PL125433B1 - Method of removing waste gases from a furnance for reforming hydrocarbons in presence of water - Google Patents

Method of removing waste gases from a furnance for reforming hydrocarbons in presence of water Download PDF

Info

Publication number
PL125433B1
PL125433B1 PL21714379A PL21714379A PL125433B1 PL 125433 B1 PL125433 B1 PL 125433B1 PL 21714379 A PL21714379 A PL 21714379A PL 21714379 A PL21714379 A PL 21714379A PL 125433 B1 PL125433 B1 PL 125433B1
Authority
PL
Poland
Prior art keywords
steam
injector
reforming
water
mpa
Prior art date
Application number
PL21714379A
Other languages
Polish (pl)
Other versions
PL217143A1 (en
Inventor
Jozef Pomaranski
Marek Dmoch
Original Assignee
Inst Nawozow Sztucznych
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inst Nawozow Sztucznych filed Critical Inst Nawozow Sztucznych
Priority to PL21714379A priority Critical patent/PL125433B1/en
Publication of PL217143A1 publication Critical patent/PL217143A1/xx
Publication of PL125433B1 publication Critical patent/PL125433B1/en

Links

Landscapes

  • Hydrogen, Water And Hydrids (AREA)

Description

Przedmiotem wynalazku jest sposób usuwania spalin z pieca do reformingu weglowodorów z para wodna.Piece do reformingu gazowych i cieklych weglowodorów z para wodna sa powszechnie stosowane do produkcji gazu syntezowego w wytwórniach amoniaku, metanolu, czystego wodoru i innych produktów chemicz¬ nych. Opalane sa paliwem weglowodorowym gazowym lub cieklym. Poza komora spalania, w której w umiesz¬ czonych tam rurach z katalizatorem przebiega wlasciwy proces reformingu, piece te maja rozbudowany uklad wymienników ciepla tworzacych tzw. sekcje konwekcyjna. Zadaniem sekcji konwekcyjnej jest maksymalne wykorzystanie ciepla spalin. Ze wzgledu na dosc duze opory hydrauliczne sekcji konwekcyjnej, siegajace 2000 Pa w nowoczesnych duzych piecach, zastosowanie ciagu naturalnego dla uzyskania przeplywu i usuwania spalin nie jest mozliwe. Przeplyw spalin przez piec i usuwanie ich do atmosfery odbywa sie wiec przy uzyciu wentylatora. Do napedu wentylatora stosowana jest turbina (parowa) lub silnik elektryczny. Praca wentylatora decyduje o ruchu pieca reformingu, a wiec o niezawodnosci i bezpiecznej pracy calej instalacji wytwarzajacej gaz syntezowy. Dla zapewnienia duzej niezawodnosci pracy pieca stosowane sa niekiedy urzadzenia rezerwowe do usuwania spalin. Znanym rozwiazaniem jest zastosowanie rezerwowego wentylatora lub inzektora parowego.Rezerwowy inzektor zwykle zasilany jest (napedzany) para z sieci niskocisnieniowej np. 0,35 MPa. Inzektor parowy uwaza sie w technice za niezawodne urzadzenie rezerwowe.Wentylator spalin zuzywa znaczne ilosci energii Przykladowo wentylator do usuwania 100000 m3/h spalin (w warunkach normalnych), o napedzie turbina parowa, zuzywa ponad 4000 kg/h pary przegrzanej 3,6 MPa.Jeszcze mniej ekonomiczny okazuje sie inzektor parowy. Gdyby zastosowac go jako glówne urzadzenie, to do usuwania 100000 m3/h spalin zuzywalby okolo 5000 kg/h pary 0,35 MPa Jak wynika z powyzszego, korzystnym rozwiazaniem byloby zastosowanie do usuwania spalin z pieca do reformingu weglowodorów cieklych i gazowych z para wodna wylacznie inzektora parowego, który umozliwial¬ by niezawodna i bezpieczna prace pieca, jednak z wykluczeniem zuzycia wartosciowej pary wodnej. Jest to mozliwe do osiagniecia, jezeli zastosuje sie sposób wedlug wynalazku.Istota wynalazku jest to, ze do napedu inzektora stosuje sie pare wodna o cisnieniu absolutnym do 0,13 MPa, wyprodukowana w kotle utylizatorze polaczonym bezposrednio z dysza napedowa inzektora.2 125433 Ten „bezcisnieniowy" kociol utylizator, usytuowany w linii schladzania gazu technologicznego, dla wytworzenia pary napedowej inzektora, wykorzystuje fizyczne i utajone cieplo zawarte w gazie technologicznym w zakresie temperatur od okolo 140—145°C do okolo 105—110°C. Ciepla o tak niskim potencjale nie mozna w praktyce wykorzystac w innych kotlach utylizatorach produkujacych pare kierowana do sieci parowych.Teoretycznie mozliwe byloby wykorzystanie tego ciepla do wstepnego podgrzewu wody zasilajacej kotly paro¬ we. W praktyce jednak zapotrzebowanie na cieplo do wstepnego podgrzewu wody jest male i znaczne ilosci tego niskopotencjalnego ciepla tracone sa w chlodnicach. „Bezcisnieniowy" kociol utylizator wytwarza pare wodna o bardzo niskim nadcisnieniu 0,01-0,03 MPa, t.j. cisnieniu absolutnym w granicach 0,11-0,13 MPa. Para ta ze wzgledu na brak mozliwosci transportu nie moze byc skierowana do sieci parowych i nie moze byc ocenianajako wartosciowa para grzewcza. Mozliwe jest natomiast, jak to przewiduje wynalazek, bezposrednie polaczenie „bez¬ cisnieniowego" kotla z inzektorem spalin. Nadcisnienie w kotle ustala sie w tym ukladzie samorzutnie, glównie jako wynik dzialania inzektora. Ilosc pary niezbednej do usuwania spalin mozna latwo wyregulowac poprzez odpowiednie zbocznikowanie poprzedzajacego kociol wymiennika ciepla. Zuzycie pary odpadowej do napedu inzektora dla usuwania 100000 m3/h spalin wynosi okolo 15000 kg/h. Taka ilosc pary wodnej mozna w wielu wytwórniach gazu syntezowego uzyskac poprzez schladzanie gazu technologicznego po reformingu i po ewen¬ tualnych innych nastepnych procesach technologicznych w zakresie temperatur 140-110°C.Sposób usuwania spalin wedlug wynalazku jest prosty w realizacji, niezawodny w dzialaniu i umozliwia gleboka utylizacje ciepla zawartego w gazie technologicznym. Dodatkowymi zaletami inzektora o niskich spad¬ kach cisnieniajest duza sprawnosc i cicha praca.Przyklad zastosowania wynalazku przedstawiono na fig. 1. W procesie wytwarzania gazu syntezowego sto¬ sujacym reforming weglowodorów z para wodna^surowiec 1 i para wodna przetwarzane sa w piecu PR na miesza¬ nine gazów, zwana gazem technologicznym wyprowadzanym przewodem 2. Spaliny z pieca PR schladzane sa w szeregu wymienników ciepla sekcji konwekcyjnej SK i doprowadzane przewodem 5 do inzektora I, który usuwa je do atmosfery. Gaz technologiczny po piecu reformingu (przewód 2) i ewentualnych innych procesach technologicznych (od 2 do 3) jest schladzany. Cieplo w nim zawarte uzywane jest do produkcji pary w kotlach utylizatorach, do podgrzewu wody dla tychze kotlów itp. celów. Po ostatnim z szeregu wymienników ciepla na linii gazu technologicznego WC, gaz technologiczny osiaga temperature 140-145°C i kierowany jest przewodem 4 do „bezcisnieniowego" kotla KB. Kociol ten wytwarza pare wodna o nadcisnieniu 0,01-0,03 MPa (cisnieniu absolutnym w granicach 0,11-0,13 MPa). Para ta przewodem 6 kierowanajest bezposrednio do dyszy napedowej inzektora 1. Gaz technologiczny po kotle KB odplywa przewodem 7 majac temperature 105-110°C. Ilosc ciepla doprowadzana do kotla KB regulowanajest przewodem bocznikowym z zaworem regulacyjnym ZB.Zastrzezenie patentowe Sposób usuwania spalin z pieca do reformingu weglowodorów z para wodna, przy uzyciu inzektora parowe¬ go, do zasilania którego uzywa sie pary niskopreznej, wyprodukowanej kosztem ciepla gazu technologicznego po reformingu i po ewentualnych innych nastepnych procesach technologicznych, znamienny tym, ze do napedu inzektora stosuje sie pare wodna o cisnieniu absolutnym do 0,13 MPa, wyprodukowana w kotle utyliza- torze polaczonym bezposrednio z dysa napedowa inzektora.125 433 J H^ J" SK PARA M N u i /°tf ra i^ i g a a. tfa * PLThe present invention relates to a method for removing flue gas from a steam reforming furnace. Steam and liquid hydrocarbon reforming furnaces are commonly used in the production of synthesis gas in ammonia, methanol, pure hydrogen and other chemical products plants. They are fired with gaseous or liquid hydrocarbon fuel. Apart from the combustion chamber, in which the proper reforming process takes place in the pipes with the catalyst, these furnaces have an extensive system of heat exchangers forming the so-called convection sections. The task of the convection section is to maximize the use of exhaust heat. Due to the relatively high hydraulic resistance of the convection section, reaching 2000 Pa in modern large furnaces, the use of natural draft to obtain the flow and removal of exhaust gases is not possible. Thus, the exhaust gas flows through the furnace and is discharged to the atmosphere by means of a fan. A (steam) turbine or an electric motor is used to drive the fan. The operation of the fan determines the movement of the reforming furnace, and thus the reliability and safe operation of the entire synthesis gas production plant. In order to ensure a high operational reliability of the furnace, backup devices are sometimes used to remove the flue gases. A known solution is the use of a backup fan or steam injector. The backup injector is usually supplied (driven) by steam from a low pressure network, e.g. 0.35 MPa. The steam injector is considered a reliable back-up device in technology. The flue gas fan consumes considerable amounts of energy. For example, a fan to remove 100,000 m3 / h of flue gas (under normal conditions), driven by a steam turbine, consumes more than 4,000 kg / h of superheated steam 3.6 MPa. The steam injector turns out to be even less economical. If it was used as the main device, for the removal of 100,000 m3 / h of flue gas, it would use about 5,000 kg / h of steam 0.35 MPa.As it follows from the above, a preferred solution would be to use only liquid and gaseous hydrocarbons from steam in the reforming furnace a steam injector, which would enable reliable and safe operation of the furnace, but excluding the consumption of valuable steam. It is possible to achieve this if the method according to the invention is used. The essence of the invention is that the injector drive uses water vapor with an absolute pressure of up to 0.13 MPa, produced in a utilizer boiler connected directly to the injector driving nozzle. 2 125433 This " the pressureless "utilizer boiler, located in the process gas cooling line, uses the physical and latent heat contained in the process gas in the temperature range from about 140-145 ° C to about 105-110 ° C to generate the injector driving steam. cannot be used in practice in other boilers producing steam sent to steam networks. Theoretically, it would be possible to use this heat for pre-heating the steam boiler feed water. In practice, however, the heat demand for pre-heating water is small and large amounts of this low-potential heat they are lost in coolers. The "pressureless" utilizer boiler produces water vapor with very low overpressure 0.01-0.03 MPa, i.e. absolute pressure within 0.11-0.13 MPa. Due to the impossibility of transport, this steam cannot be directed to steam networks and cannot be assessed as valuable heating steam. However, it is possible, as envisaged by the invention, to connect the "pressureless" boiler directly to the flue gas injector. The overpressure in the boiler is established spontaneously in this system, mainly as a result of the injector. heat exchanger boiler. The waste steam consumption for the injector drive for the removal of 100,000 m3 / h of flue gas is about 15,000 kg / h. This amount of water vapor can be obtained in many syngas plants by cooling the process gas after reforming and any other subsequent technological processes in the temperature range of 140-110 ° C. The method of exhaust gas removal according to the invention is simple to implement, reliable in operation and enables deep utilization of the heat contained in the process gas. Additional advantages of the low pressure drop injector are high efficiency and quiet operation. shown on Fig. 1. In the synthesis gas production process using hydrocarbon reforming with steam, the raw material 1 and the steam are converted in the PR furnace into a gas mixture, called process gas, discharged through line 2. The flue gases from the PR furnace are cooled in a series of exchangers the heat of the convection section SK and supplied through the conduit 5 to the injector I, which removes them to the atmosphere. The process gas downstream of the reforming furnace (line 2) and any other technological processes (2 to 3) is cooled down. The heat contained in it is used for the production of steam in boilers, utilizers, for heating water for these boilers, etc. purposes. After the last of the series of heat exchangers on the WC process gas line, the process gas reaches the temperature of 140-145 ° C and is directed through the conduit 4 to the "pressureless" KB boiler. This boiler produces water vapor with an overpressure of 0.01-0.03 MPa (pressure absolute in the range 0.11-0.13 MPa). This steam is directed through the line 6 directly to the injector 1 drive nozzle 1. The process gas after the KB boiler flows out through the line 7 at a temperature of 105-110 ° C. with a control valve ZB. Patent claim A method of removing flue gases from a hydrocarbon reforming furnace with steam, using a steam injector, which is supplied with low-pressure steam, produced at the expense of the heat of the process gas after reforming and after any other subsequent technological processes, characterized by the fact that the injector drive uses water steam with an absolute pressure of up to 0.13 MPa, produced in a boiler in a utilizer connected directly to the drive disk of the injector. 125 433 J H ^ J "SK PARA M N u i / ° tf ra i ^ i g a a. tfa * PL

Claims (1)

1. Zastrzezenie patentowe Sposób usuwania spalin z pieca do reformingu weglowodorów z para wodna, przy uzyciu inzektora parowe¬ go, do zasilania którego uzywa sie pary niskopreznej, wyprodukowanej kosztem ciepla gazu technologicznego po reformingu i po ewentualnych innych nastepnych procesach technologicznych, znamienny tym, ze do napedu inzektora stosuje sie pare wodna o cisnieniu absolutnym do 0,13 MPa, wyprodukowana w kotle utyliza- torze polaczonym bezposrednio z dysa napedowa inzektora.125 433 J H^ J" SK PARA M N u i /°tf ra i^ i g a a. tfa * PL1. Patent claim A method of removing flue gases from a hydrocarbon reforming furnace with steam, using a steam injector, which is fed with low-pressure steam, produced at the expense of the heat of the process gas after reforming and after any other subsequent technological processes, characterized by the fact that the injector drive uses water vapor with an absolute pressure up to 0.13 MPa, produced in a utilizer boiler connected directly to the injector drive. 125 433 JH ^ J "SK PARA MN ui / ° tf ra i ^ iga a. tfa * PL
PL21714379A 1979-07-16 1979-07-16 Method of removing waste gases from a furnance for reforming hydrocarbons in presence of water PL125433B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL21714379A PL125433B1 (en) 1979-07-16 1979-07-16 Method of removing waste gases from a furnance for reforming hydrocarbons in presence of water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PL21714379A PL125433B1 (en) 1979-07-16 1979-07-16 Method of removing waste gases from a furnance for reforming hydrocarbons in presence of water

Publications (2)

Publication Number Publication Date
PL217143A1 PL217143A1 (en) 1981-02-13
PL125433B1 true PL125433B1 (en) 1983-05-31

Family

ID=19997485

Family Applications (1)

Application Number Title Priority Date Filing Date
PL21714379A PL125433B1 (en) 1979-07-16 1979-07-16 Method of removing waste gases from a furnance for reforming hydrocarbons in presence of water

Country Status (1)

Country Link
PL (1) PL125433B1 (en)

Also Published As

Publication number Publication date
PL217143A1 (en) 1981-02-13

Similar Documents

Publication Publication Date Title
RU2461516C1 (en) Low-energy method of producing ammonia or methanol
US7665291B2 (en) Method and system for heat recovery from dirty gaseous fuel in gasification power plants
JP5568552B2 (en) Cement clinker manufacturing method and cement clinker manufacturing facility
RU2688078C2 (en) Coaling welded electric installation with oxy-ignition with heat integrating
JP2010038537A (en) System and method for controlling stack temperature
US9592487B2 (en) Steam methane reformer system and method of performing a steam methane reforming process
AU2012366907A1 (en) Method and device for producing nitric acid
RU2639397C1 (en) Mode of gas turbine plant operation on methane-contained steam-gas mixture and its actualization device
EP3844371B1 (en) System for generating energy in a working fluid from hydrogen and oxygen and method of operating this system
JP2021130827A (en) Method and system of treating synthesis gas
JP3977840B2 (en) Waste heat boiler for Claus plant
PL125433B1 (en) Method of removing waste gases from a furnance for reforming hydrocarbons in presence of water
EP3250854B1 (en) Energy generation plant as well as method for generating energy from wet biomass
RU2017122296A (en) METHOD FOR CONVERSION OF NATURAL GAS WITH WATER STEAM, INCLUDING TWO COMBUSTION CHAMBERS, GENERATING HOT SMOKE GASES, TRANSFERRING HEAT ENERGY, PERFORMANT FOR CARRY AND CLEANERS
CN211005275U (en) System for heating rich oil and debenzolization heat source by using flue gas waste heat
CN101495731A (en) Method for operating a power station with integrated coal gasification and power station
JP2007503544A (en) Steam power station
JP4440519B2 (en) Method and plant for producing flammable gas from gas obtained from heat conversion of solid feed
DE102020000614A1 (en) Energy management system for residual heat (ESR)
RU2708936C1 (en) Multigenerating complex with combined fuel at additional production of hydrogen and oxygen
RU2533591C1 (en) Liquid heating method and liquid heater on its basis
RU130670U1 (en) EVAPORATOR INSTALLATION OF A STEAM-GAS UNIT FOR DISPOSAL TYPE
EP3765403B1 (en) Method for revamping and increasing the capacity of a hydrocarbon reforming section
US20240200472A1 (en) Generating electrical energy from hydrogen and oxygen
ATANASOVA ENERGY ESTIMATION OF THE FIRST AND SECOND REFORMING IN THE AMMONIA PRODUCTION BY THE CONVENTIONAL TECHNOLOGY.