PL111049B1 - Method of producing stable dispersion of the coal in oil - Google Patents

Method of producing stable dispersion of the coal in oil Download PDF

Info

Publication number
PL111049B1
PL111049B1 PL1977196435A PL19643577A PL111049B1 PL 111049 B1 PL111049 B1 PL 111049B1 PL 1977196435 A PL1977196435 A PL 1977196435A PL 19643577 A PL19643577 A PL 19643577A PL 111049 B1 PL111049 B1 PL 111049B1
Authority
PL
Poland
Prior art keywords
oil
coal
grinding
dispersion
carbon
Prior art date
Application number
PL1977196435A
Other languages
Polish (pl)
Original Assignee
British Petroleum Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by British Petroleum Co Ltd filed Critical British Petroleum Co Ltd
Publication of PL111049B1 publication Critical patent/PL111049B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/32Liquid carbonaceous fuels consisting of coal-oil suspensions or aqueous emulsions or oil emulsions
    • C10L1/322Coal-oil suspensions

Description

Twórca wynalazku: Uprawniony z patentu: The British Petroleum Company Limited, Londyn (Wielka Brytania) Sposób wytwarzania stabilnej dyspersji wegla w oleju Wynalazek dotyczy sposobu wytwarzania stabil¬ nej dyspersji wegla w oleju.Szlamy weglowo-olejowe sa znane, np. z brytyj¬ skiego opisu patentowego nr 975 687. Zachowuja sie one w rurociagach tak jak prawie Newtonow¬ skie nie osiadajace plyny, jednakze w czasie stania rozdzielaja sie. Szlamy takie nadaja sie do uzytku natychmiast po ich sporzadzeniu lub przeslaniu rurociagiem, ale nie nadaja sie ani do transportu w tankowcach ani do skladowania.Sposób wytwarzania stabilnej dyspersji wegla w oleju znany jest rówmeiz z polskiego opisu pa¬ tentowego nr 24 347. Sposób ten polega na miele¬ niu na mokro zawiesiny wegla w oleju. Mielenie to prowadzi sie z dostepem powietrza, przy czym otrzymuje sie produkt o stezeniu wegla 60% lub wiecej.Dyspersja otrzymana powyzszym sposobem byla równiez niestabilna i nie nadawala sie do .transpor¬ tu ani skladowania.Stwierdzono, ze przez odpowiednie dobranie ca¬ lego (zespolu parametrów takich jak: sposób mie¬ lenia, koncowa wielkosc czastek oraz koncowe ste¬ zenie wegla w oleju, mozna uniknac wad raianych produktów i otrzymac wyjatkowo stabilna dys¬ persje.Dyspersja otrzymana sposobem wedlug wynalaz¬ ku ma postac zelu, w którym siec fizyczna jest utworzona przez czastki wegla w oleju. Wytwarza 10 15 25 30 sie tu jednolita struktura, z której czastki wegla nie moga wypasc, poniewaz tworza jego czesc.Powyzsza cecha odróznia wyraznie nowy pro¬ dukt od wszystkich dotychczas wytwarzanych dys¬ persji olejowych, które byly zawsze w formie szla¬ mów, w których czastki wegla byly zawieszone w oleju i po pewnym czasie oddzielaly sie ze szlamu.Sposób wedlug wynalazku polega na tym, ze wegiel miele sie w oleju gazowym lub w ciezszej frakcji ropy naftowej do osiagniecia wielkosci czastek ponizej 10 mikronów i osiagniecia zawar¬ tosci wegla 15—55*/» wagowych w odniesieniu do ciezaru calej dyspersji, przy czym mielenie pro¬ wadzi sie bez dostepu wolnego tlenu.W czosie mielenia weggla bez dostepu wolnego tlenu powstaje produkt o strukturze zelu, co wy¬ raznie swiadczy, ze podczas mielenia zachodzi re¬ akcja fizykochemiczna. Otrzymany produkt ma strukture i postac wyraznie rózna od produktów wyjsciowych, a takze od dyspersji otrzymywanych znanymi sposobami.Stabilne dyspersje wegla w oleju wedlug wy¬ nalazku nadaja sie zarówno do pompowania jak i skladowania.Dyspersja wegla w oleju wedlug wynalazku za¬ wiera 15—55°/o wagowych wegla o sredniej wiel¬ kosci czastek ponizej 10 mikronów. Jako wegiel korzystnie zawiera wegiel bitumiczny, a jako olej 111 049111 049 3 korzystnie olej gazowy lub ciezsza frakcje ropy naftowej.Dyspersje wedlug wynalazku otrzymuje sie spo¬ sobem .polegajacym na mieleniu wegla w srodo¬ wiska oleju gazowego lub ciezszych frakcjach ropy 5 naftowej do momentu, gdy po zaprzestaniu mie¬ lenia uzyskuje sie stabilna dyspersje.Okreslenie „stabilna dyspersja" oznacza dysper¬ sje, która nie rozdziela sie na warstwy swych skladników, przy skladowaniu w temperaturze oto- io czenia w ciagu co najmniej 6 miesiecy.Mielenie mozna prowadzic w (mlynie kulowym wybracyjnym lub mieszadlowym.Mielenie bez dostepu powietrza osiaga sie to latwo w przypadku wibracyjnego mlyna kulowego, 15 napelniajac mlyn najpierw olejem, £ nastepnie kulami i weglem. Korzystny sposób polega na napelnieniu mlyna olejem, dodaniu polowy kul, nastepnie wegla i w koncu reszty kul. W przy¬ padku mlyna mieszadlowego, kule dodaje sie naj- 20 pierw, nastepnie olej i w koncu wegiel.Przy zastosowaniu mlyna kulowego oczywiscie pozadane jest stosowanie kul iz materialu, nie rea¬ gujacego z weglem i nie ulegajacego zbytniemu zniszczeniu, podczas mielenia. Mlyny kulowe zwy- 25 kle zawieraja kule stalowe lub szklane, które na¬ daja sie do powyzszego celu. Korzystniejsze jest stosowanie kul ze stali o wysokiej twardosci.Do usuwania malych czastek stali z mieszaniny, mozna stosowac filtr magnetyczny1,. Mozna tez sto- 30 sowac uklad cyrkulacji, w którym szlam pompuje sie przez zewnetrzny filtr magnetyczny i nastepnie zawraca do mlyna. Korzystnie stosuje sie do mie¬ lenia wegiel bitumiczny o wielkosci czastek ponizej 250mikrona. J 35 Najkorzystniej mielenie prowadzi sie az do osiag¬ niecia wielkosci czastek ponizej 10 mikronów. Po¬ trzebny do tego czas nie przekracza zwykle 6 mi¬ nut. Czastki wieksze niz 10 mikronów moga miec tendencje do lekkiego osiadania podczas sklado- 40 wania.Korzystnie dodaje sie wegiel w ilosci wystarcza¬ jacej do uzyskania dyspersji wejjla w oleju, zawie¬ rajacej do 55% wagowych wegla, wyrazonych w % wagowych w odniesieniu do calkowitej dys- 45 pensji, a najlepiej w ilosci wystarczajacej do uzys¬ kania dyspersji zawierajacej co najmniej 15% wa¬ gowych wegla. W przypadku wiekszych zawartosci wegla niz 55% wagowych otrzymuje sie dyspersje zbyt geste, aby nadawaly sie do pompowania. 50 Jako olej korzystnie stosuje sie olej opalowy, najlepiej o lepkosci nie wiekszej niz 3500 sekund w skali R£diwood'a I. Wymagana lepkosc mozna osiagnac za pomoca „frakcyonowania, o ile potrze¬ ba. Powyzsze zawiesiny wegla w oleju opalowym 55 nadaja sie do stosowania w /wielkich piecach, w piecach do wypalania cementu oraz w silow¬ niach.Mozna tez stosowac olej napedowy; otrzymane dyspersje nadaja sie wtedy jako paliwo do silni* 60 ków Diesla o niskiej szybkosci. W tym przypadku czastki wegla powinny byc wystarczajaco male, tak aby nie mialy wlasciwosci sciernych, miano¬ wicie ponizej 2 mikronów.W przypadku pewnych ciezszych frakcji oleju 65 opalowego moze byc konieczne spawanie ich w celu nadania im wiekszej ruchliwosci ,aby nadawaly sie jako srodowisko ciekle do mielenia.Wynalazek ilustruja nastepujace przyklady.Przyklad I. Sporzadzono dyspersje z oleju opalowego i wegla z Botswany.Olej opalowy stanowil olej opalowy o lepkosci 3500 sekund w skali Redwood'a I frakcjonowany z olejem gazowym o lepkosci 35 sekund, tak, aby otrzymac produkt o lepkosci 950 sekund. Mial on nastepujace wlasciwosci: temperatura plynnosci 21°C lepkosc kinematyczna w 210°F 17,9 cSt w 170°F 37,8 cSt w 140°F 77,2 cSt ciezar wlasciwy 60°F/60°F 0,953 zawartosc wody 0,6°/o wagowych Wegiel pochodzil z pól weglowych w Morupule, nr C 6388. Partia z wózka ADA.Mial on nastepujaca ostateczna analize C 59,7% wagowych H 2,9% O 11,3% S 2,6% N 1,35 Popiól 22,5 Wegiel mielono wstepnie do uzyskania czastek o srednicy ponizej 250 mikronów, przed mieleniem w obecnosci oleju opalowego.Mielenie prowadzono w mieszadlowyin mlynie kulowym, o nazwie handlowej „Dyno-Mdll", typ KDL, produkowanym przez Willy Bachofen Ma- schinenfabrik, Bazylea, Szwajcaria. Mlyn zawiera cylinder o srednicy wewnetrznej 7,7 cm i dlugosci 15,0 om. Cylinder zamontowany jest w ten sposób, ze os jego umieszczona jest ^poziomo i na osi osa¬ dzone sa trzy krazki o srednicy 6,4 cm.Cylinder napelniono 500 ml kulek stalowych o srednicy 1 mm. Cieply olej opalowy w 60°C (1 1) oraz zmielony wegiel (660 g) dyspergowano w mie¬ szalniku wirujacym o duzej szybkosci w ciagu 5 minut. 1 litr tej mieszaniny przepompowano przez Dyno-Mill w ciagu 3 minut, co dawalo szybkosc pompowania 333 ml/min. Os obracano z szybko¬ scia 4500 obr/min, co oznaczalo szybkosc na kra¬ wedzi krazków w 15 m/sek.Nastepnie produkt zebrano i przepuszczono przez mlyn w ciagu 6,5 minut, tj. z nizsza szybkoscia przeplywu. Procedure te powtarzano jeszcze trzy¬ krotnie z poczatkowa szybkoscia przeplywu, 00 dawalo ogólem 5 przejsc, przy czyim calkowity czas .pozostawania w calym ukladzie wynosil 18,5 minut.Czas przebywania mieszaniny w komorze mielacej mlyna wynosil okolo 6 minut. Otrzymany produkt stanowil gesta, czarna, blyszczaca, homogeniczna, pólplynna substancje, zawierajaca 41°/e wagowych (32% objetosciowych) wegla. Srednica czasteczek wegla wynosila okolo 2 mikronów. Dyspersja miala temperature plynnosci 27°C i stanowila substancje tiksotropowa o wygladzie tlustym. Pomiary Teolo¬ giczne wykazaly, ze byl to plyn stosujacy sie do praw sily, posiadajacy naprezenie niezmierzalrrie male. Po 11 miesiacach po sporzadzeniu dyspersja5 111 049 6 byla wciaz stabilna. W ciagu tego okresu tempe¬ ratura otoczenia wahala sie w granicach 18—33°C.Przyklad II. Próbke wegla Illinois nr 6 dys¬ pergowano w nastepnej próbce oleju opalowego o lepkosci 950 sekund Redwooda nr 1 z przykla¬ du I.Ostateczne wyniki analizy wegla byly: C 71,l°/o wagowych H 4,7% O 10,5% S 3,15% N 1?4% Popiól 10,0% Wegiel mielono wstepnie do uzyskania czastek o srednicy ponizej 40,0 mikronów przed zmieleniem w oleju opalowym.Mielenie prowadzono w wiekszym mieszadlowym mlynie kulowym, o nazwie handlowej „Dyno-Mill" typ KD5, produkowanym przez Willy Bachofen Maschinenfabrik.Olej opalowy (4 galony) i wstepnie mielony we¬ giel (4,9 kg) dyspergowano za pomoca mieszadla slimakowego w ciagu 7 minut, przez co otrzymano wstepna dyspersje, która najpierw pompowano przez Dyno-Mill z szybkoscia 68 1/godz, a nastepnie zawracano z szybkoscia 34 1/godz. Calkowity czas pozostawania mieszaniny w komorze mielacej mly¬ na wynosil 6,6 min.Otrzymana dyspersja zawierala 28% wagowych wegla i miala srednice czastek okolo 2,5 mikrona.Pomimo, ze produkt sporzadzony byl z innego wegla i w wiekszej skali, mial on podobny wyglad i wlasciwosci jak produkt z przykladu I. Nie moz¬ na bylo sprawdzic stabilnosci w ciagu tak dlugiego czasu, ale po 3 miesiacach nie wystepowaly obja¬ wy rozdzielania.Przyklad III. Zastosowano próbke oleju an¬ tracenowego, pochodzacego z pirolizy wegla, uwo¬ dornionego do zawartosci 8% (wagowych wodoru.Lepkosc jego wynosila okolo 3 cSt w 100°F.Jako wegiel uzyto wegiel Illinois nr 6, opisany w przykladzie II.Mielenie prowadzono w mlynie Dyno-Mill typ KDL. Komore mielaca napelniono 500 ml kulek ze stali weglowej o srednicy 1 mm.Uwodorniony olej antracenowy (4660 g) z wstep- 5 nie zmielonym weglem (1553 g) dyspergowano w wirujacym mieszalniku o wysokiej szybkosci w ciagu 5 minut, w temperaturze otoczenia. Mie¬ szanine natychmiast przepompowano przez Dymo- -Mill z szybkoscia okolo 100 ml/min. oraz zawra- 10 cano z szybkoscia 200 nii/imdn. (drugie przejscie), a w koncu z szybkoscia 130 ml/min (trzecie przej¬ scie). Calkowity czas pozostawano w komorze mie¬ lacej wynosil 7—8 minut. Otrzymana dyspersja za¬ wierala 25% wagowo/wagowych wegla, przy czym 15 srednia srednica czastek wynosila okolo 2 mikro¬ nów.Po 3 miesiacach skladowania w temperaturze otoczenia wegiel zaczal sie oddzielac na co wska¬ zywalo tworzenie sie gestego osadu o grubosci 20 okolo 1/4 cala na dole pojemnika.Przyklad III ma charakter porównawczy i nie ilustruje sposobu wedlug wynalazku, a przeciwnie, wykazuje, ze gdy olej nie stanowi lepkiej frakcji ropy naftowej, otrzymuje sie niestabilna dyspersje. PL PLInventor: Proprietor of the patent: The British Petroleum Company Limited, London (Great Britain). No. 975,687. They behave in pipelines as almost Newtonian non-settling fluids, but when standing they separate. Such sludges are usable immediately after their preparation or shipment by pipeline, but they are not suitable for transport in tankers or for storage. on wet milling slurries of coal in oil. This grinding is carried out with the access of air, and a product with a carbon concentration of 60% or more is obtained. The dispersion obtained by the above method was also unstable and was not suitable for transport or storage. It was found that by appropriate selection of the entire ( a set of parameters such as: the method of grinding, the final particle size and the final concentration of carbon in the oil, it is possible to avoid the disadvantages of the treated products and obtain an exceptionally stable dispersion. is formed by carbon particles in the oil. A uniform structure is produced here, from which the carbon particles cannot fall out because they form part of it. always in the form of sludge, in which the carbon particles were suspended in the oil and separated from the sludge after some time. the coal is ground in gas oil or a finer fraction of crude oil until its particle size is less than 10 microns and a carbon content of 15-55% by weight based on the weight of the entire dispersion, grinding is carried out without free oxygen In garlic grinding of coal without the access of free oxygen, a product with a gel structure is formed, which clearly proves that a physicochemical reaction takes place during the grinding. The product obtained has a structure and form markedly different from the starting products, as well as from the dispersions obtained by known methods. The stable coal-in-oil dispersions according to the invention are suitable for both pumping and storage. The carbon-in-oil dispersion according to the invention comprises 15-55 % By weight of carbon with an average particle size less than 10 microns. The coal is preferably bituminous coal, and the oil is preferably gas oil or a coarser crude oil fraction. when, after stopping grinding, a stable dispersion is obtained. The term "stable dispersion" means a dispersion which does not separate into its component layers when stored at ambient and ambient temperature for at least 6 months. (A pre-milling or agitator ball mill. Airless grinding is easily achieved with a vibrating ball mill by first filling the mill with oil, then balls and charcoal. The preferred way is to fill the mill with oil, add half the balls, then coal and finally the rest) balls. In the case of an agitator mill, the balls are added first, then the oil and finally the coal. In the case of a ball mill, it is of course desirable to use balls and a material not compatible with the carbon and not subject to undue deterioration during grinding. Ball mills typically include steel or glass balls which are suitable for the above purpose. It is preferable to use high-hardness steel balls. A magnetic filter can be used to remove small steel particles from the mixture. It is also possible to use a circulation system in which the sludge is pumped through an external magnetic filter and then returned to the mill. Preferably, bituminous coal is used for grinding with a particle size of less than 250 microns. Most preferably the milling is carried out until the particle size is less than 10 microns. The time required for this is usually not more than 6 minutes. Particles greater than 10 microns may tend to settle slightly during storage. Preferably, sufficient carbon is added to disperse the oil into 55% by weight carbon, expressed as weight% based on total carbon. a dispersion, preferably in an amount sufficient to obtain a dispersion containing at least 15% by weight carbon. With a carbon content greater than 55% by weight, the dispersions are too thick to be pumpable. Fuel oil is preferably used as the oil, preferably with a viscosity of no more than 3500 seconds on the Rdwood I scale. The required viscosity can be achieved by "fracionation" if necessary. The above coal-in-fuel oil slurries 55 are suitable for use in blast furnaces, cement kilns, and engine rooms. Diesel fuel may also be used; the dispersions obtained are then suitable as a fuel for low-speed diesel engines. In this case, the carbon particles should be small enough so that they do not have abrasive properties, namely less than 2 microns. For some of the heavier fractions of fuel oil, it may be necessary to weld them to make them more mobile to make them suitable as a liquid environment. The invention is illustrated by the following examples: Example I. Dispersions were made of fuel oil and coal from Botswana. The fuel oil was fuel oil with a viscosity of 3500 seconds on the Redwood scale I fractionated with gas oil with a viscosity of 35 seconds, so as to obtain the product with a viscosity of 950 seconds. It had the following properties: liquid temperature 21 ° C kinematic viscosity at 210 ° F 17.9 cSt at 170 ° F 37.8 cSt at 140 ° F 77.2 cSt specific weight 60 ° F / 60 ° F 0.953 water content 0, 6% w / w Coal came from the coal fields in Morupule, No. C 6388. Lot from ADA cart. It had the following final analysis C 59.7% w / w H 2.9% O 11.3% S 2.6% N 1 , 35 Ash 22.5 The coal was pre-ground to a particle diameter of less than 250 microns, before grinding in the presence of fuel oil. The grinding was carried out in a stirring ball mill, under the trade name "Dyno-Mdll", type KDL, manufactured by Willy Bachofen Ma- schinenfabrik, Basel, Switzerland Mill contains a cylinder 7.7 cm internal diameter and 15.0 ohm long. The cylinder is mounted horizontally with three discs with a diameter of 6 mm on its axis. 4 cm. The cylinder was filled with 500 ml of steel balls with a diameter of 1 mm. Warm heating oil at 60 ° C (11) and ground coal (660 g) were dispersed in the mixture. High speed spinner in 5 minutes. 1 liter of this mixture was pumped through the Dyno-Mill in 3 minutes giving a pumping rate of 333 ml / min. The axle was rotated at 4,500 rpm, which was 15 m / sec. At the edge of the pucks. The product was then collected and passed through the mill in 6.5 minutes, ie, at a lower flow rate. This procedure was repeated three more times with the initial flow rate giving a total of 5 passes for which the total residence time in the entire system was 18.5 minutes. The residence time of the mixture in the grinding chamber of the mill was about 6 minutes. The product obtained was a thick, black, shiny, homogeneous, semi-fluid substance, containing 41% by weight (32% by volume) carbon. The diameter of the carbon particles was about 2 microns. The dispersion had a liquid temperature of 27 ° C and was a thixotropic substance with a greasy appearance. Theological measurements showed that it was a fluid that adheres to the laws of force, having an immeasurable stress. After 11 months after preparation, the dispersion 5 111 049 6 was still stable. During this period, the ambient temperature ranged from 18 to 33 ° C. Example II. Illinois Coal Sample No. 6 was dispersed in the next 950 seconds Redwood fuel oil sample No. 1 of Example I. The final results of the carbon analysis were: C 71.1% by weight H 4.7%, 10.5%. S 3.15% N 1-4% Ash 10.0% The coal was pre-ground to a particle diameter below 40.0 microns before grinding in fuel oil. The milling was carried out in a larger mixing ball mill, trade name "Dyno-Mill" type KD5, manufactured by Willy Bachofen Maschinenfabrik. Opal fuel oil (4 gallons) and pre-milled coal (4.9 kg) were dispersed with a screw stirrer for 7 minutes to give a pre-dispersion which was first pumped through the Dyno-Mill. at 68 liters / hour, followed by recycling at 34 liters / hour. The total residence time of the mixture in the grinding chamber of the mill was 6.6 minutes. The resulting dispersion contained 28% by weight carbon and had a particle diameter of approximately 2.5 microns. Despite the fact that the product was made of a different carbon and larger scale, it had similar appearance and properties to the product of Example I. It was not possible to check the stability over such a long time, but after 3 months there were no signs of separation. Example III. An anthracene oil sample was used, obtained from the pyrolysis of coal, hydrogenated to a content of 8% (hydrogen by weight. Its viscosity was about 3 cSt at 100 ° F.) Illinois coal No. 6 described in Example 2 was used as the carbon. Dyno-Mill type KDL. The grinding chamber was filled with 500 ml 1 mm diameter carbon steel balls. Hydrogenated anthracene oil (4660 g) with pre-milled coal (1553 g) was dispersed in a high speed rotating mixer for 5 minutes at ambient temperature. The mixture was immediately pumped through the Dymo-Mill at a rate of about 100 ml / min and recirculated at a rate of 200 ml / min (second pass) and finally 130 ml / min (third pass). The total time left in the milling chamber was 7-8 minutes The obtained dispersion contained 25% w / w carbon, the average particle diameter being about 2 microns. After 3 months of storage at temperature the environment began to coal as shown by the formation of a dense deposit about 1/4 inch thick at the bottom of the container. , an unstable dispersion is obtained. PL PL

Claims (4)

1. Zastrzezenia patentowe 30 1. Sposób wytwarzania stabilnej dyspersji wegla w oleju przez zmielenie wegla w oleju gazowym lub w ciezszej frakcji ropy naftowej do osiagniecia wielkosci czastek ponizej 10 mikronów i osiagnie¬ cia zawartosci wegla 15—55% wagowych w odnie- 35 sieniu do ciezaru calej dyspersji, znamienny tym, ze mielnie prowadzi sie bez dostepu wolnego tlenu.1. Claims 30 1. A method of producing a stable carbon-in-oil dispersion by grinding the coal in gas oil or a finer fraction of crude oil to a particle size below 10 microns and achieving a carbon content of 15-55% by weight with respect to weight of the whole dispersion, characterized in that the grinding is carried out without access of free oxygen. 2. Sposób wedlug zastrz. 1, znamienny tym, ze stosuje sie wegiel bitumiczny.2. The method according to p. The process of claim 1, characterized in that bituminous coal is used. 3. Sposób wedlug zastrz. 1, znamienny tym, ze 40 jako olej stosuje sie olej opalowy o lepkosci nie wiekszej niz 3500 sekund w skali Redwooda I.3. The method according to p. The process of claim 1, wherein the oil is a fuel oil with a viscosity of not more than 3500 seconds on the Redwood I scale. 4. Sposcb wedlug zastrz. 1, albo 2, albo 3, zna¬ mienny tym, ze wegiel miele sie w oleju do mo¬ mentu, gdy po zaprzestaniu mielenia uzyskuje sie 45 stabilna dyspersje. PL PL4. Sposcb according to claim 1, or 2, or 3, characterized in that the coal is ground in oil until a stable dispersion is obtained upon discontinuation of grinding. PL PL
PL1977196435A 1976-03-05 1977-03-04 Method of producing stable dispersion of the coal in oil PL111049B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB8880/76A GB1523193A (en) 1976-03-05 1976-03-05 Coal oil mixtures

Publications (1)

Publication Number Publication Date
PL111049B1 true PL111049B1 (en) 1980-08-30

Family

ID=9861073

Family Applications (1)

Application Number Title Priority Date Filing Date
PL1977196435A PL111049B1 (en) 1976-03-05 1977-03-04 Method of producing stable dispersion of the coal in oil

Country Status (8)

Country Link
US (1) US4330300A (en)
AU (1) AU506660B2 (en)
BE (1) BE852096A (en)
DE (1) DE2708969C2 (en)
FR (1) FR2343039A1 (en)
GB (1) GB1523193A (en)
PL (1) PL111049B1 (en)
ZA (1) ZA771186B (en)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4276053A (en) * 1978-12-13 1981-06-30 The British Petroleum Company Limited Fuel composition and method for its preparation
AU5343279A (en) * 1978-12-13 1980-06-19 British Petroleum Company Plc, The Coal-oil dispersion
ZA804725B (en) * 1979-08-15 1982-03-31 British Petroleum Co Solid fuel-oil mixtures
ZA804724B (en) * 1979-08-15 1982-03-31 British Petroleum Co Solid fueo-oil mixtures
AU7139681A (en) * 1980-06-19 1981-12-24 British Petroleum Company Plc, The Uniform dispersion of solid carbonaceous fuels in oil
US4551179A (en) * 1981-01-29 1985-11-05 The Standard Oil Company Coal-aqueous mixtures
US4441889A (en) * 1981-01-29 1984-04-10 Gulf & Western Industries, Inc. Coal-aqueous mixtures
US4583990A (en) * 1981-01-29 1986-04-22 The Standard Oil Company Method for the beneficiation of low rank coal
US4358293A (en) * 1981-01-29 1982-11-09 Gulf & Western Manufacturing Co. Coal-aqueous mixtures
EP0068622A3 (en) * 1981-05-21 1984-10-10 The British Petroleum Company p.l.c. Dispersions of solid fuel in oil
US4526585A (en) * 1981-05-28 1985-07-02 The Standard Oil Company Beneficiated coal, coal mixtures and processes for the production thereof
AT379611B (en) * 1981-12-23 1986-02-10 Kong Hsu HEAVY OIL BLEND AND METHOD FOR THEIR PRODUCTION
DE3203902A1 (en) * 1982-02-05 1983-08-11 Ruhrkohle-Carborat GmbH, 4152 Kempen Fuel oil substitute
US4511365A (en) * 1982-09-10 1985-04-16 Sohio Alternate Energy Development Company Coal-aqueous mixtures
US4488881A (en) * 1982-09-10 1984-12-18 The Standard Oil Company Coal-aqueous mixtures having a particular coal particle size distribution
US4622046A (en) * 1982-09-30 1986-11-11 The Standard Oil Company Stabilized high solids, coal-oil mixtures and methods for the production thereof
DE3340971A1 (en) * 1983-11-11 1985-05-23 Johannes Dipl.-Ing. 6200 Wiesbaden Linneborn Process for producing liquid combustible media consisting of at least two components
US4605420A (en) * 1984-07-02 1986-08-12 Sohio Alternate Energy Development Company Method for the beneficiation of oxidized coal
US5096461A (en) * 1989-03-31 1992-03-17 Union Oil Company Of California Separable coal-oil slurries having controlled sedimentation properties suitable for transport by pipeline
JP4809586B2 (en) * 2003-03-05 2011-11-09 富士フイルム株式会社 Method for producing magnetic particles
JP2004292947A (en) * 2003-03-05 2004-10-21 Fuji Photo Film Co Ltd Method for manufacturing magnetic particle, magnetic particle and magnetic recording medium
US9777235B2 (en) 2016-04-04 2017-10-03 Allard Services Limited Fuel oil compositions and processes
CA3209907A1 (en) 2016-04-04 2017-10-12 Arq Ip Limited Solid-liquid crude oil compositions and processes
BR112019009623A2 (en) 2016-11-11 2019-09-10 Earth Tech Usa Limited coal-derived solid hydrocarbon particles

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE398155C (en) * 1913-08-01 1924-07-02 Hermann Plauson Process for producing a liquid fuel by grinding coal or substances containing carbon in a mixture with a liquid
US1390232A (en) * 1920-04-12 1921-09-06 Lindon W Bates Liquid fuel and method of manufacturing it
FR530258A (en) * 1920-04-12 1921-12-19 Liquid fuel and its manufacturing process
US1431225A (en) * 1922-05-09 1922-10-10 Greenstreet Charles Jason Fuel product and method of making same
US1529706A (en) * 1923-08-13 1925-03-17 Electrical Improvements Ltd Fuel
US1899811A (en) * 1930-06-18 1933-02-28 Kern Ludwig Fuel and the manufacture thereof
US1939587A (en) * 1931-11-02 1933-12-12 Cunard Steam Ship Company Ltd Dispersions of coal in oil
DE637789C (en) * 1932-12-08 1936-11-07 Wyndhams Liquid Coal Company L Process for the production of a liquid fuel
US2231513A (en) * 1938-11-05 1941-02-11 Fuel Res Corp Liquid fuel
DE887560C (en) * 1943-05-01 1953-08-24 Bergwerksverband Zur Verwertun Process for the production of fluidized coal
US2668757A (en) * 1949-08-31 1954-02-09 Du Pont Method of preparing nonaqueous carbon dispersions
US3241505A (en) * 1963-07-17 1966-03-22 Combustion Eng System for regulating the supply of pulverized fuel slurry to a furnace

Also Published As

Publication number Publication date
ZA771186B (en) 1978-09-27
DE2708969C2 (en) 1983-02-10
FR2343039A1 (en) 1977-09-30
DE2708969A1 (en) 1977-09-08
AU2287477A (en) 1978-09-07
US4330300A (en) 1982-05-18
AU506660B2 (en) 1980-01-17
GB1523193A (en) 1978-08-31
BE852096A (en) 1977-09-05
FR2343039B1 (en) 1983-09-23

Similar Documents

Publication Publication Date Title
PL111049B1 (en) Method of producing stable dispersion of the coal in oil
US1390230A (en) Method of transporting carbonaceous substance
RU2141996C1 (en) Multiphase emulsion and method of preparation of such emulsion
CA1178441A (en) Process for making fuel slurries of coal in water and product thereof
TW200804186A (en) Fine dry silica particles
US4726810A (en) Process for the selective agglomeration of sub-bituminous coal fines
US4090853A (en) Colloil product and method
US6113659A (en) Fuel comprising a petroleum hydrocarbon in water colloidal dispersion
CA1115053A (en) Fuel slurry with a polar liquid flocculating agent and a wetting agent
FI81275C (en) Process for the production of stable aqueous suspensions of solid particles
JPH0674396B2 (en) Corrosion resistant coating material and method for preparing the same
US1382457A (en) Fuel and method of producing same
PL125850B1 (en) Method of producing dispersion of solid fuel in oil and water
US4149855A (en) Stabilized coal-oil slurry and process
US3392068A (en) High energy fuel composition containing microdimensional fibers
US1390228A (en) Fuel and method of producing same
EP0024847A2 (en) A method for the preparation of a uniform dispersion of a friable solid fuel, oil and water
Adiga et al. Rheology and stability of coal—oil and coal—oil—alcohol dispersions
US4276053A (en) Fuel composition and method for its preparation
US2287567A (en) Composition of matter and process of using the same
AU661691B2 (en) Process for treating moisture laden coal fines
IT8147800A1 (en) SOLID FUEL-OIL MIXTURES.
US1638314A (en) Fluid fuel and method of producing the same
Yavrouian et al. Antimisting kerosene: Base fuel effects, blending and quality control techniques
US4543105A (en) Modification of liquid hydrocarbons