PL139264B1 - Dynamic filter - Google Patents

Dynamic filter Download PDF

Info

Publication number
PL139264B1
PL139264B1 PL1983240221A PL24022183A PL139264B1 PL 139264 B1 PL139264 B1 PL 139264B1 PL 1983240221 A PL1983240221 A PL 1983240221A PL 24022183 A PL24022183 A PL 24022183A PL 139264 B1 PL139264 B1 PL 139264B1
Authority
PL
Poland
Prior art keywords
filter
stages
concentration
shaft
elements
Prior art date
Application number
PL1983240221A
Other languages
Polish (pl)
Other versions
PL240221A1 (en
Inventor
Stanislaw Wronski
Andrzej Mroz
Original Assignee
Politechnika Warszawska
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Politechnika Warszawska filed Critical Politechnika Warszawska
Priority to PL1983240221A priority Critical patent/PL139264B1/en
Priority to DE3401607A priority patent/DE3401607C2/en
Priority to SE8400213A priority patent/SE449181B/en
Priority to FR848400815A priority patent/FR2539320B1/en
Publication of PL240221A1 publication Critical patent/PL240221A1/en
Publication of PL139264B1 publication Critical patent/PL139264B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D29/00Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor
    • B01D29/39Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor with hollow discs side by side on, or around, one or more tubes, e.g. of the leaf type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D29/00Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor
    • B01D29/50Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor with multiple filtering elements, characterised by their mutual disposition
    • B01D29/52Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor with multiple filtering elements, characterised by their mutual disposition in parallel connection
    • B01D29/54Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor with multiple filtering elements, characterised by their mutual disposition in parallel connection arranged concentrically or coaxially
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D29/00Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor
    • B01D29/76Handling the filter cake in the filter for purposes other than for regenerating
    • B01D29/78Handling the filter cake in the filter for purposes other than for regenerating for washing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D29/00Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor
    • B01D29/76Handling the filter cake in the filter for purposes other than for regenerating
    • B01D29/86Retarding cake deposition on the filter during the filtration period, e.g. using stirrers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D29/00Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor
    • B01D29/88Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor having feed or discharge devices
    • B01D29/94Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor having feed or discharge devices for discharging the filter cake, e.g. chutes
    • B01D29/945Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor having feed or discharge devices for discharging the filter cake, e.g. chutes for continuously discharging concentrated liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D33/00Filters with filtering elements which move during the filtering operation
    • B01D33/15Filters with filtering elements which move during the filtering operation with rotary plane filtering surfaces
    • B01D33/21Filters with filtering elements which move during the filtering operation with rotary plane filtering surfaces with hollow filtering discs transversely mounted on a hollow rotary shaft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D33/00Filters with filtering elements which move during the filtering operation
    • B01D33/35Filters with filtering elements which move during the filtering operation with multiple filtering elements characterised by their mutual disposition
    • B01D33/37Filters with filtering elements which move during the filtering operation with multiple filtering elements characterised by their mutual disposition in parallel connection
    • B01D33/39Filters with filtering elements which move during the filtering operation with multiple filtering elements characterised by their mutual disposition in parallel connection concentrically or coaxially
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D33/00Filters with filtering elements which move during the filtering operation
    • B01D33/58Handling the filter cake in the filter for purposes other than for regenerating the filter cake remaining on the filtering element
    • B01D33/60Handling the filter cake in the filter for purposes other than for regenerating the filter cake remaining on the filtering element for washing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D33/00Filters with filtering elements which move during the filtering operation
    • B01D33/70Filters with filtering elements which move during the filtering operation having feed or discharge devices
    • B01D33/72Filters with filtering elements which move during the filtering operation having feed or discharge devices for feeding
    • B01D33/722Filters with filtering elements which move during the filtering operation having feed or discharge devices for feeding containing fixed liquid displacement elements or cores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D33/00Filters with filtering elements which move during the filtering operation
    • B01D33/70Filters with filtering elements which move during the filtering operation having feed or discharge devices
    • B01D33/76Filters with filtering elements which move during the filtering operation having feed or discharge devices for discharging the filter cake, e.g. chutes
    • B01D33/763Filters with filtering elements which move during the filtering operation having feed or discharge devices for discharging the filter cake, e.g. chutes for continuously discharging concentrated liquid

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Filtration Of Liquid (AREA)
  • Centrifugal Separators (AREA)
  • Mixers Of The Rotary Stirring Type (AREA)

Description

Przedmiotem wynalazku jest filtr dynamiczny do zageszczania, klarowania i/lub przemywa¬ nia zawiesin trudnosaczacych sie.Znany sposób filtracji dynamicznej polega na tym, ze rozdzielana i/lub przemywana za¬ wiesine intensywnie miesza sie, przez co na przegrodach filtracyjnych nie osadza sie, osad lub osadza sie tylko czesciowo, co powoduje zmniejszenie oporów przeplywu przesaczu i w efekcie zwiekszenie wydajnosci filtracji z jednostki powierzchni. Znane sa dwa zasadnicze typy dyna¬ micznych filtrów tarczowych o róznej konstrukcji. Jedno z rozwiazan opisane zostalo przez J. Soudek'a "Chemicky Prumysl" 21/46/1971 str. 241-245. Filtr stanowi przeplywowy zbiornik cisnieniowy, w którym znajduja sie elementy filtrujace. Elementami filtrujacymi sa nieruchome przegrody o ksztalcie pierscieniowym przytwierdzone do scianek zbiornika, a miedzy nimi znaj¬ duja sie wirujace przegrody równiez w ksztalcie pierscieniowym osadzone na wydrazonym wale umieszczonym w osi zbiornika. Wydrazony wal napedza przegrody i stanowi kanal zbiorczy przesa¬ czu. Nieruchome przegrody filtracyjne wyposazone sa w krócce odprowadzajace przesacz, zas zbior¬ nik cisnieniowy posiada króciec do doprowadzania zawiesiny i króciec do odprowadzania zawiesi¬ ny zageszczonej po przejsciu przez uklad przegród nieruchomych i ruchomych.Inny:;, znanym typem dynamicznego filtra tarczowego jest filtr przedstawiony w polskim opi¬ sie patentowym nr 94 528, w którym zastosowano mieszadla osadzone na wspólnym pelnym wale w mieisce wirujacych przegród filtracyjnych opisanych przez J. Soudek 'a. Nieruchome przegrody filtracyjne sa wyposazone w krócce do odbioru przesaszu. Dodatkowo w korpusie aparatu znajduja sie krócce sluzace do doprowadzania cieczy pluczacej do kolejnych stopni aparatu. 7e wzgledu na sposób mieszania zawiesiny, to jest typ mieszadla oraz predkosc obrotowa mieszadla, kazdy z wymienionych typów tarczowych filtrów dynamicznych charakteryzuje sie inna wartoscia maksymalnego zageszczenia zawiesiny, inna wydajnoscia filtracji odniesiona do jed¬ nostki powierzchni przegrody filtracyjnej i innym nakladem energii na uzyskanie jednostki obje¬ tosci przesaczu. Dlatego tez nieuzasadnione jest stosowanie dowolnej zawiesiny. 0 ile filtry ty-2 139 264 pu pierwszego sa bardziej ekonomiczne v zakresie wstepnego zageszczania i/lub przemywania za¬ wiesin, to przy wiekszych stezeniach zawiesiny bardziej ekonomiczne jest stosowanie filtrów drugiego typu* Na przyklad zastosowanie filtru zlozonego z wirujacych przegród filtracyjnych i nieruchomych przegród filtracyjnych do uzyskiwania wysokozageszczanej zawiesiny powoduje, iz w ostatnich stopniach filtru stezenie osiaga wartosc maksymalna charakterystyczna dla tego typu mieszadla. W efekcie, w stopniach tych nie nastepuje rozdzielenie zawiesiny a caly nak¬ lad energetyczny na mieszanie jest bezuzytecznie tracony na podwyzszenie temperatury zawiesi¬ ny w wyniku efektów dyssypacyjnych. Z kolei zastosowanie filtru wyposazonego w mieszadla tur¬ binowe do rozdzielania zawiesin o niskim stopniu stezenia, na przyklad do klarowania powoduje, ze mimo wzrostu nakladu energetycznego nie uzyskuje sie wzrostu wydajnosci filtracji badz je¬ dynie nieznaczny wzrost nie kompensujacy zuzycia energii. Tak wiec w jednym i drugim przypad¬ ku nastepuje nieuzasadnione podwyzszenie nakladu energetycznego na uzyskanie jednostki obje¬ tosci przesaczu* Oba wymienione rozwiazania sa dostosowane do doprowadzania cieczy pluczacej do kazdego stopnia filtru i do odmywania z filtrowanej zawiesiny skladników rozpuszczalnych. 0 ile w filtrze z mieszadlami turbinowymi mozliwe jest rozdzielenie przesaczu o duzej zawartosci sklad¬ ników rozpuszczalnych od rozcienczonego przesaczu ze stopni przemywania, to w filtrze z wiru¬ jacymi tarczami filtracyjnymi nastepuje mieszanie obu strumieni przesaczu w wydrazonym wale napedowym i zbedne rozcienczenie roztworu, uniemozliwiajace powtórne uzycie cieczy myjacej.Natomiast w opisie patentowym RFN nr 2 844 023, którego przedmiotem jest system automa¬ tycznego sterowania filtrem dynamicznym przedstawiono konstrukcje filtru dynamicznego sklada¬ jacego sie z pieciu nieruchomych elementów filtracyjnych sztywno zamocowanych do obudowy oraz z trzech wirujacych tarcz filtracyjnych sztywno zamocowanych do walu i z dwóch elementów spel¬ niajacych role turbulizatorów do podtrzymania plynnosci zawiesiny przed jej usunieciem z fil¬ tru. Sztywna konstrukcja filtru nie pozwala na jego dostosowanie do wymogów techonologicznych, to jest do uzyskania minimalnego nakladu energii na rozfiltrowanie jednostki objetosci zawie¬ siny w zadanym zakresie stezen. Koncowe stezenie zawiesiny, po zageszczeniu jest w tym przy¬ padku narzucone przez konstrukcje filtru. W przypadku zageszczenia zawiesin o niskiej zawar¬ tosci ciala stalego dzialanie sztywno usytuowanych turbulizatorów powoduje obnizenie wydaj¬ nosci i straty energii na skutek jej dyssypacji w postaci ciepla, zas w przypadku zageszczania zawiesin w duzym stezeniu fazy stalej w strumieniu wlotowym wstepna czesc filtru pracuje z ob¬ nizona wydajnoscia ze wzgledu na zbyt duza koncentracje fazy stalej w zawiesinie. Rozwiazanie to nie jest przystosowane do jednoczesnego zageszczania i plukania zawiesin i ze wzgledu na zamontowany system sterowania filtrem nie nadaje sie do równoczesnego prowadzenia tych operacji.Ekonomiczne prowadzenie pelnego zageszczania zawiesin od stezenia bardzo niskiego do bardzo wysokiego wymaga zastosowania dwóch polaczonych szeregowo filtrów róznych typów. Biorac pod uwage wlasnosci fizykochemiczne zawiesin i wymagania technologiczne nalezaloby projektowac indywidualnie kazdy filtr, co z kolei uniemozliwia stosowanie danego urzadzenia do róznych za¬ wiesin. 0 ile w produkcji jednostkowej rozwiazanie takie jest dopuszczalne, to przy produkcji seryjnej urzadzen powoduje liczne komplikacje.Celem wynalazku Jest skonstruowanie tarczowego filtru dynamicznego, który bylby pozbawio¬ ny wymienionych niedogodnosci i umozliwial optymalne wykorzystanie urzadzenia w zaleznosci od rodzaju zawiesiny, stezenia wlotowego, stezenia wylotowego i innych wymogów technologicznych oraz posiadal zalety konstrukcyjne i eksploatacyjne dotychczas znanych filtrów dynamicznych.Istota wynalazku polega na tym, ze wymienione wirujace elementy filtracyjne o ksztalcie pierscieni znajduja sie w stopniach wstepnego i posredniego zageszczania a wirujace, wymienne mieszadla typu turbinowego znajduja sie w stopniech koncowych, przy czym wirujace elementy filtracyjne i wirujace mieszadla osadzone sa na wspólnym wale, posiadajacym co najmniej dwa kanaly polaczone z komorami do odprowadzania przesaczu na zewnatrz filtru wykonane w ten spo¬ sób, ze jednym odplywa z filtru przesacz ze stopni zageszczajacych zas drugim przesacz ze stop¬ ni pluczacych.139 264 3 Filtr dynamiczny wedlug wynalazku przedstawiono w przykladzie wykonania na rysunku, na którym uwidoczniono przekrój podluzny urzadzenia, przy czym cyframi oznaczono 1 - króciec wlo¬ towy, 2 - wirujacy element filtracyjny, 3 - wal napedowy, 4 - nieruchomy element filtracyjny, 5 - mieszadlo turbinowe, 6 - króciec do odprowadzania przesaczu ze stopni zageszczania, 7 - wy¬ lot zawiesiny zageszczonej, 8 - króciec wylotowy, 9 - silnik, 10 - zbiornik cisnieniowy, 11 - - krócce wlotowe cieczy pluczacej, 12 - kanal do odprowadzania przesaczu ze stopni zageszcza¬ nia, 13 - kanal do odprowadzania przesaczu ze stopni plukania, 14 - komora odbioru przesaczu ze stopni zageszczania, 15 - komora odbioru przesaczu ze stopni plukania i 16 - króciec do odprowadzania przesaczu ze stopni plukania* Urzadzenie wedlug wynalazku dziala w ten sposób, ze surowa zawiesina doprowadzana jest króccem 1 do zbiornika cisnieniowego 10, gdzie dostaje sie do strefy dzialania filtreacyjne- go elementu wirujacego 2. Element ten powoduje zawirowanie zawiesiny i dostarczenie jej do po¬ wierzchni porowatej nieruchomego elementu filtracyjnego 4, z której ciecz przedostaje sie do wnetrza tego elementu, skad jest odprowadzana króccem 6 na zewnatrz filtru* Jednoczesnie prze¬ sacz z wnetrza wirujacego elementu filtracyjnego 2 przeplywa do walu napedowego 3 i kanalami znajdujacymi sie wewnatrz walu jest odprowadzany na zewnatrz filtru. Czesciowo zageszczona zawiesina przedostaje sie szczelina pomiedzy elementem nieruchomym 4 a walem napedowym 3 do kolejnej komory filtru i jest ponownie intensywnie mieszana i rozdzielana na powierzchniach elementów filtrujacych 2 i 4 . W ten sposób zawiesina po przejsciu kolejnych stref saczacych jest stopniowo zageszczana az do osiagniecia stezenia, przy którym dalsze zageszczanie przy uzyciu mieszadla dyskowego, jakim jest wirujacy element filtracyjny, jest nieekonomiczne. Po osiagnieciu tego stezenia zawiesina jest przetlaczana do kolejnych stopni zlozonych z nieru¬ chomych elementów filtracyjnych 4 i szybkoscinajacych mieszadel turbinowych 5. V ten sposób zawiesina po przejsciu kolejnych stopni jest stopniowo zageszczana az do osiagniecia wymaga¬ nego stezenia i* wreszcie uchodzi wylotem 7 i króccem 8.Przemywanie zageszczonej zawiesiny moze sie odbywac jednoczesnie z przebiegajacym proce¬ sem filtracji. Ciecz pluczaca doprowadza sie króccami 11 do wybranych w zaleznosci od wymogów technologicznych stopni filtru. Doprowadzana ciecz placzaca jest mieszana z zawiesina i jedno¬ czesnie przesacz odprowadza sie wraz ze skladnikami rozpuszczalnymi króccami 16 z nieruchomych elementów filtracyjnych oraz kanalem 13 przez komore 15 z wirujacych elementów filtracyjnych umieszczonych w stopniach plukania. Odbierany jednoczesnie przesacz ze stopni zageszczania od¬ plywa kanalem 12 przez komory 14 z wirujacych elementów filtracyjnych oraz króccami 6 z nieru¬ chomych elementów filtracyjnych. W efekcie uzyskuje sie produkt o pozadanym stezeniu, pozbawio¬ ny skladników rozpuszczalnych, przy najnizszym mozliwym do uzyskania nakladzie energetycznym na jednostke objetosci przesaczu. Stosunek liczby wirujacych tarcz filtracyjnych do mieszadel jest uzalezniony od wymogów technologicznych i eksploatacyjnych oraz rodzaju zawiesiny.W celu porównania efektywnosci filtracji w filtrze dynamicznym wedlug wynalazku z fil¬ tracja w dotychczas znanych filtrach dynamicznych przeprowadzono próby porównawcze przy zasto¬ sowaniu trzech róznych aparatów i przy zachowaniu identycznych warunków filtracji i wymogów technologicznych. Próby przeprowadzono parzy uzyciu trzech dziesieciostopniowych filtrów dyna¬ micznych o srednicy zbiornika 0,5 m, z których pierwszy byl wyposazony w 11 wirujacych elemen¬ tów filtracyjnych i 10 nieruchomych elementów filtracyjnych, drugi w 11 mieszadel turbinowych szesciolopatkowych, otwartych a trzeci w 9 elementów filtracyjnych wirujacych, 2 mieszadla tur¬ binowe i 10 nieruchomych elementów. Do prób zastosowano wodna zawiesine kselinu o stezeniu 10# 4 -1 masowych. Próby prowadzono przy cisnieniu 3-10 MPa i predkosci obrotowej mieszadel 8s . We wszystkich próbach uzyskiwano produkt koncowy o stezeniu 62% masowych. ¥ wyniku prób stwierdzo¬ no, ze naklad energii na uzyskanie jednostki objetosci przesaczu wynosil: w filtrze z wiruja- 4 —3 4 cymi elementami filtracyjnymi 2,41*10 kWsm , w filtrze z mieszadlami turbinowymi 2,95*10 kWsm , w filtrze wedlug wynalazku 2,08*10 kWsm J.4 139 264 Zastrzezenie patentowe Filtr dynamiczny, stanowiacy przeplywowy zbiornik cisnieniowy zaopatrzony w krócce do doprowadzania cieczy pluczacej, w którym znajduja sie nieruchome pierscieniowe elementy filtra¬ cyjne zamocowane do obudowy oraz wirujace pierscieniowe elementy filtracyjne osadzone na wale, znamienny tym, ze wymiennie osadzone na wale (3) wirujace elementy filtracyjne (2) znajduja sie w stopniach wstepnego i posredniego zageszczania, a elementy mieszajace (5) typu turbinowego takze wymienne osadzone na tym samym wale (3) znajduja sie w stopniach koncowych, zas wal (3) wyposazony jest w co najmniej dwa kanaly (12, 13) polaczone z komorami (14, 15) do od¬ prowadzania przesaczu na zewnatrz filtru, z których jeden (12) sluzy do odprowadzania przesa¬ czu ze stopni zageszczania a drugi (13) ze strefy plukania.Pracownia Poligraficzna UP PRL. Naklad 100 egz Cena 130 zl PLThe subject of the invention is a dynamic filter for concentration, clarification and / or washing of slurry slurries. The known method of dynamic filtration consists in the fact that the separated and / or washed slurry is mixed intensively, so that no sediment is deposited on the filtration baffles. or it settles only partially, which reduces the flow resistance of the sieve and, as a result, increases the filtration efficiency per unit area. Two basic types of dynamic disc filters of various designs are known. One of the solutions is described by J. Soudek "Chemicky Prumysl" 21/46/1971 pp. 241-245. The filter is a flow-through pressure vessel in which the filtering elements are located. The filtering elements are fixed ring-shaped partitions attached to the walls of the tank, and between them there are rotating partitions, also ring-shaped, mounted on a hollow shaft placed in the axis of the tank. The exposed shaft drives the septum and constitutes the cumulative channel of the septum. The stationary filtration baffles are equipped with ports for the discharge of the sift, and the pressure vessel has a stub pipe for feeding the slurry and a stub pipe for draining the slurry that has been concentrated after passing through the system of fixed and movable baffles. Another: a well-known type of dynamic disc filter is the filter shown in Polish patent no. 94 528, which uses agitators mounted on a common solid shaft in a bowl of rotating filtering walls described by J. Soudek. Fixed filter baffles are equipped with nozzles for receiving the transfer. Additionally, in the body of the apparatus, there are connectors for supplying the washing liquid to the subsequent stages of the apparatus. Due to the method of mixing the suspension, i.e. the type of agitator and the rotational speed of the agitator, each of the above-mentioned types of disk dynamic filters is characterized by a different value of the maximum concentration of the suspension, a different filtration efficiency related to the surface unit of the filtration barrier and a different energy input to obtain the unit obje. ¬ tity of travel. Therefore, it is not justified to use any suspension. While the filters of the first type are more economical in terms of initial concentration and / or washing of the suspension, it is more economical to use filters of the second type at higher concentrations of suspension * For example, the use of a filter consisting of rotating filter baffles and fixed baffles filtration to obtain a highly concentrated suspension causes that in the last stages of the filter the concentration reaches the maximum value characteristic for this type of agitator. As a result, in these stages there is no separation of the slurry, and the entire energy input for mixing is wasted without use on increasing the temperature of the slurry due to dissipative effects. On the other hand, the use of a filter equipped with turbine agitators for the separation of low concentration suspensions, for example for clarification, causes that, despite the increase in energy input, no increase in filtration efficiency is achieved or only a slight increase that does not compensate for energy consumption. Thus, in both cases, there is an unjustified increase in the energy expenditure for obtaining the unit of the volume of the passage. Both of the mentioned solutions are adapted to supply the scrubbing liquid to each stage of the filter and to wash the soluble components from the filtered suspension. While in a filter with turbine agitators it is possible to separate a conveyor with a high content of soluble components from a diluted filtrate from the washing stages, in a filter with rotating filter discs, both streams of the percolator are mixed in an expressed drive shaft and unnecessary dilution of the solution, preventing the use of a washing liquid, while in the German patent description No. 2 844 023, the subject of which is a system of automatic control of a dynamic filter, the structure of a dynamic filter consisting of five stationary filter elements rigidly attached to the housing and three rotating filter discs rigidly attached to the housing was presented. a shaft and two elements acting as turbulators to maintain the fluidity of the suspension before its removal from the filter. The rigid structure of the filter does not allow it to be adapted to the technological requirements, that is, to obtain a minimum energy expenditure for filtering a unit of suspension volume in a given concentration range. The final concentration of the slurry, after concentration, is in this case dictated by the filter designs. In the case of concentration of suspensions with a low solids content, the operation of the rigidly positioned turbulators causes a reduction in efficiency and energy losses due to its dissipation in the form of heat, while in the case of concentration of suspensions with a high concentration of solid phase in the inlet stream, the initial part of the filter works with The ¬ nona efficiency due to the too high concentration of the solid phase in the suspension. This solution is not suitable for simultaneous concentration and washing of suspensions and due to the filter control system installed, it is not suitable for simultaneous carrying out of these operations. Economical performance of full concentration of suspensions from very low to very high concentration requires the use of two filters of different types connected in series. Taking into account the physicochemical properties of suspensions and technological requirements, each filter should be individually designed, which in turn makes it impossible to use a given device for various suspensions. While such a solution is acceptable in unit production, it causes numerous complications in serial production of the equipment. The aim of the invention is to construct a disk dynamic filter that would be free of the above-mentioned disadvantages and would enable the optimal use of the equipment depending on the type of suspension, inlet concentration, outlet concentration. and other technological requirements, and had the design and operational advantages of previously known dynamic filters. The essence of the invention consists in the fact that said ring-shaped rotating filter elements are in the stages of preliminary and intermediate compression, and the rotating, replaceable turbine-type agitators are in the final stages, the rotating filter elements and the rotating agitators are mounted on a common shaft having at least two channels connected to the chambers for draining the shunt outside the filter made in this way, with one drain flowing out of the filter from the thickening stages, and the second one from the rinsing stages. 139 264 3 The dynamic filter according to the invention is shown in the example of the drawing, which shows the longitudinal section of the device, where the numbers indicate 1 - inlet stub, 2 - rotating filter element, 3 - drive shaft, 4 - stationary filter element, 5 - turbine agitator, 6 - connector for discharging the slurry from the concentration stages, 7 - concentrated suspension outlet, 8 - outlet connector, 9 - engine, 10 - pressure tank, 11 - - washing liquid inlet nozzles, 12 - channel for draining the flow from the concentration stages, 13 - channel for removing the flow from the rinsing stages, 14 - chamber for collecting the flow from the rinsing stages, 15 - chamber for collecting the flow from the rinsing stages and 16 - connector for The device according to the invention operates in such a way that the raw suspension is fed through the port 1 to the pressure tank 10, where that enters the zone of action of the filtration rotating element 2. This element causes the suspension to swirl and deliver it to the porous surface of the stationary filter element 4, from which the liquid enters the interior of this element, from where it is drained through the stub pipe 6 to the outside of the filter * At the same time, the conveyor from the inside of the rotating filter element 2 flows to the drive shaft 3 and is discharged through the channels inside the shaft to the outside of the filter. The partially concentrated suspension passes the gap between the stationary element 4 and the drive shaft 3 into the next filter chamber and is again intensively mixed and separated on the surfaces of the filter elements 2 and 4. In this way, the slurry, after passing successive dripping zones, is gradually concentrated until it reaches a concentration at which further compaction using a disc agitator such as a spinning filter element is uneconomical. After reaching this concentration, the suspension is forced to successive stages consisting of fixed filter elements 4 and high-speed turbine mixers 5. In this way, the suspension, after passing successive stages, is gradually thickened until the required concentration is reached, and finally it flows out through the outlet 7 and the nozzle. 8. Washing of the concentrated suspension may take place simultaneously with the filtration process running. The washing liquid is led through the stubs 11 to the filter stages selected depending on the technological requirements. The supplied tearing liquid is mixed with the slurry, and at the same time the filtrate is discharged with the soluble components via ports 16 from the stationary filter elements and through a channel 13 through a chamber 15 of rotating filter elements placed in the washing stages. The flow from the concentration stages, taken at the same time, flows through the channel 12 through the chambers 14 from the rotating filter elements and through the stub pipes 6 from the fixed filter elements. As a result, a product of the desired concentration is obtained, devoid of soluble components, with the lowest possible energy expenditure per unit volume of the flow. The ratio of the number of rotating filter discs to the mixers depends on the technological and operational requirements and the type of suspension. In order to compare the filtration efficiency in the dynamic filter according to the invention with the filtration in the previously known dynamic filters, comparative tests were carried out with the use of three different apparatuses and maintaining identical filtration conditions and technological requirements. The tests were carried out using three 10-stage dynamic filters with a tank diameter of 0.5 m, the first of which was equipped with 11 rotating filter elements and 10 stationary filter elements, the second with 11 six-blade turbine mixers, open, and the third with 9 filter elements. rotating elements, 2 turbine mixers and 10 stationary elements. An aqueous suspension of kselin with a concentration of 10 # 4 -1 by mass was used for the tests. The tests were carried out at a pressure of 3-10 MPa and a rotational speed of the mixers of 8s. In all trials the final product was obtained with a concentration of 62% by mass. As a result of the tests, it was found that the energy input to obtain a unit of the volume of the conveyor was: 2.41 * 10 kWsm in a filter with rotating filter elements, 2.95 * 10 kWsm in a filter with turbine mixers, in the filter according to the invention 2.08 * 10 kWsm J.4 139 264 Patent claim Dynamic filter, being a flow-through pressure tank equipped with spigots for feeding the washing liquid, in which there are stationary ring-shaped filter elements attached to the housing and rotating ring-shaped filter elements mounted on shaft, characterized in that the rotating filter elements (2) mounted on the shaft (3) are in the stages of preliminary and intermediate compaction, and the turbine-type mixing elements (5) are also replaceable mounted on the same shaft (3) in stages end ends, and the shaft (3) is equipped with at least two channels (12, 13) connected to chambers (14, 15) for draining the percolate outside the filter, one of which n (12) is used to drain the filtrate from the concentration stages and the other (13) from the rinsing zone. Mintage 100 copies Price PLN 130 PL

Claims (1)

1. Zastrzezenie patentowe Filtr dynamiczny, stanowiacy przeplywowy zbiornik cisnieniowy zaopatrzony w krócce do doprowadzania cieczy pluczacej, w którym znajduja sie nieruchome pierscieniowe elementy filtra¬ cyjne zamocowane do obudowy oraz wirujace pierscieniowe elementy filtracyjne osadzone na wale, znamienny tym, ze wymiennie osadzone na wale (3) wirujace elementy filtracyjne (2) znajduja sie w stopniach wstepnego i posredniego zageszczania, a elementy mieszajace (5) typu turbinowego takze wymienne osadzone na tym samym wale (3) znajduja sie w stopniach koncowych, zas wal (3) wyposazony jest w co najmniej dwa kanaly (12, 13) polaczone z komorami (14, 15) do od¬ prowadzania przesaczu na zewnatrz filtru, z których jeden (12) sluzy do odprowadzania przesa¬ czu ze stopni zageszczania a drugi (13) ze strefy plukania. Pracownia Poligraficzna UP PRL. Naklad 100 egz Cena 130 zl PL1. Patent claim Dynamic filter, constituting a flow-through pressure vessel provided with nozzles for supplying rinsing liquid, in which there are stationary filter ring elements attached to the housing and rotating filter ring elements mounted on the shaft, characterized by the fact that they are mounted on the shaft interchangeably ( 3) the rotating filter elements (2) are in the stages of preliminary and intermediate compaction, and the turbine-type mixing elements (5) are also replaceable on the same shaft (3) are in the final stages, while the shaft (3) is equipped with at least two channels (12, 13) connected to the weir drainage chambers (14, 15) outside the filter, one of which (12) is for drainage of the filtrate from the concentration stages and the other (13) from the washing zone. Printing workshop of the UP PRL. Mintage 100 copies Price PLN 130 PL
PL1983240221A 1983-01-19 1983-01-19 Dynamic filter PL139264B1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PL1983240221A PL139264B1 (en) 1983-01-19 1983-01-19 Dynamic filter
DE3401607A DE3401607C2 (en) 1983-01-19 1984-01-18 Dynamic filter
SE8400213A SE449181B (en) 1983-01-19 1984-01-18 DYNAMIC FILTER
FR848400815A FR2539320B1 (en) 1983-01-19 1984-01-19 DYNAMIC FILTER WITH FIXED FILTRATION ELEMENTS

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PL1983240221A PL139264B1 (en) 1983-01-19 1983-01-19 Dynamic filter

Publications (2)

Publication Number Publication Date
PL240221A1 PL240221A1 (en) 1984-07-30
PL139264B1 true PL139264B1 (en) 1987-01-31

Family

ID=20015630

Family Applications (1)

Application Number Title Priority Date Filing Date
PL1983240221A PL139264B1 (en) 1983-01-19 1983-01-19 Dynamic filter

Country Status (4)

Country Link
DE (1) DE3401607C2 (en)
FR (1) FR2539320B1 (en)
PL (1) PL139264B1 (en)
SE (1) SE449181B (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3813345A1 (en) * 1988-04-21 1989-11-02 Biersdorf Apparatebau ROTOR FILTER PRESS WITH CHAMBER FLOW
US6916425B2 (en) 1996-11-29 2005-07-12 Pall Corporation Mashing process
DE19925397A1 (en) * 1999-06-02 2000-12-07 Bokela Ing Gmbh Method and device for solid-liquid separation
DE10038329A1 (en) * 2000-08-05 2002-02-21 Guenther Enderle Filtering arrangement used for filtering liquids has stirring elements and filter elements arranged in plane which runs vertically to rotor axis
DE10063484A1 (en) * 2000-12-20 2002-07-04 Bayer Ag Screen filtration of filled polyols with dynamic pressure plate filters
DE10305320B4 (en) * 2003-02-10 2007-04-12 Erhard Rudolf Filter device, filter media and filtration method
EP2042229A1 (en) * 2007-09-28 2009-04-01 Grundfos BioBooster A/S Reactor unit and reactor
DE102010015871A1 (en) * 2010-03-09 2011-09-15 Tu Kaiserslautern Device for the process-engineering treatment of solids-rich suspensions
KR102630732B1 (en) * 2018-12-07 2024-01-29 오르가노 코포레이션 Filtration device and filtration method for oil-containing drainage and regeneration method and device for filtration membrane device
CN110141987A (en) * 2019-05-09 2019-08-20 清远初曲智能科技有限公司 A kind of rubbing condiment blender that can filter collection meat products grease
CN113813908B (en) * 2021-10-22 2023-09-22 上海安赐环保科技股份有限公司 Integrated reaction and separation system, process and application

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1215168A (en) * 1958-11-07 1960-04-15 Disc filter for methodical washing
US3884805A (en) * 1974-05-13 1975-05-20 Artisan Ind Apparatus and process for continuous concentration of solids from a solids-containing fluid
US3884813A (en) * 1974-05-13 1975-05-20 Artisan Ind Solids concentrator with a rotor having ploughs thereon
US3984317A (en) * 1975-06-05 1976-10-05 Artisan Industries Inc. Apparatus and process for continuous concentration and washing of solids from a solids-containing fluid
DE2844023A1 (en) * 1978-10-09 1980-04-24 Kloeckner Humboldt Deutz Ag METHOD AND DEVICE FOR DYNAMICALLY THICKNING A SUSPENSION

Also Published As

Publication number Publication date
DE3401607A1 (en) 1984-07-19
FR2539320A1 (en) 1984-07-20
SE8400213D0 (en) 1984-01-18
SE8400213L (en) 1984-07-20
SE449181B (en) 1987-04-13
PL240221A1 (en) 1984-07-30
FR2539320B1 (en) 1990-02-09
DE3401607C2 (en) 1986-07-31

Similar Documents

Publication Publication Date Title
US4670150A (en) Cross-flow microfiltration lime softener
AU634359B2 (en) Apparatus for filtering liquids
US4547286A (en) Water filtration process and apparatus having upflow filter with buoyant filter media and downflow filter with nonbuoyant filter media
PL139264B1 (en) Dynamic filter
CN109734216A (en) A kind of high-salt wastewater is except the hard processing system and treatment process for removing silicon turbidity removal
PL144355B1 (en) Apparatus for discolouring a fibrous material or suspension
Noor et al. Performance of flexible membrane using kaolin dynamic membrane in treating domestic wastewater
CN208949038U (en) A kind of high-salt wastewater is except the hard processing system for removing silicon turbidity removal
CN109833644B (en) Powder extraction system
CS230575B2 (en) Equipment for rinsing fibre raw high density material
EP0131119A1 (en) Cross-flow microfiltration lime softener
CN115054986A (en) Coprecipitation reaction system and filtering and concentrating device thereof
CA2490906C (en) Device for cross-flow filtration
RU2106893C1 (en) Filter
SU684016A1 (en) Apparatus for purifying waste water
CN207498158U (en) A kind of waste water purification device
RU2091177C1 (en) Device for cleaning waste water and other liquids
SU1386263A1 (en) Unit for solving
SU1012948A1 (en) Self-cleaning filter
CN209900809U (en) Cross flow filter
SU1242210A1 (en) Filter for cleaning suspensions
SU1219527A1 (en) Device for waste water purification
RU2069102C1 (en) Device for purification of sewage and other liquids
KR20040040361A (en) Horizontal high-speed filter using fiber filter element
PL146002B1 (en) Apparatus for continuous filtration of liquids