立製作所 Reaction sintered ceramics and method for producing the same
US6461562B1 (en) 1999-02-17 2002-10-08 American Scientific Materials Technologies, Lp Methods of making sintered metal oxide articles
EP3077348A1 (en) 2013-12-04 2016-10-12 European Space Agency Manufacturing of a ceramic article from a metal preform or metal matrix composite preform provided by 3d-printing or 3d-weaving

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2741822A (en) * 1951-01-29 1956-04-17 Carborundum Co Preparation of refractory products
US3255027A (en) * 1962-09-07 1966-06-07 Du Pont Refractory product and process
US3298842A (en) * 1963-03-22 1967-01-17 Du Pont Process for preparing hollow refractory particles
US3296002A (en) * 1963-07-11 1967-01-03 Du Pont Refractory shapes
US3419404A (en) * 1964-06-26 1968-12-31 Minnesota Mining & Mfg Partially nitrided aluminum refractory material
US3473987A (en) * 1965-07-13 1969-10-21 Du Pont Method of making thin-walled refractory structures
US3421863A (en) * 1966-03-04 1969-01-14 Texas Instruments Inc Cermet material and method of making same
US3437468A (en) * 1966-05-06 1969-04-08 Du Pont Alumina-spinel composite material
US3789096A (en) * 1967-06-01 1974-01-29 Kaman Sciences Corp Method of impregnating porous refractory bodies with inorganic chromium compound
US3473938A (en) * 1968-04-05 1969-10-21 Du Pont Process for making high strength refractory structures
US3538231A (en) * 1969-03-25 1970-11-03 Intern Materials Oxidation resistant high temperature structures
US3770488A (en) * 1971-04-06 1973-11-06 Us Air Force Metal impregnated graphite fibers and method of making same
US3864154A (en) * 1972-11-09 1975-02-04 Us Army Ceramic-metal systems by infiltration
US3973977A (en) * 1973-11-01 1976-08-10 Corning Glass Works Making spinel and aluminum-base metal cermet
ATE53863T1 (en) * 1983-02-16 1990-06-15 Moltech Invent Sa SINTERED METAL-CERAMIC COMPOSITES AND THEIR PRODUCTION.
NZ211405A (en) * 1984-03-16 1988-03-30 Lanxide Corp Producing ceramic structures by oxidising liquid phase parent metal with vapour phase oxidising environment; certain structures
NZ212704A (en) * 1984-07-20 1989-01-06 Lanxide Corp Producing self-supporting ceramic structure
US4851375A (en) * 1985-02-04 1989-07-25 Lanxide Technology Company, Lp Methods of making composite ceramic articles having embedded filler

Also Published As

Publication number Publication date
DE3777928D1 (en) 1992-05-07
AU7833987A (en) 1988-03-24
IN168823B (en) 1991-06-15
NZ221743A (en) 1990-01-29
DK166671B1 (en) 1993-06-28
NO175677B (en) 1994-08-08
EP0261063A1 (en) 1988-03-23
TR24722A (en) 1992-03-04
IL83806A (en) 1991-08-16
CN87106324A (en) 1988-05-18
DK480687D0 (en) 1987-09-15
YU172087A (en) 1989-06-30
HU204235B (en) 1991-12-30
AU596213B2 (en) 1990-04-26
ZA876908B (en) 1988-03-17
FI873901A (en) 1988-03-17
FI88020C (en) 1993-03-25
IE60082B1 (en) 1994-06-01
FI88020B (en) 1992-12-15
IE872472L (en) 1988-03-16
US4882306A (en) 1989-11-21
IL83806A0 (en) 1988-02-29
DD279465A5 (en) 1990-06-06
MX170550B (en) 1993-08-31
ES2036595T3 (en) 1993-06-01
BG60013B2 (en) 1993-06-30
CA1313749C (en) 1993-02-23
PH25451A (en) 1991-07-01
GR3005074T3 (en) 1993-05-24
HUT46621A (en) 1988-11-28
RU1782229C (en) 1992-12-15
PL267781A1 (en) 1988-07-21
CS275394B2 (en) 1992-02-19
PT85705B (en) 1990-08-31
NO873793L (en) 1988-03-17
NO873793D0 (en) 1987-09-11
KR880003858A (en) 1988-05-30
DK480687A (en) 1988-04-14
JP2593887B2 (en) 1997-03-26
EP0261063B1 (en) 1992-04-01
NO175677C (en) 1994-11-16
PT85705A (en) 1987-10-01
BR8704672A (en) 1988-04-26
ATE74340T1 (en) 1992-04-15
JPS6374972A (en) 1988-04-05
FI873901A0 (en) 1987-09-09

Similar Documents

Publication Publication Date Title
KR930009329B1 (en) Ceramic materials and method of making same
US4713360A (en) Novel ceramic materials and methods for making same
US5214011A (en) Process for preparing ceramic-metal composite bodies
EP0169067B1 (en) Methods of making self-supporting ceramic materials
PL156407B1 (en) A method of self-supporting ceramic block production
PL157986B1 (en) Method of obtaining self-supporting ceramic compositionscotaining metal carbides and self-supporting ceramic composition obtained thereby
US5164347A (en) Method for producing self-supporting ceramic bodies with graded properties
US5118647A (en) Ceramic materials
US5266537A (en) Method for producing self-supporting ceramic bodies with graded properties
US5306676A (en) Silicon carbide bodies and methods of making the same
US5051383A (en) Method for producing self-supporting ceramic bodies with graded properties
JPH0436112B2 (en)
US5306677A (en) Ceramic materials
US5084425A (en) Self-supporting ceramic bodies with altered microstructures
US5227348A (en) Self-supporting ceramic bodies with altered microstructures
RU2804391C1 (en) Method for producing high-entropy alloy boride
JPH07242483A (en) Precipitation hardening molybdenum single crystal and production thereof
JP2641872B2 (en) Manufacturing method of ceramic composite material
IE62741B1 (en) Assembly for making ceramic composite structures and method of using the same
Claussen et al. Directed metal oxidation
Novakovic et al. Advanced ceramics for use in highly oxidizing and corrosive environments: Silicides
Knyshev et al. The properties including some crystallochemical properties of mixed borides of group IVa-Va elements
Egorov et al. Densification and structure formation in the sintering of composite materials based on the IV–V group transition metals 1. Sintering of TiN− Cr composite materials