OA21427A - RNAI agents for inhibiting expression of mucin 5AC (MUC5AC), compositions thereof, and methods of use. - Google Patents

RNAI agents for inhibiting expression of mucin 5AC (MUC5AC), compositions thereof, and methods of use. Download PDF

Info

Publication number
OA21427A
OA21427A OA1202300473 OA21427A OA 21427 A OA21427 A OA 21427A OA 1202300473 OA1202300473 OA 1202300473 OA 21427 A OA21427 A OA 21427A
Authority
OA
OAPI
Prior art keywords
rnai agent
nucléotide
nucléotides
muc5ac
sequence
Prior art date
Application number
OA1202300473
Inventor
Anthony Nicholas
Erik W. Bush
Casi M. SCHIENEBECK
Original Assignee
Arrowhead Pharmaceuticals, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arrowhead Pharmaceuticals, Inc. filed Critical Arrowhead Pharmaceuticals, Inc.
Publication of OA21427A publication Critical patent/OA21427A/en

Links

Abstract

Described are RNAi agents, compositions that include RNAi agents, and methods for inhibition of a Mucin SAC (MUC5AC) gene. The MUC5AC RNAi agents and RNAi agent conjugates disclosed herein inhibit the expression of an MUC5AC gene. Pharmaceutical compositions that include one or more MUC5AC RNAi agents, optionally with one or more additional therapeutics, are also described. Delivery of the described MUC5AC RNAi agents to pulmonary epithelial cells, in vivo, provides for inhibition of MUC5AC gene expression and a reduction in MUC5AC production, which can provide a therapeutic benefit to subjects, including human subjects, for the treatment of various diseases including mucoobstructive lung disease such as severe asthma and various cancers.

Description

RNAi Agents for Inhibiting Expression of Mucin 5AC (MUC5AC),
Compositions Thereof, and Methods of Use
Cross Reference To Related Applications
[0001] This application daims priority from United States Provisional Patent Application Serial No. 63/194,370, filed on May 28, 2021, the contents of which are incorporated herein by reference in its entirety.
Sequence Listing
[0002] This application contains a Sequence Listing which has been submitted in ASCII format and is hereby incorporated by reference in its entirety. The ASCII copy is named SEQLIST_30659.txt and is 460 kb in size.
Field of the Invention
[0003] The présent disclosure relates to RNA interférence (RNAi) agents, e.g., double stranded RNAi agents, for inhibition of Mucin 5AC (“MUC5AC”) gene expression, compositions that include MUC5AC RNAi agents, and methods of use thereof.
Background
[0004] MUC5AC is a transcriptionally regulated secreted mucin expressed in airway epithelia of the lung and in other mucosal tissues (for example, gastrointestinal, urogénital, eye, and ear) (Lillehoj et al, Int Rev Cell Mol Biol, 2013). In airways, MUC5AC and MUC5B are the major gel-forming mucins. MUC5B is constitutively expressed and is required for mucociliary clearance (Roy et al., Nature 2014). Normal subjects hâve a relatively higher expression of MUC5B versus MUC5AC in the trachea and proximal airways, with this ratio further increasing in distal airways with expression of MUC5AC almost undetectable in distal and terminal bronchioles (Okuda et al., AJRCCM 2019). Typically expressed at low levels in the airway, MUC5AC expression can be robustly induced by external stress stimuli like pro-inflammatory mediators (including, for example, type 2 cytokines: IL-4, IL-9, IL-17, IL-23 and IL-13), noxious inhaled substances (for example, cigarette smoke, acrolein, toxic gases), viral infections, and allergens. The resulting mucus hypersécrétion and hyperconcentration is understood to be a common pathogenic mechanism linked to airway obstruction in severe asthma and other mucoobstructive lung diseases such as cystic fibrosis (CF), chronic obstructive pulmonary disease (COPD), non-CF bronchiectasis (NCFB), and primary ciliary dyskinesia (PCD) (Boucher, NEJM 2019). In asthma, COPD, and NCFB patients, exaggerated expression and sécrétion of MUC5AC results in a narrowing of airway lumen, airway obstruction, and exacerbations (Dunican et al., JC12017; Bonser et al., JCI2016; Kesimer et al., NEJM 2017; Ramsey et al., AJRCCM 2019). A genome-wide association study (GWAS) identified a novel MUC5AC allele linked to increased MUC5AC expression and patients with moderate-to-severe asthma (Shrine et aL, Lancet Respir Med 2019). Experimental evidence from MUC5AC-deficient mice demonstrated that MUC5AC-mediated airway plugging is a major contributor to airway hyperresponsiveness to allergens independent of inflammation and bronchoconstriction (Evans et al, Nat Commun, 2015). Current standard of care treatments for severe asthma and other mucoobstructive lung diseases include bronchodilators and anti-inflammatory therapeutics (such as corticosteroids and biologics), but currently available treatments do not directly address pathogenic mucin overexpression and hypersécrétion. Alternative approaches that directly treat mucus hypersécrétion and obstruction are needed.
[0005] Increased expression of MUC5AC has also been observed in malignancies such as lung adenocarcinomas, pancreatic cancer, salivary gland carcinoma, breast cancer, cholangiocarcinoma, ovarian cancer, and other tumors (Krishn et al., Carcinogenesis 2018), where it has been linked to migration and invasiveness of tumor cells. Loss-of-function mutations in MUC5AC and other mucin genes are significantly underrepresented in tumor cells, suggesting that mucin overexpression may shield tumors from récognition by immune cells (Gorlov et al., Cancer Genetics 2019). Tumor MUC5AC overexpression is associated with progression and poor survival in lung adenocarcinoma patients (Bauer et al., JCI Insight 2018). MUC5AC overexpression has also been linked to number of other conditions including: allergie rhinitis, chronic rhinosinusitis, otitis media, Barret’s esophagus, pancreatitis, and inflammatory bowel disease (Krishn et al., Carcinogenesis 2018).
SUMMARY
[0006] There exists a need for novel RNA interférence (RNAi) agents (termed RNAi agents, RNAi triggers, or triggers), e.g., double stranded RNAi agents, that are able to selectively and efficiently inhibit the expression of a MUC5AC gene, including for use as a therapeutic or médicament. Further, there exists a need for compositions of novel MUC5AC-specific RNAi agents for the treatment of diseases or disorders associated with mucus hypersécrétion and obstruction (referred to herein as “mucoobstructive” lung diseases and disorders) such as for example cystic fibrosis (CF), chronic obstructive pulmonary disease (COPD), non5 CF bronchiectasis (NCFB), primary ciliary dyskinesia (PCD), and asthma, and/or diseases or disorders that can be mediated at least in part by a réduction in MUC5AC gene expression and/or MUC5AC protein levels.
[0007] The nucléotide sequences and Chemical modifications of the MUC5AC RNAi agents disclosed herein, as well as their combination with certain spécifie targeting ligands suitable 10 for selectively and efficiently delivering the MUC5AC RNAi agents in vivo, differ from what is known in the art. The MUC5AC RNAi agents disclosed herein provide for highly potent and efficient inhibition of the expression of a MUC5AC gene and hâve sequences suitable for use as a therapeutic for the treatment of diseases and disorders.
[0008] In general, the présent disclosure features MUC5AC gene-specific RNAi agents, 15 compositions that include MUC5AC RNAi agents, and methods for inhibiting expression of a MUC5AC gene in vitro and/or in vivo using the MUC5AC RNAi agents and compositions that include MUC5AC RNAi agents described herein. The MUC5AC RNAi agents described herein are able to selectively and efficiently decrease expression of a MUC5AC gene, and thereby reduce the expression of the MUC5AC protein, which can lead 20 to a therapeutic benefit such as, for example, a réduction in mucoobstruction in the lung.
[0009] The described MUC5AC RNAi agents can be used in methods for therapeutic treatment (including preventative or prophylactic treatment) of symptoms and diseases including, but not limited to, mucoobstructive lung diseases (such as asthma, CF, COPD, NCFB, PCD), allergie bronchopulmonary aspergillosis, interstitial lung diseases, cancer 25 (such as lung adenocarcinomas, pancreatic cancer, salivary gland carcinoma, breast cancer, cholangiocarcinoma, ovarian cancer, and other tumors), respiratory infections (such as respiratory syncytial virus, influenza, rhinovirus), otitis media, inflammatory bowel disease, gallstone disease, allergie rhinitis, chronic rhinosinusitis and nasal polyposis.
[0010] In one aspect, the disclosure features RNAi agents for inhibiting expression of a 30 MUC5AC gene, wherein the RNAi agent includes a sense strand (also referred to as a passenger strand) and an antisense strand (also referred to as a guide strand). The sense strand and the antisense strand can be partially, substantially, or fully complementary to each other. The length of the RNAi agent sense strands described herein each can be 15 to nucléotides in length. The length of the RNAi agent antisense strands described herein each can be 18 to 49 nucléotides in length. In some embodiments, the sense and antisense strands are independently 18 to 26 nucléotides in length. The sense and antisense strands can be either the same length or different lengths. In some embodiments, the sense and antisense strands are independently 21 to 26 nucléotides in length. In some embodiments, the sense and antisense strands are independently 21 to 24 nucléotides in length. In some embodiments, both the sense strand and the antisense strand are 21 nucléotides in length. In some embodiments, the antisense strands are independently 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, or 30 nucléotides in length. In some embodiments, the sense strands are independently 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, or 49 nucléotides in length. The RNAi agents described herein, upon delivery to a cell expressing MUC5AC, inhibit the expression of one or more MUC5AC gene variants in vivo and/or in vitro.
[0011] The MUC5AC RNAi agents disclosed herein target a human MUC5AC gene (see, e.g., SEQ ID NO:1). In some embodiments, the MUC5AC RNAi agents disclosed herein target a portion of a MUC5AC gene having the sequence of any of the sequences disclosed in Table 1.
[0012] In another aspect, the disclosure features compositions, including pharmaceutical compositions, that include one or more of the disclosed MUC5AC RNAi agents that are able to selectively and efficiently decrease expression of a MUC5AC gene. The compositions that include one or more MUC5AC RNAi agents described herein can be administered to a subject, such as a human or animal subject, for the treatment (including prophylactic treatment or inhibition) of symptoms and diseases associated with MUC5AC gene expression and/or MUC5AC protein levels.
[0013] Examples of MUC5AC RNAi agent sense strands and antisense strands that can be used in a MUC5AC RNAi agent are provided in Tables 3, 4, 5, 6, and 7. Examples of MUC5AC RNAi agent duplexes are provided in Tables 8A, 8B, 8C, 9, 10A, 10B, and 11. Examples of 19-nucleotide core stretch sequences that may consist of or may be included in the sense strands and antisense strands of certain MUC5AC RNAi agents disclosed herein, are provided in Table 2.
[0014] In another aspect, the disclosure features methods for delivering MUC5AC RNAi agents to épithélial cells in a subject, such as a mammal, in vivo. Also described herein are compositions for use in such methods. In some embodiments, disclosed herein are methods for delivering MUC5AC RNAi agents to pulmonary cells (épithélial cells, macrophages, smooth muscle, endothélial cells) to a subject in vivo. In some embodiments, the subject is a human subject.
[0015] The methods disclosed herein include the administration of one or more MUC5AC RNAi agents to a subject, e.g., a human or animal subject, by any suitable means known in the art. The pharmaceutical compositions disclosed herein that include one or more MUC5AC RNAi agents can be administered in a number of ways depending upon whether local or systemic treatment is desired. Administration can be, but is not limited to, for example, intravenous, intraarterial, subcutaneous, intraperitoneal, subdermal (e.g., via an implanted device), and intraparenchymal administration. In some embodiments, the pharmaceutical compositions described herein are administered by inhalation (such as dry powder inhalation or aérosol inhalation), intranasal administration, intratracheal administration, or oropharyngeal aspiration administration.
[0016] In some embodiments, it is desired that the MUC5AC RNAi agents described herein inhibit the expression of an MUC5AC gene in the pulmonary epithelium, for which the administration is by inhalation (e.g., by an inhaler device, such as a metered-dose inhaler, or a nebulizer such as a jet or vibrating mesh nebulizer, or a soft mist inhaler).
[0017] The one or more MUC5AC RNAi agents can be delivered to target cells or tissues using any oligonucleotide delivery technology known in the art. In some embodiments, a MUC5AC RNAi agent is delivered to cells or tissues by covalently linking the RNAi agent to a targeting group. In some embodiments, the targeting group can include a cell receptor ligand, such as an integrin targeting ligand. Integrins are a family of transmembrane receptors that facilitate cell-extracellular matrix (ECM) adhesion. In particular, integrin alpha-v-beta-6 (ανβό) is an epithelial-specific integrin that is known to be a receptor for ECM proteins and the TGF-beta latency-associated peptide (LAP), and is expressed in various cells and tissues. Integrin ανβό is known to be highly upregulated in injured pulmonary epithelium. In some embodiments, the MUC5AC RNAi agents described herein are linked to an integrin targeting ligand that has affinity for integrin ανβό. As referred to herein, an “ανβό integrin targeting ligand” is a compound that has affinity for integrin ανβό, which can be utilized as a ligand to facilitate the targeting and delivery of an RNAi agent to which it is attached to the desired cells and/or tissues (i.e., to cells expressing integrin ανβό). In some embodiments, multiple ανβό integrin targeting ligands or clusters of ανβό integrin targeting ligands are linked to a MUC5AC RNAi agent. In some embodiments, the
MUC5AC RNAi agent-ανβό integrin targeting ligand conjugales are selectively intemalized by lung épithélial cells, either through receptor-mediated endocytosis or by other means.
[0018] Examples of targeting groups useful for delivering MUC5AC RNAi agents that 5 include ανβ6 integrin targeting ligands are disclosed, for example, in International Patent Application Publication No. WO 2018/085415 and International Patent Application Publication No. WO 2019/089765, the contents of each of which are incorporated by reference herein in their entirety.
[0019] A targeting group can be linked to the 3' or 5' end of a sense strand or an antisense 10 . strand of a MUC5AC RNAi agent. In some embodiments, a targeting group is linked to the
3' or 5' end of the sense strand. In some embodiments, a targeting group is linked to the 5' end of the sense strand. In some embodiments, a targeting group is linked intemally to a nucléotide on the sense strand and/or the antisense strand of the RNAi agent. In some embodiments, a targeting group is linked to the RNAi agent via a linker.
[0020] In another aspect, the disclosure features compositions that include one or more
MUC5AC RNAi agents that hâve the duplex structures disclosed in Tables 8A, 8B, 8C, 9, 10A, 10B, and 11.
[0021] The use of MUC5AC RNAi agents provides methods for therapeutic (including prophylactic) treatment of diseases or disorders for which a réduction in MUC5AC gene 20 expression and/or a réduction in MUC5AC protein levels can provide a therapeutic benefit.
The MUC5AC RNAi agents disclosed herein can be used to treat various diseases, including mucoobstructive lung diseases (such as asthma, CF, COPD, NCFB, PCD), allergie bronchopulmonary aspergillosis, interstitial lung diseases, cancer (such as lung adenocarcinomas, pancreatic cancer, salivary gland carcinoma, breast cancer, 25 cholangiocarcinoma, ovarian cancer, and other tumors), respiratory infections (such as respiratory syncytial virus, influenza, rhinovirus), otitis media, inflammatory bowel disease, gallstone disease, allergie rhinitis, chronic rhinosinusitis and nasal polyposis. In some embodiments, the MUC5AC RNAi agents disclosed herein can be used to treat a mucoobstructive lung disease, such as severe asthma or COPD. MUC5AC RNAi agents 30 can further be used to treat, for example, various cancers. Such methods of treatment include administration of a MUC5AC RNAi agent to a human being or animal having elevated or enhanced MUC5AC gene expression and/or MUC5AC protein levels above what is desired.
[0022] One aspect described herein is an RNAi agent for inhibiting expression of a MUC5AC gene, comprising:
(i) an antisense strand that is between 18 and 49 nucléotides in length that includes a nucléotide sequence at least partially complementary to a corresponding 5 stretch of contiguous nucléotides of the MUC5AC gene transcript (SEQ ID NO:1);
and (ii) a sense strand comprising a nucléotide sequence that is at least partially complementary to the antisense strand;
wherein the RNAi agent sense strand is optionally further linked to a targeting ligand, and 10 wherein RNAi agent is capable of inhibiting expression of a MUC5AC gene.
[0023] Another aspect described herein is an RNAi agent for inhibiting expression of a MUC5AC gene, comprising:
(i) an antisense strand comprising at least 17 contiguous nucléotides differing by 0 or 1 nucléotides from any one of the sequences provided in Table 3; and (ii) a sense strand comprising a nucléotide sequence that is at least partially complementary to the antisense strand;
wherein the RNAi agent sense strand is optionally further linked to a targeting ligand, and wherein RNAi agent is capable of inhibiting expression of a MUC5AC gene.
[0024] In some embodiments, a MUC5AC RNAi agent disclosed herein includes an 20 antisense strand that consists of, consists essentially of, or comprises a sequence differing by 0 or 1 nucleobases from the nucléotide sequence (5' 3')
UUGUAGUAGUCGCAGAACAGC (SEQ ID NO: 1525). In some embodiments, a MUC5AC RNAi agent disclosed herein includes an antisense strand that consists of, consists essentially of, or comprises a nucléotide sequence differing by no more than 1 25 nucléotide from the nucléotide sequence (5' -> 3') UUGUAGUAGUCGCAGAACAGC (SEQ ID NO: 1525), wherein ail or substantially ail of the nucléotides are modified nucléotides. In some embodiments, a MUC5AC RNAi agent disclosed herein includes an antisense strand that consists of, consists essentially of, or comprises a nucleobase sequence differing by 0 or 1 nucleobases from the nucléotide sequence (5' -> 3') 30 UUGUAGUAGUCGCAGAACAGC (SEQ ID NO: 1525), wherein SEQ ID NO: 1525 is located at positions 1-21 (5' -> 3') ofthe antisense strand.
[0025] In some embodiments, a MUC5AC RNAi agent disclosed herein includes an antisense strand that consists of, consists essentially of, or comprises a modified nucléotide sequence differing by no more than 1 nucléotide from the nucléotide sequence (5' 3') cPrpusUfsgsUfaGfuAfgUfcGfcAfgAfaCfaGfsc (SEQ ID NO: 1127), wherein a, c, g, and u represent 2'-O-methyl adenosine, cytidine, guanosine, and uridine, respectively; Af, Cf, Gf, and Uf represent 2'-fluoro adenosine, cytidine, guanosine, and uridine, respectively; cPrpu représente a 5’-cycIopropyl phosphonate-2'-O-methyluridine; and s represents a phosphorothioate linkage, and wherein the sense strand is at least substantially complementary to the antisense strand. As the person of ordinary skill in the art would clearly understand, the inclusion of a phosphorothioate linkage as shown in the modified nucléotide sequences disclosed herein replaces the phosphodiester linkage typically présent in oligonucleotides (see, e.g., Figs. 3Athrough 3J showing ail intemucleoside linkages). In some embodiments, a MUC5AC RNAi agent disclosed herein includes an antisense strand that consists of, consists essentially of, or comprises the nucléotide sequence (5' -> 3') cPrpusUfsgsUfaGfuAfgUfcGfcAfgAfaCfaGfsc (SEQ ID NO: 1127), wherein a, c, g, and u represent 2'-O-methyl adenosine, cytidine, guanosine, and uridine, respectively; Af, Cf, Gf, and Uf represent 2'-fluoro adenosine, cytidine, guanosine, and uridine, respectively; cPrpu represents a 5’-cyclopropyl phosphonate-2'-O-methyluridine; and s represents a phosphorothioate linkage, and wherein the sense strand is at least substantially complementary to the antisense strand.
[0026] In some embodiments, a MUC5AC RNAi agent disclosed herein includes an antisense strand that consists of, consists essentially of, or comprises a modified nucléotide sequence differing by no more than 1 nucléotide from the nucléotide sequence (5' -> 3') usUfsgsUfaGfuAfgUfcGfcAfgAfaCfaGfsc (SEQ ID NO: 1065), wherein a, c, g, and u represent 2'-O-methyl adenosine, cytidine, guanosine, and uridine, respectively; Af, Cf, Gf, and Uf represent 2'-fluoro adenosine, cytidine, guanosine, and uridine, respectively; and s represents a phosphorothioate linkage, and wherein the sense strand is at least substantially complementary to the antisense strand. In some embodiments, a MUC5AC RNAi agent disclosed herein includes an antisense strand that consists of, consists essentially of, or comprises the nucléotide sequence (5' -> 3') usUfsgsUfaGfuAfgUfcGfcAfgAfaCfaGfsc (SEQ ID NO: 1065), wherein a, c, g, and u represent 2'-O-methyl adenosine, cytidine, guanosine, and uridine, respectively; Af, Cf, Gf, and Uf represent 2'-fluoro adenosine, cytidine, guanosine, and uridine, respectively; and s represents a phosphorothioate linkage, and wherein the sense strand is at least substantially complementary to the antisense strand.
[0027] In some embodiments, a MUC5AC RNAi agent disclosed herein includes an antisense strand that consiste of, consists essentially of, or comprises a nucleobase sequence differing by 0 or 1 nucleobases from the nucléotide sequence (5' -> 3') UUCUUGUUCAGGCAAAUCAGC (SEQ ID NO: 1535). In some embodiments, a MUC5AC RNAi agent disclosed herein includes an antisense strand that consists of, consists essentially of, or comprises a nucléotide sequence differing by no more than 1 nucléotide from the nucléotide sequence (5' -» 3') UUCUUGUUCAGGCAAAUCAGC (SEQ ID NO: 1535), wherein ail or substantially ail of the nucléotides are modified nucléotides. In some embodiments, a MUC5AC RNAi agent disclosed herein includes an antisense strand that consists of, consists essentially of, or comprises a nucleobase sequence differing by 0 or 1 nucleobases from the nucléotide sequence (5' -> 3') UUCUUGUUCAGGCAAAUCAGC (SEQ ID NO: 1535), wherein SEQ ID NO: 1535 is located at positions 1-21 (5' -> 3') ofthe antisense strand.
[0028] In some embodiments, a MUC5AC RNAi agent disclosed herein includes an antisense strand that consists of, consists essentially of, or comprises a modified nucléotide sequence differing by no more than 1 nucléotide from the nucléotide sequence (5' 3') usUfscsuuguucagGfcAfaAfucagsc (SEQ ID NO: 1166), wherein a, c, g, and u represent 2'O-methyl adenosine, cytidine, guanosine, and uridine, respectively; Af, Cf, Gf, and Uf represent 2'-fluoro adenosine, cytidine, guanosine, and uridine, respectively; and s represents a phosphorothioate linkage, and wherein the sense strand is at least substantially complementary to the antisense strand. As the person of ordinary skill in the art would clearly understand, the inclusion of a phosphorothioate linkage as shown in the modified nucléotide sequences disclosed herein replaces the phosphodiester linkage typically présent in oligonucleotides (see, e.g., Figs. 3A through 3J showing ail intemucleoside linkages). In some embodiments, a MUC5AC RNAi agent disclosed herein includes an antisense strand that consists of, consists essentially of, or comprises the nucléotide sequence (5' 3') usUfscsuuguucagGfcAfaAfucagsc (SEQ ID NO: 1166), wherein a, c, g, and u represent 2'O-methyl adenosine, cytidine, guanosine, and uridine, respectively; Af, Cf, Gf, and Uf represent 2'-fluoro adenosine, cytidine, guanosine, and uridine, respectively; and s represents a phosphorothioate linkage, and wherein the sense strand is at least substantially complementary to the antisense strand.
[0029] In some embodiments, a MUC5AC RNAi agent disclosed herein includes an antisense strand that consists of, consists essentially of, or comprises a modified nucléotide sequence differing by no more than 1 nucléotide from the nucléotide sequence (5' -> 3') cPrpuUfcuuguucagGfcAfaAfucagsc (SEQ ID NO: 1191), wherein a, c, g, and u represent 2'-O-methyl adenosine, cytidine, guanosine, and uridine, respectively; Af, Cf, Gf, and Uf represent 2'-fluoro adenosine, cytidine, guanosine, and uridine, respectively; cPrpu représente a 5’-cyclopropyl phosphonate-2'-O-methyluridine; and s représente a phoephorothioate linkage, and wherein the eenee etrand is at least substantially complementary to the antisense strand. As the person of ordinary skill in the art would clearly understand, the inclusion of a phosphorothioate linkage as shown in the modified nucléotide sequences disclosed herein replaces the phosphodiester linkage typically présent in oligonucleotides (see, e.g., Figs. 3A through 3J showing ail intemucleoside linkages). In some embodiments, a MUC5AC RNAi agent disclosed herein includes an antisense strand that consists of, consists essentially of, or comprises the nucléotide sequence (5' -> 3') cPrpuUfcuuguucagGfcAfaAfucagsc (SEQ ID NO: 1191), wherein a, c, g, and u represent 2'-O-methyl adenosine, cytidine, guanosine, and uridine, respectively; Af, Cf, Gf, and Uf represent 2'-fluoro adenosine, cytidine, guanosine, and uridine, respectively; cPrpu represents a 5’-cyclopropyl phosphonate-2'-O-methyluridine; and s represents a phosphorothioate linkage, and wherein the sense strand is at least substantially complementary to the antisense strand.
[0030] In some embodiments, a MUC5AC RNAi agent disclosed herein includes an 20 antisense strand that consists of, consists essentially of, or comprises a nucléotide sequence that differs by 0 or 1 nucléotides from one of the following nucléotide sequences (5' -> 3'):
UUGUAGUAGUCGCAGAACAGC (SEQ ID NO: 1525); or UUCUUGUUCAGGCAAAUCAGC (SEQ ID NO: 1535);
wherein the MUC5AC RNAi agent further includes a sense strand that is at least partially complementary to the antisense strand; and wherein ail or substantially ail of the nucléotides on both the antisense strand and the sense strand are modified nucléotides. [0031] In some embodiments, a MUC5AC RNAi agent disclosed herein includes an antisense strand that consists of, consists essentially of, or comprises a nucléotide sequence that differs by 0 or 1 nucléotides from one of the following nucléotide sequences (5' -> 3'):
UUGUAGUAGUCGCAGAACAGC (SEQ ID NO: 1525); or
UUCUUGUUCAGGCAAAUCAGC (SEQ ID NO: 1535);
wherein the MUC5AC RNAi agent further includes a sense strand that is at least partially complementary to the antisense strand; wherein ail or substantially ail of the nucléotides on both the antisense strand and the sense strand are modified nucléotides; and wherein the sense strand further includes inverted abasic residues at the 3’ terminal end and at the
5’ end of the nucléotide sequence, and the sense strand also includes a targeting ligand that is covalently linked to the 5’ terminal end, wherein the targeting ligand includes a compound having affmity for an integrin receptor.
[0032] In some embodiments, a MUC5AC RNAi agent disclosed herein includes an antisense strand that consists of, consists essentially of, or comprises a nucléotide sequence that differs by 0 or 1 nucléotides from one of the following nucléotide sequences (5' -> 3'):
UUGUAGUAGUCGCAGAACAGC (SEQ ID NO: 1525); or
UUCUUGUUCAGGCAAAUCAGC (SEQ ID NO:1535);
wherein the MUC5AC RNAi agent further includes a sense strand that is at least partially complementary to the antisense strand; wherein ail or substantially ail of the nucléotides on both the antisense strand and the sense strand are modified nucléotides; and wherein the sense strand further includes inverted abasic residues at the 3’ terminal end and at the
5’ end of the nucléotide sequence, and the sense strand also includes a targeting ligand that is covalently linked to the 5’ terminal end, wherein the targeting ligand includes a compound having affmity for an integrin receptor; and wherein the respective antisense strand sequence is located at positions 1-21 of the antisense strand.
[0033] In some embodiments, a MUC5AC RNAi agent disclosed herein includes an 20 antisense strand and a sense strand, wherein the antisense strand and the sense strand consist of, consist essentially of, or comprise nucléotide sequences that differ by 0 or 1 nucléotides from one of the following nucléotide sequence (5' -> 3') pairs:
UUGUAGUAGUCGCAGAACAGC (SEQ ID NO: 1525) and
GCUGUUCUGCGACUACUACAA (SEQ ID NO: 1617); or
UUCUUGUUCAGGCAAAUCAGC (SEQ ID NO: 1535) and
GCUGAUUUGCCUGAACAAGAA (SEQ ID NO: 1632); or wherein ail or substantially ail of the nucléotides on both the antisense strand and the sense strand are modified nucléotides.
[0034] In some embodiments, a MUC5AC RNAi agent disclosed herein includes an 30 antisense strand and a sense strand, wherein the antisense strand and the sense strand consist of, consist essentially of, or comprise nucléotide sequences that differ by 0 or 1 nucléotides from one of the following nucléotide sequences (5' -> 3') pairs:
UUGUAGUAGUCGCAGAACAGC (SEQ ID NO: 1525) and
GCUGUUCUGCGACUACUACAA (SEQ ID NO: 1617); or
UUCUUGUUCAGGCAAAUCAGC (SEQ ID NO: 1535) and
GCUGAUUUGCCUGAACAAGAA (SEQ ID NO: 1632); or wherein ail or substantially ail of the nucléotides on both the antisense strand and the sense strand are modifïed nucléotides; and wherein the sense strand further includes inverted abasic residues at the 3’ terminal end and at the 5’ end of the nucléotide sequence, and the sense strand also includes a targeting ligand that is covalently linked to the 5’ terminal end, wherein the targeting ligand includes a compound with affinity for an integrin receptor. [0035] In some embodiments, a MUC5AC RNAi agent disclosed herein includes an antisense strand that consists of, consists essentially of, or comprises a modified nucléotide sequence that differs by 0 or 1 nucléotides from one of the following nucléotide sequences (5' 3'):
cPrpusUfsgsUfaGfuAfgUfcGfcAfgAfaCfaGfsc (SEQ ID NO: 1127); usUfsgsUfaGfuAfgUfcGfcAfgAfaCfaGfsc (SEQ ID NO: 1065); usUfscsuuguucagGfcAfaAfucagsc (SEQ ID NO: 1166);
cPrpuUfcuuguucagGfcAfaAfucagsc (SEQ IDNO:1191);
wherein a, c, g, and u represent 2'-O-methyl adenosine, cytidine, guanosine, and uridine, respectively; Af, Cf, Gf, and Uf represent 2'-fluoro adenosine, cytidine, guanosine, and uridine, respectively; cPrpu represents a 5’-cyclopropyl phosphonate-2'-O-methyluridine; s represents a phosphorothioate linkage; and wherein the MUC5AC RNAi agent further includes the sense strand that is at least partially complementary to the antisense strand; and wherein ail or substantially ail of the nucléotides of the sense strand are modified nucléotides.
[0036] In some embodiments, a MUC5AC RNAi agent disclosed herein includes an antisense strand that consists of, consists essentially of, or comprises a modified nucléotide sequence that differs by 0 or 1 nucléotides from one of the following nucléotide sequences (5' 3'):
cPrpusUfsgsUfaGfuAfgUfcGfcAfgAfaCfaGfsc (SEQ ID NO: 1127); usUfsgsUfaGfuAfgUfcGfcAfgAfaCfaGfsc (SEQ ID NO: 1065); usUfscsuuguucagGfcAfaAfucagsc (SEQ ID NO:1166);
cPrpuUfcuuguucagGfcAfaAfucagsc (SEQ ID NO:1191);
wherein the MUC5AC RNAi agent further includes the sense strand that is at least partially complementary to the antisense strand; wherein ail or substantially ail of the nucléotides of the sense strand are modifîed nucléotides; wherein ail or substantially ail of the nucléotides on both the antisense strand and the sense strand are modifîed nucléotides; and wherein the sense strand further includes inverted abasic residues at the 3’ terminal end and at the 5’ end of the nucléotide sequence, and the sense strand also includes a targeting ligand that is covalently linked to the 5’ terminal end, wherein the targeting ligand includes a compound with affinity for an integrin receptor.
[0037] In some embodiments, a MUC5AC RNAi agent disclosed herein includes an antisense strand and a sense strand that consists of, consists essentially of, or comprises one of the following nucléotide sequence pairs (5' -> 3'):
cPrpusUfsgsUfaGfuAfgUfcGfcAfgAfaCfaGfsc (SEQ ID NO: 1127) and gscuguucuGfCfGfacuacuacaa (SEQ ID NO:1265);
usUfsgsUfaGfuAfgUfcGfcAfgAfaCfaGfsc (SEQ IDNO: 1065) and gscuguucuGfCfGfacuacuacaa (SEQ ID NO: 1265);
usUfscsuuguucagGfcAfaAfucagsc (SEQ ID NO: 1166) and gscugauUfuGfcCfugaacaagaa (SEQ ID NO: 1315); and cPrpuUfcuuguucagGfcAfaAfucagsc (SEQ IDNO: 1191) and gscugauUfuGfcCfugaacaagaa (SEQ ID NO: 1315); and wherein a, c, g, and u represent 2'-O-methyl adenosine, cytidine, guanosine, and uridine, respectively; Af, Cf, Gf, and Uf represent 2'-fluoro adenosine, cytidine, guanosine, and uridine, respectively; cPrpu represents a 5’-cyclopropyl phosphonate-2'-O-methyluridine; and s represents a phosphorothioate linkage; and wherein the sense strand also includes a targeting ligand having affinity for an integrin receptor, wherein the targeting ligand is optionally linked at the 5’-end of the sense strand.
[0038] In some embodiments, a MUC5AC RNAi agent disclosed herein includes an antisense strand and a sense strand that consists of, consists essentially of, or comprises modifîed nucléotide sequences that differs by 0 or 1 nucléotides from one of the following sequence pairs (5' -> 3'):
cPrpusUfsgsUfaGfuAfgUfcGfcAfgAfaCfaGfsc (SEQ ID NO:1127) and
Tri-SM6.1-avb6-(TA14)gscuguucuGfCfGfacuacuacaas(invAb) (SEQ ID NO:1491);
usUfsgsUfaGfuAfgUfcGfcAfgAfaCfaGfsc (SEQ ID NO: 1065) and
Tri-SM6.1-avb6-(TA14)gscuguucuGfCfGfacuacuacaas(invAb) (SEQ ID NO: 1491);
usUfscsuuguucagGfcAfaAfucagsc (SEQ ID NO: 1166) and
Tn-SM6.1-avb6-(TA14)gscugauUfuGfcCfugaacaagaas(invAb) (SEQ ID NO: 1513);
cPrpuUfcuuguucagGfcAfaAfucagsc (SEQ ID NO: 1191) and
Tri-SM6.1-avb6-(TA14)gscugauUfuGfcCfugaacaagaas(invAb) (SEQ ID NO: 15.13);
wherein a, c, g, and u represent 2'-O-methyl adenosine, cytidine, guanosine, and uridine, respectively; Af, Cf, Gf, and Uf represent 2'-fIuoro adenosine, cytidine, guanosine, and uridine, respectively; cPrpu représente a 5’-cyclopropyl phosphonate-2'-O-methyluridine; Τπ-8Μ6.1-ανβ6-(ΤΑ14) représente the tridentate ανβ6 épithélial cell targeting ligand with the Chemical etructure ae ehown in Fig. 1; (invAb) repreeente an inverted abaeic deoxyribonucleotide (eee aleo Table 11), and e represents a phoephorothioate linkage.
[0039] In eome embodimente, a MUC5AC RNAi agent diecloeed herein includee an antieenee etrand that includes a nucleobase sequence that differs by 0 or 1 nucleobases from the nucléotide sequences selected from the group consisting of (5' -> 3'):
UUGUAGUAGUCGCAGAACA (SEQ ID NO:79); and UUCUUGUUCAGGCAAAUCA (SEQ ID NO:83).
[0040] In some embodiments, a MUC5AC RNAi agent disclosed herein includes an antisense strand that includes a nucleobase sequence that differs by 0 or 1 nucleobases from the nucléotide sequences selected from the group consisting of (5' -> 3'):
UUGUAGUAGUCGCAGAACA (SEQ ID NO:79); and UUCUUGUUCAGGCAAAUCA (SEQ ID NO:83);
wherein ail or substantially ail of the nucléotides are modified nucléotides.
[0041] In some embodiments, a MUC5AC RNAi agent disclosed herein includes an antisense strand that includes a nucleobase sequence that differs by 0 or 1 nucleobases from the nucléotide sequences selected from the group consisting of (5' -> 3'):
UUGUAGUAGUCGCAGAACA (SEQ ID NO:79); and UUCUUGUUCAGGCAAAUCA (SEQ ID NO:83);
wherein ail or substantially ail of the nucléotides are modified nucléotides, and wherein SEQ ID NO:79 and SEQ ID NO: 83, respectively, is located at nucléotide positions 1-19 (5' -> 3') of the antisense strand.
[0042] In some embodiments, a MUC5AC RNAi agent disclosed herein includes an antisense strand and a sense strand that each include a nucleobase sequences that differs by or 1 nucleobases from the nucléotide sequence pairs selected from the group consisting of (5' 3'):
UUGUAGUAGUCGCAGAACA (SEQ ID NO:79); and
UGUUCUGCGACUACUACAA (SEQ ID NO:568); or
UUCUUGUUCAGGCAAAUCA (SEQ ID NO:83) and
UGAUUUGCCUGAACAAGAA (SEQ ID NO:572).
[0043] In some embodiments, a MUC5AC RNAi agent disclosed herein includes an antisense strand and a sense strand that each include a nucleobase sequences that differs by 0 or 1 nucleobases from the nucléotide sequence pairs selected from the group consisting of (5' 3'):
UUGUAGUAGUCGCAGAACA (SEQ ID NO:79); and
UGUUCUGCGACUACUACAA (SEQ ID NO:568); or
UUCUUGUUCAGGCAAAUCA (SEQ ID NO:83) and
UGAUUUGCCUGAACAAGAA (SEQ ID NO:572); and wherein ali or substantially ail of the nucléotides are modifîed nucléotides.
Définitions
[0044] As used herein, the terms “oligonucleotide” and “polynucleotide” mean a polymer of linked nucleosides each of which can be independently modifîed or unmodified.
[0045] As used herein, an “RNAi agent” (also referred to as an “RNAi trigger”) means a composition that contains an RNA or RNA-like (e.g., chemically modifîed RNA) oligonucleotide molécule that is capable of degrading or inhibiting (e.g., dégradés or inhibits under appropriate conditions) translation of targeted messenger RNA (mRNA) transcripts in a sequence spécifie manner. As used herein, RNAi agents may operate through the RNA interférence mechanism (i.e., inducing RNA interférence through interaction with the RNA interférence pathway machinery (RNA-induced silencing complex or RISC) of mammalian cells), or by any alternative mechanism(s) or pathway(s). While it is believed that RNAi agents, as that terni is used herein, operate primarily through the RNA interférence mechanism, the disclosed RNAi agents are not bound by or limited to any particular pathway or mechanism of action. RNAi agents disclosed herein are comprised of a sense strand and an antisense strand, and include, but are not limited to: small (or short) interfering RNAs (siRNAs), double stranded RNAs (dsRNA), micro RNAs (miRNAs), short hairpin RNAs (shRNA), and dicer substrates. The antisense strand of the RNAi agents described herein is at least partially complementary to the mRNA being targeted (i.e., MUC5AC mRNA). RNAi agents can include one or more modified nucléotides and/or one or more non-phosphodiester linkages.
[0046] As used herein, the terms “silence,” “reduce,” “inhibit,” “down-regulate,” or “knockdown” when referring to expression of a given gene, mean that the expression of the gene, as measured by the level of RNA transcribed from the gene or the level of polypeptide, protein, or protein subunit translated from the mRNA in a cell, group of cells, tissue, organ, or subject in which the gene is transcribed, is reduced when the cell, group of cells, tissue, organ, or subject is treated with the RNAi agents described herein as compared to a second cell, group of cells, tissue, organ, or subject that has not or hâve not been so treated.
[0047] As used herein, the terms “sequence” and “nucléotide sequence” mean a succession or order of nucleobases or nucléotides, described with a succession of letters using standard nomenclature. Unless otherwise indicated, nucléotide sequences are written left to right in 5' to 3' orientation.
[0048] As used herein, a “base,” “nucléotide base,” or “nucleobase,” is a heterocyclic pyrimidine or purine compound that is a component of a nucléotide, and includes the primary purine bases adenine and guanine, and the primary pyrimidine bases cytosine, thymine, and uracil. A nucleobase may further be modified to include, without limitation, universal bases, hydrophobie bases, promiscuous bases, size-expanded bases, and fluorinated bases. (See, e.g., Modified Nucleosides in Biochemistry, Biotechnology and Medicine, Herdewijn, P. ed. Wiley-VCH, 2008). The synthesis of such modified nucleobases (including phosphoramidite compounds that include modified nucleobases) is known in the art.
[0049] As used herein, the term “nucléotide” has the same meaning as commonly understood in the art. Thus, the term nucléotide as used herein, refers to a glycoside comprising a sugar moiety, a base moiety and a covalently linked group (linkage group), such as a phosphate or phosphorothioate intemucleoside linkage group, and covers both naturally occurring nucléotides, such as DNA or RNA, and non-naturally occurring nucléotides comprising modified sugar and/or base moieties, which are also referred to as nucléotide analogs or modified nucléotides herein. A single nucléotide may be referred to here as a monomer or unit.
[0050] As used herein, and unless otherwise indicated, the term “complementary,” when used to describe a first nucleobase or nucléotide sequence (e.g., RNAi agent sense strand or targeted mRNA) in relation to a second nucleobase or nucléotide sequence (e.g., RNAi agent antisense strand or a single-stranded antisense oligonucleotide), means the ability of an oligonucleotide or polynucleotide including the first nucléotide sequence to hybridize (form base pair hydrogen bonds under mammalian physiological conditions (or otherwise suitable in vivo or in vitro conditions)) and form a duplex or double helical structure under certain standard conditions with an oligonucleotide that includes the second nucléotide sequence. The person of ordinary skill in the art would be able to select the set of conditions most appropriate for a hybridization test. Complementary sequences include Watson-Crick base pairs or non-Watson-Crick base pairs and include natural or modified nucléotides or nucléotide mimics, at least to the extent that the above hybridization requirements are fulfilled. Sequence identity or complementarity is independent of modification. For example, a and Af, as defined herein, are complementary to U (or T) and identical to A for the purposes of determining identity or complementarity.
[0051] As used herein, “perfectly complementary” or “fully complementary” means that in a hybridized pair of nucleobase or nucléotide sequence molécules, ail (100%) of the bases in a contiguous sequence of a first oligonucleotide will hybridize with the same number of bases in a contiguous sequence of a second oligonucleotide. The contiguous sequence may comprise ail or a part of a first or second nucléotide sequence.
[0052] As used herein, “partially complementary” means that in a hybridized pair of nucleobase or nucléotide sequence molécules, at least 70%, but not ail, of the bases in a contiguous sequence of a first oligonucleotide will hybridize with the same number of bases in a contiguous sequence of a second oligonucleotide. The contiguous sequence may comprise ali or a part of a first or second nucléotide sequence.
[0053] As used herein, “substantially complementary” means that in a hybridized pair of nucleobase or nucléotide sequence molécules, at least 85%, but not ail, of the bases in a contiguous sequence of a first oligonucleotide will hybridize with the same number of bases in a contiguous sequence of a second oligonucleotide. The contiguous sequence may comprise ail or a part of a first or second nucléotide sequence.
[0054] As used herein, the terms “complementary,” “fully complementary,” “partially complementary,” and “substantially complementary” are used with respect to the nucleobase or nucléotide matching between the sense strand and the antisense strand of an RNAi agent, or between the antisense strand of an RNAi agent and a sequence of an MUC5AC mRNA.
[0055] As used herein, the term “substantially identical” or “substantial identity,” as applied to a nucleic acid sequence means the nucléotide sequence (or a portion of a nucléotide sequence) has at least about 85% sequence identity or more, e.g., at least 90%, at least 95%, or at least 99% identity, compared to a reference sequence. Percentage of sequence identity is determined by comparing two optimally aligned sequences over a comparison window. The percentage is calculated by determining the number of positions at which the same type of nucleic acid base occurs in both sequences to yield the number of matched positions, dividing the number of matched positions by the total number of positions in the window of comparison and multiplying the resuit by 100 to yield the percentage of sequence identity. The inventions disclosed herein encompass nucléotide sequences substantially identical to those disclosed herein.
[0056] As used herein, the terms “treat,” “treatment,” and the like, mean the methods or steps taken to provide relief from or alleviation of the number, severity, and/or frequency of one or more symptoms of a disease in a subject. As used herein, “treat” and “treatment” may include the prévention, management, prophylactic treatment, and/or inhibition or réduction of the number, severity, and/or frequency of one or more symptoms of a disease in a subject.
[0057] As used herein, the phrase “introducing into a cell,” when referring to an RNAi agent, means functionally delivering the RNAi agent into a celL The phrase “functional delivery,” means delivering the RNAi agent to the cell in a manner that enables the RNAi agent to hâve the expected biological activity, e.g., sequence-specific inhibition of gene expression.
[0058] Unless stated otherwise, use of the symbol as used herein means that any group or groups may be linked thereto that is in accordance with the scope of the inventions described herein.
[0059] As used herein, the term “isomers” refers to compounds that hâve identical molecular formulae, but that differ in the nature or the sequence of bonding of their atoms or in the arrangement of their atoms in space. Isomers that differ in the arrangement of their atoms in space are termed “stereoisomers.” Stereoisomers that are not mirror images of one another are termed “diastereôisomers,” and stereoisomers that are non-superimposable mirror images are termed “enantiomers,” or sometimes optical isomers. A carbon atom bonded to four non-identical substituents is termed a “chiral center.” . 19
[0060] As used herein, unless specifically identified in a structure as having a particular conformation, for each structure in which asymmetric centers are présent and thus give rise to enantiomers, diastereomers, or other stereoisomeric configurations, each structure disclosed herein is intended to represent ail such possible isomers, including their optically 5 pure and racemic forms. For example, the structures disclosed herein are intended to cover mixtures of diastereomers as well as single stereoisomers.
[0061] As used in a claim herein, the phrase “consisting of ’ excludes any element, step, or ingrédient not specified in the claim. When used in a claim herein, the phrase “consisting essentially of ’ limits the scope of a claim to the specified materials or steps and those that 10 do not materially affect the basic and novel characteristic(s) of the claimed invention.
[0062] The person of ordinary skill in the art would readily understand and appreciate that the compounds and compositions disclosed herein may hâve certain atoms (e.g., N, O, or S atoms) in a protonated or deprotonated State, depending upon the environment in which the compound or composition is placed. Accordingly, as used herein, the structures disclosed 15 herein envisage that certain functional groups, such as, for example, OH, SH, or NH, may be protonated or deprotonated. The disclosure herein is intended to cover the disclosed compounds and compositions regardless of their State of protonation based on the environment (such as pH), as would be readily understood by the person of ordinary skill in the art. Correspondingly, compounds described herein with labile protons or basic atoms 20 should also be understood to represent sait forms of the corresponding compound.
Compounds described herein may be in a free acid, free base, or sait form. Pharmaceutically acceptable salts of the compounds described herein should be understood to be within the scope of the invention.
[0063] As used herein, the term “linked” or “conjugated” when referring to the connection 25 between two compounds or molécules means that two compounds or molécules are joined by a covalent bond. Unless stated, the terms “linked” and “conjugated” as used herein may refer to the connection between a first compound and a second compound either with or without any intervening atoms or groups of atoms.
[0064] As used herein, the term “including” is used to herein mean, and is used 30 interchangeably with, the phrase “including but not limited to.” The term “or” is used herein to mean, and is used interchangeably with, the term “and/or,” unless the context clearly indicates otherwise.
[0065] Unless otherwise defined, ail technical and scientific ternis used herein hâve the same meaning as commonly understood by one of ordinary skill in the art. Although methods and materials similar or équivalent to those described herein can be used in the practice or testing of the présent invention, suitable methods and materials are described 5 below. Ail publications, patent applications, patents, and other references mentioned herein are incorporated by reference in their entirety. In case of conflict, the présent spécification, including définitions, will control. In addition, the materials, methods, and examples are illustrative only and not intended to be limiting.
[0066] Where a value is explicitly recited, it is to be understood that values which are about 10 the same quantity or amount as the recited value are also within the scope of the disclosure.
Where a combination is disclosed, each sub-combination of the éléments of that combination is also specifically disclosed and is within the scope of the disclosure. Conversely, where different éléments or groups of éléments are individually disclosed, combinations thereof are also disclosed. Where any element of a disclosure is disclosed as 15 having a plurality of alternatives, examples of that disclosure in which each alternative is excluded singly or in any combination with the other alternatives are also hereby disclosed; more than one element of a disclosure can hâve such exclusions, and ail combinations of éléments having such exclusions are hereby disclosed.
[0067] Other objects, features, aspects, and advantages of the invention will be apparent 20 from the following detailed description, accompanying figures, and from the daims.
Brief Description of the Drawings
[0068] FIG. 1. Chemical structure représentation of the tridentate ανβό épithélial cell targeting ligand referred to herein as Τπ-8Μ6.1-ανβό-(ΤΑ14).
[0069] FIG. 2. Chemical structure représentation of the peptide ανβό épithélial cell targeting ligand referred to herein as ανβό-pepl.
The following abbreviations are used in Figures 3A to 3J: a, c, g, i, and u are 2'-O-methyl modified nucléotides; Af, Cf, Gf, and Uf are 2'-fluoro modified nucléotides; o is a 30 phosphodiester linkage; s is a phosphorothioate linkage; invAb is an inverted abasic residue (see, e.g., Table 11); cPrpu is a 5’-cyclopropyl phosphonate-2'-O-methyluridine modified nucléotide (see, e.g., Table 11); Τπ-8Μ6.1-ανβό-(ΤΑ14) is the tridentate ανβό épithélial cell targeting ligand having the structure shown in Fig. 1; and (TriAlkl4) is the linking group as shown in Table 11, which is suitable for subséquent coupling to targeting ligands (See also, Example 1 herein).
[0070] FIG. 3A. Schematic diagram of the modified sense and antisense strands of the MUC5AC RNAi agent conjugate having the structure of AC000437 (see, e.g., Tables 9, 5 10, and 11), having a tridentate ανβό épithélial cell targeting ligand linked at the 5’ end of the sense strand.
[0071] FIG. 3B. Schematic diagram of the modified sense and antisense strands of the MUC5AC RNAi agent conjugate having the structure of AC000480 (see, e.g., Tables 9, 10, and 11), having a tridentate ανβό épithélial cell targeting ligand linked at the 5’ end 10 of the sense strand.
[0072] FIG. 3C. Schematic diagram of the modified sense and antisense strands of the MUC5AC RNAi agent conjugate having the structure of AC000482 (see, e.g., Tables 9, 10, and 11), having a tridentate ανβό épithélial cell targeting ligand linked at the 5’ end of the sense strand.
[0073] FIG. 3D. Schematic diagram of the modified sense and antisense strands of the
MUC5AC RNAi agent conjugate having the structure of AC001305 (see, e.g., Tables 9, 10, and 11), having a tridentate ανβό épithélial cell targeting ligand linked at the 5’ end of the sense strand.
[0074] FIG. 3E. Schematic diagram of the modified sense and antisense strands of the 20 MUC5AC RNAi agent conjugate having the structure of AC001306 (see, e.g., Tables 9, 10, and 11), having a tridentate ανβό épithélial cell targeting ligand linked at the 5’ end of the sense strand.
[0075] FIG. 3F. Schematic diagram of the modified sense and antisense strands of the MUC5AC RNAi agent duplex having the structure of AD08089 (see, e.g., Tables 8 and 25 10), having a (TriAlkl4) linker at the 5’ end of the sense strand.
[0076] FIG. 3G. Schematic diagram of the modified sense and antisense strands of the MUC5AC RNAi agent duplex having the structure of AD08174 (see, e.g., Tables 8 and 10), having a (TriAlkl4) linker at the 5’ end of the sense strand.
[0077] FIG. 3H. Schematic diagram of the modified sense and antisense strands of the 30 MUC5AC RNAi agent duplex having the structure of AD08173 (see, e.g., Tables 8 and 10), having a (TriAlkl4) linker at the 5’ end of the sense strand.
[0078] FIG. 31. Schematic diagram of the modified sense and antisense strands of the MUC5AC RNAi agent duplex having the structure of AD09240 (see, e.g., Tables 8 and 10), having a (TriAlkl4) linker at the 5’ end of the sense strand.
[0079] FIG. 3J. Schematic diagram of the modified sense and antisense strands of the 5 MUC5AC RNAi agent duplex having the structure of AD09241 (see, e.g., Tables 8 and 10), having a (TriAlkl4) linker at the 5’ end of the sense strand.
Detailed Description
RNAi Agents
[0080] Described herein are RNAi agents for inhibiting expression of a MUC5AC gene (referred to herein as MUC5AC RNAi agents or MUC5AC RNAi triggers). Each MUC5AC RNAi agent disclosed herein comprises a sense strand and an antisense strand. The sense strand can be 15 to 49 nucléotides in length. The antisense strand can be 18 to 49 nucléotides in length. The sense and antisense strands can be either the same length or they can be different lengths. In some embodiments, the sense and antisense strands are each independently 18 to 27 nucléotides in length. In some embodiments, both the sense and antisense strands are each 21-26 nucléotides in length. In some embodiments, the sense and antisense strands are each 21-24 nucléotides in length. In some embodiments, the sense and antisense strands are each independently 19-21 nucléotides in length. In some embodiments, the sense strand is about 19 nucléotides in length while the antisense strand is about 21 nucléotides in length. In some embodiments, the sense strand is about 21 nucléotides in length while the antisense strand is about 23 nucléotides in length. In some embodiments, a sense strand is 23 nucléotides in length and an antisense strand is 21 nucléotides in length. In some embodiments, both the sense and antisense strands are each 21 nucléotides in length. In some embodiments, the RNAi agent antisense strands are each independently 18, 19, 20, 21, 22,23, 24, 25, 26,27, 28, 29, or 30 nucléotides in length. In some embodiments, the RNAi agent sense strands are each independently 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, or 49 nucléotides in length. The sense and antisense strands are annealed to form a duplex, and in some embodiments, a double-stranded RNAi agent has a duplex length of about 15, 16, 17, 18, 19, 20, 21, 22, 23 or 24 nucléotides.
[0081] Examples of nucléotide sequences used in forming MUC5AC RNAi agents are provided in Tables 2, 3, 4, 5, 6, 7, and 11. Examples of RNAi agent duplexes, that include the sense strand and antisense strand sequences in Tables 2, 3, 4, 5, 6, and 7 are shown in
Tables 8A, 8B, 8C, 9, 10A, 10B, and 11.
[0082] In some embodiments, the région of perfect, substantial, or partial complementarity between the sense strand and the antisense strand is 15-26 (e.g., 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, or 26) nucléotides in length and occurs at or near the 5' end of the antisense strand (e.g., this région may be separated from the 5' end of the antisense strand by 0, 1, 2, 3, or 4 nucléotides that are not perfectly, substantially, or partially complementary).
[0083] A sense strand of the MUC5AC RNAi agents described herein includes at least 15 consecutive nucléotides that hâve at least 85% identity to a core stretch sequence (also referred to herein as a “core stretch” or “core sequence”) of the same number of nucléotides in an MUC5AC mRNA. In some embodiments, a sense strand core stretch sequence is 100% (perfectly) complementary or at least about 85% (substantially) complementary to a core stretch sequence in the antisense strand, and thus the sense strand core stretch sequence is typically perfectly identical or at least about 85% identical to a nucléotide sequence of the same length (sometimes referred to, e.g., as a target sequence) présent in the MUC5AC mRNA target. In some embodiments, this sense strand core stretch is 15, 16, 17, 18, 19, 20, 21, 22, 23, or 24 nucléotides in length. In some embodiments, this sense strand core stretch is 17 nucléotides in length. In some embodiments, this sense strand core stretch is 19 nucléotides in length.
[0084] An antisense strand of a MUC5AC RNAi agent described herein includes at least 18 consecutive nucléotides that hâve at least 85% complementarity to a core stretch of the same number of nucléotides in an MUC5AC mRNA and to a core stretch of the same number of nucléotides in the corresponding sense strand. In some embodiments, an antisense strand core stretch is 100% (perfectly) complementary or at least about 85% (substantially) complementary to a nucléotide sequence (e.g., target sequence) of the same length présent in the MUC5AC mRNA target. In some embodiments, this antisense strand core stretch is 15, 16, 17, 18, 19, 20, 21, 22, 23, or 24 nucléotides in length. In some embodiments, this antisense strand core stretch is 19 nucléotides in length. In some embodiments, this antisense strand core stretch is 17 nucléotides in length. In some embodiments, this antisense strand core stretch is 21 nucléotides in length. A sense strand core stretch sequence can be the same length as a corresponding antisense core stretch sequence or it can be a different length.
[0085] The MUC5AC RNAi agent sense and antisense strands anneal to form a duplex. A sense strand and an antisense strand of a MUC5AC RNAi agent can be partially, substantially, or fully complementary to each other. Within the complementary duplex région, the sense strand core stretch sequence is at least 85% complementary or 100% complementary to the antisense core stretch sequence. In some embodiments, the sense strand core stretch sequence contains a sequence of at least 15, at least 16, at least 17, at least 18, at least 19, at least 20, at least 21, at least 22, or at least 23 nucléotides that is at least 85% or 100% complementary to a corresponding 15, 16, 17, 18, 19, 20, 21, 22, 23, or 24 nucléotide sequence of the antisense strand core stretch sequence (i.e., the sense and 10 antisense core stretch sequences of a MUC5AC RNAi agent hâve a région of at least 15, at least 16, at least 17, at least 18, at least 19, at least 20, at least 21, at least 22, at least 23, or at least 24 nucléotides that is at least 85% base paired or 100% base paired.)
[0086] In some embodiments, the antisense strand of a MUC5AC RNAi agent disclosed herein differs by 0,1,2, or 3 nucléotides from any of the antisense strand sequences in Table 15 2, Table 3, or Table 11. In some embodiments, the sense strand of a MUC5AC RNAi agent disclosed herein differs by 0, 1,2, or 3 nucléotides from any of the sense strand sequences in Table 2, Table 4, Table 5, Table 6, Table 7, or Table 11.
[0087] In some embodiments, the sense strand and/or the antisense strand can optionally and independently contain an additional 1, 2, 3, 4, 5, or 6 nucléotides (extension) at the 3' 20 end, the 5' end, or both the 3' and 5' ends of the core stretch sequences. The antisense strand additional nucléotides, if présent, may or may not be complementary to the corresponding sequence in the MUC5AC mRNA. The sense strand additional nucléotides, if présent, may or may not be identical to the corresponding -sequence in the MUC5AC mRNA. The antisense strand additional nucléotides, if présent, may or may not be complementary to the 25 corresponding sense strand’s additional nucléotides, if présent.
[0088] As used herein, an extension comprises 1, 2, 3, 4, 5, or 6 nucléotides at the 5' and/or 3' end of the sense strand core stretch sequence and/or antisense strand core stretch sequence. The extension nucléotides on a sense strand may or may not be complementary to nucléotides, either core stretch sequence nucléotides or extension nucléotides, in the 30 corresponding antisense strand. Conversely, the extension nucléotides on an antisense strand may or may not be complementary to nucléotides, either core stretch nucléotides or extension nucléotides, in the corresponding sense strand. In some embodiments, both the sense strand and the antisense strand of an RNAi agent contain 3' and 5' extensions. In some embodiments, one or more of the 3' extension nucléotides of one strand base pairs with one or more 5' extension nucléotides of the other strand. In other embodiments, one or more of 3' extension nucléotides of one strand do not base pair with one or more 5' extension nucléotides of the other strand. In some embodiments, a MUC5AC RNAi agent has an antisense strand having a 3' extension and a sense strand having a 5' extension. In some embodiments, the extension nucleotide(s) are unpaired and form an overhang. As used herein, an “overhang” refers to an extension or stretch of one or more unpaired nucléotides located at a terminal end of either the sense strand or the antisense strand that does not form part of the hybridized or duplexed portion of an RNAi agent disclosed herein.
[0089] In some embodiments, a MUC5AC RNAi agent comprises an antisense strand having a 3' extension of 1, 2, 3, 4, 5, or 6 nucléotides in length. In other embodiments, a MUC5AC RNAi agent comprises an antisense strand having a 3' extension of 1, 2, or 3 nucléotides in length. In some embodiments, one or more of the antisense strand extension nucléotides comprise nucléotides that are complementary to the corresponding MUC5AC mRNA sequence. In some embodiments, one or more of the antisense strand extension nucléotides comprise nucléotides that are not complementary to the corresponding MUC5AC mRNA sequence.
[0090] In some embodiments, a MUC5AC RNAi agent comprises a sense strand having a 3' extension of 1, 2, 3, 4, or 5 nucléotides in length. In some embodiments, one or more of 20 the sense strand extension nucléotides comprises adenosine, uracil, or thymidine nucléotides, AT dinucleotide, or nucléotides that correspond to or are the identical to nucléotides in the MUC5AC mRNA sequence. In some embodiments, the 3' sense strand extension includes or consists of one of the following sequences, but is not limited to: T, UT, TT, UU, UUT, TTT, or TTTT (each listed 5' to 3').
[0091] A sense strand can hâve a 3' extension and/or a 5' extension. In some embodiments, a MUC5AC RNAi agent comprises a sense strand having a 5' extension of 1, 2, 3, 4, 5, or 6 nucléotides in length. In some embodiments, one or more of the sense strand extension nucléotides comprise nucléotides that correspond to or are identical to nucléotides in the MUC5AC mRNA sequence.
[0092] Examples of sequences used in forming MUC5AC RNAi agents are provided in
Tables 2, 3, 4, 5, 6, 7, and 11. In some embodiments, a MUC5AC RNAi agent antisense strand includes a sequence of any of the sequences in Tables 2, 3, or 11. In certain embodiments, a MUC5AC RNAi agent antisense strand comprises or consists of any one of the modified sequences in Table 3. In some embodiments, a MUC5AC RNAi agent antisense strand includes the sequence of nucléotides (from 5' end -> 3' end) 1-17, 2-17, 118, 2-18, 1-19, 2-19, 1-20, 2-20, 1-21, or 2-21, of any of the sequences in Table 2, Table 3, or Table 11. In some embodiments, a MUC5AC RNAi agent sense strand includes the 5 sequence of any of the sequences in Tables 2, 4, 5, 6, or 7. In some embodiments, a MUC5AC RNAi agent sense strand includes the sequence of nucléotides (from 5' end -> 3' end) 1-18, 1-19, 1-20, 1-21,2-19, 2-20, 2-21,3-20, 3-21, or 4-21 ofanyofthe sequences in Tables 2, 4, 5, 6, or 7. In certain embodiments, a MUC5AC RNAi agent sense strand comprises or consists of a modified sequence of any one of the modified sequences in Table 10 4, 5, 6, 7, or 11.
[0093] In some embodiments, the sense and antisense strands of the RNAi agents described herein contain the same number of nucléotides. In some embodiments, the sense and antisense strands of the RNAi agents described herein contain different numbers of nucléotides. In some embodiments, the sense strand 5' end and the antisense strand 3' end 15 of an RNAi agent form a blunt end. In some embodiments, the sense strand 3' end and the antisense strand 5' end of an RNAi agent form a blunt end. In some embodiments, both ends of an RNAi agent form blunt ends. In some embodiments, neither end of an RNAi agent is blunt-ended. As used herein a “blunt end” refers to an end of a double stranded RNAi agent in which the terminal nucléotides of the two annealed strands are complementary (form a 20 complementary base-pair).
[0094] In some embodiments, the sense strand 5' end and the antisense strand 3' end of an RNAi agent form a frayed end. In some embodiments, the sense strand 3' end and the antisense strand 5' end of an RNAi agent form a frayed end. In some embodiments, both ends of an RNAi agent form a frayed end. In some embodiments, neither end of an RNAi 25 agent is a frayed end. As used herein a frayed end refers to an end of a double stranded RNAi agent in which the terminal nucléotides of the two annealed strands form a pair (i.e., do not form an overhang) but are not complementary (i.e. form a non-complementary pair). In some embodiments, one or more unpaired nucléotides at the end of one strand of a double stranded RNAi agent form an overhang. The unpaired nucléotides may be on the sense 30 strand or the antisense strand, creating either 3' or 5' overhangs. In some embodiments, the
RNAi agent contains: a blunt end and a frayed end, a blunt end and 5' overhang end, a blunt end and a 3' overhang end, a frayed end and a 5' overhang end, a frayed end and a 3' overhang end, two 5' overhang ends, two 3' overhang ends, a 5' overhang end and a 3' overhang end, two frayed ends, or two blunt ends. Typically, when présent, overhangs are located at the 3’ terminal ends of the sense strand, the antisense strand, or both the sense strand and the antisense strand.
[0095] The MUC5AC RNAi agents disclosed herein may also be comprised of one or more 5 modified nucléotides. In some embodiments, substantially ail of the nucléotides of the sense strand and substantially ail of the nucléotides of the antisense strand of the MUC5AC RNAi agent are modified nucléotides. The MUC5AC RNAi agents disclosed herein may further be comprised of one or more modified intemucleoside linkages, e.g., one or more phosphorothioate linkages or phosphorodithioate linkages. In some embodiments, a
MUC5 AC RNAi agent contains one or more modified nucléotides and one or more modified intemucleoside linkages. In some embodiments, a 2'-modified nucléotide is combined with modified intemucleoside linkage.
[0096] In some embodiments, a MUC5AC RNAi agent is prepared or provided as a sait, mixed sait, or a free-acid. In some embodiments, a MUC5AC RNAi agent is prepared as a pharmaceutically acceptable sait. In some embodiments, a MUC5AC RNAi agent is prepared as a pharmaceutically acceptable sodium sait. Such forms that are well known in the art are within the scope of the inventions disclosed herein.
Modified Nucléotides
[0097] Modified nucléotides, when used in various oligonucleotide constructs, can preserve activity of the compound in cells while at the same time increasing the sérum stability of these compounds, and can also minimize the possibility of activating interferon activity in humans upon administration of the oligonucleotide construct.
[0098] In some embodiments, a MUC5AC RNAi agent contains one or more modified nucléotides. As used herein, a “modified nucléotide” is a nucléotide other than a ribonucleotide (2'-hydroxyl nucléotide). In some embodiments, at least 50% (e.g., at least 60%, at least 70%, at least 80%, at least 90%, at least 95%, at least 97%, at least 98%, at least 99%, or 100%) of the nucléotides are modified nucléotides. As used herein, modified nucléotides can include, but are not limited to, deoxyribonucleotides, nucléotide mimics, abasic nucléotides, 2'-modified nucléotides, inverted nucléotides, modified nucleobasecomprising nucléotides, bridged nucléotides, peptide nucleic acids (PNAs), 2',3'-seco nucléotide mimics (unlocked nucleobase analogues), locked nucléotides, 3'-O-methoxy (2' intemucleoside linked) nucléotides, 2'-F-Arabino nucléotides, 5'-Me, 2'-fluoro nucléotide, morpholino nucléotides, vinyl phosphonate deoxyribonucleotides, vinyl phosphonate containmg nucléotides, and cyclopropyl phosphonate containing nucléotides. 2'-modified nucléotides (i.e., a nucléotide with a group other than a hydroxyl group at the 2' position of the five-membered sugar ring) include, but are not limited to, 2'-O-methyl nucléotides (also referred to as 2'-methoxy nucléotides), 2'-fluoro nucléotides (also referred to herein as 2'deoxy-2'-fluoro nucléotides), 2'-deoxy nucléotides, 2'-methoxy ethyl (2'-O-2methoxylethyl) nucléotides (also referred to as 2'-MOE), 2'-amino nucléotides, and 2'-alkyl nucléotides. It is not necessary for ail positions in a given compound to be uniformly modified. Conversely, more than one modification can be incorporated in a single MUC5AC RNAi agent or even in a single nucléotide thereof. The MUC5AC RNAi agent sense strands and antisense strands can be synthesized and/or modified by methods known in the art. Modification at one nucléotide is independent of modification at another nucléotide.
[0099] Modified nucleobases include synthetic and naturel nucleobases, such as 5substituted pyrimidines, 6-azapyrimidines and N-2, N-6 and O-6 substituted purines, (e.g., 2-aminopropyladenine, 5-propynyluracil, or 5-propynylcytosine), 5-methylcytosine (5-meC), 5-hydroxymethyl cytosine, inosine, xanthine, hypoxanthine, 2-aminoadenine, 6-alkyl (e.g., 6-methyl, 6-ethyl, 6-isopropyl, or 6-n-butyl) dérivatives of adenine and guanine, 2alkyl (e.g., 2-methyl, 2-ethyl, 2-isopropyl, or 2-n-butyl) and other alkyl dérivatives of adenine and guanine, 2-thiouracil, 2-thiothymine, 2-thiocytosine, 5-halouracil, cytosine, 5-propynyl uracil, 5-propynyl cytosine, 6-azo uracil, 6-azo cytosine, 6-azo thymine, 5-uracil (pseudouracil), 4-thiouracil, 8-halo, 8-amino, 8-sulfhydryl, 8-thioalkyI, 8-hydroxyl and other 8-substituted adenines and guanines, 5-halo (e.g., 5-bromo), 5-trifluoromethyl, and other 5-substituted uracils and cytosines, 7-methylguanine and 7-methyladenine, 8azaguanine and 8-azaadenine, 7-deazaguanine, 7-deazaadenine, 3-deazaguanine, and 3deazaadenine.
[0100] In some embodiments, the 5’ and/or 3' end of the antisense strand can include abasic residues (Ab), which can also be referred to as an “abasic site” or “abasic nucléotide.” An abasic residue (Ab) is a nucléotide or nucleoside that lacks a nucleobase at the 1' position ofthe sugar moiety. (See, e.g., U.S. Patent No. 5,998,203). In some embodiments, an abasic residue can be placed intemally in a nucléotide sequence. In some embodiments, Ab or Ab Ab can be added to the 3' end of the antisense strand. In some embodiments, the 5' end ofthe sense strand can include one or more additional abasic residues (e.g., (Ab) or (AbAb)). In some embodiments, UUAb, UAb, or Ab are added to the 3' end of the sense strand. In some embodiments, an abasic (deoxyribose) residue can be replaced with a ribitol (abasic nbose) residue.
[0101] In some embodiments, ail or substantially ail of the nucléotides of an RNAi agent are modified nucléotides. As used herein, an RNAi agent wherein substantially ail of the nucléotides présent are modified nucléotides is an RNAi agent having four or fewer (i.e., 0, 1, 2, 3, or 4) nucléotides in both the sense strand and the antisense strand being ribonucleotides (i.e., unmodified). As used herein, a sense strand wherein substantially ail of the nucléotides présent are modified nucléotides is a sense strand having two or fewer (i.e., 0, 1, or 2) nucléotides in the sense strand being unmodified ribonucleotides. As used herein, an antisense sense strand wherein substantially ail of the nucléotides présent are modified nucléotides is an antisense strand having two or fewer (i.e., 0, 1, or 2) nucléotides in the antisense strand being unmodified ribonucleotides. In some embodiments, one or more nucléotides of an RNAi agent is an unmodified ribonucleotide. Chemical structures for certain modified nucléotides are set forth in Table 12 herein.
Modified Internucleoside Linkages
[0102] In some embodiments, one or more nucléotides of a MUC5AC RNAi agent are linked by non-standard linkages or backbones (i.e., modified internucleoside linkages or modified backbones). Modified internucleoside linkages or backbones include, but are not limited to, phosphorothioate groups (represented herein as a lower case “s”), chiral phosphorothioates, thiophosphates, phosphorodithioates, phosphotriesters, aminoalkylphosphotriesters, alkyl phosphonates (e.g., methyl phosphonates or 3'-alkylene phosphonates), chiral phosphonates, phosphinates, phosphoramidates (e.g., 3'-amino phosphoramidate, aminoalkylphosphoramidates, or thionophosphoramidates), thionoalkylphosphonates, thionoalkylphosphotriesters, morpholino linkages, boranophosphates having normal 3'-5' linkages, 2'-5' linked analogs of boranophosphates, or boranophosphates having inverted polarity wherein the adjacent pairs of nucleoside units are linked 3'-5' to 5'3' or 2'-5' to 5'-2'. In some embodiments, a modified internucleoside linkage or backbone lacks a phosphorus atom. Modified internucleoside linkages lacking a phosphorus atom include, but are not limited to, short chain alkyl or cycloalkyl inter-sugar linkages, mixed heteroatom and alkyl or cycloalkyl inter-sugar linkages, or one or more short chain heteroatomic or heterocyclic inter-sugar linkages. In some embodiments, modified internucleoside backbones include, but are not limited to, siloxane backbones, sulfide backbones, sulfoxide backbones, sulfone backbones, formacetyl and thioformacetyl backbones, methylene formacetyl and thioformacetyl backbones, alkene-containing backbones, sulfamate backbones, methyleneimino and methylenehydrazino backbones, sulfonate and sulfonamide backbones, amide backbones, and other backbones having mixed 5 N, O, S, and CH2 components.
[0103] In some embodiments, a sense strand of a MUC5AC RNAi agent can contain 1, 2, 3, 4, 5, or 6 phosphorothioate linkages, an antisense strand of a MUC5AC RNAi agent can contain 1, 2, 3, 4, 5, or 6 phosphorothioate linkages, or both the sense strand and the antisense strand independently can contain 1, 2, 3, 4, 5, or 6 phosphorothioate linkages. In 10 some embodiments, a sense strand of a MUC5AC RNAi agent can contain 1, 2, 3, or 4 phosphorothioate linkages, an antisense strand of a MUC5AC RNAi agent can contain 1, 2, 3, or 4 phosphorothioate linkages, or both the sense strand and the antisense strand independently can contain 1, 2, 3, or 4 phosphorothioate linkages.
[0104] In some embodiments, a MUC5AC RNAi agent sense strand contains at least two 15 phosphorothioate intemucleoside linkages. In some embodiments, the phosphorothioate intemucleoside linkages are between the nucléotides at positions 1-3 from the 3' end of the sense strand. In some embodiments, one phosphorothioate intemucleoside linkage is at the 5’ end of the sense strand nucléotide sequence, and another phosphorothioate linkage is at the 3’ end of the sense strand nucléotide sequence. In some embodiments, two 20 phosphorothioate intemucleoside linkage are located at the 5’ end of the sense strand, and another phosphorothioate linkage is at the 3 ’ end of the sense strand. In some embodiments, the sense strand does not include any phosphorothioate intemucleoside linkages between the nucléotides, but contains one, two, or three phosphorothioate linkages between the terminal nucléotides on both the 5’ and 3’ ends and the optionally présent inverted abasic 25 residue terminal caps. In some embodiments, the targeting ligand is linked to the sense strand via a phosphorothioate linkage.
[0105] In some embodiments, a MUC5AC RNAi agent antisense strand contains four phosphorothioate intemucleoside linkages. In some embodiments, the four phosphorothioate intemucleoside linkages are between the nucléotides at positions 1-3 from 30 the 5' end of the antisense strand and between the nucléotides at positions 19-21, 20-22, 2123, 22-24, 23-25, or 24-26 from the 5' end. In some embodiments, three phosphorothioate intemucleoside linkages are located between positions 1-4 from the 5’ end of the antisense strand, and a fourth phosphorothioate intemucleoside linkage is located between positions
20-21 from the 5’ end of the antisense strand. In some embodiments, a MUC5AC RNAi agent contains at least three or four phosphorothioate intemucleoside linkages in the antisense strand.
Capping Residues or Moieties
[0106] In some embodiments, the sense strand may include one or more capping residues or moieties, sometimes referred to in the art as a “cap,” a “terminal cap,” or a “capping residue.” As used herein, a “capping residue” is a non-nuçleotide compound or other moiety that can be incorporated at one or more termini of a nucléotide sequence of an RNAi agent 10 disclosed herein. A capping residue can provide the RNAi agent, in some instances, with certain bénéficiai properties, such as, for example, protection against exonuclease dégradation. In some embodiments, inverted abasic residues (invAb) (also referred to in the art as “inverted abasic sites”) are added as capping residues (see Table 12). (See, e.g., F. ' Czaudema, Nucleic Acids Res., 2003, 31(11), 2705-16). Capping residues are generally known in the art, and include, for example, inverted abasic residues as well as carbon chains such as a terminal C3H7 (propyl), CôHb (hexyl), or C12H25 (dodecyl) groups. In some embodiments, a capping residue is présent at either the 5' terminal end, the 3' terminal end, or both the 5' and 3' terminal ends of the sense strand. In some embodiments, the 5’ end and/or the 3' end of the sense strand may include more than one inverted abasic deoxyribose 20 moiety as a capping residue.
[0107] In some embodiments, one or more inverted abasic residues (invAb) are added to the 3' end of the sense strand. In some embodiments, one or more inverted abasic residues (invAb) are added to the 5' end of the sense strand. In some embodiments, one or more inverted abasic residues or inverted abasic sites are inserted between the targeting ligand 25 and the nucléotide sequence of the sense strand of the RNAi agent. In some embodiments, the inclusion of one or more inverted abasic residues or inverted abasic sites at or near the terminal end or terminal ends of the sense strand of an RNAi agent allows for enhanced activity or other desired properties of an RNAi agent.
[0108] In some embodiments, one or more inverted abasic residues (invAb) are added to 30 the 5' end of the sense strand. In some embodiments, one or more inverted abasic residues can be inserted between the targeting ligand and the nucléotide sequence ofthe sense strand of the RNAi agent. The inverted abasic residues may be linked via phosphate, phosphorothioate (e.g., shown herein as (invAb)s)), or other intemucleoside linkages. In some embodiments, the inclusion of one or more inverted abasic residues at or near the terminal end or terminal ends of the sense strand of an RNAi agent may allow for enhanced activity or other desired properties of an RNAi agent. In some embodiments, an inverted abasic (deoxyribose) residue can be replaced with an inverted ribitol (abasic ribose) residue.
In some embodiments, the 3' end of the antisense strând core stretch sequence, or the 3' end of the antisense strand sequence, may include an inverted abasic residue. The Chemical structures for inverted abasic deoxyribose residues are shown in Table 12 below.
MUC5AC RNAi Agents
[0109] The MUC5AC RNAi agents disclosed herein are designed to target spécifie positions on a MUC5AC gene (e.g., SEQ ID NO:1 (NM_001304359.2)). As defined herein, an antisense strand sequence is designed to target a MUC5AC gene at a given position on the gene when the 5' terminal nucleobase of the antisense strand is aligned with a position that is 19 nucléotides downstream (towards the 3' end) from the position on the gene when 15 base pairing to the gene. For example, as illustrated in Tables 1 and 2 herein, an antisense strand sequence designed to target a MUC5AC gene at position 3535 requires that when base pairing to the gene, the 5' terminal nucleobase of the antisense strand is aligned with position 3553 of a MUC5AC gene.
[0110] As provided herein, a MUC5AC RNAi agent does not require that the nucleobase at 20 position 1 (5' -> 3') of the antisense strand be complementary to the gene, provided that there is at least 85% complementarity (e.g., at least 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, or 100% complementarity) of the antisense strand and the gene across a core stretch sequence of at least 16 consecutive nucléotides. For example, for a MUC5AC RNAi agent disclosed herein that is designed to target position 3535 of a MUC5AC gene, the 5' 25 terminal nucleobase of the antisense strand of the of the MUC5AC RNAi agent must be aligned with position 3553 of the gene; however, the 5' terminal nucleobase of the antisense strand may be, but is not required to be, complementary to position 3553 of a MUC5AC gene, provided that there is at least 85% complementarity (e.g., at least 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, or 100% complementarity) of the antisense strand and 30 the gene across a core stretch sequence of at least 16 consecutive nucléotides. As shown by, among other things, the various examples disclosed herein, the spécifie site of binding of the gene by the antisense strand of the MUC5AC RNAi agent (e.g., whether the MUC5AC RNAi agent is designed to target a MUC5AC gene at position 3535, at position 4993, at position 15051, or at some other position) is an important factor to the level of inhibition achieved by the MUC5AC RNAi agent. (See also, Kamola et al., The siRNA Non-seed Région and Its Target Sequences are Auxiliary Déterminants of Off-Target Effects, PLOS Computational Biology, 11(12), Figure 1 (2015)).
[OUI] In some embodiments, the MUC5AC RNAi agents disclosed herein target a MUC5AC gene at or near the positions of the MUC5AC sequence shown in Table 1. In some embodiments, the antisense strand of a MUC5AC RNAi agent disclosed herein includes a core stretch sequence that is fully, substantially, or at least partially complementary to a target MUC5AC 19-mer sequence disclosed in Table 1.
Table 1. MUC5AC 19-mer mRNA Target Sequences (taken from homo sapiens mucin
5AC, oligomeric mucus/gel-forming (MUC5AC) gene transcript, GenBank
NM 001304359.2 (SEQ ID NO:1))
SEQID No. MUC5AC 19-mer Target Sequences (5'^3') Corresponding Positions of Sequence on SEQ ID NO: 1 Targeted Gene Position (as referred to herein)
2 GCUUCCACUACAAGACCUU 304-322 304
3 UGUGGAACCACGAUGACAG 610-628 610
4 GCAAGACCUCUGCUUCUGU 923-941 923
5 CACAGACUGCACCAACUGC 1277-1295 1277
6 CAGUGCCUUCACUGUACUG 1445-1463 1445
7 AGUGCCUUCACUGUACUGC 1446-1464 1446
8 CAGCGAGACCUGCCUGAAG 1493-1511 1493
9 GGGAAGUGUUCCUGAACCA 1567-1585 1567
10 AACGUCACCAUCUUCAGAC 1617-1635 1617
11 ACGUCACCAUCUUCAGACC 1618-1636 1618
12 UGUGGGAACUUCAACAGCA 1758-1776 1758
13 GGGAACUUCAACAGCAUCC 1761-1779 1761
14 UCCAGGCCGAUGACUUCCG 1777-1795 1777
15 CUUCUUCAACACCUUCAAG 1832-1850 1832
16 UUCAACACCUUCAAGACCC 1836-1854 1836
17 CCAACAUCAGGAACAGCUU 1867-1885 1867
18 CAUCAGGAACAGCUUCGAG 1871-1889 1871
19 AGUAUGCUCAGCACUGGUG 1921-1939 1921
20 ACCUACUACUCGAACUGCA 2001-2019 2001
21 UACUACUCGAACUGCAUGU 2004-2022 2004
22 ACAUCACCUGCAGUGUUGG 2230-2248 2230
23 CACCUGCAGUGUUGGCUUC 2234-2252 2234
24 UGGACAUGACCUGUUACAG 2536-2554 2536
25 AGAGCUACAGCUUCAACGG 2797-2815 2797
26 AGGGACCACCUGCUCCAAG 2915-2933 - 2915
SEQID No. MUC5AC 19-mer Target Sequences (5' -3') Corresponding Positions of Sequence on SEQ ID NO: 1 Targeted Gene Position (as referred to herein)
27 CUGCUCCAAGGCCAUCAAG 2924-2942 2924
28 UGCUCCAAGGCCAUCAAGA 2925-2943 2925
29 CUCCAAGGCCAUCAAGAUU 2927-2945 2927
30 GACAAGAAGACCAGCAUCU 3090-3108 3090
31 AGACCAGCAUCUUCAUCAA 3097-3115 3097
32 ACCAGCAUCUUCAUCAACC 3099-3117 3099
33 CCUCAGCCCCGAGUUCAAG 3116-3134 3116
34 UGGGAACUUCGACGACAUC 3155-3173 3155
35 CAGAAGCAGUGCAGCAUCC 3321-3339 3321
36 CAGGCCUGCCAUGAAGUUU 3475-3493 3475
37 CCCUCUGUUCUGCGACUAC 3530-3548 3530
38 CCUCUGUUCUGCGACUACU 3531-3549 3531
39 UCUGUUCUGCGACUACUAC 3533-3551 3533
40 CUGUUCUGCGACUACUACA 3534-3552 3534
41 UGUUCUGCGACUACUACAA 3535-3553 3535
42 UCUUUGAUGAGGACAAGAU 3694-3712 3694
43 CUUUGAUGAGGACAAGAUG 3695-3713 3695
44 UUUGAUGAGGACAAGAUGC 3696-3714 3696
45 ACGUCAUCUACCACACGAC 3910-3928 3910
46 UGCUACAACUACCAGAUCA 4443-4461 4443
47 UACAACUACCAGAUCAGGG 4446-4464 4446
48 CUGAUUUGCCUGAACAAGA 4992-5010 4992
49 UGAUUUGCCUGAACAAGAA 4993-5011 4993
50 CACCCAUCUGCUACAACUA 5020-5038 5020
51 ACCCAUCUGCUACAACUAU 5021-5039 5021
52 UGCUACAACUAUGAGAUCC 5028-5046 5028
53 GCUACAACUAUGAGAUCCG 5029-5047 5029
54 GAUCCGCAUCCAGUGUUGC 5042-5060 5042
55 AAAGUGGUUCGACGUGGAC 5297-5315 5297
56 GUGGUUCGACGUGGACUUC 5300-5318 5300
57 GGUUCGACGUGGACUUCCC 5302-5320 5302
58 AAGGAAACCUACAACAACA 5346-5364 5346
59 AGGAAACCUACAACAACAU 5347-5365 5347
60 AAACCUACAACAACAUCAU 5350-5368 5350
61 AGAGGUGAGCAUCGAACAC 5441-5459 5441
62 GCAGGGACCCUUCAAGAUG 5519-5537 5519
63 AGAUGUGCCUCAACUACGA 5533-5551 5533
64 AUGUGCCUCAACUACGAGG 5535-5553 5535
65 ACCUCCUCUUGGCAGAAAU 6777-6795 6777
66 AGGACAACCACUUUGGUGA 6798-6816 6798
67 CUCUGCUCCUACAACUAGC 6998-7016 6998
68 ACCUCUGCUUCUACAACUA 7980-7998 7980
69 AUAACCAGCACAACUUCUG 8448-8466 8448
SEQ ID No. MUC5AC 19-mer Target Sequences (5'^3') Corresponding Positions of Sequence on SEQ ID NO: 1 Targeted Gene Position (as referred to herein)
70 ACCAGAACAACCUCUGCUC 8739-8757 8739
71 CUACAACCAGCACAAUCUC 9310-9328 9310
72 UGGACCAAGUGGUUUGACA 9729-9747 9729
73 ACAACCAGCACAACUUCUG 10206-10224 10206
74 CAACCACUUUGGUGACAAG 11014-11032 11014
75 ACAACCAACACAACUUCUG 11361-11379 11361
76 CUCUGCUCCUACAACUAGC 12965-12983 12965
77 GAGAUCAUCUUCAACAACA 15051-15069 15051
78 AGAUCAUCUUCAACAACAA 15052-15070 15052
[0112] Homo sapiens mucin 5AC, oligomeric mucus/gel-forming (MUC5AC) gene transcript, GenBankNM_001304359.2 (SEQ ID NO:1) (17,448 bases):
ctcagaggct gctgagggac agggcactct tccccgccgt ccacacaatg agtgttggcc ggaggaagct ggccctgctc tgggccctgg ctctcgctct ggcctgcacc cggcatacag
121 gccatgccca ggatggctcc tccgaatcca gctacaagca ccaccctgcc ctctctccta
181 tcgcccgggg gcccagcggg gtcccgctcc gtggggcgac tgtcttccca tctctgagga
241 ccatccctgt ggtacgagcc tccaacccgg cgcacaacgg gcgggtgtgc agcacctggg
301 gcagcttcca ctacaagacc ttcgacggcg acgtcttccg cttccccggc ctctgcaact
10 361 acgtgttctc cgagcactgc ggtgccgcct acgaggattt taacatccag ctacgccgca 421 gccaggagtc agcggccccc acgctgagca gggtcctcat gaaggtggat ggcgtggtca 481 tccagctgac caagggctcc gtcctggtca acggccaccc ggtcctgctg cccttcagcc 541 agtctggggt cctcattcag cagagcagca gctacaccaa ggtggaggcc aggctgggcc 601 ttgtcctcat gtggaaccac gatgacagcc tgctgctgga gctggacacc aaatacgcca
15 661 acaagacctg tgggctctgt ggggacttca acgggatgcc cgtggtcagc gagctcctct 721 cccacaacac caagctgaca cccatggaat tcgggaacct gcagaagatg gacgacccca 781 cggaccagtg tcaggaccct gtccctgaac ccccgaggaa ctgctccact ggctttggca 841 tctgtgagga gctcctgcac ggccagctgt tctctggctg cgtggccctg gtggacgtcg 901 gcagctacct ggaggcttgc aggcaagacc tctgcttctg tgaagacacc gacctgctca
20 961 gctgcgtctg ccacaccctt gccgagtact cccggcagtg cacccatgca ggggggttgc
1021 cccaggactg gcggggccct gacttctgcc cccagaagtg ccccaacaac atgcagtacc
1081 acgagtgccg ctccccctgc gcagacacct gctccaacca ggagcactcc cgggcctgtg
1141 aggaccactg tgtggccggc tgcttctgcc ctgaggggac ggtgcttgac gacatcggcc
1201 agaccggctg tgtccctgtg tcaaagtgtg cctgcgtcta caacggggct gcctatgccc
1261 caggggccac ctactccaca gactgcacca actgcacctg ctccggaggc cggtggagct
1321 gccaggaggt tccatgcccg ggtacctgct ctgtgcttgg aggtgcccac ttctcaacgt 1381 ttgacgggaa gcaatacacg gtgcacggcg actgcagcta tgtgctgacc aagccctgtg 1441 acagcagtgc cttcactgta ctggctgagc tgcgcaggtg cgggctgacg gacagcgaga 1501 cctgcctgaa gagcgtgaca ctgagcctgg atggggcgca gacggtggtg gtgatcaagg 1561 ccagtgggga agtgttcctg aaccagatct acacccagct gcccatctct gcagccaacg 1621 tcaccatctt cagaccctca accttcttca tcatcgccca gaccagcctg ggcctgcagc 1681 tgaacctgca gctggtgccc accatgcagc tgttcatgca gctggcgccc aagctccgtg 1741 ggcagacctg cggtctctgt gggaacttca acagcatcca ggccgatgac ttccggaccc 1801 tcagtggggt ggtggaggcc accgctgcgg ccttcttcaa caccttcaag acccaggccg 1861 cctgccccaa catcaggaac agcttcgagg acccctgctc tctgagcgtg gagaatgaga 1921 agtatgctca gcactggtgc tcgcagctga ccgatgccga cggccccttc ggccggtgcc 1981 atgctgccgt gaagccggga acctactact cgaactgcat gtttgacacc tgcaactgtg 2041 agcggagcga ggactgcctg tgcgccgcgc tgtcctccta cgtgcacgcc tgtgccgcca 2101 agggcgtgca gctcggcggc tggagggacg gcgtctgcac gaagcctatg accacttgcc 2161 ccaagtcaat gacgtaccac taccatgtca gcacctgcca gcccacctgc cgctccctga 2221 gcgaggggga catcacctgc agtgttggct tcatccccgt ggatggctgc atctgtccca 2281 agggcacctt cctggacgac acgggcaagt gtgtgcaggc cagcaactgt ccctgctacc 2341 acagaggctc catgatcccc aatggggagt cggtgcacga cagcggggct atctgcacct 2401 gcacacatgg gaagctgagc tgcatcggag gccaagcccc cgccccagtg tgtgctgcgc 2461 ccatggtgtt ctttgactgc cgaaatgcca cgcccgggga cacaggggct ggctgtcaga 2521 agagctgcca cacactggac atgacctgtt acagccccca gtgtgtgcct ggctgcgtgt 2581 gccccgacgg gctggtggcg gacggcgagg gcggctgcat cactgcggag gactgcccct 2641 gcgtgcacaa tgaggccagc taccgggccg gccagaccat ccgggtgggc tgcaacacct 2701 gcacctgtga cagcaggatg tggcggtgca cagatgaccc ctgcctggcc acctgcgccg 2761 tgtacgggga cggccactac ctcaccttcg acggacagag ctacagcttc aacggagact 2821 gcgagtacac gctggtgcag aaccactgtg gcgggaaaga cagcacccag gactcctttc 2881 gtgttgtcac cgagaacgtc ccctgcggca ccacagggac cacctgctcc aaggccatca 2941 agattttcct ggggggcttc gagctgaagc taagccatgg gaaggtggag gtgatcggga 3001 cggacgagag ccaggaggtg ccatacacca tccggcagat gggcatctac ctggtggtgg 3061 acaccgacat tggcctggtg ctgctgtggg acaagaagac cagcatcttc atcaacctca
3121 gccccgagtt caagggcagg gtctgcggcc tgtgtgggaa cttcgacgac atcgccgtta 3181 atgactttgc cacgcggagc cggtctgtgg tgggggacgt gctggagttt gggaacagct
.
3241 ggaagctctc cccctcctgc ccagatgccc tggcgcccaa ggacccctgc acggccaacc 3301 ccttccgcaa gtcctgggcc cagaagcagt gcagcatcct ccacggcccc accttcgccg 3361 cctgccacgc acacgtggag ccggccaggt actacgaggc ctgcgtgaac gacgcgtgcg 3421 cctgcgactc cgggggtgac tgcgagtgct tctgcacggc tgtggccgcc tacgcccagg 3481 cctgccatga agtaggcctg tgtgtgtcct ggcggacccc gagcatctgc cctctgttct 3541 gcgactaçta caaccccgaa ggccagtgcg agtggcacta ccagccctgc ggggtgccct 3601 gcctgcgcac ctgccggaac ccccgtggag actgcctgcg ggacgtccgg ggcctggaag 3661 gctgctaccc caagtgccca ccagaggctc ccatctttga tgaggacaag atgcagtgtg 3721 tggccacctg cccaaccccg cctctgccac cacggtgcca cgtccatggg aagtcctacc 3781 ggccaggtgc agtggtgccc tcggacaaga actgccagtc ctgcctttgt acggagcgcg 3841 gcgtggagtg cacctacaaa gctgaggcct gtgtctgcac ctacaatgga cagcgcttcc 3901 acccagggga cgtcatctac cacacgacgg atggcacggg tggctgcatc tccgcccgct 3961 gcggggccaa cggcaccatt gagaggaggg tçtacccctg cagccccacc acccctgtcc 4021 ccCcaaccac cttctccttc tccacacccc cgcttgtcgt gagctccacg cacaccccca 4081 gcaatggccc aagcagcgcg cacacaggcc ctccgagcag cgcctggccc accacagcag 4141 gcacttctcc caggacgagg ctgcccàcag cctctgcctc actgccgccg gtctgtgggg 4201 aaaagtgcct gtggtcgcca tggatggatg tcagccgccc tggacggggc acggacagcg 4261 gtgacttcga cacactggag aacctccgcg cccatgggta ccgggtgtgc gaatcaccca 4321 ggtcggtgga gtgccgagct gaggacgccc ccggagtgcc gctccgagcc ctggggcagc 4381 gtgtgcagtg cagcccggat gtggggctga cctgtcgtaa cagggagcag gcatcggggc 4441 tctgctacaa ctaccagatc agggtccagt gctgcacgcc cctaccctgc tccacctcta 4501 gcagtccagc ccagaccact cctccaacta cctccaagac cactgaaacc cgggcctcag 4561 gctcctcagc tcccagcagc acacctggca ccgtgtctct ctctacagcc aggacgacac 4621 ctgccccagg taccgctacc tctgtcaaaa aaactttctc aactcccagc cctccgccag 4681 tgccggcaac atcaacatca tccatgtcga ccacggcccc ggggacctct gtggtctcca 4741 gcaagcccac ccccacggag cccagcacat cctcctgcct gcaggagctt tgcacctgga 4801 ccgagtggat cgatggcagc taccctgctc ctggaataaa tggtggagat tttgacacat 4861 ttcaaaattt gagagacgaa ggatacacat tctgtgaaag tcctcgaagc gtgcagtgcc 4921 gggcagagag cttccccaac acgccgctgg cagacctggg gcaggacgtc atctgcagcc 4981 acacagaggg gctgatttgc ctgaacaaga accagctccc acccatctgc tacaactatg 5041 agatccgcat ccagtgttgc gagacggtga acgtgtgcag agacatcacc agactgccaa 5101 agaccgtcgc aacgacacgg ccgactccac atccaaccgg agctcagacc cagaccacct 5161 tcaccacaca catgccctcg gcctccacag agcaacccac ggcaacctcc aggggtgggc
5221 ccacagcaac cagcgtcaca cagggcaccc acaccacact agtcaccaga aactgtcatc 5281 cccggtgcac ctggacaaag tggttcgacg tggacttccc gtcccccgga ccccatggtg 5341 gagacaagga aacctacaac aacatcatca ggagtgggga aaaaatctgc cgccgacctg 5401 aggagatcac caggctccag tgccgagcca agagccaccc agaggtgagc atcgaacacc
5 5461 tgggccaggt ggtgcagtgc agccgggaag agggcctggt gtgccggaac caggaccagc 5521 agggaccctt caagatgtgc ctcaactacg aggtgcgtgt gctctgctgc gagaccccca 5581 gaggctgcca catgacctcc acacctggct ccacctctag cagtccagcc cagaccactc 5641 cttcaacaac ctccaagacc actgaaaccc aggcctcagg ctcctcagcc cccagcagca 5701 cacctggcac cgtgtctctc tctacagcca ggacgacacc tgccccaggt accgctacct
10 5761 ctgtcaaaaa aactttctca actcccagcc ctccgccagt gccggcaaca tcaacatcat 5821 ccatgtcgac cacggccccg gggacctctg tggtctccag caagcccacc cccacggagc 5881 ccagcacatc ctcctgcctg caggagcttt gcacctggac cgagtggatt gatggcagct 5941 accctgctcc tggaataaat ggtggagatt ttgacacatt tcaaaatttg agagacgaag 6001 gatacacatt ctgtgaaagt cctcgaagcg tgcagtgccg ggcagagagc ttccccaaca
15 6061 cgccgctggc agacctgggg caggacgtca tctgcagcca cacagagggg ctgatttgcc 6121 tgaacaagaa ccagctccca cccatctgct acaactatga gatccgcatc cagtgttgcg 6181 agacggtgaa cgtgtgcaga gacatcacca gaccgccaaa gaccgtcgca acgacacggc 6241 cgactccaca tccaaccgga gctcagaccc agaccacctt caccacacac atgccctcgg 6301 cctccacaga gcaacccacg gcaacctcca ggggtgggcc cacagcaacc agcgtcacac
20 6361 agggcaccca caccacacca gtcaccagaa actgtcatcc ccggtgcacc tggacaacgt 6421 ggttcgacgt ggacttcccg tcccccggac cccatggtgg agacaaggaa acctacaaca 6481 acatcatcag gagtggggaa aaaatctgcc gccgacctga ggagatcacc aggctccagt 6541 gccgagccaa gagccaccca gaggtgagca tcgaacacct gggccaggtg gtgcagtgca 6601 gccgggaaga gggcctggtg tgccggaacc aggaccagca gggacccttc aagatgtgcc
25 6661 tcaactacga ggtgcgtgtg ctctgctgcg agacccccaa aggctgcccc gtgacctcca 6721 cacctgtgac agctcctagc acccctagtg ggagagccac cagcccaact cagagcacct 6781 cctcttggca gaaatccagg acaaccactt tggtgacaac cagcacaacc tccactccac 6841 agaccagtac aacctatgcc catacaacca gcacaacctc tgctcctaca gccagaacaa 6901 cctctgctcc tacaaccaga acaacctctg cctctccagc cagcacaacc tctggtcctg
30 6961 gaaatactcc cagccctgtt cctaccacca gcacaatctc tgctcctaca actagcataa 7021 cctctgcccc tacaaccagc acaacctctg cccctacaag cagcacaacc tctggtcctg 7081 gaactactcc cagccctgtt cctaccacca gcataacctc tgcccctaca accagcacaa 7141 cctctgctcc tacaaccagc acaacctctg cccgtacaag cagcacaacc tctgccacta
7201 ccaccagcag aatctctggt cctgaaacta ctcccagccc tgttcctacc accagcacaa 7261 cctctgccac tacaaccagc acaacctcag ctcctacaac cagcacaacc tctgccccta 7321 caagcagcac aacctccagt ccacagacca gcacaacctc ggctcctaca accagcacaa 7381 cttctggtcc tggaactacc ccaagccctg ttcccacgac cagcacaacc tctgccccta 7441 caacaagaac aacttctgct cctaaâagca gcacaacctc tgccgctaca accagcacaa 7501 cctctggtcc tgaaactact cctagacctg ttcctaccac cagcacaacc tcttctccta
7561 caaccagcac aacctctgct cctacaacca gcacaacctc tgcttctaca accagcacaa 7621 cctctggtgc tggaactact cccagccctg ttcccaccac cagcacaacc tctgctccta 7681 caaccagcac aacctctgcc cctataagca gcacaacctc tgccactaca accagcacaa 7741 cctctggtcc tggaactact cccagccctg ttcctaccac gagcacaacc tctgctccta 7801 caaccagcac aacctctggt cctggaacta ctcccagtgc tgttcccacc accagcataa 7861 cctctgcacc tacaaccagc acaaactctg cccctataag cagcacaacc tctgccacta 7921 caaccagcag aatctctggt cctgaaacta ctcccagccc tgttcctacc gccagcacaa 7981 cctctgcttc tacaactagc acaacctctg gtcctggaac tactcccagc cctgttccta 8041 ccaccagcac aatctctgtt cctaccacca gcacaacttc tgcttctaca accagcacaa 8101 cctctgcttc tacaaccagc acaacctctg gtcctggaac tactcccagc cctgttccca
8161 ccaccagcac aacctctgct cccacaacaa gcacaacctc tgcccctaca accagcacaa 8221 tctcggcccc aacaaccagc acaacctctg ccactacaac cagcacgacc tctgctccta 8281 cacccagaag aacctcagcc cctacaacca gcacaatctc tgcctctacc accagcacaa 8341 cctctgcgac tacaaccagc acaacctctg ctactacaac cagcacaatc tctgccccta 8401 caaccagcac aactttgtct cctacaacca gcacaacctc tactactata accagcacaa 8461 cttctgcccc tataagcagc acaacttcca caccacagac cagcacaact tcggctccta 8521 caaccagcac aacttctggt cctggaacta cttcaagccc tgttcccacc accagcacaa 8581 cctctgcccc tacaaccagc acaacctctg cccctacaac cagaacaacc tctgtcccta 8641 caagcagcac aacctccact gctacaacca gcacaacctc tggccctgga actactccca 8701 gccctgttcc caccaccagt acaacctctg ctcctacaac cagaacaacc tctgctccta 8761 caaccagcac aacctctgcc cctacaacca gcacaacctc tgcccctaca agcagcacaa 8821 cctcagctac tacaaccagc acaatctctg ttcctacaac cagcacaact tctgttcctg 8881 gaactactcc cagccctgtt cctaccacca gcacaatctc tgttcctacc accagcacaa 8941 cttctgcttc tacaaccagc acaacctctg gtcctggaac tactcccagc cctgttccca 9001 ccaccagcac aacctctgct cccacaacaa gcacaacctc tgcccctaca accagcacaa 9061 tctcggcccc aacaaccagc acaccctctg cccctacaac cagcacaacc ttagctccta 9121 caaccagcac aacctctgcc cctacaacca gcacaacctc tacccctaca agcagcacaa
9181 cctcctctcc acagaccagc acaacctcgg cttctaccac cagcataact tctggtcctg 9241 gaactacccc aagccctgtt cccaccacca gcacaacctc tgctcctaca accagcacaa 9301 cctctgccgc tacaaccagc acaatctcgg ccccaacaac cagcacaacg tctgctccta 9361 caaccagcac aacctctgcc tctacagcca gcaaaacctc tggtcttgga actactccca
5 9421 gccctattcc taccaccagc acaacctctc ctcctacaac cagcacaact tctgcctcta 9481 cagccagcaa aacctctggt cctggaacca ctcccagccc tgttcccacc accagcacaa 9541 tctttgctcc tagaaccagc accacttctg cctctacaac cagcacaacc cctggtcctg 9601 gaaccactcc çagccccgtt cccaccacca gcacagcctc tgtttcaaag accagcacaa 9661 gccatgtttc catatccaag acaacccact cccaaccagt caccagagac tgtcatctcc
10 9721 ggtgcacctg gaccaagtgg tttgacatag acttcccatc ccctggaccc cacggcgggg 9781 acaaggaaac ctacaacaac atcatcagga gtggggaaaa aatctgccgc cgacctgagg 9841 agatcaccag gctccagtgc cgagccgaga gccacccgga ggtgagcatt gaacacctgg 9901 gccaggtggt gcagtgcagc cgtgaagagg gcctggtgtg ccggaaccag gaccagcagg 9961 gacccttcaa gatgtgcctc aactacgagg tgcgtgtgct ctgctgcgag acccctaaag
15 10021 gttgccccgt gacctccaca cctgtgacag ctcctagcac ccctagtggg agagccacca 10081 gcccaactca gagcacttcc tcttggcaga aatccaggac aaccactttg gtgacaacca 10141 gcacaacctc cactccacag accagcacaa cctctgctcc tacaaccagc acaacctctg 10201 ctcccacaac cagcacaact tctgccccta caaccagcac aacctccact ccacagacca 10261 gcatatcctc tgcccctaca agcagcacaa cctcggctcc tacaagcagc acaatctctg
20 10321 ctcgtacaac cagcataatc tctgccccta caaccagcac aacctcttcc cctacaacca 10381 gcacaacctc tgctactaca accagcacaa cctctgcccc tacaagcagc acaacctcca 10441 ctccacagac cagcaaaacc tcagctgcta caagcagcac aacctccggt tctggaacta 10501 ctcccagccc tgttaccacc accagcacag cctctgtttc aaagaccagc acaagccatg 10561 tttctgtatc caagacaacc cactcccaac cagtcaccag agactgtcat ccccggtgca
25 10621 cctggaccaa atggtttgat gtggactttc catcccctgg accccacggt ggggacaagg 10681 aaacctacaa caacatcatc aggagtgggg aaaaaatctg ccgccgacct gaggagatca 10741 ccaggctcca gtgccgagcc aagagccacc cggaggtgag catcgaacac ctgggccagg 10801 tggtgcagtg cagccgcgaa gagggcctgg tgtgccggaa ccaggaccag cagggaccct 10861 tcaagatgtg cctcaactac gaggtgcgtg tgctttgctg cgagaccccc aaaggctgcc
30 10921 ccgtgacctc cacatctgtg acagctccta gcacccctag tgggagagcc accagcccaa 10981 ctcagagcac ctcctcttgg cagaaatcca ggacaaccac tttggtgaca agcagcataa 11041 cctccactac acagaccagc acaacctctg cccctacaac tagcacaacc cctgcttcta 11101 tacccagcac aacctctgcc ccaacaacca gcacaacctc tgctcccaca acgagcacaa
11161 cttctgcccc tacaaccagc acaacctcca ctccacagac caccacatcc tctgccccta 11221 caagcagcac aacctcggct cctaccacca gcacaatctc tgcccctaca accagcacaa 11281 tctctgcccc tacaaccagc acaacctctg ctcccacagc cagcacaacg tcagctccta 11341 cgagcacttc ctcggctcct acaaccaaca caacctctgc ccctacaact agcactacct
11401 ctgctcccat aaccagcaca atctctgccc ctacaaccag cacaacctcc actccacaga
11461 ccagcacaat ctcttcccct acaaccagca caacctccac tccgcagacc agcacaacct 11521 cttcccctac aactagcaca acctcagctc ctacaaccag cacaacttct gcccctacaa 11581 ccagcacaac ctccactcca cagaccagca tatcctctgc ccctacaagc agcacaacct 11641 ctgctcctac agccagcaca atctctgccc ctacaaccag cacaacctct ttccatacaa
11701 ccagcacaac ctctccccct acaagcagca caagctccac tccacagacc agcaaaacct
11761 cagctgctac aagcagcaca acctccggtt ctggaactac tcccagcccc gttcccacca 11821 ccagcacagc ctctgtttca aagaccagca caagccatgt ttctgtatcc aagacaaccc 11881 actcccaacc agtcaccaga gactgtcatc cccggtgcac ctggaccaag tggtttgacg 11941 tggactttcc atcccctgga ccccacggtg gggacaagga aacctacaac aacatcatca
12001 ggagtgggga aaaaatctgc cgccgacctg aggagatcac caggctccag tgccgagccg
12061 agagccaccc ggaggtgagc atcgaacacc tgggccaggt ggtgcagtgc agccgggaag 12121 agggcctggt gtgccggaac caggaccagc agggaccctt caagatgtgc ctcaactacg 12181 aggtgcgtgt gctctgctgc gagaccccca aaggctgccc cgtgacctcc acacctgtga 12241 cagctcctag cacccctagt gggagagcca ccagcccaac tcagagcact tcctcttggc
12301 agaaatccag gacaaccact ttggtgacaa ccagcacaac ctccactcca cagaccagca
12361 caacctctgc ccctacaacc agcacaatcc ctgcttctac acccagcaca acctctgccc 12421 ctacaaccag cacaacctct gcccctacaa ccagcacgac ctcagctcct acacacagaa 12481 cgacttctgg tcctacaacc agcacaacct tggctcctac aaccagcaca acctctgctc 12541 caacaaccag cacaaactct gctcctacaa ccagcacaat ctctgcctct acaaccagca
12601 caatctctgc ccctacaacc agcacaatct cttcccctac aagcagcaca acctccactc
12661 cacagaccag caaaacctca gctgctacaa gcagcacaac ctccggttct ggaactactc 12721 caagccctgt tcccaccacc agcacaacct ctgcctctac aaccagcaca acttctgctc 12781 ctacaaccag cacaacctct ggtcctggaa ctactccaag ccctgttccc agcaccagta 12841 caacctctgc tgctacaacc agcacaacct ctgctcctac aaccagaaca acatctgctc
12901 ctacaagcag catgacctct ggtcctggaa ctactcccag ccctgttccc accaccagca
12961 caacctctgc tcctacaact agcacaacct ctggtcctgg aactactccc agccctgttc 13021 ccaccaccag cacaacctct gctcctataa ccagcacaac ctctggtcct ggaagtactc 13081 ccagccctgt tcccaccacc agcacaacct ctgctcctac aaccagcaca acctctgcct
13141 ctacagccag cacaacctct ggtcctggaa ctactcccag ccctgttccc accaccagca 13201 caacctctgc tcctacaacc agaacaacct ctgcctctac agccagcaca acctctggtc 13261 ctggaagtac tcccagccct gttcccacca ccagcacaac ctctgctcct acaaccagaa 13321 caacccctgc ctctacagcc agcacaacct ctggtcctgg aactactccc agccctgttc .
5 13381 ccaccacaag cacaacctct gcttctacaa ccagcacaat ctctctccct acaaccagca 13441 caacctctgc tcctataacc agcatgacct ctggtcctgg aactactccc agccctgttc 13501 ccaccaccag cacaacctct gctcctacaa ccagcacaac ctctgcctct acagccagca 13561 caacctctgg tcctggaact actcccagcc ctgttcccac caccagcaca acctctgctc 13621 ctacaaccag cacaacctct gcctctacag ccagcacaac ctctggtcct ggaacttctc
10 13681 tcagccctgt tcccaccacg agcacaacct ctgctcctac aactagcaca acctctggtc 13741 ctggaactac tcccagccct gttcccacca ccagcacaac ctctgctcct acaaccagca 13801 cgacctctgg tcctggaact actcccagcc ccgttcccac caccagcaca acccctgttt 13861 caaagaccag cacaagccat ctttctgtat ccaagacaac ccactcccaa ccagtcacca 13921 gtgactgtca tcctctgtgc gcctggacaa agtggttcga cgtggacttc ccatcccctg
15 13981 gaccccacgg cggggacaag gaaacctaca acaacatcat caggagtggg gaaaaaatct 14041 gccgccgacc tgaggagatc accaggctcc agtgccgagc cgagagccac ccggaggtga 14101 acattgaaca cctgggtcag gtggtgcagt gcagccgtga agagggcctg gtgtgccgga 14161 accaggacca gcagggaccc ttcaagatgt gcctcaacta cgaggtgcgc gtgctctgct 14221 gcgagacccc cagaggctgc ccggtgacct ctgtgacccc atatgggact tctcctacca
20 14281 atgctctgta tccttccctg tctacttcca tggtatccgc ctccgtggca tccacctctg 14341 tggcatccag ctctgtggca tccagctctg tggcttactc cacccaaacc tgcttctgca 14401 acgtggctga ccggctctac cctgcaggat ccaccatata ccgccacaga gacctcgctg 14461 gccattgcta ttatgccctg tgtagccagg actgccaagt ggtcagaggg gttgacagtg 14521 actgtccgtc caccacgctg cctcctgccc cagccacgtc cccttcaata tccacctccg
25 14581 agcccgtcac tgagctggga tgcccaaatg cggttccccc cagaaagaaa ggtgagacct 14641 gggccacacc caactgctcc gaggccacct gtgagggcaa caacgtcatc tccctgcgcc 14701 cgcgcacgtg cccgagggtg gagaagccca cttgtgccaa cggctacccg gctgtgaagg 14761 tggctgacca agatggctgc tgccatcact accagtgcca gtgtgtgtgc agcggctggg 14821 gtgaccccca ctacatcacc ttcgacggca cctactacac cttcctggac aactgcacgt
30 14881 acgtgctggt gcagcagatt gtgcccgtgt atggccactt ccgcgtgctc gtcgacaact 14941 acttctgcgg tgcggaggac gggctctcct gcccgaggtc catcatcctg gagtaccacc 15001 aggaccgcgt ggtgctgacc cgcaagccag tccacggggt gatgacaaac gagatcatct 15061 tcaacaacaa ggtggtcagc cccggcttcc ggaaaaacgg catcgtggtc tcgcgcatcg
15121 gcgtcaagat gtacgcgacc atcccggagc tgggagtcca ggtcatgttc tccggcctca
15181 tcttctccgt ggaggtgccc ttcagcaagt ttgccaacaa caccgagggc cagtgcggca 15241 cttgcaccaa cgacaggaag gatgagtgcc gcacgcctag ggggacggtg gtcgcttcct 15301 gctccgagat gtccggcctc tggaacgtga gcatacccga ccagccagcc tgccaccggc 15361 ctcacccgac gcccaccacg gtcgggccca ccacagttgg gtctaccacg gtcgggccca 15421 ccacagttgg gtctaccacg gtcgggccca ccacaccgcc tgctccgtgc ctgccatcac 15481 ccatctgcca gctgattctg agcaaggtct ttgagccgtg ccacactgtg atccccccac 15541 tgctgttcta tgagggctgc gtctttgacc ggtgccacat gacggacctg gatgtggtgt
15601 gctccagcct ggagctgtac gcggcactct gtgcgtccca cgacatctgc atcgattgga 15661 gaggccggac cggccacatg tgcccattca cctgcccagc cgacaaggtg taccagccct 15721 gcggcccgag caacccctcc tactgctacg ggaatgacag cgccagcctc ggggctctgc 15781 cggaggccgg ccccatcacc gaaggctgct tctgtccgga gggcatgacc ctcttcagca 15841 ccagtgccca agtctgcgtg cccacgggct gccccaggtg tctggggccc cacggagagc 15901 cggtgaaggt gggccacacc gtcggcatgg actgccagga gtgcacgtgt gaggcggcca 15961 cgtggacgct gacctgccga cccaagctct gcccgctgcc ccctgcctgc cccctgcccg 16021 gcttcgtgcc tgtgcctgca gccccacagg ccggccagtg ctgcccccag tacagctgcg 16081 cctgcaacac cagccgctgc cccgcgcccg tgggctgtcc tgagggcgcc cgcgcgatcc 16141 cgacctacca ggagggggcc tgctgcccag tccaaaactg cagctggaca gtgtgcagca 16201 tcaacgggac cctgtaccag cccggcgccg tggtctcctc gagcctgtgc gaaacctgca 16261 ggtgtgagct gccgggtggc cccccatcgg acgcgtttgt ggtcagctgt gagacccaga 16321 tctgcaacac acactgccct gtgggcttcg agtaccagga gcagagcggg cagtgctgtg 16381 gcacctgtgt gcaggtcgcc tgtgtcacca acaccagcaa gagccccgcc cacctcttct 16441 accccggcga gacctggtca gacgcaggga accactgtgt gacccaccag tgtgagaagc 16501 accaggatgg gctcgtggtg gtcaccacga agaaggcgtg ccccccgctc agctgttctc 16561 tggacgaggc ccgcatgagc aaggacggct gctgccgctt ctgcccgccg cccccgcccc 16621 cgtaccagaa ccagtcgacc tgtgctgtgt accataggag cctgatcatc cagcagcagg 16681 gctgcagctc ctcggagccc gtgcgcctgg cttactgccg ggggaactgt ggggacagct 16741 cttccatgta ctcgctcgag ggcaacacgg tggagcacag gtgccagtgc tgccaggagc 16801 tgcggacctc gctgaggaat gtgaccctgc actgcaccga cggctccagc cgggccttca 16861 gctacaccga ggtggaagag tgcggctgca tgggccggcg gtgccctgcg ccgggcgaca 16921 cccagcactç ggaggaggcg gaacccgagc ccagccagga ggcagagagt gggagctggg 16981 agagaggcgt cccagtgtcc cccatgcact gaccagcact gccgccctcc tgacctccaa
17041 ggagaacctc ccatatgtcc tctgagctcg gcttccaagg ccagtggaac ttgtgcccct
17101 gtccaggcgg ctgcagcttt gaacacactg tccacgcccg ctttcttgtg gagggtgtgg
17161 gctatgggtc acctgctgcc tggaggaggg gcccttaccc accccgcctg cagccacctc
17221 tcaggaccag ccccggggct ggccgagctc ctctggccat gcatccagcc tgctgttctg
17281 gggacgtgag catcacctga gggtctcagg aatgacgctt ggacatggtg atcagctgcc
17341 tggtggctgc aggaggaaga acctcactcc tacctcagcc ctcagcctgc gctcccctcc
17401 tcagtacacg gccaatctgt tgcataaata cacttgagca ttttgcaa
[0113] In some embodiments, a MUC5AC RNAi agent includes an antisense strand wherein position 19 of the antisense strand (5'->3') is capable of forming a base pair with 10 position 1 of a 19-mer target sequence disclosed in Table 1. In some embodiments, a
MUC5AC agent includes an antisense strand wherein position 1 of the antisense strand (5'->3') is capable of forming a base pair with position 19 of a 19-mer target sequence disclosed in Table 1.
[0114] In some embodiments, a MUC5AC agent includes an antisense strand wherein 15 position 2 of the antisense strand (5' -> 3') is capable of forming a base pair with position of a 19-mer target sequence disclosed in Table 1. In some embodiments, a MUC5AC agent includes an antisense strand wherein positions 2 through 18 of the antisense strand (5' -> 3') are capable of forming base pairs with each of the respective complementary bases located at positions 18 through 2 of the 19-mer target sequence disclosed in Table 1.
[0115] For the RNAi agents disclosed herein, the nucléotide at position 1 of the antisense strand (from 5' end -> 3' end) can be perfectly complementary to a MUC5AC gene, or can be non-complementary to a MUC5AC gene. In some embodiments, the nucléotide at position 1 of the antisense strand (from 5' end -> 3' end) is a U, A, or dT. In some embodiments, the nucléotide at position 1 of the antisense strand (from 5' end -> 3' end) forms an A:U or U:A base pair with the sense strand.
[0116] In some embodiments, a MUC5AC RNAi agent antisense strand comprises the sequence of nucléotides (from 5' end -> 3' end) 2-18 or 2-19 of any of the antisense strand sequences in Table 2, Table 3, or Table 11. In some embodiments, a MUC5AC RNAi sense strand comprises the sequence of nucléotides (from 5' end -> 3' end) 1-17, 1-18, or 2-18 of any of the sense strand sequences in Table 2, Table 4, Table 5, Table 6, or Table 7.
[0117] In some embodiments, a MUC5AC RNAi agent is comprised of (i) an antisense strand comprising the sequence of nucléotides (from 5' end -> 3' end) 1-18, 1-19, or 2-19 of any of the antisense strand sequences in Table 2 or Table 3, and (ii) a sense strand comprising the sequence of nucléotides (from 5' end 3' end) 2-19, 1-19, 1-18, or 2-18 of any of the sense strand sequences in Table 2, Table 4, Table 5, Table 6, or Table 7.
[0118] In some embodiments, the MUC5AC RNAi agents include core 19-mer nucléotide sequences shown in the following Table 2.
Table 2. MUC5AC RNAi Agent Antisense Strand and Sense Strand Core Stretch Base Sequences (N=any nucleobase; I = inosine (hypoxanthine nucleobase)
SEQID NO:. Antisense Strand Base Sequence (5'^3') (Shown as an Unmodified Nucléotide Sequence) SEQID NO:. Sense Strand Base Sequence (5' —3*) (Shown as an Unmodified Nucléotide Sequence) Corresponding Positions of Identified Sequence on SEQID NO: 1 Targeted Gene Position
79 UUGUAGUAGUCGCAGAACA 568 UGUUCUGCGACUACUACAA 3535-3553 3535
80 NUGUAGUAGUCGCAGAACA 569 UGUUCUGCGACUACUACAN 3535-3553 3535
81 UUGUAGUAGUCGCAGAACN 570 NGUUCUGCGACUACUACAA 3535-3553 3535
82 NUGUAGUAGUCGCAGAACN 571 NGUUCUGCGACUACUACAN 3535-3553 3535
83 UUCUUGUUCAGGCAAAUCA 572 UGAUUUGCCUGAACAAGAA 4993-5011 4993
84 NUCUUGUUCAGGCAAAUCA 573 UGAUUUGCCUGAACAAGAN 4993-5011 4993
85 UUCUUGUUCAGGCAAAUCN 574 NGAUUUGCCUGAACAAGAA 4993-5011 4993
86 NUCUUGUUCAGGCAAAUCN 575 NGAUUUGCCUGAACAAGAN 4993-5011 4993
87 CUUGAUGGCCUUGGAGCAG 576 CUGCUCCAAGGCCAUCAAG 2924-2942 2924
88 UUUGAUGGCCUUGGAGCAG 577 CUGCUCCAAGGCCAUCAAA 2924-2942 2924
89 NUUGAUGGCCUUGGAGCAG 578 CUGCUCCAAGGCCAUCAAN 2924-2942 2924
90 UUUGAUGGCCUUGGAGCAN 579 NUGCUCCAAGGCCAUCAAA 2924-2942 2924
91 NUUGAUGGCCUUGGAGCAN 580 NUGCUCCAAGGCCAUCAAN 2924-2942 2924
92 AAUCUUGAUGGCCUUGGAG 581 CUCCAAGGCCAUCAAGAUU 2927-2945 2927
93 AAUCUUGAUGGCCUUGGAN 582 NUCCAAGGCCAUCAAGAUU 2927-2945 2927
94 UAUCUUGAUGGCCUUGGAG 583 CUCCAAGGCCAUCAAGAUA 2927-2945 2927
95 UAUCUUGAUGGCCUUGGAN 584 NUCCAAGGCCAUCAAGAUA 2927-2945 2927
96 NAUCUUGAUGGCCUUGGAG 585 CUCCAAGGCCAUCAAGAUN 2927-2945 2927
97 NAUCUUGAUGGCCUUGGAN 586 NUCCAAGGCCAUCAAGAUN 2927-2945 2927
98 CUUGAACUCGGGGCUGAGG 587 CCUCAGCCCCGAGUUCAAG 3116-3134 3116
SEQID NO:. Antisense Strand Base Sequence (5'^3') (Shown as an Unmodified Nucléotide Sequence) SEQID NO:. Sense Strand Base Sequence (5' -^3') (Shown as an Unmodified Nucléotide Sequence) Corresponding Positions of Identified Sequence on SEQ ID NO: 1 Targeted Gene Position
99 UUUGAACUCGGGGCUGAGG 588 CCUCAGCCCCGAGUUCAAA 3116-3134 3116
100 NUUGAACUCGGGGCUGAGG 589 CCUCAGCCCCGAGUUCAAN 3116-3134 3116
101 UUUGAACUCGGGGCUGAGN 590 NCUCAGCCCCGAGUUCAAA 3116-3134 3116
102 NUUGAACUCGGGGCUGAGN 591 NCUCAGCCCCGAGUUCAAN 3116-3134 3116
103 GGAUGCUGCACUGCUUCUG 592 CAGAAGCAGUGCAGCAUCC 3321-3339 3321
104 UGAUGCUGCACUGCUUCUG 593 CAGAAGCAGUGCAGCAUCA 3321-3339 3321
105 NGAUGCUGCACUGCUUCUG 594 CAGAAGCAGUGCAGCAUCN 3321-3339 3321
106 UGAUGCUGCACUGCUUCUN 595 NAGAAGCAGUGCAGCAUCA 3321-3339 3321
107 NGAUGCUGCACUGCUUCUN 596 NAGAAGCAGUGCAGCAUCN 3321-3339 3321
108 UGAUGCUGCACUGCÜUCUG 597 ’ CAGAAGCAGUGCAICAUCA 3321-3339 3321
109 UGAUGCUGCACUGCUUCUN 598 nagaagcaGugcaicauca 3321-3339 3321
110 NGAUGCUGCACUGCUUCUG 599 CAGAAGCAGUGCAICAUCN 3321-3339 3321
111 NGAUGCUGCACUGCUUCUN 600 NAGAAGCAGUGCAICAUCN 3321-3339 3321
112 GUAGUCGCAGAACAGAGGG 601 CCCUCUGUUCUGCGACUAC 3530-3548 3530
113 UUAGUCGCAGAACAGAGGG 602 CCCUCUGUUCUGCGACUAA 3530-3548 3530
114 UUAGUCGCAGAACAGAGGN 603 NCCUCUGUUCUGCGACUAA 3530-3548 3530
115 NUAGUCGCAGAACAGAGGG 604 CCCUCUGUUCUGCGACUAN 3530-3548 3530
116 NUAGUCGCAGAACAGAGGN 605 NCCUCUGUUCUGCGACUAN 3530-3548 3530
117 UUAGUCGCAGAACAGAGGG 606 CCCUCUGUUCUGCIACUAA 3530-3548 3530
118 UUAGUCGCAGAACAGAGGN 607 NCCUCUGUUCUGCIACUAA 3530-3548 3530
119 NUAGUCGCAGAACAGAGGG 608 CCCUCUGUUCUGCIACUAN 3530-3548 3530
120 NUAGUCGCAGAACAGAGGN 609 NCCUCUGUUCUGCIACUAN 3530-3548 3530
SEQID NO:. Antisense Strand Base Sequence (5'^3') (Shown as an Unmodified Nucléotide Sequence) SEQID NO:. Sense Strand Base Sequence (5'^3') (Shown as an Unmodified Nucléotide Sequence) Corresponding Positions of Identifïed Sequence on SEQ ID NO: 1 Targeted Gene Position
121 AGUAGUCGCAGAACAGAGG 610 CCUCUGUUCUGCGACUACU 3531-3549 3531
122 AGUAGUCGCAGAACAGAGN 611 NCUCUGUUCUGCGACUACU 3531-3549 3531
123 UGUAGUCGCAGAACAGAGG 612 CCUCUGUUCUGCGACUACA 3531-3549 3531
124 UGUAGUCGCAGAACAGAGN 613 NCUCUGUUCUGCGACUACA 3531-3549 3531
125 NGUAGUCGCAGAACAGAGG 614 CCUCUGUUCUGCGACUACN 3531-3549 3531
126 NGUAGUCGCAGAACAGAGN 615 NCUCUGUUCUGCGACUACN 3531-3549 3531
127 AGUAGUCGCAGAACAGAGG 616 CCUCUGUUCUICGACUACU 3531-3549 3531
128 AGUAGUCGCAGAACAGAGN 617 NCUCUGUUCUICGACUACU 3531-3549 3531
129 UGUAGUCGCAGAACAGAGG 618 CCUCUGUUCUICGACUACA 3531-3549 3531
130 UGUAGUCGCAGAACAGAGN 619 NCUCUGUUCUICGACUACA 3531-3549 3531
131 NGUAGUCGCAGAACAGAGG 620 CCUCUGUUCUICGACUACN 3531-3549 3531
132 NGUAGUCGCAGAACAGAGN 621 NCUCUGUUCUICGACUACN 3531-3549 3531
133 GUAGUAGUCGCAGAACAGA 622 UCUGUUCUGCGACUACUAC 3533-3551 3533
134 UUAGUAGUCGCAGAACAGA 623 UCUGUUCUGCGACUACUAA 3533-3551 3533
135 NUAGUAGUCGCAGAACAGA 624 UCUGUUCUGCGACUACUAN 3533-3551 3533
136 NUAGUAGUCGCAGAACAGN 625 NCUGUUCUGCGACUACUAN 3533-3551 3533
137 UGUAGUAGUCGCAGAACAG 626 CUGUUCUGCGACUACUACA 3534-3552 3534
138 NGUAGUAGUCGCAGAACAG 627 CUGUUCUGCGACUACUACN 3534-3552 3534
139 NGUAGUAGUCGCAGAACAN 628 NUGUUCUGCGACUACUACN 3534-3552 3534
140 AUAGUUGUAGCAGAUGGGU 629 ACCCAUCUGCUACAACUAU 5021-5039 5021
141 AUAGUUGUAGCAGAUGGGN 630 NCCCAUCUGCUACAACUAU 5021-5039 5021
142 UUAGUUGUAGCAGAUGGGU 631 ACCCAUCUGCUACAACUAA 5021-5039 5021
cm ττ» Antisense Strand Base Sequence AU NO:. 1 ' (Shown as an Unmodifïed Nucléotide Sequence) ci, /-» tt» Sense Strand Base Sequence □KO 1U NO- °' (Shown as an Unmodifïed Nucléotide Sequence) Corresponding Positions of Identifïed Sequence on SEQID NO: 1 Targeted Gene Position
143 UUAGUUGUAGCAGAUGGGN 632 NCCCAUCUGCUACAACUAA 5021-5039 5021
144 NUAGUUGUAGCAGAUGGGU 633 ACCCAUCUGCUACAACUAN 5021-5039 5021
145 NUAGUUGUAGCAGAUGGGN 634 NCCCAUCUGCUACAACUAN 5021-5039 5021
146 GUCCACGUCGAACCACUUU 635 AAAGUGGUUCGACGUGGAC 5297-5315 5297
147 UUCCACGUCGAACCACUUU 636 AAAGUGGUUCGACGUGGAA 5297-5315 5297
148 UUCCACGUCGAACCACUUN 637 NAAGUGGUUCGACGUGGAA 5297-5315 5297
149 NUCCACGUCGAACCACUUU 638 AAAGUGGUUCGACGUGGAN 5297-5315 5297
150 NUCCACGUCGAACCACUUN 639 NAAGUGGUUCGACGUGGAN 5297-5315 5297
151 UUCCACGUCGAACCACUUU 640 AAAGUGGUUCGACIUGGAA 5297-5315 5297
152 UUCCACGUCGAACCACUUN 641 NAAGUGGUUCGACIUGGAA 5297-5315 5297
153 NUCCACGUCGAACCACUUU 642 AAAGUGGUUCGACIUGGAN 5297-5315 5297
154 NUCCACGUCGAACCACUUN 643 NAAGUGGUUCGACIUGGAN 5297-5315 . 5297
155 GAAGUCCACGUCGAACCAC 644 GUGGUUCGACGUGGACUUC 5300-5318 5300
156 UAAGUCCACGUCGAACCAC 645 GUGGUUCGACGUGGACUUA 5300-5318 5300
157 UAAGUCCACGUCGAACCAN 646 NUGGUUCGACGUGGACUUA 5300-5318 5300
158 NAAGUCCACGUCGAACCAC 647 GUGGUUCGACGUGGACUUN 5300-5318 5300
159 NAAGUCCACGUCGAACCAN 648 NUGGUUCGACGUGGACUUN 5300-5318 5300
160 UAAGUCCACGUCGAACCAC 649 GUGGUUCGACGUGIACUUA 5300-5318 5300
161 UAAGUCCACGUCGAACCAN 650 NUGGUUCGACGUGIACUUA 5300-5318 5300
162 NAAGUCCACGUCGAACCAC 651 GUGGUUCGACGUGIACUUN 5300-5318 5300
163 NAAGUCCACGUCGAACCAN 652 NUGGUUCGACGUGIACUUN 5300-5318 5300
164 GGGAAGUCCACGUCGAACC 653 GGUUCGACGUGGACUUCCC 5302-5320 5302
™ Antisense Strand Base Sequence SEQID 4 NO· ° ' (Shown as an Unmodifîed Nucléotide Sequence) „„ „ m Sense Strand Base Sequence NO:. ' v5 J J (Shown as an Unmodifîed Nucléotide Sequence) Corresponding Positions of Identified Sequence on SEQ ID NO: 1 Targeted Gene Position
165 UGGAAGUCCACGUCGAACC 654 GGUUCGACGUGGACUUCCA 5302-5320 5302
166 UGGAAGUCCACGUCGAACN 655 NGUUCGACGUGGACUUCCA 5302-5320 5302
167 NGGAAGUCCACGUCGAACC 656 GGUUCGACGUGGACUUCCN 5302-5320 5302
168 NGGAAGUCCACGUCGAACN 657 NGUUCGACGUGGACUUCCN 5302-5320 5302
169 UGGAAGUCCACGUCGAACC 658 GGUUCGACGUGIACUUCCA 5302-5320 5302
170 UGGAAGUCCACGUCGAACN 659 NGUUCGACGUGIACUUCCA 5302-5320 5302
171 NGGAAGUCCACGUCGAACC 660 GGUUCGACGUGIACUUCCN 5302-5320 5302
172 NGGAAGUCCACGUCGAACN 661 NGUUCGACGUGIACUUCCN 5302-5320 5302
173 AGAUGCUGGUCUUCUUGUC 662 GACAAGAAGACCAGCAUCU 3090-3108 3090
174 AGAUGCUGGUCUUCUUGUN 663 NACAAGAAGACCAGCAUCU 3090-3108 3090
175 UGAUGCUGGUCUUCUUGUC 664 GACAAGAAGACCAGCAUCA 3090-3108 3090
176 UGAUGCUGGUCUUCUUGUN 665 NACAAGAAGACCAGCAUCA 3090-3108 3090
177 NGAUGCUGGUCUUCUUGUC 666 GACAAGAAGACCAGCAUCN 3090-3108 3090
178 NGAUGCUGGUCUUCUUGUN 667 NACAAGAAGACCAGCAUCN 3090-3108 3090
179 AGAUGCUGGUCUUCUUGUC 668 GACAAGAAGACCAICAUCU 3090-3108 3090
180 AGAUGCUGGUCUUCUUGUN 669 NACAAGAAGACCAICAUCU 3090-3108 3090
181 UGAUGCUGGUCUUCUUGUC 670 GACAAGAAGACCAICAUCA 3090-3108 3090
182 UGAUGCUGGUCUUCUUGUN 671 NACAAGAAGACCAICAUCA 3090-3108 3090
183 NGAUGCUGGUCUUCUUGUC 672 GACAAGAAGACCAICAUCN 3090-3108 3090
184 NGAUGCUGGUCUUCUUGUN 673 NACAAGAAGACCAICAUCN 3090-3108 3090
185 GGUUGAUGAAGAUGCUGGU 674 ACCAGCAUCUUCAUCAACC 3099-3117 3099
186 UGUUGAUGAAGAUGCUGGN 675 NCCAGCAUCUUCAUCAACC 3099-3117 3099
SEQID NO:. Antisense Strand Base Sequence (5' —3') (Shown as an Unmodified Nucléotide Sequence) SEQ ID NO:. Sense Strand Base Sequence (5'^3') (Shown as an Unmodified Nucléotide Sequence) Corresponding Positions of Identified Sequence on SEQ ID NO: 1 Targeted Gene Position
187 NGUUGAUGAAGAUGCUGGU 676 ACCAGCAUCUUCAUCAACN 3099-3117 3099
188 nguugaugaagaugcuggn 677 NCCAGCAUCUUCAUCAACN 3099-3117 3099
189 AUGUUGUUGUAGGUUUCCU 678 AGGAAACCUACAACAACAU 5347-5365 5347
190 AUGUUGUUGUAGGUUUCCN 679 NGGAAACCUACAACAACAU 5347-5365 5347
. 191 UUGUUGUUGUAGGUUUCCU 680 AGGAAACCUACAACAACAA 5347-5365 5347
192 UUGUUGUUGUAGGUUUCCN 681 NGGAAACCUACAACAACAA 5347-5365 5347
193 NUGUUGUUGUAGGUUUCCN 682 NGGAAACCUACAACAACAN 5347-5365 5347
194 AUGAUGUUGUUGUAGGUUU 683 AAACCUACAACAACAUCAU 5350-5368 5350
195 AUGAUGUUGUUGUAGGUUN 684 NAACCUACAACAACAUCAU 5350-5368 5350
196 UUGAUGUUGUUGUAGGUUU 685 AAACCUACAACAACAUCAA 5350-5368 5350
197 UUGAUGUUGUUGUAGGUUN 686 NAACCUACAACAACAUCAA 5350-5368 5350
198 NUGAUGUUGUUGUAGGUUN 687 NAACCUACAACAACAUCAN 5350-5368 5350
199 UUGAUGAAGAUGCUGGUCU 688 AGACCAGCAUCUUCAUCAA 3097-3115 3097
200 UUGAUGAAGAUGCUGGUCN 689 NGACCAGCAUCUUCAUCAA 3097-3115 3097
201 NUGAUGAAGAUGCUGGUCU 690 AGACCAGCAUCUUCAUCAN 3097-3115 3097
202 NUGAUGAAGAUGCUGGUCN 691 NGACCAGCAUCUUCAUCAN 3097-3115 3097
203 UGAUCUGGUAGUUGUAGCA 692 UGCUACAACUACCAGAUCA 4443-4461 4443
204 UGAUCUGGUAGUUGUAGCN 693 NGCUACAACUACCAGAUCA 4443-4461 4443
205 NGAUCUGGUAGUUGUAGCA 694 UGCUACAACUACCAGAUCN 4443-4461 4443
206 NGAUCUGGUAGUUGUAGCN 695 NGCUACAACUACCAGAUCN 4443-4461 4443
207 UGAUCUGGUAGUUGUAGCN 696 NGCUACAACUACCAIAUCA 4443-4461 4443
208 NGAUCUGGUAGUUGUAGCA 697 UGCUACAACUACCAIAUCN 4443-4461 4443
en N)
SEQID NO:. Antisense Strand Base Sequence (5'^3') (Shown as an Unmodified Nucléotide Sequence) SEQID NO:. Sense Strand Base Sequence (5'-^3') (Shown as an Unmodified Nucléotide Sequence) Corresponding Positions of Identified Sequence on SEQ ID NO: 1 Targeted Gene Position
209 NGAUCUGGUAGUUGUAGCN 698 NGCUACAACUACCAIAUCN 4443-4461 4443
210 UGAUCUGGUAGUUGUAGCN 699 NGCUACAACUACCAIAUCA 4443-4461 4443
211 CCCUGAUCUGGUAGUUGUA 700 UACAACUACCAGAUCAGGG 4446-4464 4446
212 UCCUGAUCUGGUAGUUGUA 701 UACAACUACCAGAUCAGGA 4446-4464 4446
213 NCCUGAUCUGGUAGUUGUA 702 UACAACUACCAGAUCAGGN 4446-4464 4446
214 UCCUGAUCUGGUAGUUGUN 703 NACAACUACCAGAUCAGGA 4446-4464 4446
215 NCCUGAUCUGGUAGUUGUN 704 NACAACUACCAGAUCAGGN 4446-4464 4446
216 CCCUGAUCUGGUAGUUGUA 705 UACAACUACCAGAUCAIGG 4446-4464 4446
217 UCCUGAUCUGGUAGUUGUA 706 UACAACUACCAGAUCAIGA 4446-4464 4446
218 NCCUGAUCUGGUAGUUGUA 707 UACAACUACCAGAUCAIGN 4446-4464 4446
219 UCCUGAUCUGGUAGUUGUN 708 NACAACUACCAGAUCAIGA 4446-4464 4446
220 NCCUGAUCUGGUAGUUGUN 709 NACAACUACCAGAUCAIGN 4446-4464 4446
221 UAGUUGUAGCAGAUGGGUG 710 CACCCAUCUGCUACAACUA 5020-5038 5020
222 NAGUUGUAGCAGAUGGGUG 711 CACCCAUCUGCUACAACUN 5020-5038 5020
223 UAGUUGUAGCAGAUGGGUN 712 NACCCAUCUGCUACAACUA 5020-5038 5020
224 NAGUUGUAGCAGAUGGGUN 713 NACCCAUCUGCUACAACUN 5020-5038 5020
225 GCAACACUGGAUGCGGAUC 714 GAUCCGCAUCCAGUGUUGC 5042-5060 5042
226 UCAACACUGGAUGCGGAUC 715 GAUCCGCAUCCAGUGUUGA 5042-5060 5042
227 NCAACACUGGAUGCGGAUC 716 GAUCCGCAUCCAGUGUUGA 5042-5060 5042
228 UCAACACUGGAUGCGGAUN 717 NAUCCGCAUCCAGUGUUGN 5042-5060 5042
229 NCAACACUGGAUGCGGAUN 718 NAUCCGCAUCCAGUGUUGN 5042-5060 5042
230 GCAACACUGGAUGCGGAUC 719 GAUCCGCAUCCAGUIUUGC 5042-5060 5042
SEQID NO:. Antisense Strand Base Sequence (5'^3') (Shown as an Unmodified Nucléotide Sequence) SEQID NO:. Sense Strand Base Sequence (5'^3') (Shown as an Unmodified Nucléotide Sequence) Corresponding Positions of Identified Sequence on SEQID NO: 1 Targeted Gene Position
231 UCAACACUGGAUGCGGAUC 720 GAUCCGCAUCCAGUIUUGA 5042-5060 5042
232 NCAACACUGGAUGCGGAUC 721 GAUCCGCAUCCAGUIUUGA 5042-5060 5042
233 UCAACACUGGAUGCGGAUN 722 NAUCCGCAUCCAGUIUUGN 5042-5060 5042
234 NCAACACUGGAUGCGGAUN 723 NAUCCGCAUCCAGUIUUGN 5042-5060 5042
235 GUGUUCGAUGCUCACCUCU 724 AGAGGUGAGCAUCGAACAC 5441-5459 5441
236 UUGUUCGAUGCUCACCUCU 725 AGAGGUGAGCAUCGAACAA 5441-5459 5441
237 NUGUUCGAUGCUCACCUCU 726 AGAGGUGAGCAUCGAACAN 5441-5459 5441
238 UUGUUCGAUGCUCACCUCN 727 NGAGGUGAGCAUCGAACAA 5441-5459 5441
239 NUGUUCGAUGCUCACCUCN 728 NGAGGUGAGCAUCGAACAN 5441-5459 5441
240 GUGUUCGAUGCUCACCUCU 729 AGAGGUGAGCAUCIAACAC 5441-5459 5441
241 UUGUUCGAUGCUCACCUCU 730 AGAGGUGAGCAUCIAACAA 5441-5459 5441
242 NUGUUCGAUGCUCACCUCU 731 AGAGGUGAGCAUCIAACAN 5441-5459 5441
243 UUGUUCGAUGCUCACCUCN 732 NGAGGUGAGCAUCIAACAA 5441-5459 5441
244 NUGUUCGAUGCUCACCUCN 733 NGAGGUGAGCAUCIAACAN 5441-5459 5441
245 CAUCUUGAAGGGUCCCUGC 734 GCAGGGACCCUUCAAGAUG 5519-5537 5519
246 UAUCUUGAAGGGUCCCUGC 735 GCAGGGACCCUUCAAGAUA 5519-5537 5519
247 NAUCUUGAAGGGUCCCUGC 736 GCAGGGACCCUUCAAGAUN 5519-5537 5519
248 UAUCUUGAAGGGUCCCUGN 737 NCAGGGACCCUUCAAGAUA 5519-5537 5519
249 NAUCUUGAAGGGUCCCUGN 738 NCAGGGACCCUUCAAGAUN 5519-5537 5519
250 UCGUAGUUGAGGCACAUCU 739 AGAUGUGCCUCAACUACGA 5533-5551 5533
251 NCGUAGUUGAGGCACAUCU 740 AGAUGUGCCUCAACUACGN 5533-5551 5533
252 UCGUAGUUGAGGCACAUCN 741 NGAUGUGCCUCAACUACGA 5533-5551 5533
SEQID NO:. Antisense Strand Base Sequence (5'->3') (Shown as an Unmodifïed Nucléotide Sequence) SEQID NO:. Sense Strand Base Sequence (5' — 3') (Shown as an Unmodifïed Nucléotide Sequence) Corresponding Positions of Identified Sequence on SEQID NO: 1 Targeted Gene Position
253 NCGUAGUUGAGGCACAUCN 742 NGAUGUGCCUCAACUACGN 5533-5551 5533
254 UCGUAGUUGAGGCACAUCU 743 AGAUGUGCCUCAACUACIA 5533-5551 5533
255 NCGUAGUUGAGGCACAUCU 744 AGAUGUGCCUCAACUACIN 5533-5551 5533
256 UCGUAGUUGAGGCACAUCN 745 NGAUGUGCCUCAACUACIA 5533-5551 5533
257 NCGUAGUUGAGGCACAUCN 746 NGAUGUGCCUCAACUACIN 5533-5551 5533
258 CCUCGUAGUUGAGGCACAU 747 AUGUGCCUCAACUACGAGG 5535-5553 5535
259 UCUCGUAGUUGAGGCACAU 748 AUGUGCCUCAACUACGAGA 5535-5553 5535
260 NCUCGUAGUUGAGGCACAU 749 AUGUGCCUCAACUACGAGN 5535-5553 5535
261 UCUCGUAGUUGAGGCACAN 750 NUGUGCCUCAACUACGAGA 5535-5553 5535
262 NCUCGUAGUUGAGGCACAN 751 NUGUGCCUCAACUACGAGN 5535-5553 5535
263 CCUCGUAGUUGAGGCACAU 752 AUGUGCCUCAACUACIAGG 5535-5553 5535
264 UCUCGUAGUUGAGGCACAU 753 AUGUGCCUCAACUACIAGA 5535-5553 5535
265 NCUCGUAGUUGAGGCACAU 754 AUGUGCCUCAACUACIAGN 5535-5553 5535
266 UCUCGUAGUUGAGGCACAN 755 NUGUGCCUCAACUACIAGA 5535-5553 5535
267 NCUCGUAGUUGAGGCACAN 756 NUGUGCCUCAACUACIAGN 5535-5553 5535
268 CUUCAGGCAGGUCUCGCUG 757 CAGCGAGACCUGCCUGAAG 1493-1511 1493
269 UUUCAGGCAGGUCUCGCUG 758 CAGCGAGACCUGCCUGAAA 1493-1511 1493
270 NUUCAGGCAGGUCUCGCUG 759 CAGCGAGACCUGCCUGAAN 1493-1511 1493
271 UUUCAGGCAGGUCUCGCUN 760 NAGCGAGACCUGCCUGAAA 1493-1511 1493
272 NUUCAGGCAGGUCUCGCUN 761 NAGCGAGACCUGCCUGAAN 1493-1511 1493
273 GUCUGAAGAUGGUGACGUU 762 AACGUCACCAUCUUCAGAC 1617-1635 1617
274 UUCUGAAGAUGGUGACGUU 763 AACGUCACCAUCUUCAGAA 1617-1635 1617
SEQID NO:. Antisense Strand Base Sequence (5'^3') (Shown as an Unmodified Nucléotide Sequence) SEQ ID NO:. Sense Strand Base Sequence (5'^3') (Shown as an Unmodified Nucléotide Sequence) Corresponding Positions of Identified Sequence on SEQ ID NO: 1 Targeted Gene Position
275 NUCUGAAGAUGGUGACGUU 764 AACGUCACCAUCUUCAGAN 1617-1635 1617
276 UUCUGAAGAUGGUGACGUN 765 NACGUCACCAUCUUCAGAA 1617-1635 1617
277 NUCUGAAGAUGGUGACGUN 766 NACGUCACCAUCUUCAGAN 1617-1635 1617
278 GGUCUGAAGAUGGUGACGU 767 ACGUCACCAUCUUCAGACC 1618-1636 1618
279 UGUCUGAAGAUGGUGACGU 768 ACGUCACCAUCUUCAGACA 1618-1636 1618
280 NGUCUGAAGAUGGUGACGU 769 ACGUCACCAUCUUCAGACN 1618-1636 1618
281 UGUCUGAAGAUGGUGACGN 770 NCGUCACCAUCUUCAGACA 1618-1636 1618
282 NGUCUGAAGAUGGUGACGN 771 NCGUCACCAUCUUCAGACN 1618-1636 1618
283 GGUCUGAAGAUGGUGACGU 772 ACGUCACCAUCUUCAIACC 1618-1636 1618
284 UGUCUGAAGAUGGUGACGU 773 ACGUCACCAUCUUCAIACA 1618-1636 1618
285 NGUCUGAAGAUGGUGACGU 774 ACGUCACCAUCUUCAIACN 1618-1636 1618
286 UGUCUGAAGAUGGUGACGN 775 NCGUCACCAUCUUCAIACA 1618-1636 1618
287 NGUCUGAAGAUGGUGACGN 776 NCGUCACCAUCUUCAIACN 1618-1636 1618
288 CGGAAGUCAUCGGCCUGGA 777 UCCAGGCCGAUGACUUCCG 1777-1795 1777
289 UGGAAGUCAUCGGCCUGGA 778 UCCAGGCCGAUGACUUCCA 1777-1795 1777
290 NGGAAGUCAUCGGCCUGGA 779 UCCAGGCCGAUGACUUCCN 1777-1795 1777
291 UGGAAGUCAUCGGCCUGGN 780 NCCAGGCCGAUGACUUCCA 1777-1795 1777
292 NGGAAGUCAUCGGCCUGGN 781 NCCAGGCCGAUGACUUCCN 1777-1795 1777
293 CUUGAAGGUGUUGAAGAAG 782 CUUCUUCAACACCUUCAAG 1832-1850 1832
294 UUUGAAGGUGUUGAAGAAG 783 CUUCUUCAACACCUUCAAA 1832-1850 1832
295 NUUGAAGGUGUUGAAGAAG 784 CUUCUUCAACACCUUCAAN 1832-1850 1832
296 UUUGAAGGUGUUGAAGAAN 785 NUUCUUCAACACCUUCAAA 1832-1850 1832
CH ΟΥ
SEQ ID NO:. Antisense Strand Base Sequence (5'^3') (Shown as an Unmodified Nucléotide Sequence) SEQID NO:. Sense Strand Base Sequence (5' ~*3r) (Shown as an Unmodified Nucléotide Sequence) Corresponding Positions of Identified Sequence on SEQ ID NO: 1 Targeted Gene Position
297 NUUGAAGGUGUUGAAGAAN 786 NUUCUUCAACACCUUCAAN 1832-1850 1832
298 UGCAGUUCGAGUAGUAGGU 787 ACCUACUACUCGAACUGCA 2001-2019 2001
299 NGCAGUUCGAGUAGUAGGU 788 ACCUACUACUCGAACUGCN 2001-2019 2001
300 UGCAGUUCGAGUAGUAGGN 789 NCCUACUACUCGAACUGCA 2001-2019 2001
301 NGCAGUUCGAGUAGUAGGN 790 NCCUACUACUCGAACUGCN 2001-2019 2001
302 UGCAGUUCGAGUAGUAGGU 791 ACCUACUACUCGAACUICA 2001-2019 2001
303 NGCAGUUCGAGUAGUAGGU 792 ACCUACUACUCGAACUICN 2001-2019 2001
304 UGCAGUUCGAGUAGUAGGN 793 NCCUACUACUCGAACUICA 2001-2019 2001
305 NGCAGUUCGAGUAGUAGGN 794 NCCUACUACUCGAACUICN 2001-2019 2001
306 CUUGGAGCAGGUGGUCCCU 795 AGGGACCACCUGCUCCAAG 2915-2933 2915
307 UUUGGAGCAGGUGGUCCCU 796 AGGGACCACCUGCUCCAAA 2915-2933 2915
308 NUUGGAGCAGGUGGUCCCU 797 AGGGACCACCUGCUCCAAN 2915-2933 2915
309 UUUGGAGCAGGUGGUCCCN 798 NGGGACCACCUGCUCCAAA 2915-2933 2915
310 NUUGGAGCAGGUGGUCCCN 799 NGGGACCACCUGCUCCAAN 2915-2933 2915
311 UCUUGAUGGCCUUGGAGCA 800 UGCUCCAAGGCCAUCAAGA 2925-2943 2925
312 NCUUGAUGGCCUUGGAGCA 801 UGCUCCAAGGCCAUCAAGN 2925-2943 2925
313 UCUUGAUGGCCUUGGAGCN 802 NGCUCCAAGGCCAUCAAGA 2925-2943 2925
314 NCUUGAUGGCCUUGGAGCN 803 NGCUCCAAGGCCAUCAAGN 2925-2943 2925
315 CUGUCAUCGUGGUUCCACA 804 UGUGGAACCACGAUGACAG 610-628 610
316 UUGUCAUCGUGGUUCCACA 805 UGUGGAACCACGAUGACAA 610-628 610
317 NUGUCAUCGUGGUUCCACA 806 UGUGGAACCACGAUGACAN 610-628 610
318 UUGUCAUCGUGGUUCCACN 807 NGUGGAACCACGAUGACAA 610-628 610
SEQID NO:. Antisense Strand Base Sequence (5'->3') (Shown as an Unmodifîed Nucléotide Sequence) SEQID NO:. Sense Strand Base Sequence (5'^3') (Shown as an Unmodifîed Nucléotide Sequence) ' Corresponding Positions of Identified Sequence on SEQ ID NO: 1 Targeted Gene Position
319 NUGUCAUCGUGGUUCCACN 808 NGUGGAACCACGAUGACAN 610-628 610
320 CUGUCAUCGUGGUUCCACA 809 UGUGGAACCACGAUIACAG 610-628 610
321 UUGUCAUCGUGGUUCCACA 810 UGUGGAACCACGAUIACAA 610-628 610
322 NUGUCAUCGUGGUUCCACA 811 UGUGGAACCACGAUIACAN 610-628 610
323 UUGUCAUCGUGGUUCCACN 812 NGUGGAACCACGAUIACAA 610-628 610
324 NUGUCAUCGUGGUUCCACN 813 NGUGGAACCACGAUIACAN 610-628 610
325 ACAGAAGCAGAGGUCUUGC 814 GCAAGACCUCUGCUUCUGU 923-941 923
326 ACAGAAGCAGAGGUCUUGN 815 NCAAGACCUCUGCUUCUGU 923-941 923
327 UCAGAAGCAGAGGUCUUGC 816 GCAAGACCUCUGCUUCUGA 923-941 923
328 UCAGAAGCAGAGGUCUUGN 817 NCAAGACCUCUGCUUCUGA 923-941 923
329 ACAGAAGCAGAGGUCUUGC 818 GCAAGACCUCUGCUUCUIU 923-941 923
330 ACAGAAGCAGAGGUCUUGN 819 NCAAGACCUCUGCUUCUIU 923-941 923
331 UCAGAAGCAGAGGUCUUGC 820 GCAAGACCUCUGCUUCUIA 923-941 923
332 UCAGAAGCAGAGGUCUUGN 821 NCAAGACCUCUGCUUCUIA 923-941 923
333 GCAGUUGGUGCAGUCUGUG 822 CACAGACUGCACCAACUGC 1277-1295 1277
334 UCAGUUGGUGCAGUCUGUG 823 CACAGACUGCACCAACUGA 1277-1295 1277
335 NCAGUUGGUGCAGUCUGUG 824 CACAGACUGCACCAACUGA 1277-1295 1277
336 UCAGUUGGUGCAGUCUGUN 825 NACAGACUGCACCAACUGN 1277-1295 1277
337 NCAGUUGGUGCAGUCUGUN 826 NACAGACUGCACCAACUGN 1277-1295 1277
338 GCAGUUGGUGCAGUCUGUG 827 CACAGACUGCACCAACUIC 1277-1295 1277
339 UCAGUUGGUGCAGUCUGUG 828 CACAGACUGCACCAACUIA 1277-1295 1277
340 NCAGUUGGUGCAGUCUGUG 829 CACAGACUGCACCAACUIA 1277-1295 1277
SEQID NO:. Antisense Strand Base Sequence (5'^3') (Shown as an Unmodified Nucléotide Sequence) SEQID NO:. Sense Strand Base Sequence (5'^3') (Shown as an Unmodified Nucléotide Sequence) Corresponding Positions of Identifîed Sequence on SEQ ID NO: 1 Targeted Gene Position
341 UCAGUUGGUGCAGUCUGUN 830 NACAGACUGCACCAACUIN 1277-1295 1277
342 NCAGUUGGUGCAGUCUGUN 831 NACAGACUGCACCAACUIN 1277-1295 1277
343 GCAGUACAGUGAAGGCACU 832 AGUGCCUUCACUGUACUGC 1446-1464 1446
344 UCAGUACAGUGAAGGCACU 833 AGUGCCUUCACUGUACUGA 1446-1464 1446
345 NCAGUACAGUGAAGGCACU 834 AGUGCCUUCACUGUACUGN 1446-1464 1446
346 UCAGUACAGUGAAGGCACN 835 NGUGCCUUCACUGUACUGA 1446-1464 1446
347 NCAGUACAGUGAAGGCACN 836 NGUGCCUUCACUGUACUGN 1446-1464 1446
348 GCAGUACAGUGAAGGCACU 837 AGUGCCUUCACUGUACUIC 1446-1464 1446
349 UCAGUACAGUGAAGGCACU 838 AGUGCCUUCACUGUACUIA 1446-1464 1446
350 NCAGUACAGUGAAGGCACU 839 AGUGCCUUCACUGUACUIN 1446-1464 1446
351 UCAGUACAGUGAAGGCACN 840 NGUGCCUUCACUGUACUIA 1446-1464 1446
352 NCAGUACAGUGAAGGCACN 841 NGUGCCUUCACUGUACUIN 1446-1464 1446
353 UGCUGUUGAAGUUCCCACA 842 UGUGGGAACUUCAACAGCA 1758-1776 1758
354 NGCUGUUGAAGUUCCCACA 843 UGUGGGAACUUCAACAGCN 1758-1776 1758
355 UGCUGUUGAAGUUCCCACN 844 NGUGGGAACUUCAACAGCA 1758-1776 1758
356 NGCUGUUGAAGUUCCCACN 845 NGUGGGAACUUCAACAGCN 1758-1776 1758
357 UGCUGUUGAAGUUCCCACA 846 UGUGGGAACUUCAACAICA 1758-1776 1758
358 NGCUGUUGAAGUUCCCACA 847 UGUGGGAACUUCAACAICN 1758-1776 1758
359 UGCUGUUGAAGUUCCCACN 848 NGUGGGAACUUCAACAICA 1758-1776 1758
360 NGCUGUUGAAGUUCCCACN 849 NGUGGGAACUUCAACAICN 1758-1776 1758
361 GGAUGCUGUUGAAGUUCCC 850 GGGAACUUCAACAGCAUCC 1761-1779 1761
362 UGAUGCUGUUGAAGUUCCC 851 GGGAACUUCAACAGCAUCA 1761-1779 1761
en
SEQID NO:. Antisense Strand Base Sequence (5'^3') (Shown as an Unmodifîed Nucléotide Sequence) SEQID NO:. Sense Strand Base Sequence (5'^3') (Shown as an Unmodifîed Nucléotide Sequence) Corresponding Positions of Identifïed Sequence on SEQ ID NO: 1 Targeted Gene Position
363 NGAUGCUGUUGAAGUUCCC 852 GGGAACUUCAACAGCAUCN 1761-1779 1761
364 UGAUGCUGUUGAAGUUCCN 853 NGGAACUUCAACAGCAUCA 1761-1779 1761
365 NGAUGCUGUUGAAGUUCCN 854 NGGAACUUCAACAGCAUCN 1761-1779 1761
366 GGAUGCUGUUGAAGUUCCC 855 GGGAACUUCAACAICAUCC 1761-1779 1761
367 UGAUGCUGUUGAAGUUCCC 856 GGGAACUUCAACAICAUCA 1761-1779 1761
368 NGAUGCUGUUGAAGUUCCC 857 GGGAACUUCAACAICAUCN 1761-1779 1761
369 UGAUGCUGUUGAAGUUCCN 858 NGGAACUUCAÀCAICAUCA 1761-1779 1761
370 NGAUGCUGUUGAAGUUCCN 859 NGGAACUUCAACAICAUCN 1761-1779 1761
371 GGGUCUUGAAGGUGUUGAA 860 UUCAACACCUUCAAGACCC 1836-1854 1836
372 UGGUCUUGAAGGUGUUGAA 861 UUCAACACCUUCAAGACCA 1836-1854 1836
373 NGGUCUUGAAGGUGUUGAA 862 UUCAACACCUUCAAGACCN 1836-1854 1836
374 UGGUCUUGAAGGUGUUGAN 863 NUCAACACCUUCAAGACCA 1836-1854 1836
375 NGGUCUUGAAGGUGUUGAN 864 NUCAACACCUUCAAGACCN 1836-1854 1836
376 GGGUCUUGAAGGUGUUGAA 865 UUCAACACCUUCAAIACCC 1836-1854 1836
377 UGGUCUUGAAGGUGUUGAA 866 UUCAACACCUUCAAIACCA 1836-1854 1836
378 NGGUCUUGAAGGUGUUGAA 867 UUCAACACCUUCAAIACCN 1836-1854 1836
379 UGGUCUUGAAGGUGUUGAN 868 NUCAACACCUUCAAIACCA 1836-1854 1836
380 NGGUCUUGAAGGUGUUGAN 869 NUCAACACCUUCAAIACCN 1836-1854 1836
381 AAGCUGUUCCUGAUGUUGG 870 CCAACAUCAGGAACAGCUU 1867-1885 1867
382 AAGCUGUUCCUGAUGUUGN 871 NCAACAUCAGGAACAGCUU 1867-1885 1867
383 UAGCUGUUCCUGAUGUUGG 872 CCAACAUCAGGAACAGCUN 1867-1885 1867
384 UAGCUGUUCCUGAUGUUGN 873 NCAACAUCAGGAACAGCUU 1867-1885 1867
SEQ ID NO:. Antisense Strand Base Sequence (5'^3') (Shown as an Unmodified Nucléotide Sequence) SEQID NO:. Sense Strand Base Sequence (5'^3') (Shown as an Unmodified Nucléotide Sequence) Corresponding Positions of Identifïed Sequence on SEQ ID NO: 1 Targeted Gene Position
385 NAGCUGUUCCUGAUGUUGN 874 NCAACAUCAGGAACAGCUN 1867-1885 1867
386 AAGCUGUUCCUGAUGUUGG 875 CCAACAUCAGGAACAICUU 1867-1885 1867
387 AAGCUGUUCCUGAUGUUGN 876 NCAACAUCAGGAACAICUU 1867-1885 1867
388 UAGCUGUUCCUGAUGUUGG 877 CCAACAUCAGGAACAICUN 1867-1885 1867
389 UAGCUGUUCCUGAUGUUGN 878 NCAACAUCAGGAACAICUU 1867-1885 1867
390 NAGCUGUUCCUGAUGUUGN 879 NCAACAUCAGGAACAICUN 1867-1885 1867
391 ACAUGCAGUUCGAGUAGUA 880 UACUACUCGAACUGCAUGU 2004-2022 2004
392 ACAUGCAGUUCGAGUAGUN 881 NACUACUCGAACUGCAUGU 2004-2022 2004
393 UCAUGCAGUUCGAGUAGUA 882 UACUACUCGAACUGCAUGA 2004-2022 2004
394 UCAUGCAGUUCGAGUAGUN 883 NACUACUCGAACUGCAUGA 2004-2022 2004
395 NCAUGCAGUUCGAGUAGUN 884 NACUACUCGAACUGCAUGN 2004-2022 2004
396 GAAGCCAACACUGCAGGUG 885 CACCUGCAGUGUUGGCUUC 2234-2252 2234
397 UAAGCCAACACUGCAGGUG 886 CACCUGCAGUGUUGGCUUA 2234-2252 2234
398 NAAGCCAACACUGCAGGUG 887 CACCUGCAGUGUUGGCUUN 2234-2252 2234
399 UAAGCCAACACUGCAGGUN 888 NACCUGCAGUGUUGGCUUA 2234-2252 2234
400 NAAGCCAACACUGCAGGUN 889 NACCUGCAGUGUUGGCUUN 2234-2252 2234
401 GAAGCCAACACUGCAGGUG 890 CACCUGCAGUGUUGICUUC 2234-2252 2234
402 UAAGCCAACACUGCAGGUG 891 CACCUGCAGUGUUGICUUA 2234-2252 2234
403 NAAGCCAACACUGCAGGUG 892 CACCUGCAGUGUUGICUUN 2234-2252 2234
404 UAAGCCAACACUGCAGGUN 893 NACCUGCAGUGUUGICUUA 2234-2252 2234
405 NAAGCCAACACUGCAGGUN 894 NACCUGCAGUGUUGICUUN 2234-2252 2234
406 CUGUAACAGGUCAUGUCCA 895 UGGACAUGACCUGUUACAG 2536-2554 2536
SEQID NO:. Antisense Strand Base Sequence (5'-3') (Shown as an Unmodified Nucléotide Sequence) SEQID NO:. Sense Strand Base Sequence (5'-+3') (Shown as an Unmodified Nucléotide Sequence) Corresponding Positions of Identified Sequence. on SEQID NO: 1 Targeted Gene Position
407 UUGUAACAGGUCAUGUCCA 896 UGGACAUGACCUGUUACAA 2536-2554 2536
408 NUGUAACAGGUCAUGUCCA 897 UGGACAUGACCUGUUACAN 2536-2554 2536
409 UUGUAACAGGUCAUGUCCN 898 NGGACAUGACCUGUUACAA 2536-2554 2536
410 NUGUAACAGGUCAUGUCCN 899 NGGACAUGACCUGUUACAN 2536-2554 2536
411 CCGUUGAAGCUGUAGCUCU 900 AGAGCUACAGCUUCAACGG 2797-2815 2797
412 UCGUUGAAGCUGUAGCUCU 901 AGAGCUACAGCUUCAACGA 2797-2815 2797
413 NCGUUGAAGCUGUAGCUCU 902 AGAGCUACAGCUUCAACGN 2797-2815 2797
414 UCGUUGAAGCUGUAGCUCN 903 NGAGCUACAGCUUCAACGA 2797-2815 2797
415 NCGUUGAAGCUGUAGCUCN 904 NGAGCUACAGCUUCAACGN 2797-2815 2797
416 CCGUUGAAGCUGUAGCUCU 905 AGAGCUACAGCUUCAACIG 2797-2815 2797
417 UCGUUGAAGCUGUAGCUCU 906 AGAGCUACAGCUUCAACIA 2797-2815 2797
418 NCGUUGAAGCUGUAGCUCU 907 AGAGCUACAGCUUCAACIN 2797-2815 2797
419 UCGUUGAAGCUGUAGCUCN 908 NGAGCUACAGCUUCAACIA 2797-2815 2797
420 NCGUUGAAGCUGUAGCUCN 909 NGAGCUACAGCUUCAACIN 2797-2815 2797
421 CAGUACAGUGAAGGCACUG 910 CAGUGCCUUCACUGUACUG 1445-1463 1445
422 UAGUACAGUGAAGGCACUG 911 CAGUGCCUUCACUGUACUA 1445-1463 1445
423 UAGUACAGUGAAGGCACUN 912 NAGUGCCUUCACUGUACUA 1445-1463 1445
424 NAGUACAGUGAAGGCACUG 913 CAGUGCCUUCACUGUACUN 1445-1463 1445
425 NAGUACAGUGAAGGCACUN 914 NAGUGCCUUCACUGUACUN 1445-1463 1445
426 CUCGAAGCUGUUCCUGAUG 915 CAUCAGGAACAGCUUCGAG 1871-1889 1871
427 UUCGAAGCUGUUCCUGAUG 916 CAUCAGGAACAGCUUCGAA 1871-1889 1871
428 UUCGAAGCUGUUCCUGAUN 917 NAUCAGGAACAGCUUCGAA 1871-1889 1871
SEQID NO:. Antisense Strand Base Sequence (5'->3') (Shown as an Unmodifîed Nucléotide Sequence) SEQID NO:. Sense Strand Base Sequence (5'-^3') (Shown as an Unmodifîed Nucléotide Sequence) Corresponding Positions of Identifîed Sequence on SEQ ID NO: 1 Targeted Gene Position
429 NUCGAAGCUGUUCCUGAUG 918 CAUCAGGAACAGCUUCGAN 1871-1889 1871
430 NUCGAAGCUGUUCCUGAUN 919 NAUCAGGAACAGCUUCGAN 1871-1889 1871
431 CUCGAAGCUGUUCCUGAUG 920 CAUCAGGAACAGCUUCIAG 1871-1889 1871
432 UUCGAAGCUGUUCCUGAUG 921 CAUCAGGAACAGCUUCIAA 1871-1889 1871
433 UUCGAAGCUGUUCCUGAUN 922 NAUCAGGAACAGCUUCIAA 1871-1889 1871
434 NUCGAAGCUGUUCCUGAUG 923 CAUCAGGAACAGCUUCIAN 1871-1889 1871
435 NUCGAAGCUGUUCCUGAUN 924 NAUCAGGAACAGCUUCIAN 1871-1889 1871
436 UCUUGUUCAGGCAAAUCAG 925 CUGAUUUGCCUGAACAAGA 4992-5010 4992
437 UCUUGUUCAGGCAAAUCAN 926 NUGAUUUGCCUGAACAAGA 4992-5010 4992
438 NCUUGUUCAGGCAAAUCAG 927 CUGAUUUGCCUGAACAAGN 4992-5010 4992
439 NCUUGUUCAGGCAAAUCAN 928 NUGAUUUGCCUGAACAAGN 4992-5010 4992
440 UCACCAAAGUGGUUGUCCU 929 AGGACAACCACUUUGGUGA 6798-6816 6798
441 UCACCAAAGUGGUUGUCCN 930 NGGACAACCACUUUGGUGA 6798-6816 6798
442 NCACCAAAGUGGUUGUCCU 931 AGGACAACCACUUUGGUGN 6798-6816 6798
443 NCACCAAAGUGGUUGUCCN 932 NGGACAACCACUUUGGÜGN 6798-6816 6798
444 UCACCAAAGUGGUUGUCCU 933 AGGACAACCACUUUIGUGA 6798-6816 6798
445 UCACCAAAGUGGUUGUCCN 934 NGGACAACCACUUUIGUGA 6798-6816 6798
446 NCACCAAAGUGGUUGUCCU 935 AGGACAACCACUUUIGUGN 6798-6816 6798
447 NCACCAAAGUGGUUGUCCN 936 NGGACAACCACUUUIGUGN 6798-6816 6798
448 GAGCAGAGGUUGUUCUGGU 937 ACCAGAACAACCUCUGCUC 8739-8757 8739
449 UAGCAGAGGUUGUUCUGGU 938 ACCAGAACAACCUCUGCUA 8739-8757 8739
450 UAGCAGAGGUUGUUCUGGN 939 NCCAGAACAACCUCUGCUA 8739-8757 8739
SEQID NO:. Antisense Strand Base Sequence (5'^3') (Shown as an Unmodified Nucléotide Sequence) SEQID NO:. Sense Strand Base Sequence (5' -^3-) (Shown as an Unmodified Nucléotide Sequence) Corresponding Positions of Identified Sequence on SEQ ID NO: 1 Targeted Gene Position
451 NAGCAGAGGUUGUUCUGGU 940 ACCAGAACAACCUCUGCUN 8739-8757 8739
452 NAGCAGAGGUUGUUCUGGN 941 NCCAGAACAACCUCUGCUN 8739-8757 ' 8739
453 GAGCAGAGGUUGUUCUGGU 942 ACCAGAACAACCUCUICUC 8739-8757 8739
454 UAGCAGAGGUUGUUCUGGU 943 ACCAGAACAACCUCUICUA 8739-8757 8739
455 UAGCAGAGGUUGUUCUGGN 944 NCCAGAACAACCUCUICUA 8739-8757 8739
456 NAGCAGAGGUUGUUCUGGU 945 ACCAGAACAACCUCUICUN 8739-8757 8739
457 NAGCAGAGGUUGUUCUGGN 946 NCCAGAACAACCUCUICUN 8739-8757 8739
458 UAGAUUGUGCUGGUUGUAG 947 CUACAACCAGCACAAUCUC 9310-9328 9310
459 UAGAUUGUGCUGGUUGUAG 948 CUACAACCAGCACAAUCUA 9310-9328 9310
460 NAGAUUGUGCUGGUUGUAG 949 CUACAACCAGCACA AUCUN 9310-9328 9310
461 UAGAUUGUGCUGGUUGUAN 950 NUACAACCAGCACAAUCUA 9310-9328 9310
462 NAGAUUGUGCUGGUUGUAN 951 NUACAACCAGCACAAUCUN 9310-9328 9310
463 CAGAAGUUGUGCUGGUUGU 952 ACAACCAGCACAACUUCUG 10206-10224 10206
464 UAGAAGUUGUGCUGGUUGU 953 ACAACCAGCACAACUUCUA 10206-10224 10206
465 NAGAAGUUGUGCUGGUUGU 954 ACAACCAGCACAACUUCUN 10206-10224 10206
466 UAGAAGUUGUGCUGGUUGN 955 NCAACCAGCACAACUUCUA 10206-10224 10206
467 NAGAAGUUGUGCUGGUUGN 956 NCAACCAGCACAACUUCUN 10206-10224 10206
468 CUUGUCACCAAAGUGGUUG 957 CAACCACUUUGGUGACAAG 11014-11032 11014
469 UUUGUCACCAAAGUGGUUG 958 CAACCACUUUGGUGACAAA 11014-11032 11014
470 NUUGUCACCAAAGUGGUUG 959 CAACCACUUÙGGUGACAAN 11014-11032 11014
471 UUUGUCACCAÂAGUGGUUN 960 NAACCACUUUGGUGACAAA 11014-11032 11014
472 NUUGUCACCAAAGUGGUUN 961 NAACCACUUUGGUGACAAN 11014-11032 11014
SEQID NO:. Antisense Strand Base Sequence (5'^3') (Shown as an Unmodified Nucléotide Sequence) SEQID NO:. Sense Strand Base Sequence (5'->3') (Shown as an Unmodified Nucléotide Sequence) Corresponding Positions of Identified Sequence on SEQ ID NO: 1 Targeted Gene Position
473 CAGAGGUUGUGUUGGUUGU- 962 ACAACCAACACAACUUCUG 11361-11379 11361
474 UAGAGGUUGUGUUGGUUGU 963 ACAACCAACACAACUUCUA 11361-11379 11361
475 NAGAGGUUGUGUUGGUUGU 964 ACAACCAACACAACUUCUN 11361-11379 11361
476 UAGAGGUUGUGUUGGUUGN 965 NCAACCAACACAACUUCUA 11361-11379 11361
477 NAGAGGUUGUGUUGGUUGN 966 NCAACCAACACAACUUCUN 11361-11379 11361
478 UCUAGUUGUAGGAGCAGAG 967 CUCUGCUCCUACAACUAGA 12965-12983 12965
479 GCUAGUUGUAGGAGCAGAG 968 CUCUGCUCCUACAACUAGC 12965-12983 12965
480 NCUAGUUGUAGGAGCAGAG 969 CUCUGCUCCUACAACUAGN 12965-12983 12965
481 UCUAGUUGUAGGAGCAGAN 970 NUCUGCUCCUACAACUAGA 12965-12983 12965
482 NCUAGUUGUAGGAGCAGAN 971 NUCUGCUCCUACAACUAGN 12965-12983 12965
483 UGGUUCAGGAACACUUCCC 972 GGGAAGUGUUCCUGAACCA 1567-1585 1567
484 NGGUUCAGGAACACUUCCC 973 GGGAAGUGUUCCUGAACCN 1567-1585 1567
485 UGGUUCAGGAACACUUCCN 974 NGGAAGUGUUCCUGAACCA 1567-1585 1567
486 NGGUUCAGGAACACUUCCN 975 NGGAAGUGUUCCUGAACCN 1567-1585 1567
487 UGGUUCAGGAACACUUCCC 976 GGGAAGUGUUCCUIAACCA 1567-1585 1567
488 NGGUUCAGGAACACUUCCC 977 GGGAAGUGUUCCUIAACCN 1567-1585 1567
489 UGGUUCAGGAACACUUCCN 978 NGGAAGUGUUCCUIAACCA 1567-1585 1567
490 NGGUUCAGGAACACUUCCN 979 NGGAAGUGUUCCUIAACCN 1567-1585 1567
491 GAUGUCGUCGAAGUUCCCA ‘ 980 UGGGAACUUCGACGACAUC 3155-3173 3155
492 UAUGUCGUCGAAGUUCCCA 981 UGGGAACUUCGACGACAUA 3155-3173 3155
493 NAUGUCGUCGAAGUUCCCA 982 UGGGAACUUCGACGACAUN 3155-3173 3155
494 UAUGUCGUCGAAGUUCCCN 983 NGGGAACUUCGACGACAUA 3155-3173 3155
Os CJ1
SEQID NO:. Antisense Strand Base Sequence (5'^3') (Shown as an Unmodifïed Nucléotide Sequence) SEQID NO:. Sense Strand Base Sequence (5'^39 (Shown as an Unmodifïed Nucléotide Sequence) Corresponding Positions of Identified Sequence on SEQ ID NO: 1 Targeted Gene Position
495 NAUGUCGUCGAAGUUCCCN 984 NGGGAACUUCGACGACAUN 3155-3173 3155
496 GAUGUCGUCGAAGUUCCCA 985 UGGGAACUUCGACIACAUC 3155-3173 3155
497 UAUGUCGUCGAAGUUCCCA 986 UGGGAACUUCGACIACAUA 3155-3173 3155
498 NAUGUCGUCGAAGUUCCCA 987 UGGGAACUUCGACIACAUN 3155-3173 3155
499 UAUGUCGUCGAAGUUCCCN 988 NGGGAACUUCGACIACAUA 3155-3173 3155
500 NAUGUCGUCGAAGUUCCCN 989 NGGGAACUUCGACIACAUN 3155-3173 3155
501 AUUUCUGCCAAGAGGAGGU 990 ACCUCCUCUUGGCAGAAAU 6777-6795 6777
502 AUUUCUGCCAAGAGGAGGN 991 NCCUCCUCUUGGCAGAAAU 6777-6795 6777
503 UUUUCUGCCAAGAGGAGGU 992 ACCUCCUCUUGGCAGAAAA 6777-6795 6777
504 UUUUCUGCCAAGAGGAGGN 993 NCCUCCUCUUGGCAGAAAA 6777-6795 6777
505 NUUUCUGCCAAGAGGAGGN 994 NCCUCCUCUUGGCAGAAAN 6777-6795 6777
506 AUUUCUGCCAAGAGGAGGU 995 ACCUCCUCUUGICAGAAAU 6777-6795 6777
507 AUUUCUGCCAAGAGGAGGN 996 NCCUCCUCUUGICAGAAAU 6777-6795 6777
508 UUUUCUGCCAAGAGGAGGU 997 ACCUCCUCUUGICAGAAAA 6777-6795 6777
509 UUUUCUGCCAAGAGGAGGN 998 NCCUCCUCUUGICAGAAAA 6777-6795 6777
510 NUUUCUGCCAAGAGGAGGN 999 NCCUCCUCUUGICAGAAAN 6777-6795 6777
511 UGUUGUUGAAGAUGAUCUC 1000 GAGAUCAUCUUCAACAACA 15051-15069 15051
512 UGUUGUUGAAGAUGAUCUN 1001 NAGAUCAUCUUÇAACAACA 15051-15069 15051
513 NGUUGUUGAAGAUGAUCUC' 1002 GAGAUCAUCUUCAACAACN 15051-15069 15051
514 NGUUGUUGAAGAUGAUCUN 1003 NAGAUCAUCUUCAACAACN 15051-15069 15051
515 UGUUGUUGUAGGUUUCCUU 1004 AAGGAAACCUACAACAACA 5346-5364 5346
516 NGUUGUUGUAGGUUUCCUU 1005 AAGGAAACCUACAACAACN 5346-5364 5346
SEQID NO:. Antisense Strand Base Sequence (5'^3') (Shown as an Unmodified Nucléotide Sequence) SEQID NO:. Sense Strand Base Sequence (5'^3') (Shown as an Unmodified Nucléotide Sequence) Corresponding Positions of Identified Sequence on SEQ ID NO: 1 Targeted Gene Position
517 UGUUGUUGUAGGUUUCCUN 1006 NAGGAAACCUACAACAACA 5346-5364 5346
518 NGUUGUUGUAGGUUUCCUN 1007 NAGGAAACCUACAACAACN 5346-5364 5346
519 AUCUUGUCCUCAUCAAAGA 1008 UCUUUGAUGAGGACAAGAU 3694-3712 3694
520 AUCUUGUCCUCAUCAAAGN 1009 NCUUUGAUGAGGACAAGAU 3694-3712 3694
521 NUCUUGUCCUCAUCAAAGN 1010 NCUUUGAUGAGGACAAGAN 3694-3712 3694
522 UUCUUGUCCUCAUCAAAGA 1011 UCUUUGAUGAGGACAAGAA 3694-3712 3694
523 UUCUUGUCCUCAUCAAAGN 1012 NCUUUGAUGAGGACAAGAA 3694-3712 3694
524 GCAUCUUGUCCUCAUCAAA 1013 UUUGAUGAGGACAAGAUGC 3696-3714 3696
525 UCAUCUUGUCCUCAUCAAA 1014 UUUGAUGAGGACAAGAUGA 3696-3714 3696
526 UCAUCUUGUCCUCAUCAAN 1015 NUUGAUGAGGACAAGAUGA 3696-3714 3696
527 NCAUCUUGUCCUCAUCAAA 1016 UUUGAUGAGGACAAGAUGN 3696-3714 3696
528 NCAUCUUGUCCUCAUCAAN 1017 NUUGAUGAGGACAAGAUGN 3696-3714 3696
529 GCUAGUUGUAGGAGCAGAG 1018 CUCUGCUCCUACAACUAGC 6998-7016 6998
530 UCUAGUUGUAGGAGCAGAG 1019 CUCUGCUCCUACAACUAGA 6998-7016 6998
531 NCUAGUUGUAGGAGCAGAG 1020 CUCUGCUCCUACAACUAGN 6998-7016 6998
532 UCUAGUUGUAGGAGCAGAN 1021 NUCUGCUCCUACAACUAGA 6998-7016 6998
533 NCUAGUUGUAGGAGCAGAN 1022 NUCUGCUCCUACAACUAGN 6998-7016 6998
534 UAGUUGUAGAAGCAGAGGU 1023 ACCUCUGCUUCUACAACUA 7980-7998 7980
535 NAGUUGUAGAAGCAGAGGU 1024 ACCUCUGCUUCUACAACUN 7980-7998 7980
536 UAGUUGUAGAAGCAGAGGN 1025 NCCUCUGCUUCUACAACUA 7980-7998 7980
537 NAGUUGUAGAAGCAGAGGN 1026 NCCUCUGCUUCUACAACUN 7980-7998 7980
538 CAGAAGUUGUGCUGGUUAU 1027 AUAACCAGCACAACUUCUG 8448-8466 8448
SEQID NO:. Antisense Strand Base Sequence (5'^3') (Shown as an Unmodifîed Nucléotide Sequence) SEQID NO:. Sense Strand Base Sequence (5'^3') (Shown as an Unmodifîed Nucléotide Sequence) Corresponding Positions of Identified Sequence on SEQ ID NO: 1 Targeted Gene Position
539 UAGAAGUUGUGCUGGUUAU 1028 AUAACCAGCACAACUUCUA 8448-8466 8448
540 NAGAAGUUGUGCUGGUUAU 1029 AUAACCAGCACAACUUCUN 8448-8466 8448
541 UAGAAGUUGUGCUGGUUAN 1030 NUAACCAGCACAACUUCUA 8448-8466 8448
542 NAGAAGUUGUGCUGGUUAN 1031 NUAACCAGCACAACUUCUN 8448-8466 8448
543 CCAACACUGCAGGUGAUGU 1032 ACAUCACCUGCAGUGUUGG 2230-2248 2230
544 UCAACACUGCAGGUGAUGU 1033 ACAUCACCUGCAGUGUUGA 2230-2248 2230
545 NCAACACUGCAGGUGAUGU 1034 ACAUCACCUGCAGUGUUGN 2230-2248 2230
546 UCAACACUGCAGGUGAUGN 1035 NCAUCACCUGCAGUGUUGA 2230-2248 2230
547 NCAACACUGCAGGUGAUGN 1036 NCAUCACCUGCAGUGUUGN 2230-2248 2230
548 CCAACACUGCAGGUGAUGU 1037 ACAUCACCUGCAGUIUUGG 2230-2248 2230
549 UCAACACUGCAGGUGAUGU 1038 ACAUCACCUGCAGUIUUGA 2230-2248 2230
550 NCAACACUGCAGGUGAUGU 1039 ACAUCACCUGCAGUIUUGN 2230-2248 2230
551 UCAACACUGCAGGUGAUGN 1040 NCAUCACCUGCAGUIUUGA 2230-2248 2230
552 NCAACACUGCAGGUGAUGN 1041 NCAUCACCUGCAGUIUUGN 2230-2248 2230
553 CAUCUUGUCCUCAUCAAAG 1042 CUUUGAUGAGGACAAGAUG 3695-3713 3695
554 UAUCUUGUCCUCAUCAAAG 1043 CUUUGAUGAGGACAAGAUA 3695-3713 3695
555 NAUCUUGUCCUCAUCAAAG 1044 CUUUGAUGAGGACAAGAUN 3695-3713 3695
556 UAUCUUGUCCUCAUCAAAN 1045 NUUUGAUGAGGACAAGAUA 3695-3713 3695
557 NAUCUUGUCCUCAUCAAAN 1046 NUUUGAUGAGGACAAGAUN 3695-3713 3695
558 GUCGUGUGGUAGAUGACGU 1047 ACGUCAUCUACCACACGAC 3910-3928 3910
559 UUCGUGUGGUAGAUGACGU 1048 ACGUCAUCUACCACACGAA 3910-3928 3910
560 NUCGUGUGGUAGAUGACGU 1049 ACGUCAUCUACCACACGAN 3910-3928 3910
SEQID NO:. Antisense Strand Base Sequence (5'^3') (Shown as an Unmodified Nucléotide Sequence) SEQID NO:. Sense Strand Base Sequence (5'^3') (Shown as an Unmodified Nucléotide Sequence) Corresponding Positions of Identified Sequence on SEQID NO: 1 Targeted Gene Position
561 UUCGUGUGGUAGAUGACGN 1050 NCGUCAUCUACCACACGAA 3910-3928 3910
562 NUCGUGUGGUAGAUGACGN 1051 NCGUCAUCUACCACACGAN 3910-3928 3910
563 GUCGUGUGGUAGAUGACGU 1052 ACGUCAUCUACCACACIAC 3910-3928 3910
564 UUCGUGUGGUAGAUGACGU 1053 ACGUCAUCUACCACACIAA 3910-3928 3910
565 NUCGUGUGGUAGAUGACGU 1054 ACGUCAUCUACCACACIAN 3910-3928 3910
566 UUCGUGUGGUAGAUGACGN 1055 NCGUCAUCUACCACACIAA 3910-3928 3910
567 NUCGUGUGGUAGAUGACGN 1056 NCGUCAUCUACCACACIAN 3910-3928 3910
CO
[0119] The MUC5AC RNAi agent sense strands and antisense strands that comprise or consist of the nucléotide sequences in Table 2 can be modified nucléotides or unmodified nucléotides. In some embodiments, the MUC5AC RNAi agents having the sense and antisense strand sequences that comprise or consist of any of the nucléotide sequences in Table 2 are ail or 5 substantially ail modified nucléotides.
[0120] In some embodiments, the antisense strand of a MUC5AC RNAi agent disclosed herein comprises at least 15 contiguous nucléotides differing by 0, 1, 2, or 3 nucléotides from any of the antisense strand sequences in Table 2. In some embodiments, the sense strand of a MUC5AC RNAi agent disclosed herein comprises at least 15 contiguous nucléotides differing 10 by 0, 1,2, or 3 nucléotides from any of the sense strand sequences in Table 2.
[0121] As used herein, each N listed in a sequence disclosed in Table 2 may be independently selected from any and ail nucleobases (including those found on both modified and unmodified nucléotides). In some embodiments, an N nucléotide listed in a sequence disclosed in Table 2 has a nucleobase that is complementary to the N nucléotide at the corresponding position on 15 the other strand. In some embodiments, an N nucléotide listed in a sequence disclosed in Table has a nucleobase that is not complementary to the N nucléotide at the corresponding position on the other strand. In some embodiments, an N nucléotide listed in a sequence disclosed in Table 2 has a nucleobase that is the same as the N nucléotide at the corresponding position on the other strand. In some embodiments, an N nucléotide listed in a sequence disclosed in Table 20 2 has a nucleobase that is different from the N nucléotide at the corresponding position on the other strand.
[0122] Certain modified MUC5AC RNAi agent sense and antisense strands are provided in Table 3, Table 4, Table 5, Table 6, Table 7, and Table 11. Certain modified MUC5AC RNAi agent antisense strands, as well as their underlying unmodified nucleobase sequences, are 25 provided in Table 3. Certain modified MUC5AC RNAi agent sense strands, as well as their underlying unmodified nucleobase sequences, are provided in Tables 4, 5, and 6. In forming MUC5AC RNAi agents, each of the nucléotides in each of the underlying base sequences listed in Tables 3, 4, 5, 6, and 7, as well as in Table 2, above, can be a modified nucléotide.
[0123] The MUC5AC RNAi agents described herein are formed by annealing an antisense 30 strand with a sense strand. A sense strand containing a sequence listed in Table 2, Table 4,
Table 5, Table 6, Table 7, or Table 11 can be hybridized to any antisense strand containing a sequence listed in Table 2, Table 3, or Table 11, provided the two sequences hâve a région of at least 85% complementarity over a contiguous 16, 17, 18, 19, 20, or 21 nucléotide sequence.
[01241 In some embodiments, a MUC5AC RNAi agent antisense strand comprises a nucléotide sequence of any of the sequences in Table 2 or Table 3.
[0125] In some embodiments, a MUC5AC RNAi agent comprises or consists of a duplex having the nucleobase sequences of the sense strand and the antisense strand of any of the sequences in Table 2, Table 3, Table 4, Table 5, Table 6, Table 7, or Table 11.
[0126] Examples of antisense strands containing modified nucléotides are provided in Table 3. Examples of sense strands containing modified nucléotides are provided in Tables 4, 5 and 6.
[0127] As used in Tables 3, 4, 5, 6, 7, and 11, the following notations are used to indicate modified nucléotides, targeting groups, and linking groups:
A = adenosine-3 '-phosphate
C = cytidine-3'-phosphate
G = guanosine-3 '-phosphate .
U = uridine-3'-phosphate
I = inosine-3'-phosphate a = 2'-O-methyladenosine-3'-phosphate as = 2'-O-methyladenosine-3'-phosphorothioate c = 2'-O-methylcytidine-3 '-phosphate cs = 2'-O-methylcytidine-3'-phosphorothioate g = 2'-O-methylguanosine-3 '-phosphate gs = 2'-O-methylguanosine-3'-phosphorothioate i = 2'-O-methylinosine-3'-phosphate is = 2'-O-methylinosine-3'-phosphorothioate t = 2'-O-methyl-5-methyluridine-3'-phosphate ts = 2'-O-methyl-5-methyluridine-3'-phosphorothioate u = 2'-O-methyluridine-3'-phosphate us = 2'-O-methyluridine-3'-phosphorothioate
Af = 2'-fluoroadenosine-3'-phosphate
Afs = 2'-fluoroadenosine-3'-phosporothioate
Cf = 2'-fluorocytidine-3 '-phosphate
Cfs = 2'-fluorocytidine-3'-phosphorothioate
Gf = 2'-fluoroguanosine-3'-phosphate
Gfs = 2'-fluoroguanosine-3'-phosphorothioate
Tf = 2'-fluoro-5'-methyluridine-3'-phosphate
Tfs = 2'-fluoro-5'-methyluridine-3'-phosphorothioate
Uf = 2'-fluorouridine-3'-phosphate
Ufs = 2'-fluorouridine-3'-phosphorothioate dT = 2'-deoxythymidine-3 '-phosphate
Auna = 2',3'-seco-adenosine-3 '-phosphate
Aunas = 2',3'-seco-adenosine-3'-phosphorothioate
Cuna = 2',3'-seco-cytidine-3'-phosphate
Cunas = 2',3'-seco-cytidine-3'-phosphorothioate
Guna = 2',3'-seco-guanosine-3 '-phosphate
Gunas = 2',3'-seco-guanosine-3'-phosphorothioate
Uuna = 2',3'-seco-uridine-3'-phosphate
Uunas = 2',3'-seco-uridine-3'-phosphorothioate a_2N = see Table 12 a_2Ns = see Table 12 (invAb) = inverted abasic deoxyribonucleotide-5'phosphate, see Table 12 (invAb)s = inverted abasic deoxyribonucleotide-5'phosphorothioate, see Table 12 s = phosphorothioate linkage p = terminal phosphate (as synthesized) vpdN = vinyl phosphonate deoxyribonucleotide cPrpa = 5’-cyclopropyl phosphonate-2'-O-methyladenosine-3'-phosphate (see Table 12) cPrpas = 5’-cyclopropyl phosphonate-2'-O-methyladenosine-3'phosphorothioate (see Table 12) cPrpu = 5 ’-cyclopropyl phosphonate-2'-O-methyluridine-3'-phosphate (see
Table 12) cPrpus = 5 ’-cyclopropyl phosphonate-2'-O-methyluridine-3'phosphorothioate (see Table 12) (AIk-SS-C6) = see Table 12 (C6-SS-Alk) = see Table 12 (C6-SS-C6) = see Table 12 (6-SS-6) = see Table 12 (C6-SS-Alk-Me) = see Table 12 (NH2-C6) = see Table 12 (TriAlkl4) = see Table 12 (TriAlkl4)s = see Table 12
- C6- = see Table12
- C6s- = see Table12
- L6-C6- = see Table12
- L6-C6s- = see Table12
- Alk-cyHex- = see Table12
- Alk-cyHexs-= see Table 12 (TA14) = see Table 12 (structure of (TriAlkl4)s after conjugation) (TA14)s = see Table 12 (structure of (TnAlkl4)s after conjugation)
[0128] As the person of ordinary skill in the art would readily understand, unless otherwise indicated by the sequence (such as, for example, by a phosphorothioate linkage “s”), when présent in an oligonucleotide, the nucléotide monomers are mutually linked by 5’-3’phosphodiester bonds. As the person of ordinary skill in the art would clearly understand, the inclusion of a phosphorothioate linkage as shown in the modified nucléotide sequences disclosed herein replaces the phosphodiester linkage typically présent in oligonucleotides. Further, the person of ordinary skill in the art would readily understand that the terminal nucléotide at the 3’ end of a given oligonucleotide sequence would typically hâve a hydroxyl (-OH) group at the respective 3’ position of the given monomer instead of a phosphate moiety ex vivo. Additionally, for the embodiments disclosed herein, when viewing the respective strand 5’ -> 3’, the inverted abasic residues are inserted such that the 3’ position of the deoxyribose is linked at the 3’ end of the preceding monomer on the respective strand (see, e.g., Table 12). Moreover, as the person of ordinary skill would readily understand and appreciate, while the phosphorothioate Chemical structures depicted herein typically show the anion on the sulfur atom, the inventions disclosed herein encompass ail phosphorothioate tautomers (e.g., where the sulfur atom has a double-bond and the anion is on an oxygen atom). Unless expressly indicated otherwise herein, such understandings of the person of ordinary skill in the art are used when describing the MUC5AC RNAi agents and compositions of MUC5AC RNAi agents disclosed herein.
[0129] Certain examples of targeting groups and linking groups used with the MUC5AC RNAi agents disclosed herein are included in the Chemical structures provided below in Table 12. Each sense strand and/or antisense strand disclosed herein can hâve any targeting groups or linking groups listed herein, as well as other targeting or linking groups,-conjugated to the 5' and/or 3' end of the sequence.
Table 3. MUC5AC RNAi Agent Antisense Strand Sequences
AS Strand ID Modified Antisense Strand (5' —> 3') SEQ ID NO. Underlying Base Sequence (5' (Shown as an Unmodified Nucle Sequence) -3') otide SEQ ID NO.
AM10579-AS us Ufs u s Gf a UfgGf cCf u UfgGfaGf cAfgGfs u 1057 UUUGAUGGCCUUGGAGCAGGU 1517
AM10581-AS asAfsusCfullfgAfuGfgCfcUfuGfgAfgCfsa 1058 AAUCUUGAUGGCCUUGGAGCA 1518
AM10583-AS usUfsusGfaAfcUfcGfgGfgCfuGfaGfgUfsu 1059 UUUGAACUCGGGGCUGAGGUU 1519
AM10585-AS usGfsasUfgCfuGfcAfcUfgCfuUfcUfgGfsg 1060 UGAUGCUGCACUGCUUCUGGG 1520
AM10587-AS usUfsasGfuCfgCfaGfaAfcAfgAfgGfgCfsa 1061 UUAGUCGCAGAACAGAGGGCA 1521
AM10589-AS asGfsusAfgUfcGfcAfgAfaCfaGfaGfgGfsc 1062 AGUAGUCGCAGAACAGAGGGC 1522
AM10591-AS usUfsasGfuAfgUfcGfcAfgAfaCfaGfaGfsg 1063 UUAGUAGUCGCAGAACAGAGG 1523
AM10593-AS us Gfs us Afg Ufa Gf u CfgCf a Gfa Af cAfgAfsg 1064 UGUAGUAGUCGCAGAACAGAG 1524
AM10595-AS usUfsgsUfaGfuAfgUfcGfcAfgAfaCfaGfsc 1065 UUGUAGUAGUCGCAGAACAGC 1525
AM10597-AS asUfsasGfuUfgUfaGfcAfgAfuGfgGfuGfsg 1066 AUAGUUGUAGCAGAUGGGUGG 1526
AM10599-AS usUfscsCfaCfgUfcGfaAfcCfaCfuUfuGfsc 1067 UUCCACGUCGAACCACUUUGC 1527
AM10601-AS usAfsasGfuCfcAfcGfuCfgAfaCfcAfcUfsc 1068 UAAGUCCACGUCGAACCACUC 1528
AM10603-AS usGfsgsAfaGfuCfcAfcGfuCfgAfaCfcAfsc 1069 UGGAAGUCCACGUCGAACCAC 1529
AM10605-AS usGfsgsAfaGfUuNACfcAfcGfuCfgAfaCfcAfsc 1070 UGGAAGUCCACGUCGAACCAC 1529
AM10739-AS cPrpasAfsgsGfuCfuUfgUfaGfuGfgAfaGfcUfsg 1071 AAGGUCUUGUAGUGGAAGCUG 1530
AM10741-AS cPrpasAfsgsGfuCfUuNAUfgUfaGfuGfgAfaGfcUfsg 1072 AAGGUCUUGUAGUGGAAGCUG 1530
AM10743-AS cPrpusAfscsCfaGfuGfcUfgAfgCfaUfaCfulIfsc 1073 UACCAGUGCUGAGCAUACUUC 1531
AM10744-AS cP rpusAfscsCfaGf UuNAGfcUfgAfgCfa UfaCfu Ufsc 1074 UACCAGUGCUGAGCAUACUUC 1531
AM10747-AS cPrpusUfsusGfaAfggugullfgAfaGfaAfgGfsc 1075 UUUGAAGGUGUUGAAGAAGGC 1532
AM10764-AS asGfsaslIfgCfuGfgUfcUfuCfuUfgUfcCfsc 1076 AGAUGCUGGUCUUCUUGUCCC 1533
AM10766-AS usGfsuslIfgAfuGfaAfgAfuGfcUfgGfuCfsc 1077 UGUUGAUGAAGAUGCUGGUCC 1534
AM10768-AS usUfscsUfuGfulIfcAfgGfcAfaAfuCfaGfsc 1078 UUCUUGUUCAGGCAAAUCAGC 1535
AM10770-AS asUfsgsUfuGfuUfgUfaGfgUfuUfcCfuUfsg 1079 AUGUUGUUGUAGGUUUCCUUG 1536
AM10772-AS asUfsgsAfuGfuUfgUfuGfuAfgGfuUfuCfsc 1080 AUGAUGUUGUUGUAGGUUUCC 1537
AM10790-AS uslIfsgsAfuGfaAfgAfuGfcUfgGfuCfuUfsc 1081 UUGAUGAAGAUGCUGGUCUUC 1538
AM10792-AS usGfsasUfcUfgGfuAfgUfuGfuAfgCfaGfsc 1082 UGAUCUGGUAGUUGUAGCAGC 1539
AM10794-AS usCfscsUfgAfuCfuGfgUfaGfuUfgllfaGfsc 1083 UCCUGAUCUGGUAGUUGUAGC 1540
AM10796-AS usAfsgsUfuGfuAfgCfaGfaUfgGfgUfgGfsg 1084 UAGUUGUAGCAGAUGGGUGGG 1541
AM10798-AS usCfsasAfcAfcUfgGfa UfgCfgGfa Ufcllfsc 1085 UCAACACUGGAUGCGGAUCUC 1542
AM10800-AS usUfsgsUfuCfgAfuGfcUfcAfcCfuCfuGfsg 1086 UUGUUCGAUGCUCACCUCUGG 1543
AM10802-AS usAfsusCfu UfgAfaGfgGfuCfcCfuGfcUfsg 1087 UAUCUUGAAGGGUCCCUGCUG 1544
AM10804-AS üsCfsgsUfaGfuUfgAfgGfcAfcAfuCfuUfsg 1088 UCGUAGUUGAGGCACAUCUUG 1545
AM10806-AS usCfsusCfgUfaGfuUfgAfgGfcAfcAfuCfsc 1089 UCUCGUAGUUGAGGCACAUCC 1546
AM10808-AS asAfsgsGfuCfuUfgUfaGfuGfgAfaGfcUfsg 1090 AAGGUCUUGUAGUGGAAGCUG 1530
AM10810-AS usUfsusCfaGfgCfaGfgUfcUfcGfcUfgUfsc 1091 UUUCAGGCAGGUCUÇGCUGUC 1547
AM10812-AS usUfscsUfgAfaGfaUfgGfuGfaCfgUfuGfsg 1092 UUCUGAAGAUGGUGACGUUGG 1548
AM10814-AS usGfsusCfuGfaAfgAfuGfgllfgAfcGfuUfsg 1093 UGUCUGAAGAUGGUGACGUUG 1549
AM10816-AS usGfsgsAfaGfUuNACfaUfcGfgCfclIfgGfaUfsg 1094 UGGAAGUCAUCGGCCUGGAUG 1550
AM10818-AS usUfsusGfaAfgguguUfgAfaGfaAfgGfsc 1095 UUUGAAGGUGUUGAAGAAGGC 1532
AM10821-AS usGfscsAfgUfuCfgAfgUfaGfuAfgGfuUfsc 1096 UGCAGUUCGAGUAGUAGGUUC 1551
AM10823-AS usUfsusGfgAfgCfaGfgUfgGfuCfcCfuGfsu 1097 UUUGGAGCAGGUGGUCCCUGU 1552
AM10825-AS usCfsusUfgAfuGfgCfcUfuGfgAfgCfaGfsg 1098 UCUUGAUGGCCUUGGAGCAGG 1553
AM10827-AS us Ufsgs UfcAfuCfgUfgGf u UfcCfaCfa Ufsg 1099 UUGUCAUCGUGGUUCCACAUG 1554
AM10829-AS asCfsasGfaAfgCfaGfaGfgUfcUfuGfcCfsu 1100 ACAGAAGCAGAGGUCUUGCCU 1555
AM10831-AS usCfsasGfuUfgGfuGfcAfgUfcUfgUfgGfsa 1101 UCAGUUGGUGCAGUCUGUGGA 1556
AM10833-AS usCfsasGfuAfcAfgUfgAfaGfgCfaCfuGfsc 1102 UCAGUACAGUGAAGGCACUGC 1557
AM10835-AS usGfscsUfgUfuGfaAfgUfuCfcCfaCfaGfsc 1103 UGCUGUUGAAGUUCCCACAGC 1558
AM10837-AS usGfsas UfgCfuGf u UfgAfaGfu UfcCfcAfsc 1104 UGAUGCUGUUGAAGUUCCCAC 1559
AM10839-AS usGfsgsUfcUfuGfaAfgGfuGfuUfgAfaGfsc 1105 UGGUCUUGAAGGUGUUGAAGC 1560
AM10841-AS asAfsgsCfuGfuUfcCfuGfaUfgUfuGfgGfsg 1106 AAGCUGUUCCUGAUGUUGGGG 1561
AM10843-AS asCfsasUfgCfaGfuUfcGfaGfuAfgUfaGfsg 1107 ACAUGCAGUUCGAGUAGUAGG 1562
AM10845-AS usAfsasGfcCfaAfcAfcUfgCfaGfgUfgAfsc 1108 UAAGCCAACACUGCAGGUGAC 1563
AM10847-AS usUfsgsUfaAfcAfgGfuCfaUfgUfcCfaGfsc 1109 UUGUAACAGGUCAUGUCCAGC 1564
AM10849-AS usCfsgsUfuGfaAfgCfuGfuAfgCfuCfuGfsc 1110 UCGUUGAAGCUGUAGCUCUGC 1565
AM11065-AS usAfscsCfaGfUuNAGfclIfgAfgCfaUfaCfuUfsc 1111 UACCAGUGCUGAGCAUACUUC 1531
AM11264-AS cPrpusGfsgsAfuCfuCfaUfaGfuUfgUfaGfcAfsg 1112 UGGAUCUCAUAGUUGUAGCAG 1566
AM11266-AS cPrpusGfsgsAfuCfUuNACfaUfaGfuUfgUfaGfcAfsg 1113 UGGAUCUCAUAGUUGUAGCAG 1566
AM11268-AS cPrpusGfsusCfaAfaCfcAfcUfuGfgUfcCfaGfsg 1114 UGUCAAACCACUUGGUCCAGG 1567
AM11271-AS cPrpusUfsgslIfuGfullfgAfaGfaUfgAfuCfuCfsg 1115 UUGUUGUUGAAGAUGAUCUCG 1568
AM11272-AS cPrpusUfsgsUfuguugaaGfaUfgAfucucsg 1116 UUGUUGUUGAAGAUGAUCUCG 1568
AM11275-AS usAfsgsUfaCfaGfuGfaAfgGfcAfcUfgCfsu 1117 UAGUACAGUGAAGGCACUGCU 1569
AM11277-AS usUfscsGfaAfgCfuGfuUfcCfuGfaUfgUfsc 1118 UUCGAAGCUGUUCCUGAUGUC 1570
AM11279-AS usCfsusUfgUfuCfaGfgCfaAfaUfcAfgCfsc 1119 UCUUGUUCAGGCAAAUCAGCC 1571
AM11281-AS usCfsasCfcAfaAfgUfgGfuUfgUfcCfuGfsg 1120 UCACCAAAGUGGUUGUCCUGG 1572
AM11283-AS usAfsgsCfaGfaGfgUfuGfulIfcUfgGfuUfsg 1121 UAGCAGAGGUUGUUCUGGUUG 1573
AM11285-AS usAfsgsAfuUfgUfgCfuGfgUfuGfuAfgCfsg 1122 UAGAUUGUGCUGGUUGUAGCG 1574
AM11287-AS usAfsgsAfaGfuUfgUfgCfuGfgUfuGfuGfsg 1123 UAGAAGUUGUGCUGGUUGUGG 1575
AM11289-AS usUfsusGfuCfaCfcAfaAfgUfgGfuUfgUfsc 1124 UUUGUCACCAAAGUGGUUGUC 1576
AM11291-AS usAfsgsAfgGfuUfgUfgUfuGfgUfuGfuAfsg 1125 UAGAGGUUGUGUUGGUUGUAG 1577
AM11293-AS usCfsusAfgUfuGfuAfgGfaGfcAfgAfgGfsu 1126 UCUAGUUGUAGGAGCAGAGGU 1578
AM11401-AS cPrpusUfsgsUfaGfuAfgllfcGfcAfgAfaCfaGfsc 1127 UUGUAGUAGUCGCAGAACAGC 1525
AM11403-AS usUfsgslIfaGfuAfgUfcAfcAfgAfaCfaGfsc 1128 UUGUAGUAGUCACAGAACAGC 1579
AM 11404-AS cPrpuslIfsgsUfaGfuAfgUfcAfcAfgAfaCfaGfsc 1129 U U G U AG U AG U CACAG AACAGC 1579
AM11405-AS cPrpuslIfsgsuaguagucAfcAfgAfacagsc 1130 UUGUAGUAGUCACAGAACAGC 1579
AM11462-AS cPrpusCfsasuaguuguaGfcAfcAfugggsu 1131 UCAUAGUUGUAGCACAUGGGU 1580
AM11464-AS cPrpusGfsusUfgUfuGfaAfgAfuGfaUfcUfgGfsu 1132 UGUUGUUGAAGAUGAUCUGGU 1581
AM11465-AS cPrpusGfsusuguugaagAfuGfaUfcuggsu 1133 UGUUGUUGAAGAUGAUCUGGU 1581
AM11467-AS cP rpusGfsus UfgAfaGf u UfaCfcAfcAfgAfgCfsc 1134 UGUUGAAGU U ACCACAG AG CC 1582
AM11469-AS cPrpusAfscsUfuUfuCfaUfuCfuCfcAfcGfcUfsc 1135 UACUUUUCAUUCUCCACGCUC 1583
AM11471-AS cPrpusAfsgsCfaUfaCfu Ufu UfcAfu UfcUfcCfsc 1136 UAGCAUACUUUUCAUUCUCCC 1584
AM11473-AS cPrpusCfsasUfaCfaUfgCfaGfuUfcGfaGfaAfsg 1137 UCAUACAUGCAGUUCGAGAAG 1585
AM11475-AS. cPrpusGfsusCfaUfaCfaUfgCfaGfuUfcGfaGfsc 1138 UGUCAUACAUGCAGUUCGAGC 1586
AM11477-AS cPrpusUfsgsUfcAfuAfcAfuGfcAfgUfuCfgAfsg 1139 UUGUCAUACAUGCAGUUCGAG 1587
AM11479-AS cPrpusUfsasGfuAfgUfcAfcAfgAfaCfaGfuGfsg 1140 UUAGUAGUCACAGAACAGUGG 1588
AM11481-AS cPrpusGfsusAfgUfaGfuCfaCfaGfaAfcAfgUfsg 1141 UGUAGUAGUCACAGAACAGUG 1589
AM11495-AS cPrpusUfsgsUfaGfuAfgUfcicAfgAfaCfaGfsc 1142 UUGUAGUAGUCICAGAACAGC 1590
AM11496-AS cPrpusUfsgsUfaGfuAfgUfcgcAfgAfaCfaGfsc 1143 UUGUAGUAGUCGCAGAACAGC 1525
AM11498-AS asCfsasUfgCfaGfuUfcGfaGfaAfgAfaGfsg 1144 ACAUGCAGUUCGAGAAGAAGG 1591
AM11499-AS cPrpasCfsasUfgCfaGfuUfcGfaGfaAfgAfaGfsg 1145 ACAUGCAGUUCGAGAAGAAGG 1591
AM11740-AS cPrpasUfsasGfuUfgllfaGfcAfcAfuGfgGfuGfsg 1146 AUAGUUGUAGCACAUGGGUGG 1592
AM11741-AS cPrpasUfsasguuguagcAfcAfuGfggugsg 1147 AUAGUUGUAGCACAUGGGUGG 1592
AM11742-AS cPrpusGfsgsaucucauaGfuUfgUfagcasg 1148 UGGAUCUCAUAGUUGUAGCAG 1566
AM11745-AS cPrpusUfsgsuuguugaaGfaUfgAfucucsg 1149 UUGUUGUUGAAGAUGAUCUCG 1568
AM11821-AS cPrpusGfsusAfguagucaCfaGfaAfcagusg 1150 UGUAGUAGUCACAGAACAGUG 1589
AM11823-AS cPrpusGfsusaguagucaCfaGfaAfcagusg 1151 UGUAGUAGUCACAGAACAGUG 1589
AM11825-AS cPrpusGfsusaguagucaCfaGfaAfcagusc 1152 UGUAGUAGUCACAGAACAGUG 1593
AM11971-AS usGfsgsUfuCfaGfgAfaCfaCfuUfcCfcCfsa 1153 UGGUUCAGGAACACUUCCCCA 1594
AM11973-AS usCfsasAfcAfclIfgCfaGfgUfgAfuGfuCfsc 1154 UCAACACUGCAGGUGAUGUCC 1595
AM11975-AS usAfsusGfuCfgUfcGfaAfgUfuCfcCfaCfsa 1155 UAUGUCGUCGAAGUUCCCACA 1596
AM11977-AS usAfsusCfuUfgUfcCfuCfaUfcAfaAfgAfsc 1156 UAUCUUGUCCUCAUCAAAGAC 1597
AM11979-AS usUfscsGfuGfuGfgUfaGfaUfgAfcGfuCfsc 1157 UUCGUGUGGUAGAUGACGUCC 1598
AM11982-AS asUfsusUfcUfgCfcAfaGfaGfgAfgGfuGfsc 1158 AUUUCUGCCAAGAGGAGGUGC 1599
AM11984-AS usGfsusUfgUfuGfaAfgAfuGfaUfclIfcGfsu 1159 UGUUGUUGAAGAUGAUCUCGU 1600
AM11986-AS usUfsgsUfuguugaaGfaUfgAfucucsg 1160 UUGUUGUUGAAGAUGAUCUCG 1568
AM12158-AS usGfsusUfgUfuGfuAfgGfuUfuCfcUfuGfsc 1161 UGUUGUUGUAGGUUUCCUUGC 1601
AM12159-AS cPrpusGfsusUfgUfuGfuAfgGfulIfuCfcUfuGfsc 1162 UGUUGUUGUAGGUUUCCUUGC 1601
AM12161-AS usGfsusuguuguagGfuUfuCfcuugsc 1163 UGUUGUUGUAGGUUUCCUUGC 1601
AM12162-AS cPrpusGfsusuguuguagGfuUfuCfcuugsc 1164 UGUUGUUGUAGGUUUCCUUGC - 1601
AM12163-AS cP rpu s Ufscsllf u Gf u Uf cAfgGf cAf a Af u Cfa Gfs c 1165 > UUCUUGUUCAGGCAAAUCAGC 1535
AM12165-AS usUfscsuuguucagGfcAfaAfucagsc 1166 UUCUUGUUCAGGCAAAUCAGC 1535
AM12166-AS cPrpusUfscsuuguucagGfcAfaAfucagsc 1167 UUCUUGUUCAGGCAAAUCAGC 1535
AM12167-AS cPrpusUfscsuuglluNAUcagGfcAfaAfucagsc 1168 UUCUUGUUCAGGCAAAUCAGC 1535
AM12169-AS cPrpusCfsusUfgUfuCfaGfgCfaAfallfcAfgCfsc 1169 UCUUGUUCAGGCAAAUCAGCC 1571
AM12171-AS usCfsusuguucaggCfaAfaUfcagcsc 1170 UCUUGUUCAGGCAAAUCAGCC 1571
AM12172-AS cPrpusCfsusuguucaggCfaAfaUfcagcsc 1171 UCUUGUUCAGGCAAAUCAGCC 1571
AM12173-AS cPrpusGfsusUfgAfuGfaAfgAfuGfcUfgGfuCfsc 1172 UGUUGAUGAAGAUGCUGGUCC 1534
AM12175-AS usGfsusugaugaagAfuGfcUfggucsc 1173 UGUUGAUGAAGAUGCUGGUCC 1534
AM12176-AS cPrpusGfsusugaugaagAfuGfcUfggucsc 1174 UGUUGAUGAAGAUGCUGGUCC 1534
AM12177-AS cPrpusGfsusugalluNAgaagAfuGfcUfggucsc 1175 UGUUGAUGAAGAUGCUGGUCC 1534
AM12178-AS cPrpuslIfsgsUfugUuNAUgaaGfaUfgAfucucsg 1176 UUGUUGUUGAAGAUGAUCUCG 1568
AM12180-AS cPrpusUfsgslIfuguUuNAgaaGfaUfgAfucucsg 1177 UUGUUGUUGAAGAUGAUCUCG 1568
AM12181-AS cPrpusUfsgsUfUuNAguugaaGfaUfgAfucucsg 1178 UUGUUGUUGAAGAUGAUCUCG 1568
AM12182-AS cPrpusUfsgsiuguugaaGfaUfgAfucucsg 1179 UUGIUGUUGAAGAUGAUCUCG 1602
AM12189-AS asUfscsÜfuGfuCfcUfcAfuCfaAfaGfaUfsg 1180 AUCUUGUCCUCAUCAAAGAUG 1603
AM12191-AS usCfsaslIfclIfuGfuCfcUfcAfuCfaAfaGfsc 1181 UCAUCUUGUCCUCAUCAAAGC 1604
AM12193-AS usCfsusAfgUfuGfuAfgGfaGfcAfgAfgAfsc 1182 U CUAG U UG UAGGAGCAGAGAC 1605
AM12195-AS usAfsgsUfuGfuAfgAfaGfcAfgAfgGfuUfsg 1183 UAGUUGUAGAAGCAGAGGUUG 1606
AM12197-AS usAfsgsAfaGfuUfgUfgCfuGfgUfuAfuAfsg 1184 UAGAAGUUGUGCUGGUUAUAG 1607
AM12516-AS usUfsgsuaguagucGfcAfgAfacagsc 1185 UUGUAGUAGUCGCAGAACAGC 1525
AM12519-AS usUfsgsuagUuNAagucGfcAfgAfacagsc 1186 UUGUAGUAGUCGCAGAACAGC 1525
AM12608-AS usUfscsuuguucagGfcAfaAfucagsg 1187 UUCUUGUUCAGGCAAAUCAGG 1608
AM12609-AS usUfscsuuGfuucagGfcAfaAfucagsc 1188 UUCUUGUUCAGGCAAAUCAGC 1535
AM12610-AS usUfscsUfuguucagGfcAfaAfucagsc 1189 UUCUUGUUCAGGCAAAUCAGC 1535
AM12611-AS usUfscsuuguUuNAcagGfcAfaAfucagsc 1190 UUCUUGUUCAGGCAAAUCAGC 1535
AM12612-AS cPrpuUfcuuguucagGfcAfaAfucagsc 1191 UUCUUGUUCAGGCAAAUCAGC 1535
AM08569-AS u sGfsgs Af u Cf u Cf a Uf a Gf u Ufg Ufa GfcAfsg 1716 UGGAUCUCAUAGUUGUAGCAG 1566
AM07104-AS us Ufsgs Uf u Gf u UfgAf a Gfa UfgAf u Cf u Cfsg 1717 UUGUUGUUGAAGAUGAUCUCG 1568
Table 4. MUC5AC Agent Sense Strand Sequences (Shown Without Linkers, Conjugates, or Capping Moieties)
Strand ID Modified Sense Strand (5' —> 3') SEQ ID NO. Underlying Base Sequence (5' —> 3') (Shown as an Unmodified Nucléotide Sequence) SEQ ID NO.
AM10578-SS-NL asccugcucCfAfAfgiccaucaaa 1192 ACCUGCUCCAAGICCAUCAAA 1609
AM10580-SS-NL usgcuccaaGfGfCfcaucaagauu 1193 UGCUCCAAGGCCAUCAAGAUU 1610
AM10582-SS-NL asaccucagCfUfCfcgaguucaaa 1194 AACCUCAGCUCCGAGUUCAAA 1611
AM10584-SS-NL csccagaagCfAfGfugcaicauca 1195 CCCAGAAGCAGUGCAICAUCA 1612
AM10586-SS-NL usgcccucuGfUfllfcugciacuaa 1196 UGCCCUCUGUUCUGCIACUAA 1613
AM10588-SS-NL gscccucugUfUfCfuicgacuacu 1197 GCCCUCUGUUCUICGACUACU 1614
AM10590-SS-NL cscucuguuCfUfGfcgacuacuaa 1198 CCUCUGUUCUGCGACUACUAA 1615
AM10592-SS-NL csucuguucUfGfCfgacuacuaca 1199 CUCUGUUCUGCGACUACUACA 1616
AM10594-SS-NL gscuguucuGfCfGfacuacuacaa 1200 GCUGUUCUGCGACUACUACAA 1617
AM10596-SS-NL cscacccauCfUfGfcuacaacuau 1201 CCACCCAUCUGCUACAACUAU 1618
AM10598-SS-NL gscaaagugGfUfUfcgaciuggaa 1202 GCAAAGUGGUUCGACIUGGAA 1619
AM10600-SS-NL gsagugguuCfGfAfcgugiacuua 1203 GAGUGGUUCGACGUGIACUUA 1620
AM10602-SS-NL gsugguucgAfCfGfugiacuucca 1204 GUGGUUCGACGUGIACUUCCA 1621
AM10604-SS-NL gsugguucgAfCfGfuggacuucca 1205 GUGGUUCGACGUGGACUUCCA 1622
AM10738-SS-NL csagcuuccAfCfllfacaaiaccuu 1206 CAGCUUCCACUACAAIACCUU 1623
AM10740-SS-NL csagcuuccAfCfUfacaagaccuu 1207 CAGCUUCCACUACAAGACCUU 1624
AM10742-SS-NL gsa_2NaguaugCfUfCfagcacugiua 1208 G(A2N)AGUAUGCUCAGCACUGIUA 1625
AM10745-SS-NL gsa_2NaguaugCfUfCfaguacugiua 1209 G(A2N)AGUAUGCUCAGUACUGIUA 1626
AM10746-SS-NL gsccuucuuCfAfAfcaccuucaaa 1210 GCCUUCUUCAACACCUUCAAA 1627
AM10748-SS-NL gsccuucuuCfAfAfcaucuucaaa 1211 GCCUUCUUCAACAUCUUCAAA 1628
AM10749-SS-NL gsccuucuuCfAfAfcacuuucaaa 1212 GCCUUCUUCAACACUUUCAAA 1629
AM10763-SS-NL gsggacaagAfAfGfaccaicaucu 1213 GGGACAAGAAGACCAICAUCU 1630
Strand ID Modifîed Sense Strand (5' - + 3') SEQ ID NO. Underlying Base Sequence (5' —> 3') (Shown as an Unmodified Nucléotide Sequence) SEQ ID NO.
AM10765-SS-NL gsgaccagcAfUfCfuucaucaaca 1214 GGACCAGCAUCUUCAUCAACA 1631
AM10767-SS-NL gscugauuuGfCfCfugaacaagaa 1215 GCUGAUUUGCCUGAACAAGAA 1632
AM10769-SS-NL csa_2NaggaaaCfCfUfacaacaacau 1216 C(A2N)AGGAAACCUACAACAACAU 1633
AM10771-SS-NL gsgaaaccuAfCfAfacaacaucau 1217 GGAAACCUACAACAACAUCAU 1634
AM10789-SS-NL gsa_2NagaccaGfCfAfucuucaucaa 1218 G(A2n)AGACCAGCAUCUUCAUCAA 1635
AM10791-SS-NL gscugcuacAfAfCfuaccaiauca 1219 GCUGCUACAACUACCAIAUCA 1636
AM10793-SS-NL gscuacaacUfAfCfcagaucaiga 1220 GCUACAACUACCAGAUCAIGA 1637
AM10795-SS-NL csccacccaUfCfUfgcuacaacua 1221 CCCACCCAUCUGCUACAACUA 1638
AM10797-SS-NL gsagauccgCfAfllfccaguiuuga 1222 GAGAUCCGCAUCCAGUIUUGA 1639
AM10799-SS-NL cscagagguGfAfGfcauciaacaa 1223 CCAGAGGUGAGCAUCIAACAA 1640
AM10801-SS-NL csagcagggAfCfCfcuucaagaua 1224 CAGCAGGGACCCUUCAAGAUA 1641
AM10803-SS-NL csa_2 N aga u gu Gf Cf Cf u caacuacia 1225 C(A2N)AGAUGUGCCUCAACUACIA 1642
AM10805-SS-NL gsgaugugcCfUfCfaacuaciaga 1226 GGAUGUGCCUCAACUACIAGA 1643
AM10807-SS-NL csagcuuccAfCfllfacaaiaccuu 1227 CAGCUUCCACUACAAIACCUU 1623
AM10809-SS-NL gsacagcgaGfAfCfcugcuugaaa 1228 GACAGCGAGACCUGCUUGAAA 1644
AM10811-SS-NL cscaacgucAfCfCfaucuucagaa 1229 CCAACGUCACCAUCUUCAGAA 1645
AM10813-SS-NL csa_2NacgucaCfCfAfucuucaiaca 1230 C(A2N) ACG UCACCAU CU U CAI ACA 1646
AM10815-SS-NL csauccaggCfCfGfaugacuucca 1231 CAUCCAGGCCGAUGACUUCCA 1647
AM10817-SS-NL gsccuucuu CfAfAf ca ccu u ca a a 1232 GCCUUCUUCAACACCUUCAAA 1627
AM10819-SS-NL gsa_2NaguaugCfUfCfagcacugiua 1233 G(A2n)AGUAUGCUCAGCACUGIUA 1625
AM10820-SS-NL gsa_2NaccuacllfAfCfucgaacuica 1234 G(A2N)ACCUACUACUCGAACUICA 1648
AM10822-SS-NL ascagggacCfAfCfcugcuucaaa 1235 ACAGGGACCACCUGCUUCAAA 1649
AM10824-SS-NL cscugcuccAfAfGfgcuaucaaga 1236 CCUGCUCCAAGGCUAUCAAGA 1650
Strand ID Modified Sense Strand (5' —> 3') SEQ ID NO. Underlying Base Sequence (5' —> 3') (Shown as an Unmodified Nucléotide Sequence) SEQ ID NO.
AM10826-SS-NL csa_2NuguggaAfCfCfacgauiacaa 1237 C(AZN) U G UGGAACCACG AU 1ACAA 1651
AM10828-SS-NL asggcaagaCfCfUfcugcuucuiu 1238 AGGCAAGACCUCUGCUUCUIU 1652
AM10830-SS-NL usccacagaCfUfGfcaccaacuia 1239 UCCACAGACUGCACCAACUIA 1653
AM10832-SS-NL gscagugccUfUfCfacuguacuia 1240 GCAGUGCCUUCACUGUACUIA 1654
AM10834-SS-NL gscugugggAfAfCfuucaacaica 1241 GCUGUGGGAACUUCAACAICA 1655
AM10836-SS-NL gsugggaacUfUfCfaacaicauca 1242 GUGGGAACUUCAACAICAUCA 1656
AM10838-SS-NL gscuucaacAfCfCfuucaaiacca 1243 GCUUCAACACCUUCAAIACCA 1657
AM10840-SS-NL cscccaacaUfCfAfggaacaicuu 1244 CCCCAACAUCAGGAACAICUU 1658
AM10842-SS-NL cscuacuacUfCfGfaacuicaugu 1245 CCUACUACUCGAACUICAUGU 1659
AM10844-SS-NL gsucaccugCfAfGfuguugicuua 1246 GUCACCUGCAGUGUUGICUUA 1660
AM10846-SS-NL gscuggacaUfGfAfccuguuacaa 1247 GCUGGACAUGACCUGUUACAA 1661
AM10848-SS-NL gscagagcuAfCfAfgcuucaacia 1248 GCAGAGCUACAGCUUCAACIA 1662
AM11066-SS-NL gsa_2NaguaugCfllfCfaguacugiua 1249 G(A2N)AGUAUGCUCAGUACUGIUA 1626
AM11263-SS-NL csugcuacaAfCfUfaugagaucca 1250 CUGCUACAACUAUGAGAUCCA 1663
AM11265-SS-NL csugcuacaAfCfUfaugaiaucca 1251 CUGCUACAACUAUGAIAUCCA 1664
AM11267-SS-NL cscuggaccAfAfGfugguuugaca 1252 CCUGG ACCAAG U GG U U U G ACA 1665
AM11269-SS-NL cscuggaccAfAfGf uggu u u iaca 1253 CCUGGACCAAGUGGUUUIACA 1666
AM11270-SS-NL csgagaucaUfCfUfucaacaacaa 1254 CGAGAUCAUCUUCAACAACAA 1667
AM11274-SS-NL asgcagugcCfUfllfcacuguacua 1255 AGCAGUGCCUUCACUGUACUA 1668
AM11276-SS-NL gsacaucagGfAfAfcagcuuciaa 1256 GACAUCAGGAACAGCUUCIAA 1669
AM11278-SS-NL gsgcugauuUfGfCfcugaacaaga 1257 GGCUGAUUUGCCUGAACAAGA 1670
AM11280-SS-NL cscaggacaAfCfCfacuuuiguga 1258 CCAGGACAACCACUUUIGUGA 1671
AM11282-SS-NL csaaccagaAfCfAfaccucuicua 1259 CAACCAGAACAACCU CUICU A 1672
Strand ID Modified Sense Strand (5' - -+3') SEQ ID NO. Underlying Base Sequence (5' —> 3') (Shown as an Unmodifîed Nucléotide Sequence) SEQ ID NO.
AM11284-SS-NL csgcuacaaCfCfAfgcacaaucua 1260 CGCUACAACCAGCACAAUCUA 1673
AM11286-SS-NL cscacaaccAfGfCfacaacuucua 1261 CCACAACCAGCACAACUUCUA 1674
AM11288-SS-NL gsacaaccaCfUfUfuggugacaaa 1262 GACAACCACUUUGGUGACAAA 1675
AM11290-SS-NL csuacaaccAfAfCfacaacuucua 1263 CUACAACCAACACAACUUCUA 1676
AM11292-SS-NL asccucugcUfCfCfuacaacuaga 1264 ACCUCUGCUCCUACAACUAGA 1677
AM11400-SS-NL gscuguucuGfCfGfacuacuacaa 1265 GCUGUUCUGCGACUACUACAA 1617
AM11402-SS-NL gscuguucuGfUfGfacuacuacaa 1266 GCUGUUCUGUGACUACUACAA 1678
AM11463-SS-NL asccagaucAfUfCfuucaacaaca 1267 ACCAGAUCAUCUUCAACAACA 1679
AM11466-SS-NL gsgcucuguGfGfUfaacuucaaca 1268 GGCUCUGUGGUAACUUCAACA 1680
AM11468-SS-NL gsagcguggAfGfAfaugaaaagua 1269 GAGCGUGGAGAAUGAAAAGUA 1681
AM11470-SS-NL gsggagaauGfAfAfaaguaugcua 1270 GGGAGAAUGAAAAGUAUGCUA 1682
AM11472-SS-NL csuucucgaAfCfUfgcauguauga 1271 CUUCUCGAACUGCAUGUAUGA 1683
AM11474-SS-NL gscucgaacUfGfCfauguaugaca 1272 GCUCGAACUGCAUGUAUGACA 1684
AM11476-SS-NL csucgaacuGfCfAfuguaugacaa 1273 CUCGAACUGCAUGUAUGACAA 1685
AM11478-SS-NL cscacuguuCfUfGfugacuacuaa 1274 CCACUGUUCUGUGACUACUAA 1686
AM11480-SS-NL csacuguuclIfGfllfgacuacuaca 1275 CACUGUUCUGUGACUACUACA 1687
AM11497-SS-NL cscuucuucUfCfGfaacuicaugu 1276 CCUUCUUCUCGAACUICAUGU 1688
AM11739-SS-NL cscacccauGfUfGfcuacaacuau 1277 CCACCCAUGUGCUACAACUAU 1689
AM11743-SS-NL csugcuaCfaAfclIfaugaiaucca 1278 CUGCUACAACUAUGAIAUCCA 1664
AM11744-SS-NL csgaga u Cf a Uf cUf u ca a ca a ca a 1279 CGAGAUCAUCUUCAACAACAA 1667
AM11822-SS-NL csacugulIfcUfgUfgacuacuaca 1280 CACUGUUCUGUGACUACUACA 1687
AM11824-SS-NL gsacuguUfclIfgUfgacuacuaca 1281 GACUGUUCUGUGACUACUACA 1690
AM11970-SS-NL usggggaagUfGfUfuccuiaacca 1282 UGGGGAAGUGUUCCUIAACCA 1691
Strand ID Modified Sense Strand (5' - + 3') SEQ ID NO. Underlying Base Sequence (5' 3') (Shown as an Unmodified Nucléotide Sequence) SEQ ID NO.
AM11972-SS-NL gsgacaucaCfCfUfgcaguiuuga 1283 GGACAUCACCUGCAGUIUUGA 1692
AM11974-SS-NL usgugggaaCfUfllfcgaciacaua 1284 UGUGGGAACUUCGACIACAUA 1693
AM11976-SS-NL gsucuuugaUfGfAfggacaagaua 1285 GUCUUUGAUGAGGACAAGAUA 1694
AM11978-SS-NL gsgacgucallfCfUfaccacaciaa 1286 GGACGUCAUCUACCACACIAA 1695
AM11980-SS-NL csugcuacaAfCfUfaugaiaucca 1287 CUGCUACAACUAUGAIAUCCA 1664
AM11981-SS-NL gscaccuccUfCfUfugicagaaau 1288 GCACCUCCUCUUGICAGAAAU 1696
AM11983-SS-NL ascgagaucAfUfCfuucaacaaca 1289 ACGAGAUCAUCUUCAACAACA 1697
AM11985-SS-NL csgagaucaUfCfUfucaacaacaa 1290 CGAGAUCAUCUUCAACAACAA 1667
AM12157-SS-NL gscaaggaaAfCfCfuacaacaaca 1291 GCAAGGAAACCUACAACAACA 1698
AM12160-SS-NL gscaaggAfaAfcCfuacaacaaca 1292 GCAAGGAAACCUACAACAACA 1698
AM12164-SS-NL gscugauUfuGfcCfugaacaagaa 1293 GCUGAUUUGÇCUGAACAAGAA 1632
AM12168-SS-NL gscugauL)fuGfcCfuga_2Nacaagaa 1294 GCUGAUUUGCCUG(A2n)ACAAGAA 1699
AM12170-SS-NL gsgcugallfuUfgCfcugaacaaga 1295 GGCUGAUUUGCCUGAACAAGA 1670
AM12174-SS-NL gsgaccaGfcAfuCfuucaucaaca 1296 GGACCAGCAUCUUCAUCAACA 1631
AM12179-SS-NL csgaga uca UfCf Uf u ca_2 N a ca a ca a 1297 CGAGAUCAUCUUC(A2N)ACAACAA 1700
AM12188-SS-NL csaucuuugAfUfGfaggacaagau 1298 CAUCUUUGAUGAGGACAAGAU 1701
AM12190-SS-NL gscuuugauGfAfGfgacaagauga 1299 GCUUUGAUGAGGACAAGAUGA 1702
AM12192-SS-NL gsucucugcUfCfCfuacaacuaga 1300 GUCUCUGCUCCUACAACUAGA 1703
AM12194-SS-NL csaaccucuGfCfUfucuacaacua 1301 CAACCUCUGCUUCUACAACUA 1704
AM12196-SS-NL csua_2NuaaccAfGfCfacaacuucua 1302 CU(A2N)UAACCAGCACAACUUCUA 1705
AM12198-SS-NL csuauaaccAfGfCfacaacuucua 1303 CUAUAACCAGCACAACUUCUA 1706
AM12515-SS-NL gscuguucuGfcGfaCfuacuacaa 1304 GCUGUUCUGCGACUACUACAA 1617
AM12517-SS-NL gscuguuCfuGfcGfacuacuacaa 1305 GCUGUUCUGCGACUACUACAA 1617
Strand ID Modified Sense Strand (5' —> 3') SEQ ID NO. Underlying Base Sequence (5' 3') (Shown as an Unmodifïed Nucléotide Sequence) SEQ ID NO.
AM12518-SS-NL gscuguucuGfcGfacuacuacaa 1306 GCUGUUCUGCGACUACUACAA 1617
AM12520-SS-NL gscuguuuuGfcGfacuacuacaa 1307 GCUGUUUUGCGACUACUACAA 1707
AM12521-SS-NL gscuguucuGfcGfauuacuacaa 1308 GCUGUUCUGCGAUUACUACAA 1708
AM12522-SS-NL gscuguucuGfcGfacuauuacaa 1309 GCUGUUGUGCGACUAUUACAA 1709
AM12523-SS-NL gscuguucuGfcGfAfcuacuacaa 1310 GCUGUUCUGCGACUACUACAA 1617
AM12605-SS-NL gscugauuuGfcCfugaacaagaa 1311 GCUGAUUUGCCUGAACAAGAA 1632
AM12606-SS-NL gscugauuuGfcCfuGfaacaagaa 1312 GCUGAUUUGCCUGAACAAGAA 1632
AM12607-SS-NL cscugauUfuGfcCfugaacaagaa 1313 CCUGAUUUGCCUGAACAAGAA 1710
AM12715-SS-NL csgagaucaUfCfUfucaacaacaa 1314 CG AG AU CAUCU U CAACAACAA 1667
AM13074-SS-NL gscugauUfuGfcCfugaacaagaa 1315 GCUGAUUUGCCUGAACAAGAA 1632
AM14080-SS-NL gscuguucuGfCfGfacuacuacaa 1316 GCUGUUCUGCGACUACUACAA 1617
AM14081-SS-NL gscugguucuGfCfGfacuacuacaa 1317 GCUGGUUCUGCGACUACUACAA 1711
AM14084-SS-NL gscguucuGfCfGfacuacuacaa 1318 GCG U U CUGCG ACU ACU ACAA 1712
(A2N) = 2-aminoadenine-containing nucléotide; I = hypoxanthine (inosine) nucléotide ** For the constructs in Table 4 above, a capping moiety, such as for example, (InvAb) or s(InvAb), or a conjugate is typically located at the 3’ end of the modified sense strand sequence shown (see, e.g., Table 5, below).
Table 5. MUC5AC Agent Sense Strand Sequences (Shown With TriAlkl4 Linker (see Table 12 for structure information)).
Strand ID Modified Sense Strand (5' —> 3') SEQ ID NO. Underlying Base Sequence (5' —» 3') (Shown as an Unmodified Nucléotide Sequence) SEQ ID NO.
AM10578-SS (TriAlkl4)accugcucCfAfAfgiccaucaaas(invAb) 1319 ACCUGCUCCAAGICCAUCAAA 1609
AM10580-SS (TriAlkl4)ugcuccaaGfGfCfcaucaagauus(invAb) 1320 UGCUCCAAGGCCAUCAAGAUU 1610
AM10582-SS (TriAlkl4)aaccucagCfUfCfcgaguucaaas(invAb) 1321 AACCUCAGCUCCGAGUUCAAA 1611
AM10584-SS (TriAlkl4)cccagaagCfAfGfugcaicaucas(invAb) 1322 CCCAGAAGCAGUGCAICAUCA 1612
AM10586-SS (TriAlkl4)ugcccucuGfUfUfcugciacuaas(invAb) 1323 UGCCCUCUGUUCUGCIACUAA 1613
AM10588-SS (TriAlkl4)gcccucugUfUfCfuicgacuacus(invAb) 1324 GCCCUCUGUUCUICGACUACU 1614
AM10590-SS (TriAlkl4)ccucuguuCfUfGfcgacuacuaas(invAb) 1325 CCUCUGUUCUGCGACUACUAA 1615
AM10592-SS (TriAlkl4)cucuguucUfGfCfgacuacuacas(invAb) 1326 CUCUGUUCUGCGACUACUACA 1616
AM 10594-SS (TriAlkl4)gcuguucuGfCfGfacuacuacaas(invAb) 1327 GCUGUUCUGCGACUACUACAA 1617
AM10596-SS (TriAlkl4)ccacccauCfUfGfcuacaacuaus(invAb) 1328 CCACCCAUCUGCUACAACUAU 1618
AM10598-SS (TriAlkl4)gcaaagugGfUfUfcgaciuggaas(invAb) 1329 GCAAAG UGG U UCGACIUGGAA 1619
AM10600-SS (TriAlkl4)gagugguuCfGfAfcgugiaciiuas(invAb) 1330 GAGUGGUUCGACGUGIACUUA 1620
AM10602-SS (TriAlkl4)gugguucgAfCfGfugiacuuccas(invAb) 1331 GUGGUUCGACGUGIACUUCCA 1621
AM10604-SS (TriAlkl4)gugguucgAfCfGfuggacuuccas(invAb) 1332 GUGGUUCGACGUGGACUUCCA 1622
AM10738-SS (TriAlkl4)csagcuuccAfCfUfacaaiaccuus(invAb) 1333 CAGCUUCCACUACAAIACCUU 1623
AM10740-SS (TriAlkl4)csagcuuccAfCfUfacaagaccuus(invAb) 1334 CAGCUUCCACUACAAGACCUU 1624
AM10742-SS (TriAlkl4)gsa_2NaguaugCfUfCfagcacugiuas(invAb) 1335 G(A2N)AGUAUGCUCAGCACUGIUA 1625
AM10745-SS (TriAlkl4)gsa_2NaguaugCfUfCfaguacugiuas(invAb) 1336 G(A2N)AGUAUGCUCAGUACUGIUA 1626
AM10746-SS (TriAlkl4)gsccuucuuCfAfAfcaccuucaaas(invAb) 1337 GCCUUCUUCAACACCUUCAAA _ 1627
AM10748-SS (TriAlkl4)gsccuucuuCfAfAfcaucuucaaas(invAb) 1338 GCCUUCUUCAACAUCUUCAAA 1628
AM10749-SS (TriAlkl4)gsccuucuuCfAfAfcacuuucaaas(invAb) 1339 GCCUUCUUCAACACUUUCAAA 1629
Strand ID Modified Sense Strand (5' —> 3') SEQ ID NO. Underlying Base Sequence (5' —> 3') (Shown as an Unmodified Nucléotide Sequence) SEQ ID NO.
AM10763-SS (TriAlkl4)gggacaagAfAfGfaccaicaucus(invAb) 1340 GGGACAAGAAGACCAICAUCU 1630
AM10765-SS (TriAlkl4)ggaccagcAfUfCfuucaucaacas(invAb) 1341 GGACCAGCAUCUUCAUCAACA 1631
AM10767-SS (TriAlkl4)gcugauuuGfCfCfugaacaagaas(invAb) 1342 GCUGAUUUGCCUGAACAAGAA 1632
AM10769-SS (TriAlkl4)ca_2NaggaaaCfCfUfacaacaacaiis(invAb) 1343 C(A2n)AGGAAACCUACAACAACAU 1633
AM10771-SS (TriAlkl4)ggaaaccuAfCfAfacaacaucaus(invAb) 1344 GGAAACCUACAACAACAUCAU 1634
AM10789-SS (TriAlkl4)ga_2NagaccaGfCfAfucuucaucaas(invAb) 1345 G(A2N)AGACCAGCAUCUUCAUCAA 1635
AM10791-SS (TriAlkl4)gcugcuacAfAfCfuaccaiaucas(invAb) 1346 GCUGCUACAACUACCAIAUCA 1636
AM10793-SS (TriAlkl4)gcuacaacUfAfCfcagaucaigas(invAb) 1347 GCUACAACUACCAGAUCAIGA 1637
AM10795-SS (TriAlkl4)cccacccaUfCfUfgcuacaacuas(invAb) 1348 CCCACCCAUCUGCUACAACUA 1638
AM10797-SS (TriAlkl4)gagauccgCfAfUfccaguiuugas(invAb) 1349 GAGAUCCGCAUCCAGUIUUGA 1639
AM10799-SS (TriAlkl4)ccagagguGfAfGfcauciaacaas(invAb) 1350 CCAGAGGUGAGCAUCIAACAA 1640
AM10801-SS (TriAlkl4)cagcagggAfCfCfcuucaagauas(invAb) 1351 CAGCAGGGACCCUUCAAGAUA 1641
AM10803-SS (TriAlkl4)ca_2NagauguGfCfCfucaacuacias(invAb) 1352 C(A2N)AGAUGUGCCUCAACUACIA 1642
AM10805-SS (TriAlkl4)ggaugugcCfUfCfaacuaciagas(invAb) 1353 GGAUGUGCCUCAACUACIAGA 1643
AM10807-SS (TriAlkl4)cagcuuccAfCfUfacaaiaccuus(invAb) 1354 CAGCUUCCACUACAAIACCUU 1623
AM10809-SS (TriAlkl4)gacagcgaGfAfCfcugcuugaaas(invAb) 1355 GACAGCGAGACCUGCU U GAAA 1644
AM10811-SS (TriAlkl4)ccaacgucAfCfCfaucuucagaas(invAb) 1356 CCAACGUCACCAUCUUCAGAA 1645
AM10813-SS (TriAlkl4)ca_2NacgucaCfCfAfucuucaiacas(invAb) 1357 C(Azn)ACGUCACCAUCUUCAIACA 1646
AM10815-SS (TriAlkl4)cauccaggCfCfGfaugacuuccas(invAb) 1358 CAUCCAGGCCGAUGACUUCCA 1647
AM10817-SS (Tri Al kl4)gccu u cu u Cf Af Af ca ccu u ca a as ( i nvAb) 1359 GCCUUCUUCAACACCUUCAAA 1627
AM10819-SS (TriAlkl4)ga_2NaguaugCfUfCfagcacugiuas(invAb) 1360 G(A2N)AGUAUGCUCAGCACUGIUA 1625
AM10820-SS (TriAlkl4)ga_2NaccuacUfAfCfucgaacuicas(invAb) 1361 G(A2N)ACCUACUACUCGAACUICA 1648
AM10822-SS (TriAlkl4)acagggacCfAfCfcugcuucaaas(invAb) 1362 ACAGGGACCACCUGCUUCAAA 1649
Strand ID Modified Sense Strand (5' —> 3') SEQ ID NO. Underlying Base Sequence (5' —» 3') (Shown as an Unmodifîed Nucléotide Sequence) SEQ ID NO.
AM10824-SS (TriAlkl4)ccugcuccAfAfGfgcuaucaagas(invAb) 1363 CCUGCUCCAAGGCUAUCAAGA 1650
AM10826-SS (TriAlkl4)ca_2NuguggaAfCfCfacgauiacaas(invAb) 1364 C( A2N) U G U G G AACCACG AU 1ACAA 1651
AM10828-SS (TriAlkl4)aggcaagaCfCfUfcugcuucuius(invAb) 1365 AGGCAAGACCUCUGCUUCUIU 1652
AM10830-SS (TriAlkl4)uccacagaCfUfGfcaccaacuias(invAb) 1366 UCCACAGACUGCACCAACUIA 1653
AM10832-SS (TriAlkl4)gcagugccUfUfCfacuguacuias(invAb) 1367 GCAG U GCCU U CACU G UACU IA 1654
AM10834-SS (TriAlkl4)gcugugggAfAfCfuucaacaicas(invAb) 1368 GCUGUGGGAACUUCAACAICA 1655
AM10836-SS (TiïAlkl4)gugggaacUfUfCfaacaicaucas(invAb) 1369 GUGGGAACUUCAACAICAUCA 1656
AM10838-SS (TriAlkl4)gciiucaacAfCfCfuucaaiaccas(invAb) 1370 GCUUCAACACCUUCAAIACCA 1657
AM10840-SS (TriAlkl4)ccccaacaUfCfAfggaacaicuus(invAb) 1371 CCCCAACAUCAGGAACAICUU 1658
AM10842-SS (TriAlkl4)ccuacuacUfCfGfaacuicaugus(invAb) 1372 CCUACUACUCGAACUICAUGU 1659
AM10844-SS (TriAlkl4)gucaccugCfAfGfuguugicuuas(invAb) 1373 GUCACCUGCAGUGUUGICUUA 1660
AM10846-SS (TriAlkl4)gcuggacaUfGfAfccuguuacaas(invAb) 1374 GCUGGACAUGACCUGUUACAA 1661
AM10848-SS (TriAlkl4)gcagagcuAfCfAfgcuucaacias(invAb) 1375 GCAGAGCUACAGCUUCAACIA 1662
AM11066-SS (TriAlkl4)ga_2NaguaugCfUfCfaguacugiuas(invAb) 1376 G(A2N)AGUAUGCUCAGUACUGIUA 1626
AM11263-SS (TriAlkl4)csugcuacaAfCfUfaugagauccas(invAb) 1377 CUGCUACAACUAUGAGAUCCA 1663
AM11265-SS (TriAlkl4)csugcuacaAfCfUfaugaiauccas(invAb) 1378 CUGCUACAACUAUGAIAUCCA 1664
AM11267-SS (TriAlkl4)cscuggaccAfAfGfugguuugacas(invAb) 1379 CCUGGACCAAGUGGUUUGACA 1665
AM11269-SS (T ri Al kl4)cscuggaccAfAfGfuggu u u iacas(invAb) 1380 CCUGGACCAAGUGGUUUIACA 1666
AM11270-SS (TriAlkl4)csgagaucaUfCfUfucaacaacaas(invAb) 1381 CGAGAUCAUCUUCAACAACAA 1667
AM11274-SS (TriAlkl4)agcagugcCfUfUfcacuguacuas(invAb) 1382 AGCAGUGCCUUCACUGUACUA 1668
AM11276-SS (TriAlkl4)gacaucagGfAfAfcagcuuciaas(invAb) 1383 GACAUCAGGAACAGCUUCIAA 1669
AM11278-SS (TriAlkl4)ggcugauuUfGfCfcugaacaagas(invAb) 1384 GGCUGAUUUGCCUGAACAAGA 1670
AM11280-SS (T ri Al k!4) ccagga ca Af Cf Cf acu u u igugas ( i n vAb) 1385 CCAGGACAACCACUUUIGUGA 1671
Strand ID Modified Sense Strand (5' —> 3') SEQ ID NO. Underlying Base Sequence (5' —> 3') (Shown as an Unmodified Nucléotide Sequence) SEQ ID NO.
AM11282-SS (TriAlkl4)caaccagaAfCfAfaccucuicuas(invAb) 1386 CAACCAGAACAACCUCUICUA 1672
AM11284-SS (TriAlkl4)cgcuacaaCfCfAfgcacaaucuas(invAb) 1387 CGCUACAACCAGCACAAUCUA 1673
AM11286-SS (TriAlkl4)ccacaaccAfGfCfacaacuucuas(invAb) 1388 CCACAACCAGCACAACU U CUA 1674
AM11288-SS (TriAlkl4)gacaaccaCfUfUfuggugacaaas(invAb) 1389 GACAACCACU U U GG U G ACAAA 1675
AM 11290-SS (TriAlkl4)cuacaaccAfAfCfacaacuucuas(invAb) 1390 CUACAACCAACACAACUUCUA 1676
AM11292-SS (TriAlkl4)accucugcUfCfCfuacaacuagas(invAb) 1391 ACCUCUGCUCCUACAACUAGA 1677
AM11400-SS (TriAlkl4)gscuguucuGfCfGfacuacuacaas(invAb) 1392 GCUGUUCUGCGACUACUACAA 1617
AM11402-SS (TriAlkl4)gscuguucuGfUfGfacuacuacaas(invAb) 1393 GCUGUUCUGUGACUACUACAA 1678
AM11463-SS (TriAlkl4)asccagaucAfUfCfuucaacaacas(invAb) 1394 ACCAGAUCAUCUUCAACAACA 1679
AM11466-SS (TriAlkl4)gsgcucuguGfGfUfaacuucaacas(invAb) 1395 GGCUCUGUGGUAACUUCAACA 1680
AM11468-SS (TriAlkl4)gsagcguggAfGfAfaugaaaaguas(invAb) 1396 GAGCGUGGAGAAUGAAAAGUA 1681
AM11470-SS (TriAlkl4)gsggagaauGfAfAfaaguaugcuas(invAb) 1397 GGGAGAAUGAAAAGUAUGCUA 1682
AM11472-SS (TriAlkl4)csuucucgaAfCfUfgcauguaugas(invAb) 1398 CUUCUCGAACUGCAUGUAUGA 1683
AM11474-SS (TriAlkl4)gscucgaacUfGfCfauguaugacas(invAb) 1399 GCUCGAACUGCAUGUAUGACA 1684
AM11476-SS (TriAlkl4)csucgaacuGfCfAfuguaugacaas(invAb) 1400 CUCGAACUGCAUGUAUGACAA 1685
AM11478-SS (TriAlkl4)cscacuguuCfUfGfugacuacuaas(invAb) 1401 CCACU G U U CU G U GACU ACU AA 1686
AM11480-SS (TriAlkl4)csacuguucUfGfUfgacuacuacas(invAb) 1402 CACUGUUCUGUGACUACUACA 1687
AM11497-SS (TriAlkl4)cscuucuucUfCfGfaacuicaugus(invAb) 1403 CCUUCUUCUCGAACUICAUGU 1688
AM11739-SS (TriAlkl4)cscacccauGfUfGfcuacaacuaus(invAb) 1404 CCACCCAU G U GCU ACAACU AU 1689
AM11743-SS (TriAlkl4)csugcuaCfaAfcUfaugaiauccas(invAb) 1405 CUGCUACAACUAUGAIAUCCA 1664
AM11744-SS (TriAlkl4)csgagauCfaUfcUfucaacaacaas(invAb) 1406 CGAGAUCAUCUUCAACAACAA 1667
AM11822-SS (TriAlkl4)csacuguUfcUfgUfgacuacuacas(invAb) 1407 CACUGUUCUGUGACUACUACA 1687
AM11824-SS (TriAlkl4)gsacuguUfcUfgUfgacuacuacas(invAb) 1408 GACUGUUCUGUGACUACUACA 1690
Ό
Strand ID Modified Sense Strand (5' —» 3') SEQ ID NO. Underlying Base Sequence (5' —> 3') (Shown as an Unmodified Nucléotide Sequence) SEQ ID NO.
AM11970-SS (TriAlkl4)uggggaagUfGfUfuccuiaaccas(invAb) 1409 UGGGGAAGUGUUCCUIAACCA 1691
AM11972-SS (TriAlkl4)ggacaucaCfCfUfgcaguiuugas(invAb) 1410 GGACAUCACCUGCAGUIUUGA 1692
AM11974-SS (TriAlkl4)ugugggaaCfUfUfcgaciacauas(invAb) 1411 UGUGGGAACUUCGACIACAUA 1693
AM11976-SS (TriAlkl4)gucuuugaUfGfAfggacaagauas(invAb) 1412 GUCUUUGAUGAGGACAAGAUA 1694
AM11978-SS (TriAlkl4)ggacgucaUfCfUfaccacaciaas(invAb) 1413 GGACGUCAUCUACCACACIAA 1695
AM11980-SS (TriAlkl4)cugcuacaAfCfUfaugaiauccas(invAb) 1414 CUGCUACAACUAUGAIAUCCA 1664
AM11981-SS (TriAlkl4)gcaccuccUfCfUfugicagaaaus(invAb) 1415 GCACCUCCUCUUGICAGAAAU 1696
AM11983-SS (TriAlkl4)acgagaucAfUfCfuucaacaacas(invAb) 1416 ACG AG AU CAU CU U CAACAACA 1697
AM11985-SS (TriAlkl4)cgagaucaUfCfUfucaacaacaas(invAb) 1417 CGAGAUCAUCUUCAACAACAA 1667
AM12157-SS (TriAlkl4)gcaaggaaAfCfCfuacaacaacas(invAb) 1418 GCAAGGAAACCUACAACAACA 1698
AM12160-SS (TriAlkl4)gcaaggAfaAfcCfuacaacaacas(invAb) 1419 GCAAGGAAACCUACAACAACA 1698
AM12164-SS (TriAlkl4)gcugauUfuGfcCfugaacaagaas(invAb) 1420 GCUGAUUUGCCUGAACAAGAA 1632
AM12168-SS (TriAlkl4)gcugauUfuGfcCfuga_2Nacaagaas(invAb) 1421 GCUGAUUUGCCUG(A2N)ACAAGAA 1699
AM12170-SS (TriAlkl4)ggcugaUfuUfgCfcugaacaagas(invAb) 1422 GGCUGAUUUGCCUGAACAAGA 1670
AM12174-SS (T ri Al kl4)gga ccaGf cAf u Cf u ucaucaacas(invAb) 1423 GGACCAGCAUCUUCAUCAACA 1631
AM12179-SS (TriAlkl4)csgagaucaUfCfUfuca_2Nacaacaas(invAb) 1424 CGAGAUCAUCUUC(A2n)ACAACAA 1700
AM12188-SS (TriAlkl4)caucuuugAfUfGfaggacaagaus(invAb) 1425 CAUCUUUGAUGAGGACAAGAU 1701
AM12190-SS (TriAlkl4)gcuuugauGfAfGfgacaagaugas(invAb) 1426 GCUUUGAUGAGGACAAGAUGA 1702
AM12192-SS (TriAlkl4)gucucugcUfCfCfuacaacuagas(invAb) 1427 GUCUCUGCUCCUACAACUAGA 1703
AM12194-SS (TriAlkl4)caaccucuGfCfUfucuacaacuas(invAb) 1428 CAACCUCUGCUUCUACAACUA 1704
AM12196-SS (TriAlkl4)cua_2NuaaccAfGfCfacaacuucuas(invAb) 1429 CU(A2N)UAACCAGCACAACUUCUA 1705
AM12198-SS (TriAlkl4)cuauaaccAfGfCfacaacuucuas(invAb) 1430 CUAUAACCAGCACAACUUCUA 1706
AM12515-SS (TriAlkl4)gcuguucuGfcGfaCfuacuacaas(invAb) 1431 GCUGUUCUGCGACUACUACAA 1617
Strand ID Modifîed Sense Strand (5' —> 3') SEQ ID NO. Underlying Base Sequence (5' —> 3') (Shown as an Unmodifîed Nucléotide Sequence) SEQ ID NO.
AM12517-SS (TriAlkl4)gcuguuCfuGfcGfacuacuacaas(invAb) 1432 GCUGUUCUGCGACUACUACAA 1617
AM12518-SS (TriAlkl4)gcuguucuGfcGfacuacuacaas(invAb) 1433 GCUGUUCUGCGACUACUACAA 1617
AM12520-SS (TriAlkl4)gcuguuuuGfcGfacuacuacaas(invAb) 1434 GCUGUUUUGCGACUACUACAA 1707
AM12521-SS (TriAlkl4)gcuguucuGfcGfauuacuacaas(invAb) 1435 GCUGUUCUGCGAUUACUACAA 1708
AM12522-SS (TriAlkl4)gcuguucuGfcGfacuauuacaas(invAb) 1436 GCUGUUCUGCGACUAUUACAA 1709
AM12523-SS (TriAlkl4)gcuguucuGfcGfAfcuacuacaas(invAb) 1437 GCUGUUCUGCGACUACUACAA 1617
AM12605-SS (TriAlkl4)gcugauuuGfcCfugaacaagaas(invAb) 1438 GCUGAUUUGCCUGAACAAGAA 1632
AM12606-SS (TriAlkl4)gcugauuuGfcCfuGfaacaagaas(invAb) 1439 GCUGAUUUGCCUGAACAAGAA 1632
AM12607-SS (TriAlkl4)ccugauUfuGfcCfugaacaagaas(invAb) 1440 CCUGAUUUGCCUGAACAAGAA 1710
AM13074-SS (TriAlkl4)gscugauUfuGfcCfugaacaagaas(invAb) 1441 GCUGAUUUGCCUGAACAAGAA 1632
AM14080-SS (TriAlkl4)gscuguucuGfCfGfacuacuacaa(inyAb) 1442 GCUGUUCUGCGACUACUACAA 1617
AM14081-SS (TriAlkl4)gscugguucuGfCfGfacuacuacaas(invAb) 1443 GCUGGUUCUGCGACUACUACAA 1711
AM14084-SS (TriAlkl4)gscguucuGfCfGfacuacuacaas(invAb) 1444 GCGUUCUGCGACUACUACAA 1712
(A2N) = 2-aminoadenine-containing nucléotide; I = hypoxanthine (inosine) nucléotide
Table 6. Nucléotide Sequences With End Caps Shown For Certain MUC5AC RNAi Agents Tested In Vitro.
Strand ID Modified Sense Strand (5' —> 3') SEQ ID NO. Underlying Base Sequence (5' —> 3') (Shown as an Unmodified Nucléotide Sequence) SEQ ID NO.
AM10594-SS-S (invAb)sgcuguucuGfCfGfacuacuacaas(invAb) 1445 GCUGUUCUGCGACUACUACAA 1617
AM10600-SS-s (invAb)sgagugguuCfGfAfcgugiacuuas(invAb) 1446 GAGUGGUUCGACGUGIAÇUUA 1620
AM10765-SS-S (invAb)sggaccagcAfUfCfuucaucaacas(invAb) 1447 GGACCAGCAUCUUCAUCAACA 1631
AM10767-SS-S (invAb)sgcugauuuGfCfCfugaacaagaas(invAb) 1448 GCUGAUUUGCCUGAACAAGAA 1632
AM10769-SS-s (invAb)sca_2NaggaaaCfCfUfacaacaacaus(invAb) 1449 C(A2N)AGGAAACCUACAACAACAU 1633
AM10771-SS-S (invAb)sggaaaccuAfCfAfacaacaucaus(invAb) 1450 GGAAACCUACAACAACAUCAU ‘ 1634
AM10791-SS-S (invAb)sgcugcuacAfAfCfuaccaiaucas(invAb) 1451 GCUGCUACAACUACCAIAUCA 1636
AM10793-SS-S (invAb)sgcuacaacUfAfCfcagaucaigas(invAb) 1452 GCUACAACUACCAGAUCAIGA 1637
AM10795-SS-S (invAb)scccacccaUfCfUfgcuacaacuas(invAb) 1453 CCCACCCAUCUGCUACAACUA 1638
AM10797-SS-S (invAb)sgagauccgCfAfUfccaguiuugas(invAb) 1454 GAGAUCCGCAUCCAGUIUUGA 1639
AM10799-SS-S (invAb)sccagagguGfAfGfcauciaacaas(invAb) 1455 CCAGAGGUGAGCAUCIAACAA 1640
AM10801-SS-S (invAb)scagcagggAfCfCfcuucaagauas(invAb) 1456 CAGCAGGGACCCUUCAAGAUA 1641
AM10803-SS-S (invAb)sca_2NagauguGfCfCfucaacuacias(invAb) 1457 C(A2N)AGAUGUGCCUCAACUACIA 1642
AM10813-SS-S (invAb)sca_2NacgucaCfCfAfucuucaiacas(invAb) 1458 C(A2N)ACGUCACCAUCUUCAIACA 1646
AM10820-SS-S (invAb)sga_2NaccuacUfAfCfucgaacuicas(invAb) 1459 G(A2N)ACCUACUACUCGAACUICA 1648
AM10826-SS-S (invAb)sca_2NuguggaAfCfCfacgauiacaas(invAb) 1460 C(A2N)UGUGGAACCACGAUIACAA 1651
AM10828-SS-S (invAb)saggcaagaCfCfUfcugcuucuius(invAb) 1461 AGGCAAGACCUCUGCUUCUIU 1652
AM10832-SS-S (invAb)sgcagugccUfUfCfacuguacuias(invAb) 1462 GCAGUGCCUUCACUGUACUIA 1654
AM10836-SS-S (invAb)sgugggaacUfUfCfaacaicaucas(invAb) . 1463 GUGGGAACUUCAACAICAUCA 1656
AM10840-SS-S (invAb)sccccaacaUfCfAfggaacaicuus(invAb) 1464 CCCCAACAUCAGGAACAICUU . 1658
AM10842-SS-S (invAb)sccuacuacUfCfGfaacuicaugus(invAb) 1465 CCUACUACUCGAACUICAUGU 1659
AM10844-SS-S (invAb)sgucaccugCfAfGfuguugicuuas(invAb) 1466 GUCACCUGCAGUGUUGICUUA 1660
Strand ID Modified Sense Strand (5' —> 3') SEQ ID NO. Underlying Base Sequence (5' —> 3') (Shown as an Unmodifïed Nucléotide Sequence) SEQ ID NO.
AM10846-SS-S (invAb)sgcuggacaUfGfAfccuguuacaas(invAb) 1467 GCUGGACAUGACCUGUUACAA 1661
AM10848-SS-S (invAb)sgcagagcuAfCfAfgcuucaacias(invAb) 1468 GCAGAGCUACAGCUUCAACIA 1662
AM11274-SS-S (invAb)sagcagugcCfUfUfcacuguacuas(invAb) 1469 AGCAGUGCCUUCACUGUACUA 1668
AM11276-SS-S (invAb)sgacaucagGfAfAfcagcuuciaas(invAb) 1470 GACAUCAGGAACAGCUUCIAA 1669
AM11278-SS-S (invAb)sggcugauuUfGfCfcugaacaagas(invAb) 1471 GGCUGAUUUGCCUGAACAAGA 1670
AM11280-SS-S (invAb)sccaggacaAfCfCfacuuuigugas(invAb) 1472 CCAGGACAACCACUUUIGUGA 1671
AM11286-SS-S (invAb)sccacaaccAfGfCfacaacuucuas(invAb) 1473 CCACAACCAGCACAACUUCUA 1674
AM11288-SS-S (invAb)sgacaaccaCfUfUfuggugacaaas(invAb) 1474 GACAACCACUUUGGUGACAAA 1675
AM11292-SS-S (invAb)saccucugcUfCfCfuacaacuagas(invAb) 1475 ACCUCUGCUCCUACAACUAGA 1677
AM11978-SS-S (invAb)sggacgucaUfCfUfaccacaciaas(invAb) . 1476 GGACGUCAUCUACCACACIAA 1695
AM11980-SS-S (invAb)sçugcuacaAfCfllfaugaiauccas(invAb) 1477 CUGCUACAACUAUGAIAUCCA 1664
AM11983-SS-S (invAb)sacgagaucAfUfCfuucaacaacas(invAb) 1478 ACGAGAUCAUCUUCAACAACA 1697
AM11985-SS-S (invAb)scgagaucaUfCfUfucaacaacaas(invAb) 1479 CGAGAUCAUCUUCAACAACAA 1667
AM12164-SS-S (invAb)sgcugauUfuGfcCfugaacaagaas(invAb) 1480 GCUGAUUUGCCUGAACAAGAA 1632
AM12168-SS-S (invAb)sgcugauUfuGfcCfuga_2Nacaagaas(invAb) 1481 GCUGAUUUGCCUG(A2n)ACAAGAA 1699
AM12170-SS-S (invAb)sggcugaUfuUfgCfcugaacaagas(invAb) 1482 GGCUGAUUUGCCUGAACAAGA 1670
(A2N) = 2-aminoadenine-containing nucléotide; I = hypoxanthine (inosine) nucléotide
Table 7. MUC5AC Agent Sense Strand Sequences (Shown with Targeting Ligand Conjugate. The structure of ανβ6-8Μ6.1 is shown in Table 12, and the structure of Τπ-8Μ6.1-ανβ6-(ΤΑ14) is shown in FIG. 1.)
Strand ID Modified Sense Strand (5' —> 3’) SEQ ID NO. Corresponding Sense Strand AM Number Without Linker or Conjugate (See Table 4)
CS000387 Tri-SM6.1-avb6-(TA14)gsa_2NaguaugCfUfCfaguacugiuas(invAb) 1483 AM10745-SS
CS000517 Tri-SM6.1-avb6-(TA14)ascccauguGfCfUfacaacuaugas(invAb) 1484 AM09492-SS
CS000519 Tri-SM6.1-avb6-(TA14)cscauacagCfAfGfuacaguuacas(invAb) 1485 AM09657-SS
CS000521 Tri-SM6.1-avb6-(TA14)csugcuacaAfCfUfaugagauccas(invAb) 1486 AM11263-SS
CS000523 Tri-SM6.1-avb6-(TA14)csugcuacaAfCfUfaugaiauccas(invAb) 1487 AM11265-SS
CS000525 T ri-SM 6. l-avb6-(TA14)cscuggaccAfAfGf uggu u ugacas (invAb) 1488 AM11267-SS
CS000527 Tri-SM6.1-avb6-(TA14)cscuggaccAfAfGfugguuuiacas(invAb) 1489 AM11269-SS
CSOOO528 Tri-SM6.1-avb6-(TA14)csgagaucaUfCfUfucaacaacaas(invAb) 1490 AM11270-SS
CS000578 Tri-SM6.1-avb6-(TA14)gscuguucuGfCfGfacuacuacaas(invAb) 1491 AM11400-SS
CS000583 Tri-SM6.1-avb6-(TA14)gscuguucuGfUfGfacuacuacaas(invAb) 1492 AM11402-SS
CS000608 Tri-SM6.1-avb6-(TA14)asccagaucAfUfCfuucaacaacas(invAb) 1493 AM11463-SS
CS000612 Tri-SM6.1-avb6-(TA14)gsgcucuguGfGfUfaacuucaacas(invAb) 1494 AM11466-SS
CS000614 Tri-SM6.1-avb6-(TA14)gsagcguggAfGfAfaugaaaaguas(invAb) 1495 AM11468-SS
CS000616 Tri-SM6.1-avb6-(TA14)gsggagaauGfAfAfaaguaugcuas(invAb) 1496 AM11470-SS
CS000618 Tri-SM6.1-avb6-(TA14)csuucucgaAfCfUfgcauguaugas(invAb) 1497 AM11472-SS
CS000620 Tri-SM6.1-avb6-(TA14)gscucgaacUfGfCfauguaugacas(invAb) 1498 AM11474-SS
CS000622 Tri-SM6.1-avb6-(TA14)csucgaacuGfCfAfuguaugacaas(invAb) 1499 AM11476-SS
Strand ID Modified Sense Strand (5' —> 3') SEQID NO. Corresponding Sense Strand AM Number Without Linker or Conjugate (See Table 4)
CS000624 Tri-SM6.1-avb6-(TA14)cscacuguuCfUfGfugacuacuaas(invAb) 1500 AM11478-SS
CS000626 Tri-SM6.1-avb6-(TA14)csacuguucUfGfUfgacuacuacas(invAb) 1501 AM11480-SS
CS000665 Tri-SM6.1-avb6-(TA14)cscuucuucUfCfGfaacuicaugus(invAb) 1502 AM11497-SS
CS001001 Tri-SM6.1-avb6-(TA14)csagcuuccAfCfUfacaaiaccuus(invAb) 1503 AM10738-SS
CSOO1OO3 Tri-SM6.1-avb6-(TA14)csagcuuccAfCfUfacaagaccuus(invAb) 1504 AM10740-SS
CS001005 Tri-SM6.1-avb6-(TA14)gsa_2NaguaugCfUfCfagcacugiuas(invAb) 1505 AM10742-SS
CS001007 Tri-SM6.1-avb6-(TA14)gsccuucuuCfAfAfcaccuucaaas(invAb) 1506 AM10746-SS
CS001009 Tri-SM6.1-avb6-(TA14)gsccuucuuCfAfAfcaucuucaaas(invAb) 1507 AM10748-SS
CSOO1O1O Tri-SM6.1-avb6-(TA14)gsccuucuuCfAfAfcacuuucaaas(invAb) 1508 AM10749-SS
CS001036 Tri-SM6.1-avb6-(TA14)cscacccauGfUfGfcuacaacuaus(invAb) 1509 AM11739-SS
CS001040 Tri-SM6.1-avb6-(TA14)csugcuaCfaAfcUfaugaiauccas(invAb) 1510 AM11743-SS
CS001041 Tri-SM6.1-avb6-(TA14)csgagauCfaUfcUfucaacaacaas(invAb) 1511 AM11744-SS
CS001401 Tri-SM6.1-avb6-(TA14)csgagaucaUfCfUfuca_2Nacaacaas(invAb) 1512 AM12179-SS
CS001644 Tri-SM6.1-avb6-(TA14)gscugauUfuGfcCfugaacaagaas(invAb) 1513 AM13074-SS
CS002194 Tri-SM6.1-avb6-(TA14)gscuguucuGfCfGfacuacuacaa(invAb) 1514 AM14080-SS
CS002195 Tri-SM6.1-avb6-(TA14)gscugguucuGfCfGfacuacuacaas(invAb) 1515 AM14081-SS
CS002196 Tri-SM6.1-avb6-(TA14)gscguucuGfCfGfacuacuacaas(invAb) 1516 AM14084-SS
[0130] The MUC5AC RNAi agents disclosed herein are formed by annealing an antisense strand with a sense strand. A sense strand containing a sequence listed in Table 2, Table 4, Table 5, Table 6, or Table 7 can be hybridized to any antisense strand containing a sequence listed in Table 2 or Table 3, provided the two sequences hâve a région of at least 85% 5 complementarity over a contiguous 16, 17, 18, 19, 20, or 21 nucléotide sequence.
[0131] As shown in Table 5 above, certain of the example MUC5AC RNAi agent nucléotide sequences are shown to further include reactive linking groups at one or both of the 5’ terminal end and the 3’ terminal end of the sense strand. For example, many of the MUC5AC RNAi agent sense strand sequences shown in Table 5 above hâve a (TriAlkl4) linking group at the 10 5’ end of the nucléotide sequence. Other linking groups, such as an (NH2-C6) linking group or a a (6-SS-6) or (C6-SS-C6) linking group, may be présent as well or alternatively in certain embodiments. Such reactive linking groups are positioned to facilitate the linking of targeting ligands, targeting groups, and/or PK/PD modulators to the MUC5AC RNAi agents disclosed herein. Linking or conjugation reactions are well known in the art and provide for formation 15 of covalent linkages between two molécules or reactants. Suitable conjugation reactions for use in the scope of the inventions herein include, but are not limited to, amide coupling reaction, Michael addition reaction, hydrazone formation reaction, inverse-demand DielsAlder cycloaddition reaction, oxime ligation, and Copper (I)- catalyzed or strain-promoted azide-alkyne cycloaddition reaction cycloaddition reaction.
[0132] In some embodiments, targeting ligands, such as the integrin targeting ligands shown in the examples and figures disclosed herein, can be synthesized as activated esters, such as tetrafluorophenyl (TFP) esters, which can be displaced by a reactive amino group (e.g., NH2Cô) to attach the targeting ligand to the MUC5AC RNAi agents disclosed herein. In some embodiments, targeting ligands are synthesized as azides, which can be conjugated to a propargyl (e.g., TriAlkl4) or DBCO group, for example, via Copper (I)- catalyzed or strainpromoted azide-alkyne cycloaddition reaction.
[0133] Additionally, the nucléotide sequences can be synthesized with a dT nucléotide at the 3’ terminal end of the sense strand, followed by (3’ -> 5’) a linker (e.g., C6-SS-C6). The linker can, in some embodiments, facilitate the linkage to additional components, such as, for 30 example, a PK/PD modulator or one or more targeting ligands. The disulfide bond of C6-SSC6 can then be reduced, removing the dT from the molécule, which can then facilitate the conjugation of the desired PK/PD modulator. The terminal dT nucléotide would therefore not be a part of the fully conjugated construct.
[0134] In some embodiments, the antisense strand of a MUC5AC RNAi agent disclosed herein differs by 0, 1, 2, or 3 nucléotides from any of the antisense strand sequences in Table 3 or Table 11. In some embodiments, the sense strand of a MUC5AC RNAi agent disclosed herein differs by 0, 1, 2, or 3 nucléotides from any of the sense strand sequences in Table 4, Table 5, Table 6, Table 7, or Table 11.
[0135] In some embodiments, a MUC5AC RNAi agent antisense strand comprises a nucléotide sequence of any of the sequences in Table 2 or Table 3. In some embodiments, a MUC5AC RNAi agent antisense strand comprises the sequence of nucléotides (from 5’ end -> 3’ end) 1-17, 2-17, 1-18, 2-18, 1-19, 2-19, 1-20, 2-20, 1-21, 2-21, 1-22, 2-22, 1-23, 2-23, 1-24, or 2-24 of any of the sequences in Table 2, Table 3, or Table 11. In certain embodiments, a MUC5AC RNAi agent antisense strand comprises or consists of a modifîed sequence of any one of the modifîed sequences in Table 3 or Table 11.
[0136] In some embodiments, a MUC5AC RNAi agent sense strand comprises the nucléotide sequence of any of the sequences in Table 2 or Table 4. In some embodiments, a MUC5AC RNAi agent sense strand comprises the sequence of nucléotides (from 5’ end -> 3’ end) 117, 2-17, 3-17, 4-17,1-18, 2-18, 3-18, 4-18, 1-19, 2-19, 3-19,4-19, 1-20,2-20,3-20, 4-20,121, 2-21, 3-21, 4-21,1-22, 2-22, 3-22, 4-22, 1-23, 2-23, 3-23, 4-23, 1-24, 2-24, 3-24, or 4-24, of any of the sequences in Table 2, Table 4, Table 5, Table 6, Table 7, or Table 11. In certain embodiments, a MUC5AC RNAi agent sense strand comprises or consists of a modifîed sequence of any one of the modifîed sequences in Table 3 or Table 11.
[0137] For the RNAi agents disclosed herein, the nucléotide at position 1 of the antisense strand (from 5’ end 3' end) can be perfectly complementary to a MUC5AC gene, or can be non-complementary to a MUC5AC gene. In some embodiments, the nucléotide at position 1 of the antisense strand (from 5' end -> 3' end) is a U, A, or dT (or a modifîed version of U, A or dT). In some embodiments, the nucléotide at position 1 of the antisense strand (from 5’ end -> 3’ end) forms an A:U or U: A base pair with the sense strand.
[0138] In some embodiments, a MUC5AC RNAi agent antisense strand comprises the sequence of nucléotides (from 5' end -> 3' end) 2-18 or 2-19 of any of the antisense strand sequences in Table 2, Table 3, or Table 11. In some embodiments, a MUC5AC RNAi sense strand comprises the sequence of nucléotides (from 5' end -> 3' end) 1-17 or 1-18 of any of the sense strand sequences in Table 2, Table 4, Table 5, Table 6, Table 7, or Table 11.
[0139] In some embodiments, a MUC5AC RNAi agent includes (i) an antisense strand comprising the sequence of nucléotides (from 5' end -> 3' end) 2-18 or 2-19 of any of the antisense strand sequences in Table 2, Table 3, or Table 11, and (ii) a sense strand comprising the sequence of nucléotides (from 5' end -> 3' end) 1-17 or 1-18 of any of the sense strand sequences in Table 2, Table 4, Table 5, Table 6, Table 7, or Table 11.
[0140] A sense strand containing a sequence listed in Table 2 or Table 4 can be hybridized to 5 any antisense strand containing a sequence listed in Table 2 or Table 3 provided the two sequences hâve a région of at least 85% complementarity over a contiguous 16, 17, 18, 19, 20, or 21 nucléotide sequence. In some embodiments, the MUC5AC RNAi agent has a sense strand consisting of the modified sequence of any of the modified sequences in Table 4, Table 5, Table 6, Table 7, or Table 11, and an antisense strand consisting of the modified sequence 10 of any of the modified sequences in Table 3 or Table 11. Certain représentative sequence pairings are exemplified by the Duplex IDNos. shown in Tables 8A, 8B, 8C, 9,10A and 10B. [0141] In some embodiments, a MUC5AC RNAi agent comprises, consists of, or consists essentially of a duplex represented by any one of the Duplex ID Nos. presented herein. In some embodiments, a MUC5AC RNAi agent consists of any of the Duplex ID Nos. presented 15 herein. In some embodiments, a MUC5AC RNAi agent comprises the sense strand and antisense strand nucléotide sequences of any of the Duplex ID Nos. presented herein. In some embodiments, a MUC5AC RNAi agent comprises the sense strand and antisense strand nucléotide sequences of any of the Duplex ID Nos. presented herein and a targeting group, linking group, and/or other non-nucleotide group wherein the targeting group, linking group, 20 and/or other non-nucleotide group is covalently linked (i.e., conjugated) to the sense strand or the antisense strand. In some embodiments, a MUC5AC RNAi agent includes the sense strand and antisense strand modified nucléotide sequences of any of the Duplex ID Nos. presented herein. In some embodiments, a MUC5AC RNAi agent comprises the sense strand and antisense strand modified nucléotide sequences of any of the Duplex ID Nos. presented 25 herein and a targeting group, linking group, and/or other non-nucleotide group, wherein the targeting group, linking group, and/or other non-nucleotide group is covalently linked to the sense strand or the antisense strand.
[0142] In some embodiments, a MUC5AC RNAi agent comprises an antisense strand and a sense strand having the nucléotide sequences of any of the antisense strand/sense strand 30 duplexes of Tables 2, 8A, 8B, 8C, 9, 10A, 10B, or 11, and comprises a targeting group. In some embodiments, a MUC5AC RNAi agent comprises an antisense strand and a sense strand having the nucléotide sequences of any of the antisense strand/sense strand duplexes of Tables 2, 8A, 8B, 8C, 9,10A, 10B, or 11, and comprises one or more ανβ6 integrin targeting ligands.
[0143] In some embodiments, a MUC5AC RNAi agent comprises an antisense strand and a sense strand having the nucléotide sequences of any of the antisense strand/sense strand duplexes of Tables 2, 8A, 8B, 8C, 9,10A, 10B, or 11, and comprises atargeting group that is an integrin targeting ligand. In some embodiments, a MUC5AC RNAi agent comprises an 5 antisense strand and a sense strand having the nucléotide sequences of any of the antisense strand/sense strand duplexes of Tables 2, 8A, 8B, 8C, 9, 10A, 10B, or 11, and comprises one or more ανβ6 integrin targeting ligands or clusters of ανβ6 integrin targeting ligands (e.g., a tridentate ανβ6 integrin targeting ligand).
[0144] In some embodiments, a MUC5AC RNAi agent comprises an antisense strand and a 10 sense strand having the modified nucléotide sequences of any of the antisense strand/sense strand duplexes of Tables 8A, 8B, 8C, 9, 10A, 10B, and 11.
[0145] In some embodiments, a MUC5AC RNAi agent comprises an antisense strand and a sense strand having the modified nucléotide sequences of any of the antisense strand/sense strand duplexes of Tables 8A, 8B, 8C, 9, 10A, 10B, and 11, and comprises an integrin 15 targeting ligand.
[0146] In some embodiments, a MUC5AC RNAi agent comprises, consists of, or consists essentially of any of the duplexes of Tables 8A, 8B, 8C, 9, 10A, 10B, and 11.
[0147] Table 8A. MUC5AC RNAi Agent Duplexes with Corresponding Sense and 20 Antisense Strand ID Numbers and Sequence ID numbers for the modified and unmodifîed nucléotide sequences. (Shown without Linking Agents or Conjugates)
Duplex ASID AS modified SEQID NO: AS unmodifîed SEQ ID NO: SSID SS modified SEQID NO: SS unmodifîed SEQID NO:
AD07626 AM10579-AS 1057 1517 AM10578-SS-NL 1192 1609
AD07627 AM10581-AS 1058 1518 AM10580-SS-NL 1193 1610
AD07628 AM10583-AS 1059 1519 AM10582-SS-NL 1194 1611
AD07629 AM10585-AS 1060 1520 AM10584-SS-NL 1195 1612
AD07630 AM 10587-AS 1061 1521 AM10586-SS-NL 1196 1613
AD07631 AM10589-AS 1062 1522 AM10588-SS-NL 1197 1614
AD07632 AM10591-AS 1063 1523 AM10590-SS-NL 1198 1615
AD07633 AM10593-AS 1064 1524 AM10592-SS-NL 1199 1616
AD07634 AM10595-AS 1065 . 1525 AM10594-SS-NL 1200 1617
AD07635 AM10597-AS 1066 1526 AM10596-SS-NL 1201 1618
AD07636 AM10599-AS 1067 1527 AM10598-SS-NL 1202 1619
AD07637 AM10601-AS 1068 1528 AM10600-SS-NL 1203 1620
Duplex ASID AS modifïed SEQID NO: AS unmodifïed SEQID NO: SSID SS modifïed SEQID NO: SS unmodifïed SEQID NO:
AD07638 AM10603-AS 1069 1529 AM10602-SS-NL 1204 1621
AD07639 AM10605-AS 1070 1529 AM10604-SS-NL 1205 1622
AD07716 AM10739-AS 1071 1530 AM1O738-SS-NL 1206 1623
AD07717 AM10741-AS 1072 1530 AM10740-SS-NL 1207 1624
AD07718 AM10743-AS 1073 1531 AM10742-SS-NL 1208 1625
AD07719 AM10744-AS 1074 1531 AM10742-SS-NL 1208 1625
AD07720 AM10743-AS 1073 1531 AM10745-SS-NL 1209 1626
AD07721 AM10747-AS 1075 1532 AM10746-SS-NL 1210 1627
AD07722 AM10747-AS 1075 1532 AM10748-SS-NL 1211 1628
AD07723 AM10747-AS 1075 1532 AM10749-SS-NL 1212 1629
AD07731 AM10764-AS 1076 1533 AM10763-SS-NL 1213 1630
AD07732 AM10766-AS 1077 1534 AM10765-SS-NL 1214 1631
AD07733 AM10768-AS 1078 1535 AM10767-SS-NL 1215 1632
AD07734 AM10770-AS 1079 1536 AM10769-SS-NL 1216 1633
AD07735 AM10772-AS 1080 1537 AM10771-SS-NL 1217 1634
AD07744 AM10790-AS 1081 1538 AM10789-SS-NL 1218 1635
AD07745 AM10792-AS 1082 1539 AM10791-SS-NL 1219 1636
AD07746 AM10794-AS 1083 1540 AM10793-SS-NL 1220 1637
AD07747 AM10796-AS 1084 1541 AM10795-SS-NL 1221 1638
AD07748 AM10798-AS 1085 1542 AM10797-SS-NL 1222 1639
AD07749 AM10800-AS 1086 1543 AM10799-SS-NL 1223 1640
AD07750 AM10802-AS 1087 1544 AM10801-SS-NL 1224 1641
AD07751 AM10804-AS 1088 1545 AM10803-SS-NL 1225 1642
AD07752 AM10806-AS 1089 1546 AM10805-SS-NL 1226 1643
AD07753 AM10808-AS 1090 1530 AM10807-SS-NL 1227 1623
AD07754 AM10810-AS 1091 1547 AM10809-SS-NL 1228 1644
AD07755 AM10812-AS 1092 1548 AM10811-SS-NL 1229 1645
AD07756 AM10814-AS 1093 1549 AM10813-SS-NL 1230 1646
AD07757 AM10816-AS 1094 1550 AM1O815-SS-NL 1231 1647
AD07758 AM10818-AS 1095 1532 AM10817-SS-NL 1232 1627
AD07760 AM10821-AS 1096 1551 AM10820-SS-NL 1234 1648
AD07761 AM10823-AS 1097 1552 AM10822-SS-NL 1235 1649
AD07762 AM10825-AS 1098 1553 AM10824-SS-NL 1236 1650
AD07763 AM10827-AS 1099 1554 AM1O826-SS-NL 1237 1651
AD07764 AM10829-AS 1100 1555 AM10828-SS-NL 1238 1652
AD07765 AM10831-AS 1101 1556 AM10830-SS-NL 1239 1653
AD07766 AM10833-AS 1102 1557 AM10832-SS-NL 1240 1654
AD07767 AM10835-AS 1103 1558 AM10834-SS-NL 1241 1655
AD07768 AM10837-AS 1104 1559 AM10836-SS-NL 1242 1656
AD07769 AM10839-AS 1105 1560 AM10838-SS-NL 1243 1657
100
Duplex ASID AS modifîed SEQID NO: AS unmodified SEQID NO: SSID SS modifîed SEQID NO: SS unmodified SEQID NO:
AD07770 AM10841-AS 1106 1561 AM10840-SS-NL 1244 1658
AD07771 AM10843-AS 1107 1562 AM10842-SS-NL 1245 1659
AD07772 AM10845-AS 1108 1563 AM10844-SS-NL 1246 1660
AD07773 AM10847-AS 1109 1564 AM10846-SS-NL 1247 1661
AD07774 AM10849-AS 1110 1565 AM10848-SS-NL 1248 1662
AD07941 AM11065-AS 1111 1531 AM10819-SS-NL 1233 1625
AD08083 AM11264-AS 1112 1566 AM11263-SS-NL 1250 1663
AD08084 AM11264-AS 1112 1566 AM11265-SS-NL 1251 1664
AD08085 AM11266-AS 1113 1566 AM11263-SS-NL 1250 1663
AD08086 AM11268-AS 1114 1567 AM11267-SS-NL 1252 1665
AD08087 AM11268-AS 1114 1567 AM11269-SS-NL 1253 1666
AD08088 AM11271-AS 1115 1568 AMU270-SS-NL 1254 1667
AD08089 AM11272-AS 1116 1568 AM11270-SS-NL 1254 1667
AD08094 AM11275-AS 1117 . 1569 AM11274-SS-NL 1255 1668
AD08095 AM11277-AS 1118 1570 AM11276-SS-NL 1256 1669
AD08096 AM11279-AS 1119 1571 AM11278-SS-NL 1257 1670
AD08097 AM11281-AS 1120 1572 AM11280-SS-NL 1258 1671
AD08098 AM11283-AS 1121 1573 AM11282-SS-NL 1259 1672
AD08099 AM11285-AS 1122 1574 AM11284-SS-NL 1260 1673
AD08100 AM11287-AS 1123 1575 AM11286-SS-NL 1261 1674
AD08101 AM11289-AS 1124 1576 AM11288-SS-NL 1262 1675
AD08102 AM11291-AS 1125 1577 AM11290-SS-NL 1263 1676
AD08103 AM11293-AS 1126 1578 AM11292-SS-NL 1264 1677
AD08173 AM10595-AS 1065 1525 AM11400-SS-NL 1265 1617
AD08174 AM11401-AS 1127 1525 AM11400-SS-NL 1265 1617
AD08175 AM11403-AS 1128 1579 AM11402-SS-NL 1266 1678
AD08176 AM11404-AS 1129 1579 AM11402-SS-NL 1266 1678
AD08177 AM11405-AS 1130 1579 AM11402-SS-NL 1266 1678
AD08224 AM11464-AS 1132 1581 AM11463-SS-NL 1267 1679
AD08225 AM11465-AS 1133 1581 AM11463-SS-NL 1267 1679
AD08226 AM11467-AS 1134 1582 AM11466-SS-NL 1268 1680
AD08227 AM11469-AS 1135 1583 AM11468-SS-NL 1269 1681
AD08228 AM11471-AS 1136 1584 AM11470-SS-NL 1270 1682
AD08229 AM11473-AS 1137 1585 AM11472-SS-NL 1271 1683
AD08230 AM11475-AS 1138 1586 AM11474-SS-NL 1272 1684
AD08231 AM11477-AS 1139 1587 AM11476-SS-NL 1273 1685
AD08232 AM11479-AS 1140 1588 AM11478-SS-NL 1274 1686
AD08233 AM11481-AS 1141 1589 AM11480-SS-NL 1275 1687
AD08243 AM11495-AS 1142 1590 AM11400-SS-NL 1265 1617
AD08244 AM11496-AS 1143 1525 AM11400-SS-NL 1265 1617
101
Duplex ASID AS modified SEQID NO: AS unmodified SEQID NO: SS ID SS modified SEQID NO: SS unmodified SEQID NO:
AD08245 AM11498-AS 1144 1591 AM11497-SS-NL 1276 1688
AD08246 AM11499-AS 1145 1591 AM11497-SS-NL 1276 1688
AD08420 AM11742-AS 1148 1566 AM11265-SS-NL 1251 1664
AD08421 AM11742-AS 1148 1566 AM11263-SS-NL 1250 1663
AD08422 AM11742-AS 1148 1566 AM11743-SS-NL 1278 1664
AD08423 AM11272-AS 1116 1568 AM11744-SS-NL 1279 1667
AD08424 AM11745-AS 1149 1568 AM11744-SS-NL 1279 1667
AD08468 AM11821-AS 1150 1589 AM11480-SS-NL 1275 1687
AD08469 AM11823-AS 1151 1589 AM11822-SS-NL 1280 1687
AD08470 AM11825-AS 1152 1593 AM11824-SS-NL 1281 1690
AD08564 AM11971-AS 1153 1594 AM11970-SS-NL 1282 1691
AD08565 AM11973-AS 1154 1595 AM11972-SS-NL 1283 1692
AD08566 AM11975-AS 1155 1596 AM11974-SS-NL 1284 1693
AD08567 AM11977-AS 1156 1597 AM11976-SS-NL 1285 1694
AD08568 AM11979-AS 1157 1598 AM11978-SS-NL 1286 1695
AD08569 AM07100-AS 1716 1566 AM11980-SS-NL 1287 1664
AD08570 AM11982-AS 1158 1599 AM11981-SS-NL 1288 1696
AD08571 AM11984-AS 1159 1600 AM11983-SS-NL 1289 1697
AD08572 AM07104-AS 1717 1568 AM11985-SS-NL 1290 1667
AD08573 AM11986-AS 1160 1568 AM11985-SS-NL 1290 1667
AD08662 AM12158-AS 1161 1601 AM12157-SS-NL 1291 1698
AD08663 AM12159-AS 1162 1601 AM12157-SS-NL 1291 1698
AD08664 AM12161-AS 1163 1601 AM12160-SS-NL 1292 1698
AD08665 AM12162-AS 1164 1601 AM12160-SS-NL 1292 1698
AD08666 AM12163-AS 1165 1535 AM10767-SS-NL 1215 1632
AD08667 AM12165-AS 1166 1535 AM12164-SS-NL 1293 1632
AD08668 AM12166-AS 1167 1535 AM12164-SS-NL 1293 1632
AD08669 AM12167-AS 1168 1535 AM12164-SS-NL 1293 1632.
AD08670 AM12167-AS 1168 1535 AM12168-SS-NL 1294 1699
AD08671 AM12169-AS 1169 1571 AM11278-SS-NL 1257 1670
AD08672 AM12171-AS 1170 1571 AM12170-SS-NL 1295 1670
AD08673 AM12172-AS 1171 1571 AM12170-SS-NL 1295 1670
AD08674 AM12173-AS 1172 1534 AM10765-SS-NL 1214 1631
AD08675 AM12175-AS 1173 1534 AM12174-SS-NL 1296 1631
AD08676 AM12176-AS 1174 1534 AM12174-SS-NL 1296 1631
AD08677 AM12177-AS 1175 1534 AM12174-SS-NL 1296 1631
AD08678 AM12178-AS 1176 1568 AM11270-SS-NL 1254 1667
AD08679 AM12178-AS 1176 1568 AM12179-SS-NL 1297 1700
AD08680 AM12180-AS 1177 1568 AM11270-SS-NL 1254 1667
AD08681 AM12181-AS 1178 1568 AM11270-SS-NL 1254 1667
102
Duplex ASID AS modified SEQID NO: AS unmodified SEQID NO: SS ID SS modified SEQID NO: SS unmodified SEQID NO:
AD08682 AM12182-AS 1179 1602 AM11270-SS-NL 1254 1667
AD08687 AM12189-AS 1180 1603 AM12188-SS-NL 1298 1701
AD08688 AM12191-AS 1181 1604 AM12190-SS-NL 1299 1702
AD08689 AM12193-AS 1182 1605 AM12192-SS-NL 1300 1703
AD08690 AM12195-AS 1183 1606 AM12194-SS-NL 1301 1704
AD08691 AM12197-AS 1184 1607 AM12196-SS-NL 1302 1705
AD08692 AM12197-AS 1184 1607 AM12198-SS-NL 1303 1706
AD08889 AM11401-AS 1127 1525 AM10594-SS-NL 1200 1617
AD08890 AM12516-AS 1185 1525 AM12515-SS-NL 1304 1617
AD08891 AM12516-AS 1185 1525 AM12517-SS-NL 1305 1617
AD08892 AM12516-AS 1185 1525 AM12518-SS-NL 1306 1617
AD08893 AM12519-AS 1186 1525 AM12518-SS-NL 1306 1617
AD08894 AM12516-AS 1185 1525 AM12520-SS-NL 1307 1707
AD08895 AM12516-AS 1185 1525 AM12521-SS-NL 1308 1708
AD08896 AM12516-AS 1185 1525 AM12522-SS-NL 1309 1709
AD08897 AM12516-AS 1185 1525 AM12523-SS-NL 1310 1617
AD08951 AM12165-AS 1166 1535 AM12605-SS-NL 1311 1632
AD08952 AM12165-AS 1166 1535 AM12606-SS-NL 1312 1632
AD08953 AM12608-AS 1187 1608 AM12607-SS-NL 1313 1710
AD08954 AM12609-AS 1188 1535 AM12164-SS-NL 1293 1632
AD08955 AM12610-AS 1189 1535 AM12164-SS-NL 1293 1632
AD08956 AM12611-AS 1190 1535 AM12164-SS-NL 1293 1632
AD08957 AM12612-AS 1191 1535 AM12164-SS-NL 1293 1632
AD09240 AM12165-AS 1166 1535 AM13074-SS-NL 1315 1632
AD09241 AM12612-AS 1191 1535 AM13074-SS-NL 1315 1632
AD09863 AM11401-AS 1127 1525 AM14080-SS-NL 1316 1617
AD09864 AM11401-AS 1127 1525 AM14081-SS-NL 1317 1711
AD09865 AM11401-AS 1127 1525 AM14084-SS-NL 1318 1712
[0148] Table 8B. MUC5AC RNAi Agent Duplexes with Corresponding Sense and Antisense Strand ID Numbers and Sequence ID numbers for the modified and unmodifîed nucléotide sequences. )
Duplex ASID AS modified SEQID NO: AS unmodified SEQ BD NO: SS ID SS modified SEQID NO: SS unmodifîed SEQID NO:
AD07626 AM10579-AS 1057 1517 AM10578-SS 1319 1609
AD07627 AM10581-AS 1058 1518 AM10580-SS 1320 1610
AD07628 AM10583-AS 1059 1519 AM10582-SS 1321 1611
103
Duplex AS ID AS modified SEQID NO: AS unmodified SEQID NO: SSID SS modified SEQ ID NO: SS unmodified SEQID NO:
AD07629 AM10585-AS 1060 1520 AM10584-SS 1322 1612
AD07630 AM10587-AS 1061 1521 AM10586-SS 1323 1613
AD07631 AM10589-AS 1062 1522 AM10588-SS 1324 1614
AD07632 AM10591-AS 1063 1523 AM10590-SS 1325 1615
AD07633 AM10593-AS 1064 1524 AM10592-SS 1326 1616
AD07634 AM10595-AS 1065 1525 AM10594-SS 1327 1617
AD07635 AM10597-AS 1066 1526 AM10596-SS 1328 1618
AD07636 AM10599-AS 1067 1527 AM10598-SS 1329 1619
AD07637 AM10601-AS 1068 1528 AM10600-SS 1330 1620
AD07638 AM10603-AS 1069 1529 AM10602-SS 1331 1621
AD07639 AM10605-AS 1070 1529 AM10604-SS 1332 1622
AD07716 AM10739-AS 1071 1530 AM10738-SS 1333 1623
AD07717 AM10741-AS 1072 1530 AM10740-SS 1334 1624
AD07718 AM10743-AS 1073 1531 AM10742-SS 1335 1625
AD07719 AM10744-AS 1074 1531 AM10742-SS 1335 1625
AD07720 AM10743-AS 1073 1531 AM10745-SS 1336 1626
AD07721 AM10747-AS 1075 1532 AM10746-SS 1337 1627
AD07722 AM 10747-AS 1075 1532 AM10748-SS 1338 1628
AD07723 AM10747-AS 1075 1532 AM10749-SS , 1339 1629
AD07731 AM10764-AS 1076 1533 AM10763-SS 1340 1630
AD07732 AM10766-AS 1077 1534 AM10765-SS 1341 1631
AD07733 AM10768-AS 1078 1535 AM10767-SS 1342 1632
AD07734 AM10770-AS 1079 1536 AM10769-SS 1343 1633
AD07735 AM10772-AS 1080 1537 AM10771-SS 1344 1634
AD07744 AM10790-AS 1081 1538 AM10789-SS 1345 1635
AD07745 AM10792-AS 1082 1539 AM10791-SS 1346 1636
AD07746 AM10794-AS 1083 1540 AM1O793-SS 1347 1637
AD07747 AM10796-AS 1084 1541 AM10795-SS 1348 1638
AD07748 AM10798-AS 1085 1542 AM10797-SS 1349 1639
AD07749 AM10800-AS 1086 1543 AM10799-SS 1350 1640
AD07750 AM10802-AS 1087 1544 AM10801-SS 1351 1641
AD07751 AM10804-AS 1088 1545 AM10803-SS 1352 1642
AD07752 AM10806-AS 1089 1546 AM10805-SS 1353 1643
AD07753 AM10808-AS 1090 1530 AM10807-SS 1354 1623
AD07754 AM10810-AS 1091 1547 AM10809-SS 1355 1644
AD07755 AM10812-AS 1092 1548 AM10811-SS 1356 1645
AD07756 AM10814-AS 1093 1549 AM10813-SS 1357 1646
AD07757 AM10816-AS 1094 1550 AM10815-SS 1358 1647
AD07758 AM10818-AS 1095 1532 AM10817-SS 1359 1627
104
Duplex AS ID AS modified SEQID NO: AS unmodified SEQID NO: SSID SS modified SEQID NO: SS unmodified SEQID NO:
AD07760 AM10821-AS 1096 1551 AM10820-SS 1361 1648
AD07761 AM10823-AS 1097 1552 AM10822-SS 1362 1649
AD07762 AM10825-AS 1098 1553 AM10824-SS 1363 1650
AD07763 AM10827-AS 1099 1554 AM 10826-55 1364 1651
AD07764 AM10829-AS 1100 1555 AM10828-SS 1365 1652
AD07765 AM10831-AS 1101 1556 AM10830-SS 1366 1653
AD07766 AM1O833-AS 1102 1557 AM10832-SS 1367 1654
AD07767 AM1O835-AS 1103 1558 AM 10834-55 1368 1655
AD07768 AM10837-AS 1104 1559 AM10836-SS 1369 1656
AD07769 AM10839-AS 1105 1560 AM10838-SS 1370 1657
AD07770 AM10841-AS 1106 1561 AM10840-SS 1371 1658
AD07771 AM10843-AS 1107 1562 AM10842-SS 1372 1659
AD07772 AM10845-AS 1108 1563 AM10844-SS 1373 1660
AD07773 AM10847-AS 1109 1564 AM10846-SS 1374 1661
AD07774 AM10849-AS 1110 1565 AM10848-SS 1375 1662
AD07941 AM11065-AS 1111 1531 AM 10819-55 1360 1625
AD08083 AM11264-AS 1112 1566 AM11263-SS 1377 1663
AD08084 AM11264-AS 1112 1566 AM 11265-55 1378 1664
AD08085 AM11266-AS 1113 1566 AM 11263-55 1377 1663
AD08086 AM11268-AS 1114 1567 AM11267-SS 1379 1665
AD08087 AM11268-AS 1114 1567 AM11269-SS 1380 1666
AD08088 AM11271-AS 1115 1568 AM11270-SS 1381 1667
AD08089 AM11272-AS 1116 1568 AM11270-SS 1381 1667
AD08094 AM11275-AS 1117 1569 AM11274-SS 1382 1668
AD08095 AM11277-AS 1118 1570 AM11276-SS 1383 1669
AD08096 AM11279-AS 1119 1571 AM11278-SS 1384 1670
AD08097 AM11281-AS 1120 1572 AM1128O-SS 1385 1671
AD08098 AM11283-AS 1121 1573 AM11282-SS 1386 1672
AD08099 AM11285-AS 1122 1574 AM11284-SS 1387 1673
AD08100 AM11287-AS 1123 1575 AM11286-SS 1388 1674
AD08101 AM11289-AS 1124 1576 AM11288-SS 1389 1675
AD08102 AM11291-AS 1125 1577 AM 11290-55 1390 1676
AD08103 AM11293-AS 1126 1578 AM11292-SS 1391 1677
AD08173 AM10595-AS 1065 1525 AM 11400-55 1392 1617
AD08174 AM11401-AS 1127 1525 AM 11400-55 1392 1617
AD08175 AM11403-AS 1128 1579 AM11402-SS 1393 1678
AD08176 AM11404-AS 1129 1579 AM11402-SS 1393 1678
AD08177 AM11405-AS 1130 1579 AM11402-SS 1393 1678
AD08224 AM11464-AS 1132 1581 AM11463-SS 1394 1679
AD08225 AM11465-AS 1133 1581 AM11463-SS 1394 1679
105
Duplex ASID AS modified SEQID NO: AS unmodified SEQID NO: SSID SS modified SEQID NO: SS unmodified SEQID NO:
AD08226 AM11467-AS 1134 1582 AM11466-SS 1395 1680
AD08227 AM11469-AS 1135 1583 AM11468-SS 1396 1681
AD08228 AM11471-AS 1136 1584 AM11470-SS 1397 1682
AD08229 AM11473-AS 1137 1585 AM11472-SS 1398 1683
AD08230 AM11475-AS 1138 1586 AM11474-SS 1399 1684
AD08231 AM11477-AS 1139 1587 AM11476-SS 1400 1685
AD08232 AM11479-AS 1140 1588 AM11478-SS 1401 1686
AD08233 AM11481-AS 1141 1589 AM11480-SS 1402 1687
AD08243 AM11495-AS 1142 1590 AM11400-SS 1392 1617
AD08244 AM11496-AS 1143 1525 AM11400-SS 1392 1617
AD08245 AM11498-AS 1144 1591 AM11497-SS 1403 1688
AD08246 AM11499-AS 1145 1591 AM11497-SS 1403 1688
AD08420 AM11742-AS 1148 1566 AM11265-SS 1378 1664
AD08421 AM11742-AS 1148 1566 AM11263-SS 1377 1663
AD08422 AM11742-AS 1148 1566 AM11743-SS 1405 1664
AD08423 AM11272-AS 1116 1568 AM11744-SS 1406 1667
AD08424 AM11745-AS 1149 1568 AM11744-SS 1406 1667
AD08468 AM11821-AS 1150 1589 AM11480-SS 1402 1687
AD08469 AM11823-AS 1151 1589 AM11822-SS 1407 1687
AD08470 AM11825-AS 1152 1593 AM11824-SS 1408 1690
AD08564 AM11971-AS 1153 1594 AM11970-SS 1409 1691
AD08565 AMH973-AS 1154 1595 AM11972-SS 1410 1692
AD08566 AM11975-AS 1155 1596 AM11974-SS 1411 1693
AD08567 AM11977-AS 1156 1597 AM11976-SS 1412 1694
AD08568 AM11979-AS 1157 1598 AM11978-SS 1413 1695
AD08569 AM07100-AS 1716 1566 AM11980-SS 1414 1664
AD08570 AM11982-AS 1158 1599 AM11981-SS 1415 1696
AD08571 AM11984-AS 1159 1600 AM11983-SS 1416 1697
AD08572 AM07104-AS 1717 1568 AM11985-SS 1417 1667
AD08573 AM11986-AS 1160 1568 AM11985-SS 1417 1667
AD08662 AM12158-AS 1161 1601 AM12157-SS 1418 1698
AD08663 AM12159-AS 1162 1601 AM12157-SS 1418 1698
AD08664 AM12161-AS 1163 1601 AM12160-SS 1419 1698
AD08665 AM12162-AS 1164 1601 AM12160-SS 1419 1698
AD08666 AM12163-AS 1165 1535 AM10767-SS 1342 1632
AD08667 AM12165-AS 1166 1535 AM12164-SS 1420 1632
AD08668 AM12166-AS 1167 1535 AM12164-SS 1420 1632
AD08669 AM12167-AS 1168 1535 AM12164-SS 1420 1632
AD08670 AM12167-AS 1168 1535 AM12168-SS 1421 1699
AD08671 AM12169-AS 1169 1571 AM11278-SS 1384 1670
106
Duplex ASID AS modified SEQID NO: AS unmodifîed SEQID NO: SSID SS modified SEQID NO: SS unmodifîed SEQID NO:
AD08672 AM12171-AS 1170 1571 AM12170-SS 1422 1670
AD08673 AM12172-AS 1171 1571 AM12170-SS 1422 1670
AD08674 AM12173-AS 1172 1534 AM10765-SS 1341 1631
AD08675 AM12175-AS 1173 1534 AM12174-SS 1423 1631
AD08676 AM12176-AS 1174 1534 AM12174-SS 1423 1631
AD08677 AM12177-AS 1175 1534 AM12174-SS 1423 1631
AD08678 AM12178-AS 1176 1568 AM11270-SS 1381 1667
AD08679 AM12178-AS 1176 1568 AM12179-SS 1424 1700
AD08680 AM12180-AS 1177 1568 AM11270-SS 1381 1667
AD08681 AM12181-AS 1178 1568 AM11270-SS 1381 1667
AD08682 AM12182-AS 1179 1602 AM11270-SS 1381 1667
AD08687 AM12189-AS 1180 1603 AM12188-SS 1425 1701
AD08688 AM12191-AS 1181 1604 AM12190-SS 1426 1702
AD08689 AM12193-AS 1182 1605 AM12192-SS 1427 1703
AD08690 AM12195-AS 1183 1606 AM12194-SS 1428 1704
AD08691 AM12197-AS 1184 1607 AM12196-SS 1429 1705
AD08692 AM12197-AS 1184 1607 AM12198-SS 1430 1706
AD08889 AM11401-AS 1127 1525 AM10594-SS 1327 1617
AD08890 AM12516-AS 1185 1525 AM12515-SS 1431 1617
AD08891 AM12516-AS 1185 1525 AM12517-SS 1432 1617
AD08892 AM12516-AS 1185 1525 AM12518-SS 1433 1617
AD08893 AM12519-AS 1186 1525 AM12518-SS 1433 1617
AD08894 AM12516-AS 1185 1525 AM12520-SS 1434 1707
AD08895 AM12516-AS 1185 1525 AM12521-SS 1435 1708
AD08896 AM12516-AS 1185 1525 AM12522-SS 1436 1709
AD08897 AM12516-AS 1185 1525 AM12523-SS 1437 1617
AD08951 AM12165-AS 1166 1535 AM12605-SS 1438 1632
AD08952 AM12165-AS 1166 1535 AM12606-SS 1439 1632
AD08953 AM12608-AS 1187 1608 AM12607-SS 1440 1710
AD08954 AM12609-AS 1188 1535 AM12164-SS 1420 1632
AD08955 AM12610-AS 1189 1535 AM12164-SS 1420 1632
AD08956 AM12611-AS 1190 1535 AM12164-SS 1420 1632
AD08957 AM12612-AS 1191 1535 AM12164-SS 1420 1632
AD09240 AM12165-AS 1166 1535 AM13074-SS 1441 1632
AD09241 AM12612-AS 1191 1535 AM13074-SS 1441 1632
AD09863 AM11401-AS 1127 1525 AM14080-SS 1442 1617
AD09864 AM11401-AS 1127 1525 AM14081-SS 1443 1711
AD09865 AM11401-AS 1127 1525 AM14084-SS 1444 1712
107
[0149] Table 8C. MUC5AC RNAi Agent Duplexes with Corresponding Sense and Antisense Strand ID Numbers and Sequence ID numbers for certain modified and unmodified nucléotide sequences tested in vitro.
Duplex ASID AS modified SEQ ID NO: AS unmodified SEQID NO: SSID SS modified SEQ ID NO: SS unmodifîed SEQID NO:
AD07634 AM10595-AS 1065 1525 AM10594-S5-S 1445 1617
AD07637 AM10601-AS 1068 1528 AM10600-SS-S 1446 1620
AD07732 AM10766-AS 1077 1534 AM10765-5S-S 1447 1631
AD07733 AM10768-AS 1078 1535 AM10767-SS-S 1448 1632
AD07734 AM10770-AS 1079 1536 AM10769-SS-S 1449 1633
AD07735 AM10772-AS 1080 1537 AM10771-SS-S 1450 1634
AD07745 AM10792-AS 1082 1539 AM10791-55-S 1451 1636
AD07746 AM 10794-AS 1083 1540 AM10793-SS-S 1452 1637
AD07747 AM10796-AS 1084 1541 AM10795-SS-S 1453 1638
AD07748 AM10798-AS 1085 1542 AM10797-SS-S 1454 1639
AD07749 AM10800-AS 1086 1543 AM10799-SS-S 1455 1640
AD07750 AM10802-AS 1087 1544 AM10801-SS-S 1456 1641
AD07751 AM10804-AS 1088 1545 AM10803-SS-S 1457 1642
AD07756 AM10814-AS 1093 1549 AM10813-8S-S 1458 1646
AD07760 AM10821-AS 1096 1551 AM10820-SS-S 1459 1648
AD07763 AM10827-AS 1099 1554 AM10826-8S-S 1460 1651
AD07764 AM10829-AS 1100 1555 AM10828-SS-S 1461 1652
AD07766 AM10833-AS 1102 1557 AM10832-SS-S 1462 1654
AD07768 AM10837-AS 1104 1559 AM10836-SS-S 1463 1656
AD07770 AM10841-AS 1106 1561 AM10840-SS-S 1464 1658
AD07771 AM10843-AS 1107 1562 AM10842-SS-S 1465 1659
AD07772 AM10845-AS 1108 1563 AM10844-SS-S 1466 1660
AD07773 AM10847-AS 1109 1564 AM10846-SS-S 1467 1661
AD07774 AM10849-AS 1110 1565 AM10848-SS-S 1468 1662
AD08094 AM11275-AS 1117 1569 AM11274-S5-S 1469 1668
AD08095 AM11277-AS 1118 1570 AM11276-SS-S 1470 1669
AD08096 AM11279-AS 1119 1571 AM11278-SS-S 1471 1670
AD08097 AM11281-AS 1120 1572 AM11280-SS-S 1472 1671
AD08100 AM11287-AS 1123 1575 AM11286-SS-S 1473 1674
AD08101 AM11289-AS 1124 1576 AM11288-SS-S 1474 1675
AD08103 AM11293-AS 1126 1578 AM11292-SS-S 1475 1677
AD08568 AM11979-AS 1157 1598 AM11978-SS-S 1476 1695
AD08569 AM07100-AS 1716 1566 AM11980-SS-S 1477 1664
AD08571 AM11984-AS 1159 1600 AM11983-55-S 1478 1697
AD08572 AM07104-AS 1717 1568 AM11985-55-S 1479 1667
AD08573 AM11986-AS 1160 1568 AM11985-SS-S 1479 1667
108
Duplex ASID AS modified SEQID NO: AS unmodified SEQID NO: SSID SS modified SEQID NO: SS unmodified SEQID NO:
AD08666 AM12163-AS 1165 1535 AM10767-55-S 1448 1632
AD08667 AM12165-AS 1166 1535 AM12164-55-S 1480 1632
AD08668 AM12166-AS 1167 1535 AM12164-SS-S 1480 1632
AD08669 AM12167-AS 1168 1535 AM12164-SS-S 1480 1632
AD08670 AM12167-AS 1168 1535 AM12168-SS-S 1481 1699
AD08671 AM12169-AS 1169 1571 AM11278-SS-S 1471 1670
AD08672 AM12171-AS 1170 1571 AM12170-55-S 1482 1670
AD08673 AM12172-AS 1171 1571 AM12170-SS-S 1482 1670
[0150] Table 9. MUC5AC RNAi Agent Conjugated Duplexes with Corresponding Sense and Antisense Strand ID Numbers and Sequence ID numbers for the modified and unmodified nucléotide sequences. (Shown with Targeting Ligand Conjugates)
Duplex ASID AS modified SEQID NO: AS unmodified SEQID NO: SS ID SS modified SEQ ID NO: SS unmodified SEQID NO:
AC000313 AM10743-AS 1073 1531 CS000387 1483 1626
AC000431 AM11264-AS 1112 1566 CS000521 1486 1663
AC000432 AM11264-AS 1112 1566 CS000523 1487 1664
AC000433 AM11266-AS 1113 1566 CS000521 1486 1663
AC000434 AM11268-AS 1114 1567 CS000525 1488 1665
AC000435 AM11268-AS 1114 1567 CS000527 1489 1666
AC000436 AM11271-AS 1115 1568 CS000528 1490 1667
AC000437 AM11272-AS 1116 1568 CS000528 1490 1667
AC000480 AM11401-AS 1127 1525 CS000578 1491 1617
AC000482 AM10595-AS 1065 1525 CS000578 1491 1617
AC000483 AM11495-AS 1142 1590 CS000578 1491 1617
AC000484 AM11496-AS 1143 1525 CS000578 1491 1617
AC000485 AM11403-AS 1128 1579 CS000583 1492 1678
AC000486 AM11404-AS 1129 1579 CS000583 1492 1678
AC000487 AM11405-AS 1130 1579 CS000583 1492 1678
AC000502 AM11462-AS 1131 1580 CS000517 1484 1718
AC000504 AM11464-AS 1132 1581 CS000608 1493 1679
AC000505 AM11465-AS 1133 1581 CS000608 1493 1679
AC000506 AM11467-AS 1134 1582 CS000612 1494 1680
AC000507 AM11469-AS 1135 1583 CS000614 1495 1681
AC000508 AM11471-AS 1136 1584 CS000616 1496 1682
AC000509 AM11473-AS 1137 1585 CS000618 1497 1683
109
Duplex AS ID AS modified SEQID NO: AS unmodified SEQID NO: SSID SS modified SEQID NO: SS unmodified SEQID NO:
AC000510 AM11475-AS 1138 1586 CS000620 1498 1684
AC000511 AM11477-AS 1139 1587 CS000622 1499 1685
AC000512 AM11479-AS 1140 1588 CS000624 1500 1686
AC000513 AM11481-AS 1141 1589 CS000626 1501 1687
AC000805 AM10739-AS 1071 1530 CS001001 1503 1623
AC000806 AM10741-AS 1072 1530 CS001003 1504 1624
AC000807 AM10743-AS 1073 1531 CS001005 1505 1625
AC000808 AM10744-AS 1074 1531 CS001005 1505 1625
AC000809 AM10747-AS 1075 1532 CS001007 1506 1627
AC000810 AM10747-AS 1075 1532 CS001009 1507 1628
AC000811 AM10747-AS 1075 1532 CS001010 1508 1629
AC001128 AM12178-AS 1176 1568 CS000528 1490 1667
AC001129 AM12178-AS 1176 1568 CS001401 1512 1700
AC001130 AM12180-AS 1177 1568 CS000528 1490 1667
AC001131 AM12181-AS 1178 1568 CS000528 1490 1667
AC000832 AM11742-AS 1148 1566 CS000523 1487 1664
AC000833 AM11742-AS 1148 1566 CS000521 1486 1663
AC000834 AM11742-AS 1148 1566 CS001040 1510 1664
AC000835 AM11272-AS 1116 1568 CS001041 1511 1667
AC000836 AM11745-AS 1149 1568 CS001041 1511 1667
AC001305 AM12165-AS 1166 1535 CS001644 1513 1632
AC001306 AM12612-AS 1191 1535 CS001644 1513 1632
AC001708 AM11401-AS 1127 1525 CS002194 1514 1617
AC001709 AM11401-AS 1127 1525 CS002195 1515 1711
AC001710 AM11401-AS 1127 1525 CS002196 1516 1712
[0151] Table 10A. Conjugate Duplex ID Numbers Referencing Position Targeted On
MUC5AC (MUC5AC) Gene
Duplex AS ID SSID Targeted MUC5AC Gene Position (Of SEQ ID NO:1)
AC000313 AM10743-AS CS000387 1921
AC000431 AM11264-AS CS000521 5029
AC000432 AM11264-AS CS000523 5029
AC000433 AM11266-AS CS000521 5029
AC000434 AM11268-AS CS000525 9729
AC000435 AM11268-AS CS000527 9729
AC000436 AM11271-AS CS000528 15052
110
Duplex AS ID SSID Targeted MUC5AC Gene Position (Of SEQ ID NO:1)
AC000437 AM11272-AS CS000528 15052
AC000480 AM11401-AS CS000578 3535
AC000482 AM10595-AS CS000578 3535
AC000483 AM11495-AS CS000578 3535
AC000484 AM11496-AS CS000578 3535
AC000485 AM11403-AS CS000583 3535
AC000486 AM11404-AS CS000583 3535
AC000487 AM11405-AS CS000583 3535
AC000502 AM11462-AS CS000517 N/A (murine-specific)
AC000504 AM11464-AS CS000608 N/A (murine-specific)
AC000505 AM11465-AS CS000608 N/A (murine-specific)
AC000506 AM11467-AS CS000612 N/A (murine-specific)
AC000507 AM11469-AS CS000614 N/A (murine-specific)
AC000508 AM11471-AS CS000616 N/A (murine-specific)
AC000509 AM11473-AS CS000618 N/A (murine-specific)
AC000510 AM11475-AS CS000620 N/A (murine-specific)
AC000511 AM11477-AS CS000622 N/A (murine-specific)
AC000512 AM11479-AS CS000624 N/A (murine-specific)
AC000513 AM11481-AS CS000626 N/A (murine-specific)
AC000805 AM10739-AS CS001001 304
AC000806 AM10741-AS CS001003 304
AC000807 AM10743-AS CS001005 1921
AC000808 AM10744-AS CS001005 1921
AC000809 AM10747-AS CS001007 1832
AC000810 AM10747-AS CS001009 1832
AC000811 AM10747-AS CS001010 1832
AC001128 AM12178-AS CS000528 15052
AC001129 AM12178-AS CS001401 15052
AC001130 AM12180-AS CS000528 15052
AC001131 AM12181-AS CS000528 15052
AC000832 AM11742-AS CS000523 5029
AC000833 AM11742-AS CS000521 5029
AC000834 AM11742-AS CS001040 5029
AC000835 AM11272-AS CS001041 15052
AC000836 AM11745-AS CS001041 15052
AC001305 AM12165-AS CS001644 4993
AC001306 AM12612-AS CS001644 4993
AC001708 AM11401-AS CS002194 3535
AC001709 AM11401-AS CS002195 3535
111
Duplex AS ID SS ID Targeted MUC5AC Gene Position (Of SEQ ID NO:1)
AC001710 AM11401-AS CS002196 3535
[0152] Table 10B. Conjugate ID Numbers and Corresponding AD Duplex Numbers,
Referencing Position Targeted On MUC5AC (MUC5AC) Gene
AC Duplex Number Corresponding AD Duplex Number Targeted MUC5AC Gene Position (Of SEQ ID NO:1)
AC000313 AD07720 1921
AC000431 AD08083 5029
AC000432 AD08084 5029
AC000433 AD08085 5029
AC000434 AD08086 9729
AC000435 AD08087 9729
AC000436 AD08088 15052
AC000437 AD08089 15052
AC000480 AD08174 3535
AC000482 AD08173 3535
AC000483 AD08243 3535
AC000484 AD08244 3535
AC000485 AD08175 3535
AC000486 AD08176 3535
AC000487 AD08177 3535
AC000502 AD08222 N/A (murine-specific)
AC000503 AD08223 N/A (murine-specific)
AC000504 AD08224 . N/A (murine-specific)
AC000505 AD08225 N/A (murine-specific)
AC000506 AD08226 N/A (murine-specific)
AC000507 AD08227 N/A (murine-specific)
AC000508 AD08228 N/A (murine-specific)
AC000509 AD08229 N/A (murine-specific)
AC000510 AD08230 N/A (murine-specific)
AC000511 AD08231 N/A (murine-specific)
AC000512 AD08232 N/A (murine-specific)
AC000513 AD08233 N/A (murine-specific)
AC000805 AD07716 304
AC000806 AD07717 304
AC000807 AD07718 1921
AC000808 AD07719 1921
112
AC Duplex Number Corresponding AD Duplex Number Targeted MUC5AC Gene Position (Of SEQ Π) NO:1)
AC000809 AD07721 1832
AC000810 AD07722 1832
AC000811 AD07723 1832
AC001128 AD08678 15052
AC001129 AD08679 15052
AC001130 AD08680 15052
AC001131 AD08681 15052
AC000832 AD08420 5029
AC000833 AD08421 5029
AC000834 AD08422 5029
AC000835 AD08423 15052
AC000836 AD08424 15052
AC001305 AD09240. 4993
AC001306 AD09241 4993
AC001708 AD09863 3535
AC001709 AD09864 3535
AC001710 AD09865 3535
[0153] Table 11. Conjugate ID Numbers With Chemically Modifîed Antisense and Sense Strands (including Linkers and Conjugates)
ACID Number Sense Strand (Fully Modifîed with Conjugated Targeting Ligand) (5’ 3’) SEQ ID NO. Antisense Strand (5’ -> 3’) SEQ IDNO.
AC000313 Tri-SM6.1-avb6-(TA14)gsa_2NaguaugCfUfCfaguacugiuas(invAb) 1483 cPrpusAfscsCfaGfuGfcUfgAfgCfaUfaCfuUfsc 1073
AC000431 Tri-SM6.1-avb6-(TA14)csugcuacaAfCfUfaugagauccas(invAb) 1486 cPrpusGfsgsAfuCfuCfaUfaGfuUfgUfaGfcAfsg 1112
AC000432 Tri-SM6.1-avb6-(TA14)csugcuacaAfCfUfaugaiauccas(invAb) 1487 cPrpusGfsgsAfuCfuCfaUfaGfuUfgUfaGfcAfsg 1112
AC000433 Tri-SM6.1-avb6-(TA14)csugcuacaAfCfUfaugagauccas(invAb) 1486 cPrpusGfsgsAfuCfUuNACfaUfaGfuUfgUfaGfcAfsg 1113
AC000434 Tri-SM6.1-avb6-(TA14)cscuggaccAfAfGfugguuugacas(invAb) 1488 cPrpusGfsusCfaAfaCfcAfcUfuGfgUfcCfaGfsg 1114
AC000435 Tri-SM6.1-avb6-(TA14)cscuggaccAfAfGfugguuuiacas(invAb) 1489 cPrpusGfsusCfaAfaCfcAfcUfuGfgUfcCfaGfsg 1114
AC000436 Tri-SM6.1-avb6-(TA14)csgagaucaUfCfUfucaacaacaas(invAb) 1490 cPrpusUfsgsUfuGfuUfgAfaGfaUfgAfuCfuCfsg 1115
AC000437 Tri-SM6.1-avb6-(TA14)csgagaucallfCfUfucaacaacaas(invAb) 1490 cPrpusUfsgsUfuguugaaGfaUfgAfucucsg 1116
AC000480 Tri-SM6.1-avb6-(TA14)gscuguucuGfCfGfacuacuacaas(invAb) 1491 cPrpuslIfsgsUfaGfuAfgUfcGfcAfgAfaCfaGfsc 1127
AC000482 Tri-SM6.1-avb6-(TA14)gscuguucuGfCfGfacuacuacaas(invAb) 1491 uslIfsgsUfaGfuAfgUfcGfcAfgAfaCfaGfsc 1065
AC000483 Tri-SM6.1-avb6-(TA14)gscuguucuGfCfGfacuacuacaas(invAb) 1491 cPrpusUfsgsUfaGfuAfgUfcicAfgAfaCfaGfsc 1142
AC000484 Tri-SM6.1-avb6-(TA14)gscuguucuGfCfGfacuacuacaas(invAb) 1491 cPrpusUfsgsUfaGfuAfgUfcgcAfgAfaCfaGfsc 1143
AC000485 Tri-SM6.1-avb6-(TA14)gscuguucuGfUfGfacuacuacaas(invAb) 1492 usUfsgsUfaGfuAfgUfcAfcAfgAfaCfaGfsc 1128
AC000486 Tri-SM6.1-avb6-(TA14)gscuguucuGfUfGfacuacuacaas(invAb) 1492 cPrpusUfsgsUfaGfuAfgllfcAfcAfgAfaCfaGfsc 1129
AC000487 Tri-SM6.1-avb6-(TA14)gscuguucuGfUfGfacuacuacaas(invAb) 1492 cPrpusUfsgsuaguagucAfcAfgAfacagsc 1130
AC000502 Tri-SM6.1-avb6-(TA14)ascccauguGfCfUfacaacuaugas(invAb) 1484 cPrpusCfsasuaguuguaGfcAfcAfugggsu 1131
AC000503 Tri-SM6.1-avb6-(TA14)asccagaucAfUfCfuucaacaacas(invAb) 1493 usGfsusUfgUfuGfaAfgAfuGfaUfcUfgGfsu 1715
AC000504 Tri-SM6.1-avb6-(TA14)asccagaucAfUfCfuucaacaacas(invAb) 1493 cPrpusGfsusUfgUfuGfaAfgAfuGfaUfcUfgGfsu 1132
AC000505 Tri-SM6.1-avb6-(TA14)asccagaucAfUfCfuucaacaacas(invAb) 1493 cPrpusGfsusuguugaagAfuGfallfcuggsu 1133
AC000506 Tri-SM6.1-avb6-(TA14)gsgcucuguGfGfUfaacuucaacas(invAb) 1494 cPrpusGfsusUfgAfaGfuUfaCfcAfcAfgAfgCfsc 1134
AC000507 Tri-SM6.1-avb6-(TA14)gsagcguggAfGfAfaugaaaaguas(invAb) 1495 cPrpusAfscsUfuUfuCfaUfuCfuCfcAfcGfcUfsc 1135
AC000508 Tri-SM6.1-avb6-(TA14)gsggagaauGfAfAfaaguaugcuas(invAb) 1496 cPrpusAfsgsCfaUfaCfuUfuUfcAfuUfclIfcCfsc 1136
AC000509 Tri-SM6.1-avb6-(TA14)csuucucgaAfCfUfgcauguaugas(invAb) 1497 cPrpusCfsaslIfaCfaUfgCfaGfuUfcGfaGfaAfsg 1137
AC000510 Tri-SM6.1-avb6-(TA14)gscucgaacUfGfCfauguaugacas(invAb) 1498 cPrpusGfsusCfaUfaCfaUfgCfaGfuUfcGfaGfsc 1138
AC000511 Tri-SM6.1-avb6-(TA14)csucgaacuGfCfAfuguaugacaas(invAb) 1499 cPrpusUfsgslIfcAfuAfcAfuGfcAfgUfuCfgAfsg 1139
AC000512 Tri-SM6.1-avb6-(TA14)cscacuguuCfUfGfugacuacuaas(invAb) 1500 cPrpusUfsasGfuAfgUfcAfcAfgAfaCfaGfuGfsg 1140
AC000513 Tri-SM6.1-avb6-(TA14)csacuguucUfGfUfgaciiacuacas(invAb) 1501 cPrpusGfsusAfgUfaGfuCfaCfaGfaAfcAfgUfsg 1141
AC000805 Tri-SM6.1-avb6-(TA14)csagcuuccAfCfUfacaaiaccuus(invAb) 1503 cPrpasAfsgsGfuCfuUfgUfaGfuGfgAfaGfclIfsg 1071
AC000806 Tri-SM6.1-avb6-(TA14)csagcuuccAfCfUfacaagaccuus(invAb) 1504 cPrpasAfsgsGfuCfUuNAÜfgUfaGfuGfgAfaGfcUfsg 1072
AC000807 Tri-SM6.1-avb6-(TA14)gsa_2NaguaugCfUfCfagcacugiuas(invAb) 1505 cPrpusAfscsCfaGfuGfcUfgAfgCfaUfaCfuUfsc 1073
AC000808 Tri-SM6.1-avb6-(TA14)gsa_2NaguaugCfUfCfagcacugiuas(invAb) 1505 cPrpusAfscsCfaGfUuNAGfcUfgAfgCfaUfaCfuUfsc 1074
AC000809 Tri-SM6.1-avb6-(TA14)gsccuucuuCfAfAfcaccuucaaas(invAb) 1506 cPrpusUfsusGfaAfgguguUfgAfaGfaAfgGfsc 1075
AC000810 Tri-SM6.1-avb6-(TA14)gsccuucuuCfAfAfcaucuucaaas(invAb) 1507 cPrpusUfsusGfaAfggugullfgAfaGfaAfgGfsc 1075
AC000811 Tri-SM6.1-avb6-(TA14)gsccuucuuCfAfAfcacuuucaaas(invAb) 1508 cPrpusUfsusGfaAfgguguUfgAfaGfaAfgGfsc 1075
AC000832 Tri-SM6.1-avb6-(TA14)csugcuacaAfCfl)faugaiauccas(invAb) 1487 cPrpusGfsgsaucucauaGfuUfgUfagcasg 1148
AC000833 Tri-SM6.1-avb6-(TA14)csugcuacaAfCfUfaugagauccas(invAb) 1486 cPrpusGfsgsaucucauaGfuUfgUfagcasg 1148
AC000834 Tri-SM6.1-avb6-(TA14)csugcuaCfaAfcUfaugaiauccas(invAb) 1510 cPrpusGfsgsaucucauaGfullfgUfagcasg 1148
AC000835 Tri-SM6.1-avb6-(TA14)csgagauCfaUfcUfucaacaacaas(invAb) 1511 cPrpusUfsgsUfuguugaaGfaUfgAfucucsg 1116
AC000836 Tri-SM6.1-avb6-(TA14)csgagauCfaUfcUfucaacaacaas(invAb) 1511 cPrpusUfsgsuuguugaaGfaUfgAfucucsg 1149
AC001128 Tri-SM6.1-avb6-(TA14)csgagaucaUfCfUfucaacaacaas(invAb) 1490 cPrpusUfsgsUfugUuNAUgaaGfaUfgAfucucsg 1176
AC001129 Tri-SM6.1-avb6-(TA14)csgagaucaUfCfUfuca_2Nacaacaas(invAb) 1512 cPrpusUfsgsUfugUuNAUgaaGfaUfgAfucucsg 1176
AC001130 Tri-SM6.1-avb6-(TA14)csgagaucaUfCfUfucaacaacaas(invAb) 1490 cPrpusUfsgsUfugulluNAgaaGfaUfgAfucucsg 1177
AC001131 Tri-SM6.1-avb6-(TA14)csgagaucaUfCfUfucaacaacaas(invAb) 1490 cPrpuslIfsgsUfUuNAguugaaGfaUfgAfucucsg 1178
AC001305 Tri-SM6.1-avb6-(TA14)gscugauUfuGfcCfugaacaagaas(invAb) 1513 usUfscsuuguucagGfcAfaAfucagsc 1166
AC001306 Tri-SM6.1-avb6-(TA14)gscugauUfuGfcCfugaacaagaas(invAb) 1513 cPrpuUfcuuguucagGfcAfaAfucagsc 1191
AC001708 Tri-SM6.1-avb6-(TA14)gscuguucuGfCfGfacuacuacaa(invAb) 1514 cPrpusUfsgsUfaGfuAfgllfcGfcAfgAfaCfaGfsc 1127
AC001709 Tri-SM6.1-avb6-(TA14)gscugguucuGfCfGfacuacuacaas(invAb) 1515 cPrpusUfsgsUfaGfuAfgUfcGfcAfgAfaCfaGfsc 1127
AC001710 Tri-SM6.1-avb6-(TA14)gscguucuGfCfGfacuacuacaas(invAb) 1516 cPrpusUfsgsUfaGfuAfgUfcGfcAfgAfaCfaGfsc 1127
116
[0154] In some embodiments, a MUC5AC RNAi agent is prepared or provided as a sait, mixed sait, or a free-acid. In some embodiments, a MUC5AC RNAi agent is prepared or provided as a pharmaceutically acceptable sait. In some embodiments, a MUC5AC RNAi agent is prepared or provided as a pharmaceutically acceptable sodium or potassium sait The RNAi agents described herein, upon delivery to a cell expressing an MUC5AC gene, inhibit or knockdown expression of one or more MUC5AC genes in vivo and/or in vitro.
Targeting Groups, Linking Groups, Pharmacokinetic/Pharmacodynamic (PK/PD) Modulators, and Delivery Vehicles
[0155] In some embodiments, a MUC5AC RNAi agent contains or is conjugated to one or more non-nucleotide groups including, but not limited to, a targeting group, a linking group, a pharmacokinetic/pharmacodynamic (PK/PD) modulator, a delivery polymer, or a delivery vehicle. The non-nucleotide group can enhance targeting, delivery, or attachment of the RNAi agent. The non-nucleotide group can be covalently linked to the 3' and/or 5' end of either the sense strand and/or the antisense strand. In some embodiments, a MUC5AC RNAi agent contains a non-nucleotide group linked to the 3' and/or 5' end of the sense strand. In some embodiments, a non-nucleotide group is linked to the 5' end of a MUC5AC RNAi agent sense strand. A non-nucleotide group can be linked directly or indirectly to the RNAi agent via a linker/linking group. In some embodiments, a non-nucleotide group is linked to the RNAi agent via a labile, cleavable, or réversible bond or linker.
[0156] In some embodiments, a non-nucleotide group enhances the pharmacokinetic or biodistribution properties of an RNAi agent or conjugate to which it is attached to improve cell- or tissue-specifïc distribution and cell-specific uptake of the conjugate. In some embodiments, a non-nucleotide group enhances endocytosis of the RNAi agent.
[0157] Targeting groups or targeting moieties enhance the pharmacokinetic or biodistribution properties of a conjugate or RNAi agent to which they are attached to improve cell-specific (including, in some cases, organ spécifie) distribution and cell-specific (or organ spécifie) uptake of the conjugate or RNAi agent. A targeting group can be monovalent, divalent, trivalent, tetravalent, or hâve higher valency for the target to which it is directed. Représentative targeting groups include, without limitation, compounds with affinity to cell surface molécule, cell receptor ligands, hapten, antibodies, monoclonal antibodies, antibody fragments, and antibody mimics with affinity to cell surface molécules. In some embodiments, a targeting group is linked to an RNAi agent using a linker, such as
117 a PEG linker or one, two, or three abasic and/or ribitol (abasic ribose) residues, which in some instances can serve as linkers.
[0158] A targeting group, with or without a linker, can be attached to the 5' or 3' end of any of the sense and/or antisense strands disclosed in Tables 2, 3, 4, 5, 6, 7, and 11. A linker, 5 with or without a targeting group, can be attached to the 5' or 3' end of any of the sense and/or antisense strands disclosed in Tables 2, 3, 4, 5, 6, 7, and 11.
[0159] The MUC5AC RNAi agents described herein can be synthesized having a reactive group, such as an amino group (also referred to herein as an amine), at the 5'-terminus and/or the 3'-terminus. The reactive group can be used subsequently to attach a targeting moiety 10 using methods typical in the art.
[0160] For example, in some embodiments, the MUC5AC RNAi agents disclosed herein can be synthesized having an NH2-C6 group at the 5'-terminus of the sense strand of the RNAi agent. The terminal amino group subsequently can be reacted to form a conjugate with, for example, a group that includes an ανβ6 integrin targeting ligand. In some 15 embodiments, the MUC5AC RNAi agents disclosed herein are synthesized having one or more alkyne groups at the 5'-terminus of the sense strand of the RNAi agent. The terminal alkyne group(s) can subsequently be reacted to form a conjugate with, for example, a group that includes an ανβό integrin targeting ligand.
[0161] In some embodiments, a targeting group comprises an integrin targeting ligand. In 20 some embodiments, an integrin targeting ligand is an ανβό integrin targeting ligand. The use of an ανβό integrin targeting ligand facilitâtes cell-specific targeting to cells having ανβό on its respective surface, and binding of the integrin targeting ligand can facilitate entry of the therapeutic agent, such as an RNAi agent, to which it is linked, into cells such as épithélial cells, including pulmonary épithélial cells and rénal épithélial cells. Integrin 25 targeting ligands can be monomeric or monovalent (e.g., having a single integrin targeting moiety) or multimeric or multivalent (e.g., having multiple integrin targeting moieties). The targeting group can be attached to the 3' and/or 5' end of the RNAi oligonucleotide using methods known in the art. The préparation of targeting groups, such as ανβό integrin targeting ligands, is described, for example, in International Patent Application Publication 30 No. WO 2018/085415 and in International Patent Application Publication No. WO 2019/089765, the contents of each of which are incorporated herein in its entirety.
[0162] In some embodiments, targeting groups are linked to the MUC5AC RNAi agents without the use of an additional linker. In some embodiments, the targeting group is
118 designed having a linker readily présent to facilitate the linkage to a MUC5AC RNAi agent.
In some embodiments, when two or more RNAi agents are included m a composition, the two or more RNAi agents can be linked to their respective targeting groups using the same linkers. In some embodiments, when two or more RNAi agents are included in a composition, the two or more RNAi agents are linked to their respective targeting groups using different linkers.
[0163] In some embodiments, a linking group is conjugated to the RNAi agent. The linking group facilitâtes covalent linkage of the agent to a targeting group, pharmacokinetic modulator, delivery polymer, or delivery vehicle. The linking group can be linked to the 3' and/or the 5' end of the RNAi agent sense strand or antisense strand. In some embodiments, the linking group is linked to the RNAi agent sense strand. In some embodiments, the linking group is conjugated to the 5' or 3' end of an RNAi agent sense strand. In some embodiments, a linking group is conjugated to the 5' end of an RNAi agent sense strand. Examples of linking groups, include but are not limited to: C6-SS-C6, 6-SS-6, reactive groups such a primary amines (e.g., NH2-C6) and alkynes, alkyl groups, abasic residues/nucleotides, amino acids, tri-alkyne functionalized groups, ribitol, and/or PEG groups. Examples of certain linking groups are provided in Table 12.
[0164] A linker or linking group is a connection between two atoms that links one Chemical group (such as an RNAi agent) or segment of interest to another Chemical group (such as a targeting group, pharmacokinetic modulator, or delivery polymer) or segment of interest via one or more covalent bonds. A labile linkage contains a labile bond. A linkage can optionally include a spacer that increases the distance between the two joined atoms. A spacer may further add flexibility and/or length to the linkage. Spacers include, but are not be limited to, alkyl groups, alkenyl groups, alkynyl groups, aryl groups, aralkyl groups, aralkenyl groups, and aralkynyl groups; each of which can contain one or more heteroatoms, heterocycles, amino acids, nucléotides, and saccharides. Spacer groups are well known in the art and the preceding list is not meant to limit the scope of the description. In some embodiments, a MUC5AC RNAi agent is conjugated to a polyethylene glycol (PEG) moiety, or to a hydrophobie group having 12 or more carbon atoms, such as a cholestérol or palmitoyl group.
[0165] In some embodiments, a MUC5AC RNAi agent is linked to one or more pharmacokinetic/pharmacodynamic (PK/PD) modulators. PK/PD modulators can increase circulation time of the conjugated drug and/or increase the activity of the RNAi agent
119 through improved cell receptor binding, improved cellular uptake, and/or other means.
Various PK/PD modulators suitable for use with RNAi agents are known in the art. In some embodiments, the PK/PD modulatory can be cholestérol or cholesteryl dérivatives, or in some circumstances a PK/PD modulator can be comprised of alkyl groups, alkenyl groups, 5 alkynyl groups, aryl groups, aralkyl groups, aralkenyl groups, or aralkynyl groups, each of which may be linear, branched, cyclic, and/or substituted or unsubstituted. In some embodiments, the location of attachment for these moieties is at the 5 ’ or 3 ’ end of the sense strand, at the 2’ position of the ribose ring of any given nucléotide of the sense strand, and/or attached to the phosphate or phosphorothioate backbone at any position of the sense strand.
[0166] Any of the MUC5AC RNAi agent nucléotide sequences listed in Tables 2, 3, 4, 5,
6, 7, and 11, whether modified or unmodified, can contain 3' and/or 5' targeting group(s), linking group(s), and/or PK/PD modulator(s). Any of the MUC5AC RNAi agent sequences listed in Tables 3, 4, 5, 6, 7, and 11, or are otherwise described herein, which contain a 3' or 5' targeting group, linking group, and/or PK/PD modulator can alternatively contain no 3' or 5' targeting group, linking group, or PK/PD modulator, or can contain a different 3' or 5' targeting group, linking group, or pharmacokinetic modulator including, but not limited to, those depicted in Table 12. Any of the MUC5AC RNAi agent duplexes listed in Tables 8A, 8B, 8C, 9, 10A, 10B, and 11, whether modified or unmodified, can further comprise a targeting group or linking group, including, but not limited to, those depicted in Table 11, and the targeting group or linking group can be attached to the 3' or 5' terminus of either the sense strand or the antisense strand of the MUC5AC RNAi agent duplex.
[0167] Examples of certain modified nucléotides, capping moieties, and linking groups are provided in Table 12.
120
Table 12. Structures Representing Various Modified Nucléotides, Capping Moieties, and
Linking Groups (wherein indicates the point of connection)
121
When positioned intemally:
linkage towards 5' end
linkage towards 3' end (invAb)
When positioned intemally:
linkage towards 5' end
linkage towards 3' end (invAb)s
When positioned at the 3' terminal end:
linkage towards 5' end
(invAb)
122
When positioned at the 3' terminal end:
linkage towards 5' end (C6-SS-C6)
When positioned intemally:
linkage towards 5' end linkage towards 3' end
-S. S
(C6-SS-C6)
When positioned at the 3' terminal end:
v _Z\ ^OH
linkage towards 5' end (6-SS-6)
When positioned intemally:
^z\ S XL \
linkage towards 5' end linkage towards 3' end
(6-SS-6)
H2N^Z\ V
(NH2-C6)
H2N\/X (NH2-C6)s O \<° _ U*^ Λ ω·
θ\ ^Q-X \ c
J \
123
124
125
[0168] Alternatively, other linking groups known in the art may be used. In many instances, linking groups can be commercially acquired or alternatively, are incorporated into commercially available nucléotide phosphoramidites. (See, e.g., International Patent 5 Application Publication No. WO 2019/161213, which is incorporated herein by reference in its entirety).
[0169] In some embodiments, a MUC5AC RNAi agent is delivered without being conjugated to a targeting ligand or pharmacokinetic/pharmacodynamic (PK/PD) modulator (referred to as being “naked” or a “naked RNAi agent”).
[0170] In some embodiments, a MUC5AC RNAi agent is conjugated to a targeting group, a linking group, a PK modulator, and/or another non-nucleotide group to facilitate delivery
126 of the MUC5AC RNAi agent to the cell or tissue of choice, for example, to an épithélial cell in vivo. In some embodiments, a MUC5AC RNAi agent is conjugated to a targeting group wherein the targeting group includes an integrin targeting ligand. In some embodiments, the integrin targeting ligand is an ανβ6 integrin targeting ligand. In some embodiments, a 5 targeting group includes one or more ανβ6 integrin targeting ligands.
[0171] In some embodiments, a delivery vehicle may be used to deliver an RNAi agent to a cell or tissue. A delivery vehicle is a compound that improves delivery of the RNAi agent to a cell or tissue. A delivery vehicle can include, or consist of, but is not limited to: a polymer, such as an amphipathic polymer, a membrane active polymer, a peptide, a melittin 10 peptide, a melittin-like peptide (MLP), a lipid, a reversibly modified polymer or peptide, or a reversibly modified membrane active polyamine.
[0172] In some embodiments, the RNAi agents can be combined with lipids, nanoparticles, polymers, liposomes, micelles, DPCs or other delivery Systems available in the art for nucleic acid delivery. The RNAi agents can also be chemically conjugated to targeting 15 groups, lipids (including, but not limited to cholesteryl and cholesteryl dérivatives), encapsulating in nanoparticles, liposomes, micelles, conjugating to polymers or DPCs (see, for example WO 2000/053722, WO 2008/022309, WO 2011/104169, and WO 2012/083185, WO 2013/032829, WO 2013/158141, each of which is incorporated herein by reference), by iontophoresis, or by incorporation into other delivery vehicles or Systems 20 available in the art such as hydrogels, cyclodextrins, biodégradable nanocapsules, bioadhesive microspheres, or proteinaceous vectors. In some embodiments the RNAi agents can be conjugated to antibodies having affinity for pulmonary épithélial cells. In some embodiments, the RNAi agents can be linked to targeting ligands that hâve affinity for pulmonary épithélial cells or receptors présent on pulmonary épithélial cells.
Pharmaceutical Compositions and Formulations
[0173] The MUC5AC RNAi agents disclosed herein can be prepared as pharmaceutical compositions or formulations (also referred to herein as “médicaments”). In some embodiments, pharmaceutical compositions include at least one MUC5AC RNAi agent. 30 These pharmaceutical compositions are particularly useful in the inhibition of the expression of MUC5AC mRNA in a target cell, a group of cells, a tissue, or an organism. The pharmaceutical compositions can be used to treat a subject having a disease, disorder, or condition that would benefit from réduction in the level of the target mRNA, or inhibition
127 in expression of the target gene. The pharmaceutical compositions can be used to treat a subject at risk of developing a disease or disorder that would benefit from réduction of the level of the target mRNA or an inhibition in expression the target gene. In one embodiment, the method includes administering a MUC5AC RNAi agent linked to a targeting ligand as described herein, to a subject to be treated. In some embodiments, one or more pharmaceutically acceptable excipients (including vehicles, carriers, diluents, and/or delivery polymers) are added to the pharmaceutical compositions that include a MUC5AC RNAi agent, thereby forming a pharmaceutical formulation or médicament suitable for in vivo delivery to a subject, including a human.
[0174] The pharmaceutical compositions that include a MUC5AC RNAi agent and methods disclosed herein decrease the level of the target mRNA in a cell, group of cells, group of cells, tissue, organ, or subject, including by administering to the subject a therapeutically effective amount of a herein described MUC5AC RNAi agent, thereby inhibiting the expression of MUC5AC mRNA in the subject. In some embodiments, the subject has been previously identifïed or diagnosed as having a disease or disorder that can be mediated at least in part by a réduction in MUC5AC expression. In some embodiments, the subject has been previously diagnosed with having one or more mucoobstructive lung diseases, such as. asthma, CF, COPD, NCFB, PCD. In some embodiments the mucoobstructive lung disease is severe asthma.
[0175] In some embodiments the subject has been previously diagnosed with having interstitial lung diseases, cancer (such as lung adenocarcinomas, pancreatic cancer, salivary gland carcinoma, breast cancer, cholangiocarcinoma, ovarian cancer, and other tumors), respiratory infections (such as respiratory syncytial virus, influenza, rhinovirus), otitis media, inflammatory bowel disease, gallstone disease, allergie rhinitis, chronic rhinosinusitis or nasal polyposis.
[0176] Embodiments of the présent disclosure include pharmaceutical compositions for delivering a MUC5AC RNAi agent to a pulmonary épithélial cell in vivo. Such pharmaceutical compositions can include, for example, a MUC5AC RNAi agent conjugated to a targeting group that comprises an integrin targeting ligand. In some embodiments, the integrin targeting ligand is comprised of an ανβ6 integrin ligand.
[0177] In some embodiments, the described pharmaceutical compositions including a MUC5AC RNAi agent are used for treating or managing clinical présentations in a subject that would benefit from the inhibition of expression of MUC5AC. In some embodiments, a
128 therapeutically or prophylactically effective amount of one or more of pharmaceutical compositions is administered to a subject in need of such treatment. In some embodiments, administration of any of the disclosed MUC5AC RNAi agents can be used to decrease the number, severity, and/or frequency of symptoms of a disease in a subject.
[0178] In some embodiments, the described MUC5AC RNAi agents are optionally combined with one or more additional (i.e., second, third, etc.) therapeutics. A second therapeutic can be another MUC5AC RNAi agent (e.g., a MUC5AC RNAi agent that targets a different sequence within a MUC5AC gene). In some embodiments, a second therapeutic can be an RNAi agent that targets the MUC5AC gene. An additional therapeutic can also be a small molécule drug, antibody, antibody fragment, and/or aptamer. The MUC5AC RNAi agents, with or without the one or more additional therapeutics, can be combined with one or more excipients to form pharmaceutical compositions.
[0179] The described pharmaceutical compositions that include a MUC5AC RNAi agent can be used to treat at least one symptom in a subject having a disease or disorder that would benefit from réduction or inhibition in expression of MUC5AC mRNA. In some embodiments, the subject is administered a therapeutically effective amount of one or more pharmaceutical compositions that include a MUC5AC RNAi agent thereby treating the symptom. In other embodiments, the subject is administered a prophylactically effective amount of one or more MUC5AC RNAi agents, thereby preventing or inhibiting the at least one symptom.
[0180] In some embodiments, one or more of the described MUC5AC RNAi agents are administered to a mammal in a pharmaceutically acceptable carrier or diluent. In some embodiments, the mammal is a human.
[0181] The route of administration is the path by which a MUC5AC RNAi agent is brought into contact with the body. In general, methods of administering drugs, oligonucleotides, and nucleic acids, for treatment of a mammal are well known in the art and can be applied to administration of the compositions described herein. The MUC5AC RNAi agents disclosed herein can be administered via any suitable route in a préparation appropriately tailored to the particular route. Thus, in some embodiments, the herein described pharmaceutical compositions are administered via inhalation, intranasal administration, intratracheal administration, or oropharyngeal aspiration administration. In some embodiments, the pharmaceutical compositions can be administered by injection, for
129 example, intravenously, intramuscularly, intracutaneously, subcutaneously, intraarticularly, intraocularly, or mtraperitoneally, or topically.
[0182] The pharmaceutical compositions including a MUC5AC RNAi agent described herein can be delivered to a cell, group of cells, tissue, or subject using oligonucleotide delivery technologies known in the art. In general, any suitable method recognized in the art for delivering a nucleic acid molécule (in vitro or in vivo) can be adapted for use with the compositions described herein. For example, delivery can be by local administration, (e.g., direct injection, implantation, or topical administering), systemic administration, or subcutaneous, intravenous, intraperitoneal, or parentéral routes, including intracranial (e.g., intraventricular, intraparenchymal and intrathecal), intramuscular, transdermal, airway (aérosol), nasal, oral, rectal, or topical (including buccal and sublingual) administration. In some embodiments, the compositions are administered via inhalation, intranasal administration, oropharyngeal aspiration administration, or intratracheal administration. For example, in some embodiments, it is desired that the MUC5AC RNAi agents described herein inhibit the expression of an MUC5AC gene in the pulmonary epithelium, for which administration via inhalation (e.g., by an inhaler device, such as a metered-dose inhaler, or a nebulizer such as a jet or vibrating mesh nebulizer, or a soft mist inhaler) is particularly suitable and advantageous.
[0183] In some embodiments, the pharmaceutical compositions described herein comprise one or more pharmaceutically acceptable excipients. The pharmaceutical compositions described herein are formulated for administration to a subject.
[0184] As used herein, a pharmaceutical composition or médicament includes a pharmacologically effective amount of at least one of the described therapeutic compounds and one or more pharmaceutically acceptable excipients. Pharmaceutically acceptable excipients (excipients) are substances other than the Active Pharmaceutical Ingrédient (API, therapeutic product, e.g., MUC5AC RNAi agent) that are intentionally included in the drug delivery System. Excipients do not exert or are not intended to exert a therapeutic effect at the intended dosage. Excipients can act to a) aid in processing of the drug delivery System during manufacture, b) protect, support or enhance stability, bioavailability or patient acceptability of the API, c) assist in product identification, and/or d) enhance any other attribute of the overall safety, effectiveness, of delivery of the API during storage or use. A pharmaceutically acceptable excipient may or may not be an inert substance.
130
[0185] Excipients include, but are not limited to: absorption enhancers, anti-adherents, antifoaming agents, anti-oxidants, binders, buffering agents, carriers, coating agents, colors, delivery enhancers, delivery polymers, détergents, dextran, dextrose, diluents, disintegrants, emulsifiers, extenders, fillers, flavors, glidants, humectants, lubricants, oils, polymers, 5 preservatives, saline, salts, solvents, sugars, surfactants, suspending agents, sustained release matrices, sweeteners, thickening agents, tonicity agents, vehicles, water-repelling agents, and wetting agents.
[0186] Pharmaceutical compositions suitable for injectable use include stérile aqueous solutions (where water-soluble) or dispersions and stérile powders for the extemporaneous 10 préparation of stérile injectable solutions or dispersion. For intravenous administration, suitable carriers include physiological saline, bacteriostatic water, Cremophor® ELTM (BASF, Parsippany, NJ) or phosphate buffered saline (PBS). It should be stable under the conditions of manufacture and storage and should be preserved against the contaminating action of microorganisms such as bacteria and fungi. The carrier can be a solvent or 15 dispersion medium containing, for example, water, éthanol, polyol (for example, glycerol, propylene glycol, and liquid polyethylene glycol), and suitable mixtures thereof. The proper fluidity can be maintained, for example, by the use of a coating such as lecithin, by the maintenance of the required particle size in the case of dispersion and by the use of surfactants. In many cases, it will be préférable to include isotonie agents, for example, 20 sugars, polyalcohols such as mannitol, sorbitol, and sodium chloride in the composition.
Prolonged absorption of the injectable compositions can be brought about by including in the composition an agent which delays absorption, for example, aluminum monostearate and gelatin.
[0187] Stérile injectable solutions can be prepared by incorporating the active compound in 25 the required amount in an appropriate solvent with one or a combination of ingrédients enumerated above, as required, followed by filter sterilization. Generally, dispersions are prepared by incorporating the active compound into a stérile vehicle which contains a basic dispersion medium and the required other ingrédients from those enumerated above. In the case of stérile powders for the préparation of stérile injectable solutions, methods of 30 préparation include vacuum drying and freeze-drying which yields a powder of the active ingrédient plus any additional desired ingrédient from a previously sterile-filtered solution thereof.
131
[0188] Formulations suitable for intra-articular administration can be in the form of a stérile aqueous préparation of the drug that can be in microcrystalline form, for example, in the form of an aqueous microcrystalline suspension. Liposomal formulations or biodégradable polymer Systems can also be used to présent the drug for both intra-articular and ophthalmic 5 administration.
[0189] Formulations suitable for inhalation administration can be prepared by incorporating the active compound in the desired amount in an appropriate solvent, followed by stérile filtration. In general, formulations for inhalation administration are stérile solutions at physiological pH and hâve low viscosity (< 5 cP). Salts may be added to the formulation to 10 balance tonicity. In some cases, surfactants or co-solvents can be added to increase active compound solubility and improve aérosol characteristics. In some cases, excipients can be added to control viscosity in order to ensure size and distribution of nebulized droplets.
[0190] In some embodiments, pharmaceutical formulations that include the MUC5AC RNAi agents disclosed herein suitable for inhalation administration can be prepared in water 15 for injection (stérile water), isotonie saline (0.9% saline), or an aqueous sodium phosphate buffer (for example, the MUC5AC RNAi agent formulated in 0.5 mM sodium phosphate monobasic, 0.5 mM sodium phosphate dibasic, in water).
[0191] The active compounds can be prepared with carriers that will protect the compound against rapid élimination from the body, such as a controlled release formulation, including implants and microencapsulated delivery Systems. Biodégradable, biocompatible polymers can be used, such as ethylene vinyl acetate, polyanhydrides, polyglycolic acid, collagen, polyorthoesters, and polylactic acid. Methods for préparation of such formulations will be apparent to those skilled in the art. Liposomal suspensions can also be used as pharmaceutically acceptable carriers. These can be prepared according to methods known to those skilled in the art, for example, as described in U.S. Patent No. 4,522,811.
[0192] The MUC5AC RNAi agents can be formulated in compositions in dosage unit form for ease of administration and uniformity of dosage. Dosage unit form refers to physically discrète units suited as unitary dosages for the subject to be treated; each unit containing a predetermined quantity of active compound calculated to produce the desired therapeutic 30 effect in association with the required pharmaceutical carrier. The spécification for the dosage unit forms of the disclosure are dictated by and directly dépendent on the unique characteristics of the active compound and the therapeutic effect to be achieved, and the
132 .
limitations inhérent in the art of compounding such an active compound for the treatment of individuals.
[0193] A pharmaceutical composition can contain other additional components commonly found in pharmaceutical compositions. Such additional components include, but are not limited to: anti-pruritics, astringents, local anesthetics, or anti-inflammatory agents (e.g., antihistamine, diphenhydramine, etc.). It is also envisioned that cells, tissues, or isolated organs that express or comprise the herein defined RNAi agents may be used as “pharmaceutical compositions.” As used herein, “pharmacologically effective amount,” “therapeutically effective amount,” or simply “effective amount” refers to that amount of an RNAi agent to produce a pharmacological, therapeutic, or préventive resuit.
[0194] In some embodiments, the methods disclosed herein further comprise the step of administering a second therapeutic or treatment in addition to administering an RNAi agent disclosed herein. In some embodiments, the second therapeutic is another MUC5AC RNAi agent (e.g., a MUC5AC RNAi agent that targets a different sequence within the MUC5AC target). In other embodiments, the second therapeutic can be a small molécule drug, an antibody, an antibody fragment, and/or an aptamer.
[0195] In some embodiments, described herein are compositions that include a combination or cocktail of at least two MUC5AC RNAi agents having different sequences. In some embodiments, the two or more MUC5AC RNAi agents are each separately and independently linked to targeting groups. In some embodiments, the two or more MUC5AC RNAi agents are each linked to targeting groups that include or consist of integrin targeting ligands. In some embodiments, the two or more MUC5AC RNAi agents are each linked to targeting groups that include or consist of ανβ6 integrin targeting ligands.
[0196] Described herein are compositions for delivery of MUC5AC RNAi agents to pulmonary épithélial cells. Furthermore, compositions for delivery of MUC5AC RNAi agents to cells, including rénal épithélial cells and/or épithélial cells in the GI or reproductive tract and/or and ocular surface épithélial cells in the eye, in vivo, are generally described herein.
[0197] Generally, an effective amount of a MUC5AC RNAi agent disclosed herein will be in the range of from about 0.0001 to about 20 mg/kg of body weight/pulmonary deposited dose (PDD), e.g., from about 0.001 to about 5 mg/kg of body weight/pulmonary deposited dose. In some embodiments, an effective amount of a MUC5AC RNAi agent will be in the range of from about 0.01 mg/kg to about 3.0 mg/kg of body weight per pulmonary deposited
133 dose. In some embodiments, an effective amount of a MUC5AC RNAi agent will be in the range of from about 0.03 mg/kg to about 2.0 mg/kg of body weight per pulmonary deposited dose. In some embodiments, an effective amount of a MUC5AC RNAi agent will be in the range of from about 0.01 to about 1.0 mg/kg of pulmonary deposited dose per body weight. Iri some embodiments, an effective amount of a MUC5AC RNAi agent will be in the range of from about 0.25 to about 1.0 mg/kg of pulmonary deposited dose per body weight. In some embodiments, an effective amount of a MUC5AC RNAi agent will be in the range of from about 0.25 mg/kg of pulmonary deposited dose per body weight. In some embodiments, an effective amount of a MUC5AC RNAi agent will be in the range of from about 0.50 mg/kg of pulmonary deposited dose per body weight. In some embodiments, an effective amount of a MUC5AÇ RNAi agent will be in the range of from about 1.0 mg/kg of pulmonary deposited dose per body weight. Calculating the pulmonary deposited dose (PDD) is done in accordance with methods known in the art. (See Wolff R.K., Dorato M.A., Toxicologie Testing of Inhaled Pharmaceutical Aérosols, Crit Rev Toxicol., 1993; 23(4):343-369; Tepper et al., International J. Toxicology, 2016, vol. 35(4):376-392). A comparable and alternatively acceptable method of calculating dose that is well known in the art, especially for human subjects, is determining the respirable delivered dose (RDD). RDD refers to the amount of drug contained in droplets of a size suitable for pénétration into the lungs. Generally, an effective amount of a MUC5AC RNAi agent disclosed herein will be in the range of from about 0.001 to about 5 mg respirable delivered dose (RDD) / kg body weight.
[0198] For clinical applications, the amount of MUC5AC RNAi agent needed to be loaded into the delivery device of choice (e.g., a nebulizer) that is required to produce such RDDs in human subjects will dépend upon the delivery device used (see, for example, Hatley RHM, Byme SM, Variability in delivered dose and respirable delivered dose from nebulizers: are current regulatory testing guidelines sufficient to produce meaningful information?, Med Devices, 2017,10:17-28). Some lower efficient nebulizers, for example, RDD is approximately 15%-25% of the dose loaded into the nebulizer. For other more efficient devices, for example, RDD is approximately 50%, approximately 60%, or even higher than 60% of the dose loaded into the nebulizer. In some embodiments, a fixed dose of, for example, approximately 5 mg, approximately 10 gm, approximately 20 mg, approximately 25 mg, approximately 50 mg, approximately 75 mg, approximately 100 mg, approximately 150 mg, approximately 200 mg, approximately 250 mg, or approximately
134
300 mg of MUC5AC RNAi agent may be loaded into the respective device of choice, which will produce an RDD from about 0.001 to about 5 mg / kg of body weight per dose. The amount desired or required to be administered will also likely dépend on such variables as the overall health status of the patient, the relative biological efficacy of the compound 5 delivered, the formulation of the drug, the presence and types of excipient in the formulation, and the route of administration. Also, it is to be understood that the initial dosage administered can be increased beyond the above upper level to rapidly achieve the desired blood-level or tissue-level, or the initial dosage can be smaller than the optimum. In various embodiments, a dose may be administered daily, weekly, bi-weekly, tri-weekly, 10 once monthly, once quarterly (i.e. once every three months), or once every six months. In various embodiments, a dose may be administered at other intervals contained within the range provided above.
[0199] For treatment of disease or for formation of a médicament or composition for treatment of a disease, the pharmaceutical compositions described herein including a 15 MUC5AC RNAi agent can be combined with an excipient or with a second therapeutic agent or treatment including, but not limited to: a second or other RNAi agent, a small molécule drug, an antibody, an antibody fragment, peptide, and/or an aptamer.
[0200] The described MUC5AC RNAi agents, when added to pharmaceutically acceptable excipients or adjuvants, can be packaged into kits, containers, packs, or dispensers. The 20 pharmaceutical compositions described herein can be packaged in dry powder or aérosol inhalers, other metered-dose inhalers, nebulizers, pre-filled syringes, orvials.
Methods of Treatment and Inhibition of MUC5AC Expression
[0201] The MUC5AC RNAi agents disclosed herein can be used to treat a subject (e.g., a 25 human or other mammal) having a disease or disorder that would benefit from administration of the RNAi agent. In some embodiments, the RNAi agents disclosed herein can be used to treat a subject (e.g., a human) that would benefit from a réduction and/or inhibition in expression of MUC5AC mRNA and/or a réduction in MUC5AC receptor levels.
[0202] In some embodiments, the RNAi agents disclosed herein can be used to treat a subject (e.g., a human) having a disease or disorder for which the subject would benefit from réduction in MUC5AC receptors, including but not limited to, mucoobstructive lung diseases (such as asthma, CF, COPD, NCFB, PCD), allergie bronchopulmonary
135 aspergillosis, interstitial lung diseases, cancer (such as lung adenocarcinomas, pancreatic cancer, salivary gland carcinoma, breast cancer, cholangiocarcinoma, ovanan cancer, and other tumors), respiratory infections (such as respiratory syncytial virus, influenza, rhinovirus), otitis media, inflammatory bowel disease, gallstone disease, allergie rhinitis, chronic rhinosinusitis and nasal polyposis. In some embodiments the pulmonary diseases is severe asthma. Treatment of a subject can include therapeutic and/or prophylactic treatment. The subject is administered a therapeutically effective amount of any one or more MUC5AC RNAi agents described herein. The subject can be a human, patient, or human patient. The subject may be an adult, adolescent, child, or infant. Administration of a pharmaceutical composition described herein can be to a human being or animal.
[0203] Increased membrane MUC5AC activity is known to promote mucoobstruction tissues. In some embodiments, the described MUC5AC RNAi agents are used to treat at least one symptom mediated at least in part by a réduction in MUC5AC levels, in a subject. The subject is administered a therapeutically effective amount of any one or more of the described MUC5AC RNAi agents. In some embodiments, the subject is administered a prophylactically effective amount of any one or more of the described RNAi agents, thereby treating the subject by preventing or inhibiting the at least one symptom.
[0204] In certain embodiments, the présent disclosure provides methods for treatment of diseases, disorders, conditions, or pathological States mediated at least in part by MUC5AC gene expression, in a patient in need thereof, wherein the methods include administering to the patient any of the MUC5AC RNAi agents described herein.
[0205] In some embodiments, the MUC5AC RNAi agents are used to treat or manage a clinical présentation or pathological State in a subject, wherein the clinical présentation or pathological State is mediated at least in part by a réduction in MUC5AC expression. The subject is administered a therapeutically effective amount of one or more of the MUC5AC RNAi agents or MUC5AC RNAi agent-containing compositions described herein. In some embodiments, the method comprises administering a composition comprising a MUC5AC RNAi agent described herein to a subject to be treated.
[0206] In a further aspect, the disclosure features methods of treatment (including prophylactic or preventative treatment) of diseases or symptoms that may be addressed by a réduction in MUC5AC receptor levels, the methods comprising administering to a subject in need thereof a MUC5AC RNAi agent that includes an antisense strand comprising the
136 sequence of any of the sequences in Table 2, Table 3, or Table 11. Also described herein are compositions for use in such methods.
[0207] The described MUC5AC RNAi agents and/or compositions that include MUC5AC RNAi agents can be used in methods for therapeutic treatment of disease or conditions 5 caused by enhanced or elevated MUC5AC protein or MUC5AC gene expression. Such methods include administration of a MUC5AC RNAi agent as described herein to a subject, e.g., a human or animal subject.
[0208] In another aspect, the disclosure provides methods for the treatment (including prophylactic treatment) of a pathological State (such as a condition or disease) mediated at 10 least in part by MUC5AC expression, wherein the methods include administering to a subject a therapeutically effective amount of an RNAi agent that includes an antisense strand comprising the sequence of any of the sequences in Table 2, Table 3, or Table 1 l·.
[0209] In some embodiments, methods for inhibiting expression of an MUC5AC gene are disclosed herein, wherein the methods include administering to a cell an RNAi agent that 15 includes an antisense strand comprising the sequence of any of the sequences in Table 2, Table 3, or Table 11.
[0210] In some embodiments, methods for the treatment (including prophylactic treatment) of a pathological State mediated at least in part by MUC5AC expression are disclosed herein, wherein the methods include administering to a subject a therapeutically effective amount 20 of an RNAi agent that includes a sense strand comprising the sequence of any of the sequences in Table 2, Table 4, Table 5, Table 6, Table 7, or Table 11.
[0211] In some embodiments, methods for inhibiting expression of an MUC5AC gene are disclosed herein, wherein the methods comprise administering to a cell an RNAi agent that includes a sense strand comprising the sequence of any of the sequences in Table 2, Table 25 4, Table 5, Table 6, Table 7, or Table 11.
[0212] In some embodiments, methods for the treatment (including prophylactic treatment) of a pathological state mediated at least in part by MUC5AC expression are disclosed herein, wherein the methods include administering to a subject a therapeutically effective amount of an RNAi agent that includes a sense strand comprising the sequence of any of the 30 sequences in Table 4, Table 5, Table 6, Table 7, or Table 11, and an antisense strand comprising the sequence of any of the sequences in Table 3 or Table 11.
[0213] In some embodiments, methods for inhibiting expression of a MUC5AC gene are disclosed herein, wherein the methods include administering to a cell an RNAi agent that
137 includes a sense strand comprising the sequence of any of the sequences in Table 4, Table 5, Table 6, Table 7, or Table 11, and an antisense strand comprising the sequence of any of the sequences in Table 3 or Table 11.
[0214] In some embodiments, methods of inhibiting expression of a MUC5AC gene are 5 disclosed herein, wherein the methods include administering to a subject a MUC5AC RNAi agent that includes a sense strand consisting of the nucleobase sequence of any of the sequences in Table 4, Table 5, Table 6, Table 7, or Table 11, and the antisense strand consisting of the nucleobase sequence of any of the sequences in Table 3 or Table 11. In other embodiments, disclosed herein are methods of inhibiting expression of a MUC5AC 10 gene, wherein the methods include administering to a subject a MUC5AC RNAi agent that includes a sense strand consisting of the modifïed sequence of any of the modifïed sequences in Table 4, Table 5, Table 6, Table 7, or Table 11, and the antisense strand consisting of the modifïed sequence of any of the modifïed sequences in Table 3 or Table 11.
[0215] In some embodiments, methods for inhibiting expression of an MUC5AC gene in a 15 cell are disclosed herein, wherein the methods include administering one or more MUC5AC
RNAi agents comprising a duplex structure of one of the duplexes set forth in Tables 8A, 8B, 8C, 9, 10A, 10B, and 11.
[0216] In some embodiments, the quantity or amount of MUC5AC protein and/or MUC5AC mRNA in certain pulmonary épithélial cells of subject to whom a described 20 MUC5AC RNAi agent is administered is reduced by at least about 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or greater than 99%, relative to the subject prior to being administered the MUC5AC RNAi agent or to a subject not receiving the MUC5AC RNAi agent. In some embodiments, MUC5AC protein levels in certain épithélial cells of a subject to whom a 25 described MUC5AC RNAi agent is administered is reduced by at least about 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or greater than 99%, relative to the subject prior to being administered the MUC5AC RNAi agent or to a subject not receiving the MUC5AC RNAi agent. The gene expression level, protein level, and/or mRNA level in the subject may be 30 reduced in a cell, group of cells, and/or tissue of the subject. In some embodiments, the
MUC5AC mRNA levels in certain épithélial cells subject to whom a described MUC5AC RNAi agent has been administered is reduced by at least about 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 98% relative to the subject prior to
138 being administered the MUC5AC RNAi agent or to a subject not receiving the MUC5AC
RNAi agent.
[0217] A réduction in MUC5AC mRNA and MUC5AC protein levels can be assessed by any methods known in the art. Réduction or decrease in MUC5AC mRNA and/or MUC5AC protein levels are collectively referred to herein as a decrease in, réduction of, or inhibition of MUC5AC gene expression. The Examples set forth herein illustrate known methods for assessing inhibition of MUC5AC.
Cells, Tissues, Organs, and Non-Human Organisms
[0218] Cells, tissues, organs, and non-human organisms that include at least one of the MUC5AC RNAi agents described herein are contemplated. The cell, tissue, organ, or nonhuman organism is made by delivering the RNAi agent to the cell, tissue, organ, or nonhuman organism.
Additional Illustrative Embodiments
[0219] Provided here are certain additional illustrative embodiments of the disclosed technology. These embodiments are illustrative only and do not limit the scope of the présent disclosure or of the daims attached hereto.
[0220] Embodiment 1. An RNAi agent for inhibiting expression of a Mucin 5AC gene, comprising: an antisense strand comprising at least 17 contiguous nucléotides differing by 0 or 1 nucléotides from any one of the sequences provided in Table 2 or Table 3; and a sense strand comprising a nucléotide sequence that is at least partially complementary to the antisense strand
[0221] Embodiment 2. The RNAi agent of Embodiment 1, wherein the antisense strand comprises nucléotides 2-18 of any one of the sequences provided in Table 2 or Table 3.
[0222] Embodiment 3. The RNAi agent of Embodiment 1 or Embodiment 2, wherein the sense strand comprises a nucléotide sequence of at least 17 contiguous nucléotides differing by 0 or 1 nucléotides from any one of the sequences provided in Table 2 or Table 4, and wherein the sense strand has a région of at least 85% complementarity over the 17 contiguous nucléotides to the antisense strand.
[0223] Embodiment 4. The RNAi agent of any one of Embodiments 1-3, wherein at least one nucléotide of the RNAi agent is a modified nucléotide or includes a modified internucleoside linkage.
139
[0224] Embodiment 5. The RNAi agent of any one of Embodiments 1-4, wherein ali or substantially ail of the nucléotides are modified nucléotides.
[0225] Embodiment 6. The RNAi agent of any one of Embodiments 4-5, wherein the modified nucléotide is selected from the group consisting of: 2'-O-methyl nucléotide, 2'5 fluoro nucléotide, 2'-deoxy nucléotide, 2',3'-seco nucléotide mimic, locked nucléotide, 2F-arabino nucléotide, 2'-methoxyethyl nucléotide, abasic nucléotide, ribitol, inverted nucléotide, inverted 2'-O-methyl nucléotide, inverted 2'-deoxy nucléotide, 2'-aminomodified nucléotide, 2'-alkyl-modified nucléotide, morpholino nucléotide, vinyl phosphonate-containing nucléotide, cyclopropyl phosphonate-containing nucléotide, and 10 3'-O-methyl nucléotide.
[0226] Embodiment 7. The RNAi agent of Embodiment 5, wherein ail or substantially ail of the nucléotides are modified with 2'-O-methyI nucléotides, 2'-fluoro nucléotides, or combinations thereof
[0227] Embodiment 8. The RNAi agent of any one of Embodiments 1-7, wherein the 15 antisense strand comprises the nucléotide sequence of any one of the modified antisense strand sequences provided in Table 3 or Table 11.
[0228] Embodiment 9. The RNAi agent of any one of Embodiments 1-8, wherein the sense strand comprises the nucléotide sequence of any one of the modified sense strand sequences provided in Table 4 or Table 11.
[0229] Embodiment 10. The RNAi agent of Embodiment 1, wherein the antisense strand comprises the nucléotide sequence of any one of the modified antisense strand sequences provided in Table 3 or Table 11, and the sense strand comprises the nucléotide sequence of any one of the modified sense strand sequences provided in Table 4 or Table 11.
[0230] Embodiment 11. The RNAi agent of any one of Embodiments 1-10, wherein the sense strand is between 18 and 30 nucléotides in length, and the antisense strand is between 18 and 30 nucléotides in length.
[0231] Embodiment 12. The RNAi agent of Embodiment 11, wherein the sense strand and the antisense strand are each between 18 and 27 nucléotides in length.
[0232] Embodiment 13. The RNAi agent of Embodiment 12, wherein the sense strand and the antisense strand are each between 18 and 24 nucléotides in length.
[0233] Embodiment 14. The RNAi agent of Embodiment 13, wherein the sense strand and the antisense strand are each 21 nucléotides in length.
140
[0234] Embodiment 15. The RNAi agent of Embodiment 14, wherein the RNAi agent has two blunt ends.
[0235] Embodiment 16. The RNAi agent of any one of Embodiments 1-15, wherein the sense strand comprises one or two terminal caps.
[0236] Embodiment 17. The RNAi agent of any one of Embodiments 1-16, wherein the sense strand comprises one or two inverted abasic residues.
[0237] Embodiment 18. The RNAi agent of Embodiment 1, wherein the RNAi agent is comprised of a sense strand and an antisense strand that form a duplex having the structure of any one of the duplexes in Table 8A, Table 8B, Table 8C, Table 9, Table 10A, or Table 10B.
[0238] Embodiment 19. The RNAi agent of Embodiment 18, wherein ail or substantially ail of the nucléotides are modified nucléotides.
[0239] Embodiment 20. The RNAi agent of Embodiment 1, wherein the antisense strand consists of, consists essentially of, or comprises a nucléotide sequence that differs by 0 or 1 nucléotides from one of the following nucléotide sequences (5' -> 3'):
UUGUAGUAGUCGCAGAACA (SEQ ID NO:79); or UUCUUGUUCAGGCAAAUCA (SEQ ID NO:83).
[0240] Embodiment 21. The RNAi agent of Embodiment 1, wherein the antisense strand consists of, consists essentially of, or comprises a nucléotide sequence that differs by 0 or 1 nucléotides from one of the following nucléotide sequences (5' -> 3'):
UUGUAGUAGUCGCAGAACAGC (SEQ ID NO: 1525); or UUCUUGUUCAGGCAAAUCAGC (SEQ ID NO:1535).
[0241] Embodiment 22. The RNAi agent of Embodiment 1, wherein the sense strand consists of, consists essentially of, or comprises a nucléotide sequence that differs by 0 or 1 nucléotides from one of the following nucléotide sequences (5' -> 3'):
UGUUCUGCGACUACUACAA (SEQ ID NO:568); or UGAUUUGCCUGAACAAGAA (SEQ ID NO:572).
[0242] Embodiment 23. The RNAi agent of Embodiment 20, 21, or 22, wherein ail or substantially ail of the nucléotides are modified nucléotides
[0243] Embodiment 24. The RNAi agent of Embodiment 1, wherein the antisense strand comprises, consists of, or consists essentially of a modified nucléotide sequence that differs by 0 or 1 nucléotides from one of the following nucléotide sequences (5' 3'):
cPrpusUfsgsUfaGfuAfgUfcGfcAfgAfaCfaGfsc (SEQ ID NO: 1127);
141 usUfsgsUfaGfuAfgUfcGfcAfgAfaCfaGfsc (SEQ ID NO: 1065);
usUfscsuuguucagGfcAfaAfucagsc (SEQ ID NO: 1166); or cPrpuUfcuuguucagGfcAfaAfucagsc (SEQ ID NO: 1191);
wherein a, c, g, and u represent 2'-O-methyl adenosine, 2'-O-methyl cytidine, 2'-O-methyl guanosine, and 2'-O-methyl uridine, respectively; Af, Cf, Gf, and Uf represent 2'-fluoro adenosine, 2'-fluoro cytidine, 2'-fluoro guanosine, and 2'-fluoro uridine, respectively;
cPrpu represents a 5’-cyclopropyl phosphonate-2’-O-methyl uridine; s represents a phosphorothioate linkage; and wherein ail or substantially ail of the nucléotides on the sense strand are modified nucléotides.
[0244] Embodiment 25. The RNAi agent of Embodiment 1, wherein the sense strand comprises, consists of, or consists essentially of a modified nucléotide sequence that differs by 0 or 1 nucléotides from one of the following nucléotide sequences (5' -> 3'): gscuguucuGfCfGfacuacuacaa (SEQ ID NO:1265); or gscugauUfuGfcCfugaacaagaa (SEQ ID NO: 1315);
wherein a, c, g, and u represent 2'-O-methyl adenosine, 2'-O-methyl cytidine, 2'-O-methyl guanosine, and 2'-O-methyl uridine, respectively; Af, Cf, Gf, and Uf represent 2'-fluoro adenosine, 2'-fluoro cytidine, 2'-fluoro guanosine, and 2'rfluoro uridine, respectively; and s represents a phosphorothioate linkage; and wherein ail or substantially ail of the nucléotides on the antisense strand are modified nucléotides.
[0245] Embodiment 26. The RNAi agent of any one of Embodiments 20-25, wherein the sense strand further includes inverted abasic residues at the 3’ terminal end of the nucléotide sequence, at the 5’ end of the nucléotide sequence, or at both.
[0246] Embodiment 27. The RNAi agent of any one of Emdobiments 1 -26, wherein the RNAi agent is linked to a targeting ligand.
[0247] Embodiment 28. The RNAi agent of Embodiment 27, wherein the targeting ligand has affinity for a cell receptor expressed on an épithélial cell.
[0248] Embodiment 29. The RNAi agent of Embodiment 28, wherein the targeting ligand comprises an integrin targeting ligand.
[0249] Embodiment 30. The RNAi agent of Embodiment 29, wherein the integrin targeting ligand is an ανβ6 integrin targeting ligand.
[0250] Embodiment 31. The RNAi agent of Embodiment 30, wherein the targeting ligand comprises the structure:
142
thereof, or
thereof, wherein < indicates the point of connection to the RNAi agent.
[0251] Embodiment 32. The RNAi agent of any one of Embodiments 27-30, wherein
RNAi agent is conjugated to a targeting ligand having the following structure:
pharmaceutically acceptable sait thereof, wherein indicates the point of connection to the RNAi agent.
[0252] Embodiment 33. The RNAi agent of any one of Embodiments 27-30, wherein the targeting ligand has the following structure:
pharmaceutically acceptable sait thereof, wherein « indicates the point of connection to the RNAi agent.
[0253] Embodiment 34. The RNAi agent of any one of Embodiments 27-33, wherein 5 the targeting ligand is conjugated to the sense strand.
[0254] Embodiment 35. The RNAi agent of Embodiment 34, wherein the targeting ligand is conjugated to the 5’ terminal end of the sense strand.
[0255] Embodiment 36. A composition comprising the RNAi agent of any one of Embodiments 1-35, wherein the composition further comprises a pharmaceutically 10 acceptable excipient.
[0256] Embodiment 37. The composition of Embodiment 36, further comprising a second RNAi agent capable of inhibiting the expression of Mucin 5AC gene expression.
[0257] Embodiment 38. The composition of any one of Embodiments 36-37, further comprising one or more additional therapeutics.
[0258] Embodiment 39. The composition of any one of Embodiments 36-38, wherein the composition is formulated for administration by inhalation.
[0259] Embodiment 40. The composition of Embodiment 39, wherein the composition is delivered by a metered-dose inhaler, jet nebulizer, vibrating mesh nebulizer, or soft mist inhaler.
[0260] Embodiment 41. The composition of any of Embodiments 36-40, wherein the
RNAi agent is a sodium sait.
[0261] Embodiment 42. The composition of any of Embodiments 36-41, wherein the pharmaceutically acceptable excipient is water for injection.
[0262] Embodiment 43. The composition of any of Embodiments 36-42, wherein the 25 pharmaceutically acceptable excipient is isotonie saline.
145
[0263] Embodiment 44. A method for inhibiting expression of a MUC5AC gene in a cell, the method comprising introducing into a cell an effective amount of an RNAi agent of any one of Embodiments 1-35 or the composition of any one of Embodiments 36-43.
[0264] Embodiment 45. The method of Embodiment 44, wherein the cell is within a subject.
[0265] Embodiment 46. The method ofEmbodiment 45, wherein the subject is a human subject.
[0266] Embodiment 47. The method of any one of daims 44-46, wherein following the administration of the RNAi agent the Mucin 5AC gene expression is inhibited by at least about 30%.
[0267] Embodiment 48. A method of treating one or more symptoms or diseases associated with MUC5AC protein levels, the method comprising administering to a human subject in need thereof a therapeutically effective amount of the composition of any one of Embodiments 36-43.
[0268] Embodiment 49. The method of Embodiment 48, wherein the disease is a mucoobstructive lung disease.
[0269] Embodiment 50. The method of Embodiment 49, wherein the mucoobstructive lung disease is asthma (including severe asthma), cystic fibrosis (CF), bronchiectasis (NCFB), or chronic obstructive pulmonary disease (COPD).
[0270] Embodiment 51. The method of Embodiment 50, wherein the disease is asthma (including severe asthma).
[0271] Embodiment 52. The method of Embodiment 48, wherein the disease is cancer. [0272] Embodiment 53. The method of Embodiment 52, wherein the cancer is lung adenocarcinoma, pancreatic cancer, salivary gland carcinoma, breast cancer, cholangiocarcinoma, or ovarian cancer.
[0273] Embodiment 54. The method of any one of Embodiments 44-53, wherein the RNAi agent is administered at a pulmonary deposited dose (PDD) of about 0.01 mg/kg to about 5.0 mg/kg of body weight of the subject.
[0274] Embodiment 55. The method of any one of Embodiments 44-53, wherein the RNAi agent is administered at a pulmonary deposited dose (PDD) of about 0.1 mg/kg to about 2.0 mg/kg of body weight of the subject.
146
[0275] Embodiment 56. The method of any one of Embodiments 44-53, wherein the RNAi agent is administered at a respirable delivered dose (RDD) of about 0.01 mg/kg to about 5.0 mg/kg of body weight of the subject.
[0276] Embodiment 57. The method of any one of Embodiments 44-53, wherein the 5 RNAi agent is administered at a respirable delivered dose (RDD) of about 0.1 mg/kg to about 2.0 mg/kg of body weight of the subject.
[0277] Embodiment 58. The method of any of Embodiments 44-57, wherein the RNAi agent is administered in two or more doses.
[0278] Embodiment 59. Use of the RNAi agent of any one of Embodiments 1-35, for 10 the treatment of a disease, disorder, or symptom that is mediated at least in part by Mucin 5AC protein levels.
[0279] Embodiment 60. Use of the composition according to any one of Embodiments 36-43, for the treatment of a disease, disorder, or symptom that is mediated at least in part by Mucin 5AC gene expression.
[0280] Embodiment 61. Use of the composition according to any one of Embodiments
36-43, for the manufacture of a médicament for treatment of a disease, disorder, or symptom that is mediated at least in part by Mucin 5AC gene expression.
[0281] Embodiment 62. The use of any one of Embodiments 59-61, wherein the disease is asthma (including severe asthma).
[0282] Embodiment 63. A method of making an RNAi agent of any one of
Embodiments 1-35, comprising annealing a sense strand and an antisense strand to form a double-stranded ribonucleic acid molécule.
[0283] Embodiment 64. The method of Embodiment 63, wherein the sense strand comprises a targeting ligand.
[0284] Embodiment 65. The method of Embodiment 64, comprising conjugating a targeting ligand to the sense strand.
[0285] Embodiment 66. An RNAi agent for inhibiting expression of a Mucin 5AC gene, comprising:
an antisense strand comprising at least 15 contiguous nucléotides differing by 0, 1, 2, or 3 nucléotides from any one of the sequences provided in Table 2, Table 3, or Table 11; and a sense strand comprising a nucléotide sequence that is at least partially complementary to the antisense strand.
147
[0286] Embodiment 67. An RNAi agent for inhibiting expression of a Mucin 5AC (MUC5AC) gene, comprising:
an antisense strand comprising at least 15 contiguous nucléotides differing by 0, 1, 2, or 3 nucléotides from any one ofthe sequences disclosed in Table 2 or Table 3; and a sense strand comprising a nucléotide sequence that is at least partially complementary to the antisense strand.
[0287] Embodiment 68. An RNAi agent for inhibiting expression of a Mucin 5AC (MUC5AC) gene, comprising:
a sense strand comprising at least 15 contiguous nucléotides differing by 0, 1, 2, or 3 nucléotides from a stretch of the same length of nucléotides of SEQ ID NO: 1 ; and an antisense strand comprising a nucléotide sequence that is at least partially complementary to the sense strand.
[0288] Embodiment 69. An inhibitor of a MUC5AC gene comprising an antisense nucléotide sequence having at least 15 contiguous nucléotides differing by 0, 1, 2, or 3 nucléotides that are complementary to any of the target nucléotide sequences in Table 1. [0289] Embodiment 70. An RNAi agent comprising (i) an antisense strand comprising a nucléotide sequence having at least 15 contiguous nucléotides differing by 0, 1, 2, or 3 nucléotides from any of the nucléotide sequences in Table 2, Table 3 or Table 11, and (ii) a sense strand at least partially complementary to the antisense strand.
[0290] Embodiment 71. An RNAi agent comprising (i) an antisense strand comprising, consisting of, or consisting essentially of a nucléotide sequence from any of the antisense strand nucléotide sequences in Table 2, Table 3 or Table 11, and (ii) a sense strand comprising, consisting of, or consisting essentially of a nucléotide sequence from any of the sense strand nucléotide sequences in Table 2, Table 4, Table 5, Table 6, Table 7, or
Table 11.
[0291] Embodiment 72. An RNAi agent comprising an antisense strand and sense strand annealed to form a duplex, wherein the duplex has the structure of any of the duplexes set forth in Table 8A, Table 8B, Table 8C, Table 9, Table 10, or Table 11.
[0292] Embodiment 73. An RNAi agent for inhibiting expression of a Mucin 5AC gene, comprising:
an antisense strand comprising at least 17 contiguous nucléotides differing by 0 or 1 nucléotides from any one of the sequences provided in Table 2 or Table 3; and
148 a sense strand comprising a nucléotide sequence that is at least partially complementary to the antisense strand, wherein optionally ail or substantially ail of the nucléotides of the sense strand and the antisense strand modified nucléotides, and wherein the sense strand is optionally linked to 5 a targeting ligand.
[0293] The above provided embodiments and items are now illustrated with the following, non-limiting examples.
149
Examples
Example 1. Synthesis of MUC5ACRNAi Agents.
[0294] MUC5AC RNAi agent duplexes disclosed herein were synthesized in accordance with the following:
[0295] A. Synthesis. The sense and antisense strands of the MUC5AC RNAi agents were synthesized according to phosphoramidite technology on solid phase used in oligonucleotide synthesis. Depending on the scale, a MerMade96E® (Bioautomation), a MerMadel2® (Bioautomation), or an OP Pilot 100 (GE Healthcare) was used. Synthèses were performed on a solid support made of controlled pore glass (CPG, 500 Â or 600Â, obtained from Prime Synthesis, Aston, PA, USA). Ail RNA and 2'-modified RNA phosphoramidites were purchased from Thermo Fisher Scientifïc (Milwaukee, WI, USA). Specifïcally, the 2'-O-methyl phosphoramidites that were used included the following: (5'O-dimethoxytrityl-N6-(benzoyl)-2'-O-methyl-adenosine-3'-O-(2-cyanoethyl-N,Ndiisopropylamino) phosphoramidite, 5'-O-dimethoxy-trityl-N4-(acetyl)-2'-O-methylcytidine-3'-O-(2-cyanoethyl-N,N-diisopropyl-amino) phosphoramidite, (5'-Odimethoxytrityl-N2-(isobutyryl)-2'-O-methyl-guanosine-3'-O-(2-cyanoethyl-N,Ndiisopropylamino) phosphoramidite, and 5'-O-dimethoxytrityl-2'-O-methyl-uridine-3'-O-(2cyanoethyl-N,N-diisopropylamino) phosphoramidite. The 2'-deoxy-2'-fluorophosphoramidites carried the same protecting groups as the 2'-O-methyl RNA amidites. 5'-dimethoxytrityl-2'-O-methyI-inosine-3'-O-(2-cyanoethyl-N,N-diisopropylamino) phosphoramidites were purchased from Glen Research (Virginia). The inverted abasic (3'-Odimethoxytrityl-2'-deoxyribose-5'-O-(2-cyanoethyl-N,N-diisopropylamino) phosphoramidites were purchased from ChemGenes (Wilmington, MA, USA). The following UNA phosphoramidites were used: 5'-(4,4'-Dimethoxytrityl)-N6-(benzoyl)-2',3'-seco-adenosine, 2'-benzoyl-3'-[(2-cyanoethyl)-(N,N-diisopropyl)]-phosphoramidite, 5'-(4,4'-Dimethoxytrityl)-N-acetyl-2',3'-seco-cytosine, 2'-benzoyl-3'-[(2-cyanoethyl)(N,N-diiso-propyl)]-phosphoramidite, 5'-(4,4'-Dimethoxytrityl)-N-isobutyryl-2',3'-secoguanosine, 2'-benzoyl-3'-[(2-cyanoethyl)-(N,N-diisopropyl)]-phosphoramidite, and 5'(4,4'-Dimethoxy-trityl)-2',3'-seco-uridine, 2'-benzoyl-3'-[(2-cyanoethyl)-(N,N- diisopropyl)]-phosphoramidite. TFA aminolink phosphoramidites were also commercially purchased (ThermoFisher). Linker L6 was purchased as propargyI-PEG5-NHS from BroadPharm (catalog # BP-20907) and coupled to the NH2-C6 group from an aminolink phosphoramidite to form -L6-C6-, using standard coupling conditions. The linker Alk21427
150 cyHex was similarly commercially purchased from Lumiprobe (alkyne phosphoramidite,
5’-terminal) as a propargyl-containing compound phosphoramidite compound to form the linker -Alk-cyHex-, In each case, phosphorothioate linkages were introduced as specified using the conditions set forth herein. The cyclopropyl phosphonate phosphoramidites were synthesized in accordance with International Patent Application Publication No. WO 2017/214112 (see also Altenhofer et. al., Chem. Communications (Royal Soc. Chem.), 57(55):6808-6811 (2021)).
[0296] Tri-alkyne-containing phosphoramidites were dissolved in anhydrous dichloromethane or anhydrous acetonitrile (50 mM), while ail other amidites were dissolved in anhydrous acetonitrile (50 mM) and molecular sieves (3Â) were added. 5Benzylthio-lH-tetrazole (BTT, 250 mM in acetonitrile) or 5-Ethylthio-lH-tetrazole (ETT, 250 mM in acetonitrile) was used as activator solution. Coupling times were 10 minutes (RNA), 90 seconds (2' Ο-Me), and 60 seconds (2' F). In order to introduce phosphorothioate linkages, a 100 mM solution of 3-phenyl l,2,4-dithiazoline-5-one (POS, obtained from PolyOrg, Inc., Leominster, MA, USA) in anhydrous acetonitrile was employed.
[0297] Alternatively, tri-alkyne moieties were introduced post-synthetically (see section E, below). For this route, the sense strand was functionalized with a 5' and/or 3' terminal nucléotide containing a primary amine. TFA aminolink phosphoramidite was dissolved in anhydrous acetonitrile (50 mM) and molecular sieves (3Â) were added. 5-Benzylthio-lHtetrazole (BTT, 250 mM in acetonitrile) or 5-Ethylthio-lH-tetrazole (ETT, 250 mM in acetonitrile) was used as activator solution. Coupling times were 10 minutes (RNA), 90 seconds (2' Ο-Me), and 60 seconds (2' F). In order to introduce phosphorothioate linkages, a 100 mM solution of 3-phenyl l,2,4-dithiazoline-5-one (POS, obtained from PolyOrg, Inc., Leominster, MA, USA) in anhydrous acetonitrile was employed.
[0298] B. Cleavage and deprotection of support bound oligomer. Aliter finalization of the solid phase synthesis, the dried solid support was treated with a 1:1 volume solution of 40 wt. % methylamine in water and 28% to 31 % ammonium hydroxide solution (Aldrich) for 1.5 hours at 30°C. The solution was evaporated and the solid residue was reconstituted in water (see below).
[0299] C. Purification. Crude oligomers were purified by anionic exchange HPLC using a TSKgel SuperQ-5PW 13pm column and Shimadzu LC-8 System. Buffer A was 20 mM Tris, 5 mM EDTA, pH 9.0 and contained 20% Acetonitrile and buffer B was the same
151
as buffer A with the addition of 1.5 M sodium chloride. UV traces at 260 nm were recorded. Appropriate fractions were pooled then run on size exclusion HPLC using a GE Healthcare XK 16/40 column packed with Sephadex G-25 fine with a running buffer of lOOmM ammonium bicarbonate, pH 6.7 and 20% Acetonitrile or filtered water.
Alternatively, pooled fractions were desalted and exchanged into an appropriate buffer or solvent System via tangential flow filtration.
[0300] D. Annealing. Complementary strands were mixed by combining equimolar RNA solutions (sense and antisense) in lx PBS (Phosphate-Buffered Saline, lx, Corning, Cellgro) to form the RNAi agents. Some RNAi agents were lyophilized and stored at -15 10 to -25°C. Duplex concentration was determined by measuring the solution absorbance on a UV-Vis spectrometer in lx PBS. The solution absorbance at 260 nm was then multiplied by a conversion factor (0.050 mg/(mL-cm)) and the dilution factor to détermine the duplex concentration.
[0301] E. Conjugation ofTri-alkyne linker. In some embodiments a tri-alkyne linker 15 is conjugated to the sense strand of the RNAi agent on resin as a phosphoramidite (see
Example IG for the synthesis of an example tri-alkyne linker phosphoramidite and Example IA for the conjugation of the phosphoramidite.). In other embodiments, a trialkyne linker may be conjugated to the sense strand following cleavage from the resin, described as follows: either prior to or after annealing, in some embodiments, the 5' or 3' amine functionalized sense strand is conjugated to a tri-alkyne linker. An example trialkyne linker structure that can be used in forming the constructs disclosed herein is as
vO follows: . To conjugate the tri-alkyne linker to the annealed duplex, amine-functionalized duplex was dissolved in 90% DMSO/10% H2O, at -50-70 mg/mL. 40 équivalents triethylamine was added, followed by 3
152
équivalents tri-alkyne-PNP. Once complété, the conjugate was precipitated twice in a solvent System of lx phosphate buffered saline/acetonitrile (1:14 ratio), and dried.
[0302] F. Synthesis of Targeting Ligand SM6.1 ((S)-3-(4-(4-((14-azido-3,6,9,12-tetraoxatetradecvI)oxv)naDhthalen-l-vl)phenvl)-3-(25 (4-((4-methvlpvridin-2-vl)amino)butanamido)acetamido)propanoic acid)
[0303] Compound 5 (tert-Butyl(4-methylpyridin-2-yl)carbamate) (0.501 g, 2.406 mmol, 1 equiv.) was dissolved in DMF (17 mL). To the mixture was added NaH (0.116 mg, 3.01 mmol, 1.25 eq, 60 % dispersion in oil) The mixture stirred for 10 min before adding
Compound 20 (Ethyl 4-Bromobutyrate (0.745 g, 3.82 mmol, 0.547 mL)) (Sigma 167118). After 3 hours the reaction was quenched with éthanol (18 mL) and concentrated. The concentrate was dissolved in DCM (50 mL) and washed with saturated aq. NaCl solution (1 x 50 mL), dried over NaiSCù, filtered and concentrated. The product was purified on silica column, gradient 0-5% Methanol in DCM.
OH
[0304] Compound 21 was dissolved (0.80 g, 2.378 mmol) in 100 mL of Acetone : 0.1 M NaOH [1:1]. The reaction was monitored by TLC (5% ethyl acetate in hexane). The organics were concentrated away, and the residue was acidified to pH 3-4 with 0.3 M Citric Acid (40 mL). The product was extracted with DCM (3 x 75 mL). The organics were pooled, dried over NazSCL, filtered and concentrated. The product was used without further purification.
153
[0305] To a solution of Compound 22 (1.1 g, 3.95 mmol, 1 equiv.), Compound 45 (595 mg, 4.74 mmol, 1.2 equiv.), and TBTU (1.52 g, 4.74 mmol, 1.2 equiv.) in anhydrous DMF (10 mL) was added diisopropylethylamine (2.06 mL, 11.85 mmol, 3 equiv.) at 0 °C. The reaction mixture was warmed to room température and stirred 3 hours. The reaction was quenched by saturated NaHCCh solution (10 mL). The aqueous phase was extracted with ethyl acetate (3 x 10 mL) and the organic phase was combined, dried over anhydrous Na2SO4, and concentrated. The product was separated by CombiFlash® using silica gel as the stationary phase. LC-MS: calculated [M+H]+ 366.20, found 367.
[0306] To a solution of compound 61 (2 g, 8.96 mmol, 1 equiv.), and compound 62 (2.13 mL, 17.93 mmol, 2 equiv.) in anhydrous DMF (10 mL) was added K2CO3 (2.48 g, 17.93 mmol, 2 equiv.) at 0 °C. The reaction mixture was warmed to room température and stirred ovemight. The reaction was quenched by water (10 mL). The aqueous phase was extracted 15 with ethyl acetate (3x10 mL) and the organic phase was combined, dried over anhydrous
Na2SO4, and concentrated. The product was separated by CombiFlash® using silica gel as the stationary phase.
[0307] To a solution of compound 60 (1.77 g, 4.84 mmol, 1 equiv.) in THF (5 mL) and H2O (5 mL) was added lithium hydroxide monohydrate (0.61 g, 14.53 mmol, 3 equiv.) portionwise at 0 °C. The reaction mixture was warmed to room température. After stirring at room
154 température for 3 hours, the reaction mixture was acidified by HCl (6 N) to pH 3.0. The aqueous phase was extracted with ethyl acetate (3 x 20 mL) and the organic layer was combined, dried over NaiSCU, and concentrated. LC-MS: calculated [M+H]+ 352.18, found
352.
[0308] To a solution of compound 63 (1.88 g, 6.0 mmol, 1.0 equiv.) in anhydrous THF (20 mL) was added n-BuLi in hexane (3.6 mL, 9.0 mmol, 1.5 equiv.) drop-wise at -78 °C. The reaction was kept at -78 °C for another 1 hour. Triisopropylborate (2.08 mL, 9.0 mmol, 1.5 equiv.) was then added into the mixture at -78 °C. The reaction was then warmed up to room température and stirred for another 1 hour. The reaction was quenched by saturated NH4CI solution (20 mL) and the pH was adjusted to 3. The aqueous phase was extracted with EtOAc (3 x 20 mL) and the organic phase was combined, dried over NazSCfi, and concentrated.
[0309] Compound 12 (300 mg, 0.837 mmol, 1.0 equiv.), Compound 65 (349 mg, 1.256 mmol, 1.5 equiv.), XPhos Pd G2 (13 mg, 0.0167 mmol, 0.02 equiv.), and K3PO4 (355 mg, 1.675mmol, 2.0 equiv.) were mixed in a round-bottom flask. The flask was sealed with a screw-cap septum, and then evacuated and backfïlled with nitrogen (this process was repeated a total of 3 times). Then, THF (8 mL) and water (2 mL) were added via syringe.
The mixture was bubbled with nitrogen for 20 min and the reaction was kept at room
155
température for ovemight. The reaction was quenched with water (10 mL), and the aqueous phase was extracted with ethyl acetate (3x10 mL). The organic phase was dried over Na2SÛ4, concentrated, and purified via CombiFlash® using silica gel as the stationary phase and was eluted with 15% EtOAc in hexane. LC-MS: calculated [M+H]+ 512.24, found
512.56.
67
[0310] Compound 66 (858 mg, 1.677 mmol, 1.0 equiv.) was cooled by ice bath. HCl in dioxane (8.4 mL, 33.54 mmol, 20 equiv.) was added into the flask. The reaction was warmed to room température and stirred for another 1 hr. The solvent was removed by rotary evaporator and the product was directly used without further purification. LC-MS:
[0311] To a solution of compound 64 (500 mg, 1.423 mmol, 1 equiv.), compound 67 (669 mg, 1.494 mmol, 1.05 equiv.), and TBTU (548 mg, 0.492 mmol, 1.2 equiv.) in anhydrous 15 DMF (15 mL) was added diisopropylethylamine (0.744 mL, 4.268 mmol, 3 equiv.) at 0 °C.
The reaction mixture was warmed to room température and stirred for another 1 hr. The reaction was quenched by saturated NaHCCh aqueous solution ( 10 mL) and the product was extracted with ethyl acetate (3 x 20 mL). The organic phase was combined, dried over
156
Na2SÛ4, and concentrated. The product was purified by CombiFlash® using silica gel as the stationary phase and was eluted with 3-4% methanol in DCM. The yield was 96.23%. LC-MS: calculated [M+H]+ 745.35, found 746.08.
[0312] To a solution of compound 68 (1.02 g, 1.369 mmol, 1 equiv.) in ethyl acetate (10 mL) was added 10% Pd/C (0.15 g, 50% H2O) at room température. The reaction mixture was warmed to room température and the reaction was monitored by LC-MS. The reaction was kept at room température ovemight. The solids were filtered through Celite® and the solvent was removed by rotary evaporator. The product was directly used without further purification. LC-MS: [M+H]+ 655.31, found 655.87.
[0313] To a solution of compound 69 (100 mg, 0.152 mmol, 1 equiv.) and azido-PEGs-OTs (128 mg, 0.305 mmol, 2 equiv.) in anhydrous DMF (2 mL) was added K2CO3 (42 mg, 0.305 mmol, 2 equiv.) at 0 °C. The reaction mixture was stirred for 6 hours at 80 °C. The reaction was quenched by saturated NaHCCh solution and the aqueous layer was extracted with ethyl acetate (3x10 mL). The organic phase was combined, dried over ISkzSCU, and concentrated. LC-MS: calculated [M+H]+ 900.40, found 901.46.
157
[0314] To a solution of compound 72 (59 mg, 0.0656 mmol, 1.0 equiv.) in THF (2 mL) and water (2 mL) was added lithium hydroxide (5 mg, 0.197 mmol, 3.0 equiv.) at room température. The mixture was stirred at room température for another 1 hr. The pH was adjusted to 3.0 by HCl (6N) and the aqueous phase was extracted with EtOAc (3x10 mL). The organic phase was combined, dried over NazSCU, and concentrated. TFA (0.5 mL) and DCM (0.5 mL) was added into the residue and the mixture was stirred at room température for another 3 hr. The solvent was removed by rotary evaporator. LC-MS: calculated [M+H]+ 786.37, found 786.95.
[0315] G. Synthesis ofTriAlk 14
[0316] TriAlkl4 and (TriAlkl4)s as shown in Table 12, above, may be synthesized using the synthetic route shown below. Compound 14 may be added to the sense strand as a phosphoramidite using standard oligonucleotide synthesis techniques, or compound 22 may be conjugated to the sense strand comprising an amine in an amide coupling reaction.
[0317] To a 3-L jacketed reactor was added 500 mL DCM and 4 (75.0 g, 0.16 mol). The internai température of the reaction was cooled to 0 °C and TBTU (170.0 g, 0.53 mol) was added. The suspension was then treated with the amine 5 (75.5 g, 0.53 mol) dropwise keeping the internai température less than 5 °C. The reaction was then treated with DIPEA (72.3 g, 0.56 mol) slowly, keeping the internai température less than 5 °C. After the addition was complété, the reaction was warmed up to 23 °C over 1 hour, and allowed to
158
stir for 3 hours. A 10% kicker charge of ail three reagents were added and allowed to stir an additional 3 hoùrs. The reaction was deemed complété when <1% of 4 remained. The reaction mixture was washed with saturated ammonium chloride solution (2 x 500 mL) and once with saturated sodium bicarbonate solution (500 mL). The organic layer was then dried over sodium sulfate and concentrated to an oil. The mass of the crude oil was 188 g which contained 72% 6 by QNMR. The crude oil was carried to the next step. Calculated mass for C46H60N4O11 = 845.0 m/z. Found [M+H] = 846.0.
[0318] The 121.2 g of crude oil containing 72 wt% compound 6 (86.0 g, 0.10 mol) was dissolved in DMF (344 mL) and treated with TEA (86 mL, 20 v/v%), keeping the internai température below 23 °C. The formation of dibenzofulvene (DBF) relative to the consumption of Fmoc-amine 6 was monitored via HPLC method 1 (Figure 2) and the reaction was complété within 10 hours. To the solution was added glutaric anhydride (12.8 g, 0.11 mol) and the intermediate amine 7 was converted to compound 8 within 2 hours.
Upon completion, the DMF and TEA were removed at 30 °C under reduced pressure resulting in 100 g of a crude oil. Due to the high solubility of compound 7 in water, an aqueous workup could not be used, and chromatography is the only way to remove DBF, TMU, and glutaric anhydride. The crude oil (75 g) was purified on a Teledyne ISCO Combi-flash® purification System in three portions. The crude oil (25 g) was loaded onto a 330 g silica column and eluted from 0 - 20% methanol/DCM over 30 minutes resulting
159
in 42 g of compound 8 (54% yield over 3 steps). Calculated mass for C36H55N4O12 = 736.4 m/z. Found [M+H] = 737.0.
Compound 22
[0319] Compound 8 (42.0 g, 0.057 mol) was co-stripped with 10 volumes of acetonitrile prior to use to remove any residual methanol from chromatography solvents. The oil was redissolved in DMF (210 mL) and cooled to 0 °C. The solution was treated with 4nitrophenol (8.7 g, 0.063 moL) followed by EDC-hydrochloride (12.0 g, 0.063 mol) and found to reach completion within 10 hours. The solution was cooled to 0 °C and 10 volumes ethyl acetate was added followed by 10 volumes saturated ammonium chloride solution, keeping the internai température below 15 °C. The layers were allowed to separate and the ethyl acetate layer was washed with brine. The combined aqueous layers were extracted twice with 5 volumes ethyl acetate. The combined organic layers were dried over sodium sulfate and concentrated to an oil. The crude oil (55 g) was purified on a Teledyne ISCO Combi-Flash® purification System in three portions. The crude oil (25
g) was loaded onto a 330 g silica column and eluted from 0 - 10% methanol/DCM over 30 minutes resulting in 22 g of pure 9 (Compound 22) (50% yield). Calculated mass for C42H59N5O14 = 857.4 m/z. Found [M+H] = 858.0.
[0320] A solution of ester 9 (49.0 g, 57.1 mmol) and 6-amino-l-hexanol (7.36 g, 6.28 mmol) in dichloromethane (3 volumes) was treated with triethylamine (11,56g, 111.4 mmol) dropwise. The reaction was monitored by observing the disappearance of
160
compound 9 on HPLC Method 1 and was found to be complété in 10 minutes. The crude reaction mixture was diluted with 5 volumes dichloromethane and washed with saturated ammonium chloride (5 volumes) and brine (5 volumes). The organic layer was dried over sodium sulfate and concentrated to an oil. The crude oil was purified on a Teledyne ISCO
Combi-flash® purification System using a 330 g silica column. The 4-nitrophenol was eluted with 100% ethyl acetate and 10 was flushed from the column using 20% methanol/DCM resulting in a colorless oil (39 g, 81% yield). Calculated mass for C42H69N5O12 = 836.0 m/z. Found [M+H] = 837.0.
[0321] Alcohol 10 was co-stripped twice with 10 volumes of acetonitrile to remove any residual methanol from chromatography solvents and once more with dry dichloromethane (KF < 60 ppm) to remove trace water. The alcohol 10 (2.30 g, 2.8 mmol) was dissolved in 5 volumes dry dichloromethane (KF <50 ppm) and treated with diisopropylammonium tetrazolide (188 mg, 1.1 mmol). The solution was cooled to 0 °C and treated with 215 cyanoethyl Ν,Ν,Ν’,Ν’-tetraisopropylphosphoramidite (1.00 g, 3.3 mmol) dropwise. The solution was removed from ice-bath and stirred at 20 °C. The reaction was found to be complété within 3-6 hours. The reaction mixture was cooled to 0 °C and treated with 10 volumes of a 1:1 solution of saturated ammonium bicarbonate/brine and then warmed to ambient over 1 minute and allowed to stir an additional 3 minutes at 20 °C. The biphasic mixture was transferred to a separatory funnel and 10 volumes of dichloromethane was added. The organic layer was separated and washed with 10 volumes of saturated sodium bicarbonate solution to hydrolyze unreacted bis-phosphorous reagent. The organic layer was dried over sodium sulfate and concentrated to an oil resulting in 3.08 g of 94 wt% Compound 14. Calculated mass for C51H86N7O13P = 1035.6 m/z. Found [M+H] = 1036.
[0322] H. Conjugation ofTargeting Ligands. Either prior to or after annealing, the 5' or 3' tridentate alkyne functionalized sense strand is conjugated to targeting ligands. The following example describes the conjugation of targeting ligands to the annealed duplex: Stock solutions of 0.5M Tris(3-hydroxypropyltriazolylmethyl)amine (THPTA), 0.5M of Cu(II) sulfate pentahydrate (Cu(II)SO4 · 5H2O) and 2M solution of sodium ascorbate were
161 prepared in deionized water. A 75 mg/mL solution in DMSO of targeting ligand was made. In a 1.5 mL centrifuge tube containing tri-alkyne functionalized duplex (3mg, 75pL, 40mg/mL in deionized water, -15,000 g/mol), 25 pL of IM Hepes pH 8.5 buffer is added. After vortexing, 35 pL of DMSO was added and the solution is vortexed.
Targeting ligand was added to the reaction (6 equivalents/duplex, 2 equivalents/alkyne, ~15pL) and the solution is vortexed. Using pH paper, pH was checked and confirmed to be pH -8. In a separate 1.5 mL centrifuge tube, 50 pL of 0.5M THPTA was mixed with lOuL of 0.5M Cu(II)SO4 · 5H2O, vortexed, and incubated at room temp for 5 min. After 5 min, THPTA/Cu solution (7.2 pL, 6 équivalents 5:1 THPTA:Cu) was added to the reaction vial, and vortexed. Immediately afterwards, 2M ascorbate (5 pL, 50 équivalents per duplex, 16.7 per alkyne) was added to the reaction vial and vortexed. Once the reaction was complété (typically complété in 0.5-lh), the reaction was immediately purified by non-denaturing anion exchange chromatography.
Example 2. In Vitro Testing of MUC5ACRNAi Agents.
[0323] Certain chemically modified candidate sequence duplexes shown Table 8C above (with the antisense strand sequence set forth in Table 3 and the nucléotide and end cap portion of the sense strand found in Table 6), were tested in vitro. The MUC5AC RNAi agents were prepared in accordance with the procedures set forth in Example 1.
[0324] Evaluation of MUC5AC RNAi agents in vitro was performed by transfection of
A549 cells, a human lung épithélial cell line. Cells were plated at -7,500 cells per well in 96-well format, and each of the RNAi agent duplexes shown in Table 12 was transfected at three concentrations (10 nM, 1 nM, and 0.1 nM), using LipoFectamine RNAiMax (Thermo Fisher) transfection reagent. Relative expression of each of the MUC5AC RNAi agents was determined by qRT-PCR by comparing the expression levels of MUC5AC mRNA to an endogenous control, and normalized to untreated A549 cells (AACt analysis), as shown in Table 12.
[0325] Table 12, below, lists the AD duplex number for the sequence being examined, as well as in parenthesis the gene position being targeted by that particular RNAi agent. Thus, 30 for example, for Duplex ID AD08101, average relative expression at 1 nM of 0.377 shows
MUC5AC gene knockdown of 62.3%, and average relative expression at 0.1 nM shows inhibition of 53.0% (0.470) normalized to untreated wells (mock control).
[0326] Table 13. In Vitro Testing ofMUC5AC RNAi Agents.
Duplex ID No. Avg. Rel. Exp. 10 nM High (error) Low (error) Avg. Rel. Exp. 1 nM High (error) Low (error) Avg. Rel. Exp. 0.1 nM High (error) Low (error)
AD08101 (11014 1) 0.230 0.042 0.051 0.377 0.049 0.056 0.470 0.056 0.064
AD08666 (4993 2) 0.258 0.047 0.058 0.394 0.068 0.082 0.474 0.102 0.131
AD08668 (4993 4) 0.228 0.052 0.068 0.401 0.065 0.078 0.554 0.181 0.270
AD07732 (3099 1) 0.240 0.057 0.075 0.427 0.083 0.103 0.527 0.087 0.105
AD08100 (10206 1) 0.286 0.031 0.035 0.382 0.048 0.054 0.550 0.081 0.096
AD08103 (12965 1) 0.198 0.063 0.092 0.439 0.079 0.097 0.656 0.086 0.099
AD07734 (5347 1) 0.186 0.047 0.062 0.515 0.089 0.107 0.614 0.085 0.099
AD07634 (3535 1) 0.161 0.025 0.030 0.423 0.046 0.051 0.769 0.129 0.154
AD08671 (4992 2) 0.353 0.047 0.054 0.416 0.078 0.096 0.588 0.068 0.077
AD07763 (610 1) 0.138 0.034 0.046 0.432 0.065 0.077 0.826 0.149 0.182
AD08667 (4993 3) 0.293 0.056 0.069 0.427 0.051 0.057 0.677 0.151 0.195
AD07733 (4993 1) 0.253 0.031 0.036 0.501 0.084 0.102 0.655 0.123 0.152
AD08669 (4993 5) 0.302 0.037 0.042 0.461 0.057 0.065 0.658 0.083 0.094
AD08673 (4992 4) 0.369 0.061 0.073 0.468 0.060 0.069 0.624 0.070 0.079
AD07774 (2797 1) 0.182 0.053 0.074 0.565 0.088 0.104 0.860 0.099 0.112
Duplex ID No. Avg. Rel. Exp. 10 nM High (error) Low (error) Avg. Rel. Exp. 1 nM High (error) Low (error) Avg. Rel. Exp. 0.1 nM High (error) Low (error)
AD07735 (5350 1) 0.288 0.037 0.043 0.565 0.097 0.117 0.774 0.071 0.078
AD08670 (4993 6) 0.360 0.033 0.036 0.513 0.072 0.084 0.814 0.198 0.261
AD07637 (5300 1) 0.539 0.061 0.069 0.606 0.057 0.063 0.674 0.051 0.055
AD08571 (15051 1) 0.250 0.039 0.047 0.612 0.046 0.050 0.978 0.089 0.099
AD08572 (15052 7) 0.389 0.052 0.059 0.688 0.080 0.091 0.819 0.098 0.112
AD08568 (3910 1) 0.448 0.069 0.082 0.661 0.080 0.091 0.789 0.082 0.092
AD08569 (5029 9) 0.282 0.034 0.038 0.666 0.096 0.113 0.978 0.046 0.048
AD08573 (15052 8) 0.398 0.027 0.029 0.736 0.069 0.076 0.814 0.118 0.138
AD08096 (4992 1) 0.359 0.040 0.045 0.621 0.076 0.086 1.008 0.080 0.087
AD08672 (4992 3) 0.432 0.052 0.059 0.669 0.057 0.063 0.925 0.040 0.042
AD07756 (1618 1) 0.372 0.064 0.078 0.693 0.053 0.058 1.082 0.146 0.169
AD07773 (2536 1) 0.446 0.042 0.046 0.837 0.117 0.136 0.935 0.153 0.183
AD07760 (2001 1) 0.379 0.059 0.070 0.806 0.141 0.171 1.096 0.151 0.175
AD07771 (2004 1) 0.389 0.032 0.035 0.872 0.093 0.104 1.205 0.161 0.185
Mock Control 1.000 0.164 0.197 1.000 0.164 0.197 1.000 0.164 0.197
164
Example3. In Vitro Testing of MUC5ACRNAi Agents.
[0327] Certain chemically modified candidate sequence duplexes shown Table 8C above (with the antisense strand sequence set forth in Table 3 and the nucléotide and end cap portion of the sense strand found in Table 6), were tested in vitro. The MUC5AC RNAi 5 agents were prepared in accordance with the procedures set forth in Example 1.
[0328] Evaluation of MUC5AC RNAi agents in vitro was performed by transfection of A549 cells, a human lung épithélial cell line. Cells were plated at -7,500 cells per well in 96-well format, and each of the RNAi agent duplexes shown in Table 12 was transfected at three concentrations (10 nM, 1 nM, and 0.1 nM), using LipoFectamine RNAiMax (Thermo 10 Fisher) transfection reagent. Relative expression of each of the MUC5AC RNAi agents was determined by qRT-PCR by comparing the expression levels of MUC5AC mRNA to an endogenous control, and normalized to untreated A549 cells (AACt analysis), as shown in Table 12. '
[0329] Table 12, below, lists the AD duplex number for the sequence being examined, as 15 well as in parenthesis the gene position being targeted by that particular RNAi agent. Thus, for example, for Duplex ID AD08101, average relative expression at 1 nM of 0.377 shows MUC5AC gene knockdown of 62.3%, and average relative expression at 0.1 nM shows inhibition of 53.0% (0.470) normalized to untreated wells (mock control).
[0330] Table 14. In Vitro Testing ofMUC5AC RNAi Agents.
Duplex IDNo. Avg. Rel. Exp. 10 nM High (error) Low (error) Avg. Rel. Exp. 1 nM High (error) Low (error) Avg. Rel. Exp. 0.1 nM High (error) Low (error)
AD07733 (4993 1) 0.156 0.047 0.067 0.192 0.030 0.035 0.336 0.024 0.026
AD08096 (4992 1) 0.171 0.022 0.026 0.275 0.035 0.040 0.406 0.027 0.028
AD07767 (1758 1) 0.140 0.019 0.022 0.195 0.097 0.193 0.536 0.226 0.392
AD08103 (12965 1) 0.197 0.057 0.080 0.276 0.042 0.050 0.409 0.046 0.052
AD08098 (8739 1) 0.172 0.032 0.039 0.259 0.076 0.109 0.466 0.042 0.046
AD07763 (610 1) 0.094 0.024 0.032 0.293 0.033 0.037 0.514 0.026 0.027
AD08100 (10206 1) 0.242 0.046 0.056 0.260 0.051 ’ 0.064 0.417 0.041 0.045
AD08101 (11014 1) 0.236 0.054 0.071 0.322 0.044 0.052 0.364 0.039 0.043
AD07751 (5533 1) 0.161 0.058 0.091 0.335 0.051 0.061 0.536 0.035 0.037
AD07634 (3535 1) 0.159 0.034 0.043 0.385 0.035 0.039 0.507 0.061 0.069
AD07770 (1867 1) 0.114 0.022 0.028 0.377 0.041 0.046 0.599 0.059 0.066
AD07747 (5020 1) 0.347 0.057 0.069 0.330 0.042 0.049 0.413 0.033 0.036
AD07749 (5441 1) 0.365 0.061 0.073 0.337 0.017 0.018 0.464 0.060 0.068
AD08095 (1871 1) 0.204 0.024 0.027 0.380 0.064 0.077 0.624 0.046 0.049
AD08097 (6798 1) 0.364 0.056 0.066 0.384 0.068 0.083 0.511 0.061 0.069
Duplex ID No. Avg. Rel. Exp. 10 nM High (error) Low (error) Avg. Rel. Exp. 1 nM High (error) Low (error) Avg. Rel. Exp. 0.1 nM High (error) Low (error)
AD07750 (5519 1) 0.432 0.063 0.074 0.240 0.073 0.105 0.589 0.056 0.062
AD07774 (2797 1) 0.168 0.031 0.038 0.432 0.072 0.087 0.679 0.040 0.042
AD07732 (3099 1) 0.352 0.056 0.067 0.402 0.147 0.231 0.535 0.154 0.217
AD07764 (923 1) 0.424 0.080 0.099 0.431 0.051 0.057 0.505 0.048 0.052
AD07771 (2004 1) 0.367 0.064 0.077 0.493 0.090 0.109 0.597 0.078 0.090
AD07748 (5042 1) 0.518 0.131 0.176 0.413 0.078 0.095 0.559 0.068 0.077
AD07768 (1761 1) 0.278 0.039 0.046 0.561 0.084 0.099 0.728 0.041 0.043
AD07756 (1618 1) 0.522 0.081 0.096 0.464 0.081 0.099 0.708 0.052 0.056
AD07772 (2234 1) 0.476 0.055 0.062 0.588 0.057 0.063 0.654 0.070 0.078
AD07773 (2536 1) 0.498 0.039 0.043 0.596 0.060 0.067 0.672 0.055 0.060
AD07746 (4446 1) 0.578 0.058 0.065 0.671 0.086 0.099 0.740 0.052 0.056
AD08094 (1445 1) 0.646 0.056 0.061 0.721 0.071 0.079 0.762 0.076 0.084
AD07766 (1446 1) 0.760 0.103 0.119 0.806 0.067 0.072 0.793 0.082 0.092
AD07745 (4443 1) 0.902 0.194 0.247 0.840 0.088 0.098 0.821 0.049 0.052
Mock Control 1.000 0.109 0.122 1.000 0.109 0.122 1.000 0.109 0.122
167
Example 4. House Dust Mite (HDM) Induced Allergie Asthma Model.
[0331] To study the properties of certain MUC5AC RNAi agents in vivo, the house dust mite (HDM) induced allergie asthma mouse model was used. To induce mouse Muc5ac expression, female Balb/c mice (6-8 weeks in âge) were administered 50 pg house dust mite protein acquired commercially in 25 pL of isotonie saline intranasally using a pipette for 5 consecutive days. 72 hours after the fifth daily dose, mice were euthanized and whole lungs were harvested for mRNA expression analysis. Compared to unchallenged, naïve mice, relative expression of mouse Muc5ac mRNA in HDM challenged mice is shown to increase approximately 100 fold.
Example 5. In Vivo Intratracheal Administration of MUC5AC RNAi Agents in the HDM Model.
[0332] The HDM induced allergie asthma mouse model described in Example 4, above, was used. The following Table 15 sets forth the dosing Groups:
[0333] Table 15. MUC5AC RNAi Agent and Dosing for Example 5.
GROUP IT Dose Administered Study Days IT Administered IN Dose Administered Study Days IN Dose Administered Animais Per Group
1 No treatment N/A No treatment N/A 6
2 No treatment N/A Saline Days 8-12 6
3 Saline 1, 3, 5, and 8 Saline Days 8-12 3
4 No treatment N/A HDM Days 8-12 6
5 Saline 1, 3, 5, and 8 HDM Days 8-12 4
6 5.0 mg/kg Tri-SM6.1-avp6-AD07022 1, 3, 5, and 8 HDM Days 8-12 4
7 5.0 mg/kg Tri-SM6.1-avp6-AD07720 1, 3, 5, and 8 HDM Days 8-12 5
8 5.0 mg/kg Tri-SM6.1-avp6-AD07719 1, 3, 5, and 8 HDM Days 8-12 5
169
[0334] As noted in Table 15 above, the mice in Group 1 received no treatment throughout. For the mice in Groups 3, 5, 6, 7 and 8, on study days 1, 3, 5, and 8, female Balb/c mice were administered a single dose of 50 microliters via a microsprayer device (Penn Century, 5 Philadelphia, PA) suitable for intratracheal (IT) administration of isotonie saline or 5.0 mg/kg the respective MUC5AC RNAi agent formulated in isotonie saline as noted in Table 15.
[0335] As shown in Table 15, each of the MUC5AC RNAi agents (Groups 6, 7 and 8) were conjugated to a tridentate small molécule ανβ6 épithélial cell targeting ligand (Tri-SM6.1, 10 see Fig. 1) at the 5’ terminal end of the sense strand.
[0336] The chemically modifîed sequences for MUC5AC RNAi agents AD07720 and AD07719 (Groups 7 and 8) are shown in Table 7B (showing duplex), Table 3 (showing respective antisense strand), and Table 5 (showing respective sense strand with linker but without tridentate small molécule ανβ6 épithélial cell targeting ligand (TH-SM6.1).
[0337] AD07022 has mouse-specifîc sequences that do not hâve homology with the human
MUC5AC gene, and were chemically modifîed as follows:
Τπ-8Μ6.1-ανβ6-Αϋ07022
ModifiedSense Strand (5’ -43):
Tri-SM6.1-c^6-(TA14)cscauacagCfAfGfuacaguuacas(invAb) (SEQ ID NO:1714)
ModifiedAntisense Strand (5’ -43):
cPrpusGfsusAfaCfuGfuAfcUfgCfuGfuAfuGfsg (SEQ ID NO:1713)
[0338] On each of Days 8 through 12, the mice in Groups 2 through 8 were administered a 25 single dose intranasally (IN) using a pipette with 25 microliters of isotonie saline (Groups 2 and 3) or 50 micrograms of house dust mite formulated in isotonie saline (referred to in Table 15 as HDM).
[0339] Mice were sacrificed on study day 15, and total RNA was isolated from both lungs following collection and homogenization. Mouse Muc5ac mRNA expression was 30 quantitated by probe-based quantitative PCR, normalized to mouse beta-actin expression, and expressed as fraction of vehicle control group (géométrie mean, +/- 95% confidence interval).
170
[0340] Table 16. Average Relative Mouse MUC5AC mRNA at Sacrifice (Day 15) in
Example 5
Group ID Average Relative mMuc5AC mRNA Low (error) High (error)
Group 1 (No Treatment) 1.000 0.213 0.270
Group 2 (IN Saline) 1.941 0.638 0.951
Group 3 (IT Saline & IN Saline) 1.706 0.532 0.774
Group 4 (IN HDM) 117.876 26.269 33.801
Group 5 (IT Saline & IN HDM) 95.585 21.822 28.277
Group 6 (IT 5 mg/kg ΤΓΪ-8Μ6.1-ανβ6- AD07022 & IN HDM) 13.444 3.410 4.569
Group 7 (IT 5 mg/kg Τπ-8Μ6.1-ανβ6- AD07720 & IN HDM) 71.812 16.633 21.647
Group 8 (IT 5 mg/kg Τπ-8Μ6.1-ανβ6- AD07719 & IN HDM) 90.537 27.214 38.910
The data were normalized to the non-treatment group (Group 1). As shown in the data in 5 Table 16 above, the HDM mouse model performed as expected with respect to promoting an increase in MUC5AC expression after exposure to HDM. The data show that Groups 7 and 8, which each had nucléotide sequences targeting position 1921 of the MUC5AC gene and has homology to both the human and mouse gene transcript, provided only a very minimal réduction in MUC5AC protein compared to the HDM model mice of Groups 4 and 10 5 with no RNAi agent, indicating only a minimal amount of inhibition for these spécifie
RNAi agents. Alternatively, the mouse-specific RNAi agent of AD07022 (Group 6) showed a substantial réduction in Muc5ac mouse mRNA levels (only 13.444) compared to the groups where HDM was administered without a MUC5AC RNAi agent.
Example 6. In Vivo Intratracheal Administration of MUC5AC RNAi Agents in the HDM Model.
[0341] The HDM induced allergie asthma mouse model described in Example 4, above, was used. The following Table 17 sets forth the dosing Groups:
[0342] Table 17. MUC5AC RNAi Agent and Dosing for Example 6.
GROUP IT Dose Administered Study Days IT Administered IN Dose Administered Study Days IN Dose Administered Animais Per Group Targeted Gene Position
1 Saline 1, 3, 5, and 8 Saline Days 8-12 6 N/A
2 Saline 1, 3, 5, and 8 HDM Days 8-12 5 N/A
3 5.0 mg/kg Tri-SM6.1-avp6-AD07022 1, 3, 5, and 8 HDM Days 8-12 6 Mousespecific
4 5.0 mg/kg Tri-SM6.1-avp6-AD08083 1, 3, 5, and 8 HDM Days 8-12 5 5029
5 5.0 mg/kg Tri-SM6.1-avp6-AD08084 1, 3, 5, and 8 HDM Days 8-12 5 5029
6 5.0 mg/kg Tri-SM6.1-avp6-AD08085 1,3, 5, and 8 HDM Days 8-12 4 5029
7 5.0 mg/kg Tri-SM6.1-avP6-AD08086 1, 3, 5, and 8 HDM Days 8-12 5 9729
8 5.0 mg/kg Tri-SM6.1-avp6-AD08087 1, 3, 5, and 8 HDM Days 8-12 6 9729
9 5.0 mg/kg Tri-SM6.1-avp6-AD08088 1, 3, 5, and 8 HDM Days 8-12 5 15052
10 5.0 mg/kg Tri-SM6.1-avp6-AD08089 1, 3, 5, and 8 HDM Days 8-12 5 15052
11 5.0 mg/kg Tri-SM6.1-avp6-AD07022 1 and 8 HDM Days 8-12 5 Mousespecific
172
[0343] For the mice in Groups 1-10, on study days 1, 3, 5, and 8, female Balb/c mice were administered a single dose of 50 microliters via a microsprayer device (Penn Century, Philadelphia, PA) suitable for intratracheal (IT) administration of isotonie saline or 5.0 mg/kg of the respective MUC5AC RNAi agent formulated in isotonie saline as noted in Table 17. For the mice in Group 11, the MUC5AC RNAi agent was administered only on days 1 and 8.
[0344] As shown in Table 17, each of the MUC5AC RNAi agents (Groups 3-11) were conjugated to a tridentate small molécule ανβ6 épithélial cell targeting ligand (Tri-SM6.1, 10 see Fig. 1) at the 5’ terminal end of the sense strand. The chemically modifîed sequences for MUC5AC RNAi agents AD08083, AD08084, AD08085, AD08086, AD08087, AD08088, and AD08089 (Groups 4 through 10) are shown in Table 7B (showing duplex), Table 3 (showing respective antisense strand), and Table 5 (showing respective sense strand with linker but without tridentate small molécule ανβ6 épithélial cell targeting ligand (Tri15 SM6.1)).
[0345] AD07022 has mouse-specific sequences that do not hâve homology with the human MUC5AC gene, and were chemically modifîed as shown above in Example 5.
[0346] On each of Days 8 through 12, the mice were administered a single dose intranasally (IN) using a pipette with 25 microliters of isotonie saline (Group 2) or 50 micrograms of 20 house dust mite formulated in isotonie saline (referred to in Table 17 as HDM).
[0347] Mice were sacrificed on study day 15, and total RNA was isolated from both lungs following collection and homogenization. Mouse Muc5ac mRNA expression was quantitated by probe-based quantitative PCR, normalized to mouse beta-actin expression, and expressed as fraction of vehicle control group (géométrie mean, +/- 95% confidence interval).
[0348] Table 18. Average Relative Mouse MUC5AC mRNA at Sacrifice (Day 15) in Example 6
Group ID Average Relative mMuc5ac mRNA Low (error) High (error)
Group 1 (IT Saline & IN Saline) 1.000 0.305 0.440
Group 2 (IT Saline & IN HDM) 115.127 17.128 20.122
173
Group 3 (IT 5 mg/kg Τπ-8Μ6.1-ανβ6- AD07022 & IN HDM) 19.053 6.287 9.383
Group 4 (IT 5 mg/kg Τή-8Μ6.1-ανβ6AD08083 & IN HDM) 35.333 13.193 21.054
Group 5 (IT 5 mg/kg Τπ-8Μ6.1-ανβ6- AD08084 & IN HDM) 26.634 12.943 25.180
Group 6 (IT 5 mg/kg Τπ-8Μ6.1-ανβ6AD08085 & IN HDM) 34.602 3.503 3.897
Group 7 (IT 5 mg/kg Τπ-8Μ6.1-ανβ6AD08086 & IN HDM) 55.475 15.377 21.273
Group 8 (IT 5 mg/kg Τπ-8Μ6.1-ανβ6AD08087 & IN HDM) 66.631 19.703 27.976
Group 9 (IT 5 mg/kg Τπ-8Μ6.1-ανβ6- AD08088 & IN HDM) 26.879 4.505 5.412
Group 10 (IT 5 mg/kg Τπ-8Μ6.1-ανβ6AD08089 & IN HDM) 14.903 2.441 2.919
Group 11 (IT 5 mg/kg Τπ-8Μ6.1-ανβ6AD07022 & IN HDM) 14.457 6.005 10.271
[0349] The data were normalized to the IT and IN saline-only dosed group (Group 1). As shown in the data in Table 18 above, the HDM mouse model performed as expected with respect to promoting an increase in MUC5AC expression after exposure to HDM. The data show that Groups 7 and 8, which both had nucléotide sequences targeting position 9729 of the MUC5AC gene and has homology to both the human and mouse gene transcript, provided only a moderate réduction in MUC5AC protein compared to the HDM model mice of Group 2 with no RNAi agent, indicating only a moderate amount of inhibition for these spécifie RNAi agents. Altematively, the remaining MUC5AC RNAi agents tested (targeting gene position 5029 in Groups 4-6 and gene position 15052 in Groups 9 and 10) each showed substantial inhibition compared to Group 2, as did the mouse-specific MUC5AC RNAi agent of AD07022 (Group 6).
Example 7. In Vivo Intratracheal Administration of MUC5ACRNAi Agents in Rats.
[0350] The HDM induced allergie asthma mouse model described in Example 4, above, was used. The following Table 19 sets forth certain dosing Groups included in the study:
[0351] Table 19. MUC5AC RNAi Agent and Dosing for Example 7.
GROUP IT Dose Administered Study Days IT Administered IN Dose Administered Study Days IN Dose Administered Animais Per Group Targeted Gene Position
1 Saline 1, 3, 5, and 8 Saline Days 8-12 6 N/A
2 Saline 1, 3, 5, and 8 HDM Days 8-12 6 N/A
3 5.0 mg/kg Tri-SM6.1-avp6-AD07022 1, 3, 5, and 8 HDM Days 8-12 5 MouseSpecific
4 5.0 mg/kg Tri-SM6.1-avp6-AD08173 1, 3, 5, and 8 HDM Days 8-12 6 3535
5 5.0 mg/kg Tri-SM6.1-avp6-AD08174 1, 3, 5, and 8 HDM Days 8-12 6 3535
6 5.0 mg/kg Tri-SM6.1-avb6-AD08243 1, 3, 5, and 8 HDM Days 8-12 6 3535
7 5.0 mg/kg Tri-SM6.1-avb6-AD08244 1,3, 5, and 8 HDM Days 8-12 6 3535
8 5.0 mg/kg Tri-SM6.1-avb6-AD08175 1, 3, 5, and 8 HDM Days 8-12 6 3535
9 5.0 mg/kg Tri-SM6:l-avb6-AD08176 1, 3, 5, and 8 HDM Days 8-12 6 3535
10 5.0 mg/kg Tri-SM6.1-avb6-AD08177 1, 3, 5, and 8 HDM Days 8-12 6 3535
175
[0352] For the mice in Groups 1-5, on study days 1, 3, 5, and 8, female Balb/c mice were administered a single dose of 50 microliters via a microsprayer device (Penn Century, Philadelphia, PA) suitable for intratracheal (IT) administration of isotonie saline or 5.0 mg/kg the respective MUC5AC RNAi agent formulated in isotonie saline as noted in Table 19.
[0353] As shown in Table 19, each of the MUC5AC RNAi agents (Groups 3-5) were conjugated to a tridentate small molécule ανβ6 épithélial cell targeting ligand (Tri-SM6.1, see Fig. 1) at the 5’ terminal end of the sense strand. The chemically modified sequences for MUC5AC RNAi agents AD08173 and AD08174 (Groups 4 and 5) are shown in Table 7B (showing duplex), Table 3 (showing respective antisense strand), and Table 5 (showing respective sense strand with linker but without tridentate small molécule ανβ6 épithélial cell targeting ligand (Tri-SM6.1)). Each ofthe MUC5AC RNAi agents with sequences targeting position 3535 hâve a mismatch in what is understood to be an important location from the mouse gene, and therefore it is expected that the MUC5AC RNAi agents would show little to no inhibitory activity in view of the mismatch.
[0354] AD07022 has mouse-specific sequences that do not hâve homology with the human MUC5AC gene, and were chemically modified as shown above in Example 5.
[0355] On each of Days 8 through 12, the mice were administered a single dose intranasally (IN) using a pipette with 25 microliters of isotonie saline (Group 1 only) or 50 micrograms of house dust mite formulated in isotonie saline (referred to in Table 19 as HDM).
[0356] Mice were sacrificed on study day 15, and total RNA was isolated from both lungs following collection and homogenization. Mouse Muc5ac mRNA expression was quantitated by probe-based quantitative PCR, normalized to mouse beta-actin expression, and expressed as fraction of vehicle control group (géométrie mean, +/- 95% confidence interval).
[0357] Table 20. Average Relative Mouse MUC5AC mRNA at Sacrifice (Day 15) in
Example 7
Group ID Average Relative mMucSac mRNA Low (error) High (error)
Group 1 (IT Saline & IN Saline) 1.000 0.197 0.245
176
Group 2 (IT Saline & IN HDM) 132.247 31.248 40.917
Group 3 (IT 5 mg/kg Τπ-8Μ6.1-ανβ6- AD07022 & IN HDM) 13.139 2.426 2.975
Group 4 (IT 5 mg/kg Τπ-8Μ6.1-ανβ6- AD08173 & IN HDM) 96.522 13.056 15.098
Group 5 (IT 5 mg/kg Τπ-8Μ6.1-ανβ6- AD08174 & IN HDM) 57.983 15.132 20.476
Group 6 (IT 5 mg/kg Τπ-8Μ6.1-ανβ6AD08243 & IN HDM) 55.592 8.761 10.400
Group 7 (IT 5 mg/kg Τπ-8Μ6.1-ανβ6- AD08244 & IN HDM) 75.149 17.661 23.087
Group 8 (IT 5 mg/kg Τπ-8Μ6.1-ανβ6- AD08175 & IN HDM) 75.420 10.876 12.708
Group 9 (IT 5 mg/kg Τπ-8Μ6.1-ανβ6AD08176 & IN HDM) 72.203 12.062 14.482
Group 10 (IT 5 mg/kg Τπ-8Μ6.1-ανβ6AD08177 & IN HDM) 67.222 12.063 14.701
[0358] The data were normalized to the IT and IN saline-only dosed group (Group 1). As noted above, given the nature of the mismatch to the mouse gene for the MUC5AC RNAi agents in Groups 4 and 5 (targeting position 3535 of the human gene), minimal inhibition is expected. As shown in the data in Table 20 above, the HDM mouse model performed as expected with respect to promoting an increase in MUC5AC expression after exposure to HDM, as shown in Groups 1 and 2. Unexpectedly, the MUC5AC RNAi agents targeting position 3535 still showed moderate levels of inhibition despite the mismatch to the mouse gene, indicating that MUC5AC RNAi agents targeting this position may be viable as human therapeutic candidates.
Example 8. In Vivo Intratracheal Administration ofMUCSACRNAiAgents in the HDM Model.
[0359] The HDM induced allergie asthma mouse model described in Example 4, above, 15 was used. The following Table 17 sets forth the dosing Groups:
[0360] Table 21. MUC5AC RNAi Agent and Dosing for Example 8.
GROUP IT Dose Administered Study Days IT Administered IN Dose Administered Study Days IN Dose Administered Animais Per Group Targeted Gene Position
1 Saline 1 and 7 Saline Days 7-11 6 N/A
2 Saline 1 and 7 HDM Days 7-11 6 N/A
3 5.0 mg/kg Tri-SM6.1-av36-AD07022 1,2, 4 and 7 HDM Days 7-11 6 Mousespecific
4 5.0 mg/kg Tri-SM6.1-avp6-AD07022 1 and 7 HDM Days 7-11 6 Mousespecific
5 2.5 mg/kg Tri-SM6.1-avp6-AD07022 1 and 7 HDM Days 7-11 6 Mousespecific
6 1.0 mg/kg Tri-SM6.1-avP6-AD07022 1 and 7 HDM Days 7-11 6 Mousespecific
7 5.0 mg/kg Tri-SM6.1-avp6-AD08089 1, 2, 4 and 7 HDM Days 7-11 6 15052
8 5.0 mg/kg Tri-SM6.1-avp6-AD08089 1 and 7 HDM Days 7-11 6 15052
9 2.5 mg/kg Tri-SM6.1-avp6-AD08089 1 and 7 HDM Days 7-11 6 15052
10 1.0 mg/kg Tri-SM6.1-avp6-AD08089 1 and 7 HDM Days 7-11 6 15052
11 1.0 mg/kg Tri-SM6.1-avp6-AD08089 1 HDM Days 7-11 6 15052
178
[0361] Female Balb/c mice were administered a single dose of 50 microliters via a microsprayer device (Penn Century, Philadelphia, PA) suitable for intratracheal (IT) administration of isotonie saline or an MUC5AC RNAi agent formulated in isotonie saline, on the dates and at the concentrations set forth in Table 21 above.
[0362] As shown in Table 21, each of the MUC5AC RNAi agents (Groups 3-11) were conjugated to a tridentate small molécule ανβ6 épithélial cell targeting ligand (see Fig. 1) at the 5’ terminal end of the sense strand. The chemically modified sequences for MUC5AC RNAi agents AD08089 is shown in Table 7B (showing duplex), Table 3 (showing respective antisense strand), and Table 5 (showing respective sense strand with linker but without tridentate small molécule ανβ6 épithélial cell targeting ligand).
[0363] AD07022 has mouse-specifïc sequences that do not hâve homology with the human MUC5AC gene, and were chemically modified as shown above in Example 5.
[0364] On each of Days 7 through 11, the mice were administered a single dose intranasally (IN) using a pipette with 25 microliters of isotonie saline (Group 1) or 50 micrograms of house dust mite formulated in isotonie saline (referred to in Table 21 as HDM).
[0365] Mice were sacrificed on study day 14, and total RNA was isolated from both lungs following collection and homogenization. Mouse Muc5ac mRNA expression was quantitated by probe-based quantitative PCR, normalized to mouse beta-actin expression, and expressed as fraction of vehicle control group (géométrie mean, +/- 95% confidence interval).
[0366] Table 22. Average Relative Mouse MUC5AC mRNA at Sacrifice (Day 14) in
Example 8
Group ID Average Relative mMuc5ac mRNA Low (error) High (error)
Group 1 (IT Saline & IN Saline) 1.000 0.315 0.459
Group 2 (IT Saline & IN HDM) 112.848 44.187 72.623
Group 3 (IT 5.0 mg/kg Τπ-8Μ6.1-ανβ6AD07022 (days 1, 2, 4, & 7) & IN HDM) 12.455 3.896 5.669
Group 4 (IT 5.0 mg/kg Τπτ8Μ6.1-ανβ6- AD07022 (days 1 & 7) & IN HDM) 16.521 4.908 6.982
Group 5 (IT 2.5 mg/kg Τπ-8Μ6.1-ανβ6AD07022 & IN HDM) 26.846 5.096 6.290
179
Group 6 (IT 1.0 mg/kg Tri-SMô.l-ανβόAD07022 & IN HDM) 26.521 9.295 14.311
Group 7 (IT 5.0 mg/kg Tri-SMÔ.l-ανβόAD08089 (days 1, 2, 4, & 7) & IN HDM) 10.978 3.101 4.322
Group 8 (IT 5.0 mg/kg Tri-SMô.l-ανβόAD08089 (days 1 & 7) & IN HDM) 17.629 6.752 10.944
Group 9 (IT 2.5 mg/kg Tri-SMô.l-ανβόAD08089 & IN HDM) 17.746 4.647 6.296
Group 10 (IT 1.0 mg/kg Tri-SMô.l-ανβόAD08089 & IN HDM) 21.106 4.109 5.103
Group 11 (IT 1.0 mg/kg Tri-SMÔ.l-ανβόAD08089 (day 1 only) & IN HDM) 42.413 14.428 21.868
[0367] The data were normalized to the IT and IN saline-only dosed group (Group 1). As shown in the data in Table 22 above, the HDM mouse model performed as expected with respect to promoting an increase in MUC5AC expression aller exposure to HDM. The data show that AD08089, which has nucléotide sequences targeting position 15052 of the MUC5AC gene and has homology to both the human and mouse gene transcript, provided substantial inhibition of MUC5AC and was generally comparable to the highly active mouse-specific MUC5AC RNAi agent of AD07022.
Example 9. In Vivo Inhaled Aerosolized Administration of MUC5AC RNAi Agents in Cynomolgus Monkeys.
[0368] On study day 1, male cynomolgus monkeys were administered a single dose on each of days 1, 8, and 15 at 1 mg/kg pulmonary deposited dose (PDD) of the MUC5AC RNAi agent AC001305 or AC001306. Using a vibrating mesh nebulizer (Aeroneb Solo), aérosol was delivered to restrained, anesthetized monkeys intubated intratracheally. Intubated animais were connected to a ventilator, which was used to control respiratory minute volume. Test article aérosol was generated via an Aeroneb Solo mesh nebulizer connected in-line with the exposure system. Exposures times were determined from aérosol trials in which the efficiency of the system was determined by placing a filter at the end of the endotrachéal tube, collecting the aérosol during the course of the exposure. The MUC5AC RNAi agent was conjugated to a tridentate small molécule ανβό épithélial cell targeting ligand (see Fig. 1) at the 5’ terminal end of the sense strand, formulated in isotonie saline. The chemically modified sequences for MUC5AC RNAi agents AC001305 and AC001306 are shown in Table 11. The antisense strand sequence of AC001305 is also shown as
180
AM12165 in Table 3, and the antisense strand sequence of AC001306 is also shown as AM12166 in Table 3, both of which target position 4993 of the MUC5AC gene.
[0369] The dosing groups were as described in the following Table 23:
[0370] Table 23. MUC5AC RNAi Agent and Dosing for Example 9
Group ID__________________________________________________________
Group 1 (isotonie saline on Days 1, 8, 15
Group 2 (1.0 mg/kg pulmonary deposited dose AC001305 on Days 1,8, 15
Group 3 (1.0 mg/kg pulmonary deposited dose AC001306 on Days 1, 8, 15
[0371] Two (2) monkeys were dosed per group. Monkeys were sacrifïced on study day 22, and total RNA was isolated from lung samples following collection and homogenization. The data in Table 24, below, shows mRNA expression sampled from the distal left caudal 10 lobe. Cynomolgus monkey MUC5AC mRNA expression was quantitated by probe-based quantitative PCR, normalized to Cynomolgus monkey beta-actin expression, and expressed as fraction of vehicle control group (géométrie mean, +/- 95% confidence interval).
[0372] Table 24A. Cynomolgus Monkey Mucosal Tissue Muc5ac mRNA Relative 15 Expression at Sacrifice in Example 9
GroupID Relative cMuc5ac mRNA Expression (n=2) Low (error) High (error)
Group 1 (isotonie saline) 1.000 0.386 0.628
Group 2 (1.0 mg/kg deposited dose AC001305 on Days 1, 8, 15) 0.034 0.010 0.015
Group 3 (1.0 mg/kg deposited dose AC001306 on Days 1, 8, 15 0.171 0.085 0.169
[0373] Table 24B. Cynomolgus Monkey Right Cranial Hilar Muc5ac mRNA Relative
Expression at Sacrifice in Example 9
Group ID Relative cMuc5ac mRNA Expression Low (error) High (error)
181
(n=2)
Group 1 (isotonie saline) 1.000 0.708 2.421
Group 2 (1.0 mg/kg deposited dose AC001305 on Days 1, 8, 15) 0.034 0.010 0.015
Group 3 (1.0 mg/kg deposited dose AC001306 on Days 1, 8, 15 0.180 0.089 0.174
[0374] Table 24C. Cynomolgus Monkey Right Cranial Mid Airway Muc5ac mRNA
Relative Expression at Sacrifice in Example 9
Group ID Relative cMuc5ac mRNA Expression (n=2) Low (error) High (error)
Group 1 (isotonie saline) 1.000 0.489 0.956
Group 2 (1.0 mg/kg deposited dose AC001305 on Days 1, 8, 15) 0.162 0.099 0.256
Group 3 (1.0 mg/kg deposited dose AC001306 on Days 1, 8, 15 0.077 0.041 0.086
As reported in Tables 24A, 24B, and 24C above, the MUC5AC RNAi agents
Example 10. Aerosolized Administration of MUC5ACRNAi Agents in Sheep.
[0375] Sheep exposed to inhaled ascaris antigen exhibit responses typical of allergie asthma, including an acute phase response (AR), late phase response (LR), and airway hyperreactivity (AHR) as shown by Abraham et.al. (Am Rev Respir Dis. ,1983), and the model has been shown to respond well to standard of care thérapies (Caniga, et.al., J Inflamm., 2013). Accordingly, the model may be used to détermine the impact of sheep Muc5ac (sMuc5ac) mRNA silencing on airway mechanics and AHR upon treatment with MUC5AC RNAi agents. Test article delivery to intubated sheep, airway mechanics assessments detecting changes in pulmonary résistance (Rl) following challenge with Ascaris suum antigen, and AHR assessments by performing cumulative concentration response curves to inhaled carbachol were performed according to published procedures (Abraham et.al., J Clin Invest., 1994).
182
[0376] Two (2) ascaris-sensitive sheep with previously established responses to Ascaris suum challenge were administered 1 mg/kg pulmonary deposited dose levels of AC000480 on days 1, 8 and 15. The Chemical structure of AC000480 is shown, for example, in Table 11 and is designed to target position 3535 on the MUC5AC gene. On day 21, AHR was assessed by determining the cumulative carbachol concentration (in breath units, BU) that increased Rl to 400% over the post-lx PBS value (PC400). On day 22, sheep were challenged with Ascaris suum extract, and Rl was monitored out to 8 hours post-challenge. On day 23, AHR was again assessed in the same manner as on day 21. To monitor duration of effect, sheep were again challenged with Ascaris suum extract on day 51, bracketed on day 50 and day 52 with assessments of AHR.
[0377] Table 25. Airway Mechanics Results
Timepoint Control Trial (no treatment) Drug Trial: Day 22 Drug Trial: Day 51
Animal # Animal # Animal #
2489 2497 Mean S.D. 2489 2497 Mean S.D. 2489 2497 Mean S.D.
Baseline RL 0.99 0.99 0.99 0.00 1.00 1.00 1.00 0.00 1.00 1.00 1.00 0.00
PostAscaris RL 6.66 6.62 6.64 0.03 4.28 5.21 4.75 0.66 6.35 6.38 6.37 0.02
% 573% 569% 571% 3% 328% 421% 375% 66% 535% 538% 537% 2%
1h RL 4.51 4.40 4.46 0.08 2.35 3.59 2.97 0.88 4.60 4.61 4.61 0.01
% 356% 344% 350% 8% 135% 259% 197% 88% 360% 361% 361% 1%
2h RL 2.53 2.57 2.55 0.03 1.81 1.66 1.74 0.11 2.42 2.64 2.53 0.16
% 156% 160% 158% 3% 81% 66% 74% 11% 142% 164% 153% 16%
3h RL 1.55 1.53 1.54 0.01 1.37 1.36 1.37 0.01 1.68 1.62 1.65 0.04
% 57% 55% 56% 1% 37% 36% 37% 1% 68% 62% 65% 4%
4h RL 1.06 1.21 1.14 0.11 1.05 1.09 1.07 0.03 1.05 1.07 1.06 0.01
% 7% 22% 15% 11% 5% 9% 7% 3% 5% 7% 6% 1%
5h RL 1.52 1.66 1.59 0.10 1.14 1.19 1.17 0.04 1.64 1.55 1.60 0.06
% 54% 68% 61% 10% 14% 19% 17% 4% 64% 55% 60% 6%
6h RL 2.13 2.09 2.11 0.03 1.28 1.34 1.31 0.04 2.07 2.18 2.13 0.08
% 115% 111% 113% 3% 28% 34% 31% 4% 107% 118% 113% 8%
6.5h RL 2.26 2.21 2.24 0.04 1.51 1.49 1.50 0.01 2.22 2.26 2.24 0.03
% 128% 123% 126% • 4% 51% 49% 50% 1% 122% 126% 124% 3%
7h RL 2.32 2.26 2.29 0.04 1.39 1.40 1.40 0.01 2.37 2.29 2.33 0.06
% 134% 128% 131% 4% 39% 40% 40% 1% 137% 129% 133% 6%
7.5h RL 2.12 2.16 2.14 0.03 1.27 1.35 1.31 0.06 2.32 2.05 2.19 0.19
% 114% 118% 116% 3% 27% 35% 31% 6% 132% 105% 119% 19%
8h RL 2.08 2.03 2.06 0.04 1.16 1.28 1.22 0.08 2.12 2.13 2.13 0.01
% 110% 105% 108% 4% 16% 28% 22% 8% 112% 113% 113% 1%
30659-WO
[0378] Table 26: AHR Results
Sheep # BU Carbachol to Produce PC400
Control Trial
24h pre-ascaris 24h post Ascaris
2489 24 13
2497 31 13
Drug Trial: Day 22
24h pre-ascaris 24h post Ascaris
2489 25 26
2497 26 25
Drug Trial: Day 51
24h pre-ascaris 24h post Ascaris
2489 26 13
2497 29 12
[0379] As shown in Table 25, treatment with AC000480 resulted in atténuation of AR as well as LR upon challenge on day 22. For example, untreated sheep display a mean LR increase of 126% in Rl at 6.5h compared to baseline, where AC000480 treated sheep on day 22 challenge show a more attenuated LR increase of 50% in Rl at 6.5h compared to baseline. In addition, 24h after the day 22 ascaris challenge both AC000480 treated sheep showed no signs of ascaris induced airway hyperresponsiveness, as shown by équivalent number of carbachol breath units required to produce PC400. In contrast, in the control trial without AC000480 treatment, sheep required approximately half the amount of carbachol breath units to induce PC400 post-ascaris challenge, signifying airway hyperresponsiveness. [0380] With no additional dosing after day 15, sheep retumed to baseline airway mechanics and AHR upon the day 51 ascaris challenge.
Example 11. Aerosolized Administration of MUC5ACRNAi Agents in Sheep.
[0381] The sheep model of allergie asthma airway inflammation described in example 10, above, was used. Three (3) ascaris sensitive sheep with previously established responses to Ascaris suum challenge were administered 1 mg/kg pulmonary deposited dose levels of AC000482 on days 1, 8 and 15. The Chemical structure of AC000482 is shown, for example, 20 in Table 11 and is designed to target position 3535 on the MUC5AC gene. On day 21, AHR was assessed by determining the cumulative carbachol concentration (in breath units, BU) that increased Rl to 400% over the post-lx PBS value (PC400)· On day 22, sheep were challenged with Ascaris suum extract, and Rl was monitored out to 8h post-challenge. On day 23, AHR was again assessed as on day 21.
184
[0382] Table 27. Airway Mechanics Results
Timepoint Control (no treatment) Drug Trial: Day 22
Animal # Mean Animal # Mean
2485 2515 2535 Mean S.D. 2485 2515 2535 Mean S.D.
Baseline RL 0.99 1.00 1.00 1.00 0.01 1.00 1.00 1.00 1.00 0.00
Post-Ascaris RL 6.43 6.94 6.89 6.75 0.28 5.49 6.44 6.09 6.01 0.48
% 549% 594% 589% 577% 24% 449% 544% 509% 501% 48%
1h RL 4.10 4.67 4.40 4.39 0.29 4.68 4.27 4.10 4.35 0.30
% 314% 367% 340% 340% 26% 368% 327% 310% 335% 30%
2h RL 2.62 2.51 2.64 2.59 0.07 2.81 2.10 2.05 2.32 0.43
% 165% 151% 164% 160% 8% 181% 110% 105% 132% 43%
3h RL 1.65 1.46 1.58 1.56 0.10 1.53 1.37 1.31 1.40 0.11
% 67% 46% 58% 57% 10% 53% 37% 31% 40% 11%
4h RL 1.08 1.09 1.05 1.07 0.02 1.09 1.05 1.04 1.06 0.03
% 9% 9% 5% 8% 2% 9% 5% 4% 6% 3%
5h RL 1.57 1.53 1.57 1.56 0.02 1.27 1.15 1.18 1.20 0.06
% 59% 53% 57% 56% 3% 27% 15% 18% 20% 6%
6h RL 1.87 2.10 2.03 2.00 0.12 1.42 1.32 1.23 1.32 0.10
% 89% 110% 103% 101% 11% 42% 32% 23% 32% 10%
6.5h RL 2.16 2.30 2.15. 2.20 0.08 1.66 1.55 1.46 1.56 0.10
% 118% 130% 115% 121% 8% 66% 55% 46% 56% 10%
7h RL 2.20 2.21 2.23 2.21 0.02 1.54 1.41 1.34 1.43 0.10
% 122% 121% 123% 122% 1% 54% 41% 34% 43% 10%
7.5h RL 2.27 2.11 2.19 2.19 0.08 1.33 1.24 1.18 1.25 0.08
% 129% 111% 119% 120% 9% 33% 24% 18% 25% 8%
8h RL 2.10 2.06 2.14 2.10 0.04 1.25 1.16 1.23 1.21 0.05
% 112% 106% 114% 111% 4% 25% 16% 23% 21% 5%
186
[0383] Table 28: AHR results
Sheep # BU Carbachol to Produce PC400
Control Trial
24h preascaris 24h post Ascaris
2485 13 6
2515 22 12
2535 14 6
Drug Trial: Day 22
24h preascaris 24h post Ascaris
2485 13 12
2515 24 24
2535 11 11
[0384] As shown in Table 27, treatment with AC000482 resulted in minimal atténuation of AR but robust atténuation of LR upon challenge on day 22. For example, untreated sheep display a mean LR increase of 121% in Rl at 6.5h compared to baseline, where AC000482 treated sheep on day 22 challenge show a more attenuated LR increase of 56% in Rl at 6.5h compared to baseline. In addition, 24h after the day 22 ascaris challenge ail AC000482 treated sheep showed no signs of ascaris induced airway hyperresponsiveness, as shown by équivalent number of carbachol breath units required to produce PC400. In contrast, in the control trial without AC000482 treatment, sheep required approximately half the amount of carbachol breath units to induce PC400 post-ascaris challenge, signifying airway hyperresponsiveness.
Example 12. Aerosolized Administration of MUC5ACRNAi Agents in Sheep.
[0385] The sheep model of allergie asthma airway inflammation described in example 10, above, was used. Six (6) ascaris sensitive sheep with previously established responses to Ascaris suum challenge were administered either 0.5 mg/kg pulmonary deposited dose levels of AC000482 (n=3) of 0.25 mg/kg pulmonary deposited dose levels of AC000482 on days 1, 8 and 15. On day 21, AHR was assessed by determining the cumulative carbachol concentration (in breath units, BU) that increased Rl to 400% over the post-lx PB S value (PC400). On day 22, sheep were challenged with Ascaris suum extract, and Rl was monitored out to 8h post-challenge. On day 23, AHR was again assessed as on day 21.
[0386] Table 29. Airway mechanics results, 0.5 mg/kg dose level
187
Timepoint Control (no treatment) Drug Trial: Day 22
Animal # Mean Animal # Mean
2489 2497 2520 Mean S.D. 2489 2497 2520 Mean S.D.
Baseline RL 0.99 0.99 0.99 0.99 0.00 1.00 1.00 1.00 1.00 0.00
PostAscaris RL 6.66 6.62 7.37 6.88 0.42 6.23 6.38 7.10 6.57 0.47
% 573% 569% 644% 595% 43% 523% 538% 610% 557% 47%
1h RL 4.51 4.40 4.49 4.47 0.06 4.15 4.06 4.33 4.18 0.14
% 356% 344% 354% 351% 6% 315% 306% 333% 318% 14%
2h RL 2.53 2.57 2.37 2.49 0.11 2.25 2.31 2.10 2.22 0.11
% 156% 160% 139% 152% 11% 125% 131% 110% 122% 11%
3h RL 1.55 1.53 1.53 1.54 0.01 1.41 1.46 1.35 1.41 0.06
% 57% 55% 55% 55% 1% 41% 46% 35% 41% 6%
4h RL 1.06 1.21 1.12 1.13 0.08 1.07 1.02 1.04 1.04 0.03
% 7% 22% 13% 14% 8% 7% 2% 4% 4% 3%
5h RL 1.52 1.66 1.54 1.57 0.08 1.21 1.33 1.38 1.31 0.09
% 54% 68% 56% 59% 8% 21% 33% 38% 31% 9%
6h RL 2.13 2.09 2.03 2.08 0.05 1.46 1.56 1.52 1.51 0.05
% 115% 111% 105% 110% 5% 46% 56% 52% 51% 5%
6.5h RL 2.26 2.21. 2.21 2.23 0.03 1.68 1.72 1.67 1.69 0.03
% 128% 123% 123% 125% 3% 68% 72% 67% 69% 3%
7h RL 2.32 2.26 2.30 2.29 0.03 1.62 1.68 1.61 1.64 0.04
% 134% 128% 132% 132% 3% 62% 68% 61% 64% 4%
7.5h RL 2.12 2.16 2.20 2.16 0.04 1.30 1.41 1.48 1.40 0.09
% 114% 118% 122% 118% 4% 30% 41% 48% 40% 9%
8h RL 2.08 2.03 2.12 2.08 0.05 1.25 1.26 1.13 1.21 0.07
% 110% 105% 114% 110% 5% 25% 26% 13% 21% 7%
2142
[0387] Table 30: Airway mechanics results, 0.25 mg/kg dose level
Timepoint Control (no treatment) Drug Trial: Day 22
Animal # Mean Animal # Mean
2457 2517 2539 Mean S.D. 2457 2517 2539 Mean S.D.
Baseline RL 1.00 1.01 1.00 1.00 0.01 1.00 1.00 1.00 1.00 0.00
PostAscaris RL 6.63 7.29 6.03 6.65 0.63 6.50 7.03 6.26 6.60 0.39
% 563% 622% 503% 563% 59% 550% 603% 526% 560% 39%
1h RL 4.15 4.26 4.50 4.30 0.18 4.09 4.10 4.11 4.10 0.01
% 315% 322% 350% 329% 19% 309% 310% 311% 310% 1%
2h RL 2.73 2.47 2.59 2.60 0.13 2.23 2.33 2.46 2.34 0.12
% 173% 145% 159% 159% 14% 123% 133% 146% 134% 12%
3h RL 1.54 1.37 1.62 1.51 0.13 1.45 1.27 1.54 1.42 0.14
% 54% 36% 62% 51% 14% 45% 27% 54% 42% 14%
4h RL 1.17 1.08 1.03 1.09 0.07 1.07 1.03 1.04 1.05 0.02
% 17% 7% 3% 9% 7% 7% 3% 4% 5% 2%
5h RL 1.69 1.61 1.29 1.53 0.21 1.43 1.21 1.32 1.32 0.11
% 69% 59% 29% 52% 21% 43% 21% 32% 32% 11%
6h RL 2.04 2.14 2.26 2.15 0.11 1.62 1.51 1.57 1.57 0.06
% 104% 112% 126% 114% 11% 62% 51% 57% 57% 6%
6.5h RL 2.18 2.36 2.14 2.23 0.12 1.87 1.78 1.83 1.83 0.05
% 118% 134% 114% 122% 10% 87% 78% 83% 83% 5%
7h RL 2.12 2.52 2.30 2.31 0.20 1.93 1.89 1.86 1.89 0.04
% 112% 150% 130% 131% 19% 93% 89% 86% 89% 4%
7.5h RL 2.17 2.35 2.21 2.24 0.09 1.74 1.67 1.68 1.70 0.04
% 117% 133% 121% 124% 8% 74% 67% 68% 70% 4%
8h RL 2.18 2.30 2.17 2.22 0.07 1.52 1.45 1.55 1.51 0.05
% 118% 128% 117% 121% 6% 52% 45% 55% 51% 5%
189
[0388] Table 31: AHR results, 0.5 mg/kg dose level
Sheep # BU Carbachol to Produce PC400
Control Trial
24h preascaris 24h post Ascaris
2489 24 13
2497 31 13
2520 26 13
Drug Trial: Day 22
24h preascaris 24h post Ascaris
2489 26 25
2497 26 24
2520 27 25
[0389] Table 32: AHR results, 0.25 mg/kg dose level
Sheep # BU Carbachol to Produce PC400 ' 7
Control Trial
24h preascaris 24h post Ascaris
2457 10 6
2517 28 13
2539 13 6
Drug Trial: Day 22
24h preascaris 24h post Ascaris -
2457 13 11
2517 26 25
2539 14 13
[0390] As shown in Table 29, treatment with AC000482 at 0.5 mg/kg dose level resulted in minimal atténuation of AR but robust atténuation of LR upon challenge on day 22. For example, untreated sheep display a mean LR increase of 125% in Rl at 6.5h compared to baseline, where AC000482 treated sheep on day 22 challenge show a more attenuated LR increase of 69% in Rl at 6.5h compared to baseline. In addition, 24h after the day 22 ascaris 10 challenge ail AC000482 treated sheep showed no signs of ascaris induced airway hyperresponsiveness, as shown by similar number of carbachol breath units required to produce PC400. In contrast, in the control trial without AC000482 treatment, sheep required approximately half the amount of carbachol breath units to induce PC400 post-ascaris challenge, signifying airway hyperresponsiveness.
[0391] As shown in Table 30, treatment with AC000482 at 0.25 mg/kg dose level resulted in minimal atténuation of AR but robust atténuation of LR upon challenge on day 22. For example, untreated sheep display a mean LR increase of 122% in Rl at 6.5h compared to
190 baseline, where AC000482 treated sheep on day 22 challenge show a more attenuated LR increase of 83% in Rl at 6.5h compared to baseline. In addition, 24h after the day 22 ascaris challenge ail AC000482 treated sheep showed no signs of ascaris induced airway hyperresponsiveness, as shown by similar number of carbachol breath units required to 5 produce PC400. In contrast, in the control trial without AC000482 treatment, sheep required approximately half the amount of carbachol breath units to induce PC400 post-ascaris challenge, signifying airway hyperresponsiveness.
[0392] Collectively, the results demonstrate dose-responsive impacts of AC000482 treatment on airway mechanics following ascaris challenge. The results show that even at the lowest 10 dose of AC000482, the impact on the late phase response is still substantial enough to block airway hyperresponsiveness 24h post challenge.
Example 13. Aerosolized Administration of MUC5ACRNAi Agents in Sheep.
[0393] The sheep model of allergie asthma airway inflammation described in example 10, 15 above, was used. Six (6) ascaris sensitive sheep with previously established responses to
Ascaris suum challenge were administered, on days 1, 8 and 15, with either 1.0 mg/kg pulmonary deposited dose levels of AC000480 or 1.0 mg/kg pulmonary deposited dose of a négative control siRNA conjugate that included the same targeting ligand but is unable to load into the RISC complex and therefore is unable to médiate RNA interférence gene 20 silencing. On day 21, AHR was assessed by determining the cumulative carbachol concentration (in breath units, BU) that increased Rl to 400% over the post-lx PB S value (PC400). On day 22, sheep were challenged with Ascaris suum extract, and Rl was monitored out to 8h post-challenge. On day 23, AHR was again assessed as on day 21. Sheep dosed with AC000480 attenuated allergen-induced late-phase reaction and airway 25 hyperresponsiveness in a dose dépendent manner, while similar exposure of the négative control conjugate did not attenuate allergen-induced changes in airway mechanics.
Other Embodiments
[0394] It is to be understood that while the invention has been described in conjunction with the detailed description thereof, the foregoing description is intended to illustrate and not limit
191
the scope of the invention, which is defined by the scope of the appended claims. Other aspects, advantages, and modifications are within the scope of the following claims.

Claims (5)

1. An RNAi agent for inhibiting expression of a Mucin 5AC gene, comprising: an antisense strand comprising at least 17 contiguous nucléotides differing by 0 or 1 nucléotides from any one of the sequences provided in Table 2 or Table 3; and a sense strand comprising a nucléotide sequence that is at least partially complementary to the antisense strand.
2. The RNAi agent of claim 1, wherein the antisense strand comprises nucléotides 2-18 of any one of the sequences provided in Table 2 or Table 3.
3. The RNAi agent of claim 1 or claim 2, wherein the sense strand comprises a nucléotide sequence of at least 17 contiguous nucléotides differing by 0 or 1 nucléotides from any one of the sequences provided in Table 2 or Table 4, and wherein thè sense strand has a région of at least 85% complementarity over the 17 contiguous nucléotides to the antisense strand.
4. The RNAi agent of any one of claims 1-3, wherein at least one nucléotide of the RNAi agent is a modified nucléotide or includes a modified intemucleoside linkage.
5. The RNAi agent of any one of claims 1-4, wherein ail or substantially ail of the nucléotides are modified nucléotides.
6. The RNAi agent of any one of claims 4-5, wherein the modified nucléotide is selected from the group consisting of: 2'-O-methyl nucléotide, 2'-fluoro nucléotide, 2'-deoxy nucléotide, 2',3'-seco nucléotide mimic, locked nucléotide, 2'-F-arabino nucléotide, 2'methoxyethyl nucléotide, abasic nucléotide, ribitol, inverted nucléotide, inverted 2'-Omethyl nucléotide, inverted 2'-deoxy nucléotide, 2'-amino-modified nucléotide, 2'alkyl-modified nucléotide, morpholino nucléotide, vinyl phosphonate-containing nucléotide, cyclopropyl phosphonate-containing nucléotide, and 3'-O-methyl nucléotide.
7. The RNAi agent of claim 5, wherein ail or substantially ail of the nucléotides are modified with 2'-O-methyI nucléotides, 2'-fluoro nucléotides, or combinations thereof.
8. The RNAi agent of any one of claims 1-7, wherein the antisense strand comprises the nucléotide sequence of any one of the modified antisense strand sequences provided in Table 3 or Table 11.
193
9. The RNAi agent of any one of claims 1-8, wherein the sense strand comprises the nucléotide sequence of any one of the modified sense strand sequences provided in Table 4 or Table 11.
10. The RNAi agent of claim 1, wherein the antisense strand comprises the nucléotide
5 sequence of any one of the modified antisense strand sequences provided in Table 3 or Table 11, and the sense strand comprises the nucléotide sequence of any one of the modified sense strand sequences provided in Table 4 or Table 11.
11. The RNAi agent of any one of claims 1-10, wherein the sense strand is between 18 and 30 nucléotides in length, and the antisense strand is between 18 and 30
10 nucléotides in length.
12. The RNAi agent of claim 11, wherein the sense strand and the antisense strand are each between 18 and 27 nucléotides in length.
13. The RNAi agent of claim 12, wherein the sense strand and the antisense strand are each between 18 and 24 nucléotides in length.
15
14. The RNAi agent of claim 13, wherein the sense strand and the antisense strand are each 21 nucléotides in length.
15. The RNAi agent of claim 14, wherein the RNAi agent has two blunt ends.
16. The RNAi agent of any one of claims 1-15, wherein the sense strand comprises one or two terminal caps.
20
17. The RNAi agent of any one of claims 1-16, wherein the sense strand comprises one or two inverted abasic residues.
18. The RNAi agent of claim 1, wherein the RNAi agent is comprised of a sense strand and an antisense strand that form a duplex having the structure of any one of the duplexes in Table 8A, Table 8B, Table 8C, Table 9, Table 10A, or Table 10B·
25
19. The RNAi agent of claim 18, wherein ail or substantially ail of the nucléotides are modified nucléotides.
20. The RNAi agent of claim 1, wherein the antisense strand consists of, consists essentially of, or comprises a nucléotide sequence that differs by 0 or 1 nucléotides from one of the following nucléotide sequences (5' -> 3'):
UUGUAGUAGUCGCAGAACA (SEQ ID NO:79); or
UUCUUGUUCAGGCAAAUCA (SEQ ID NO:83).
194
21. The RNAi agent of claim 1, wherein the antisense strand consists of, consists essentially of, or comprises a nucléotide sequence that differs by 0 or 1 nucléotides from one of the following nucléotide sequences (5' -> 3'):
UUGUAGUAGUCGCAGAACAGC (SEQ ID NO: 1525); or
5 UUCUUGUUCAGGCAAAUCAGC (SEQ ID NO: 1535).
22. The RNAi agent of claim 1, wherein the sense strand consists of, consists essentially of, or comprises a nucléotide sequence that differs by 0 or 1 nucléotides from one of the following nucléotide sequences (5' -> 3'):
UGUUCUGCGACUACUACAA (SEQ ID NO:568); or
10 UGAUUUGCCUGAACAAGAA (SEQ ID NO:572).
23. The RNAi agent of claim 20, 21, or 22, wherein ail or substantially ail of the nucléotides are modified nucléotides.
24. The RNAi agent of claim 1, wherein the antisense strand comprises, consists of, or - consists essentially of a modified nucléotide sequence that differs by 0 or 1
15 nucléotides from one of the following nucléotide sequences (5' -> 3'):
cPrpusUfsgsUfaGfuAfgUfcGfcAfgAfaCfaGfsc (SEQ ID NO: 1127);
usUfsgsUfaGfuAfgUfcGfcAfgAfaCfaGfsc (SEQ IDNO:1065);
usUfscsuuguucagGfcAfaAfucagsc (SEQ ID NO: 1166); or cPrpuUfcuuguucagGfcAfaAfucagsc (SEQ ID NO:1191);
20 wherein a, c, g, and u represent 2'-O-methyl adenosine, 2'-O-methyl cytidine, 2'-O-methyl guanosine, and 2'-O-methyl uridine, respectively; Af, Cf, Gf, and Uf represent 2'-fluoro adenosine, 2'-fluoro cytidine, 2'-fluoro guanosine, and 2'-fluoro uridine, respectively; cPrpu représente a 5’-cyclopropyl phosphonate-2’-O-methyl uridine; s represents a phosphorothioate linkage; and wherein ail or substantially ail of the nucléotides on the sense 25 strand are modified nucléotides.
25. The RNAi agent of claim 1, wherein the sense strand comprises, consists of, or consists essentially of a modified nucléotide sequence that differs by 0 or 1 nucléotides from one of the following nucléotide sequences (5' -> 3'):
30 gscuguucuGfCfGfacuacuacaa (SEQ ID NO:1265); or gscugauUfuGfcCfugaacaagaa (SEQ ID NO:1315);
wherein a, c, g, and u represent 2'-O-methyl adenosine, 2'-O-methyI cytidine, 2'-O-methyl guanosine, and 2'-O-methyl uridine, respectively; Af, Cf, Gf, and Uf represent 2'-fluoro
I
195
adenosine, 2'-fluoro cytidine, 2'-fluoro guanosine, and 2'-fluoro uridine, respectively; and s represents a phosphorothioate linkage; and wherein ail or substantially ail of the nucléotides on the antisense strand are modified nucléotides.
26. The RNAi agent of any one of daims 20-25, wherein the sense strand further includes
5 inverted abasic residues at the 3’ terminal end of the nucléotide sequence, at the 5’ end of the nucléotide sequence, or at both.
27. The RNAi agent of any one of daims 1-26, wherein the RNAi agent is linked to a targeting ligand.
28. The RNAi agent of claim 27, wherein the targeting ligand has affinity for a cell
10 receptor expressed on an épithélial cell.
29. The RNAi agent of claim 28, wherein the targeting ligand comprises an integrin targeting ligand.
30. The RNAi agent of claim 29, wherein the integrin targeting ligand is an ανβ6 integrin targeting ligand.
15
31. The RNAi agent of claim 30, wherein the targeting ligand comprises the structure:
H 0 H M H o JL O çx thereof, or H 9 H L^n h o 20 γΟΗ O or a pharmaceutically acceptable sait 1 WOH îJx 0 oo or a pharmaceutically acceptable sait thereof, wherein « indicates the point of connection to the RNAi agent.
196
32. The RNAi agent of any one of claims 27-30, wherein RNAi agent is conjugated to a targeting ligand having the following structure:
33. The RNAi agent of any one of claims 27-30, wherein the targeting ligand has the following structure:
197
H2N-^NH
π2ν o , or a pharmaceutically acceptable sait thereof, wherein indicates the point of connection to the RNAi agent.
5
34. The RNAi agent of any one of daims 27-33, wherein the targeting ligand is conjugated to the sense strand.
35. The RNAi agent of claim 34, wherein the targeting ligand is conjugated to the 5’ terminal end of the sense strand.
36. A composition comprising the RNAi agent of any one of daims 1-35, wherein the
10 composition further comprises a pharmaceutically acceptable excipient.
37. The composition of claim 36, further comprising a second RNAi agent capable of inhibiting the expression of Mucin 5AC gene expression.
38. The composition of any one of daims 36-37, further comprising one or more additional therapeutics.
15
39. The composition of any one of daims 36-38, wherein the composition is formulated for administration by inhalation.
40. The composition of claim 39, wherein the composition is delivered by a metered-dose inhaler, jet nebulizer, vibrating mesh nebulizer, or soft mist inhaler.
41. The composition of any of daims 36-40, wherein the RNAi agent is a sodium sait.
20
42. The composition of any of daims 36-41, wherein the pharmaceutically acceptable excipient is water for injection.
43. The composition of any of daims 36-42, wherein the pharmaceutically acceptable excipient is isotonie saline.
44. An RNAi agent of any one of daims 1-35 or the composition of any one of daims 36-
25 43 for use in a method for inhibiting expression of a MUC5AC gene in a cell.
45. The RNAi agent or the composition for use of claim 44, wherein the cell is within a subject.
198
46. The RNAi agent or the composition for use of claim 45, wherein the subject is a human subject.
47. The RNAi agent or the composition for use of any one of daims 44-46, wherein following the administration of the RNAi agent the Mucin 5AC gene expression is 5 inhibited by at least about 30%.
48. A composition of any one of daims 36-43 for use in a method of treating one or more symptoms or diseases associated with MUC5AC protein levels.
49. The composition for use of claim 48, wherein the disease is a mucoobstructive lung disease.
10
50. The composition for use of claim 49, wherein the mucoobstructive lung disease is asthma (including severe asthma), cystic fibrosis (CF), bronchiectasis (NCFB), or chronic obstructive pulmonary disease (COPD).
51. The composition for use of claim 50, wherein the disease is asthma (including severe asthma).
15
52. The composition for use of claim 48, wherein the disease is cancer.
53. The composition for use of claim 52, wherein the cancer is lung adenocarcinoma, pancreatic cancer, salivary gland carcinoma, breast cancer, cholangiocarcinoma, or ovarian cancer.
54. The composition for use of any one of daims 44-53, wherein the RNAi agent is to be 20 administered at a pulmonary deposited dose (PDD) of about 0.01 mg/kg to about 5.0 mg/kg of body weight of the subject.
55. The composition for use of any one of daims 44-53, wherein the RNAi agent is to be administered at a pulmonary deposited dose (PDD) of about 0.1 mg/kg to about 2.0 mg/kg of body weight of the subject.
25
56. The composition for use of any one of daims 44-53, wherein the RNAi agent is to be administered at a respirable delivered dose (RDD) of about 0.01 mg/kg to about 5.0 mg/kg of body weight of the subject.
57. The composition for use of any one of daims 44-53, wherein the RNAi agent is to be administered at a respirable delivered dose (RDD) of about 0.1 mg/kg to about 2.0 30 mg/kg of body weight of the subject.
58. The composition for use of any of daims 44-57, wherein the RNAi agent is to be administered in two or more doses.
199
59. A method of making an RNAi agent of any one of claims 1-35, comprising annealing a sense strand and an antisense strand to form a double-stranded ribonucleic acid molécule.
60. The method of claim 59, wherein the sense strand comprises a targeting ligand.
5 61. The method of claim 60, comprising conjugating a targeting ligand to the sense strand.
OA1202300473 2021-05-28 2022-05-25 RNAI agents for inhibiting expression of mucin 5AC (MUC5AC), compositions thereof, and methods of use. OA21427A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US63/194,370 2021-05-28

Publications (1)

Publication Number Publication Date
OA21427A true OA21427A (en) 2024-06-05

Family

ID=

Similar Documents

Publication Publication Date Title
CN111107853B (en) RNAi agents and compositions for inhibiting expression of apolipoprotein C-III (APOC 3)
US20220056454A1 (en) RNAi Agents for Inhibiting Expression of 17beta-HSD Type 13 (HSD17B13), Compositions Thereof, and Methods of Use
KR20200024793A (en) RNAi Agents and Methods of Inhibiting the Expression of Alpha-ENaC
CA3079413A1 (en) Rnai agents and compositions for inhibiting expression of asialoglycoprotein receptor 1
US20230002767A1 (en) RNAi Agents for Inhibiting Expression of Mucin 5AC (MUC5AC), Compositions Thereof, and Methods of Use
OA21427A (en) RNAI agents for inhibiting expression of mucin 5AC (MUC5AC), compositions thereof, and methods of use.
WO2021086995A1 (en) Rnai agents for inhibiting expression of beta-enac, compositions thereof, and methods of use
WO2024173520A2 (en) Rnai agents for inhibiting expression of thymic stromal lymphopoietin (tslp), compositions thereof, and methods of use
OA21374A (en) RNAI agents for inhibiting expression of receptor for advanced glycation end-products, compositions thereof, and methods of use.
TW202304474A (en) Rnai agents for inhibiting expression of receptor for advanced glycation end-products, compositions thereof, and methods of use
WO2023245060A2 (en) Rnai agents for inhibiting expression of superoxide dismutase 1 (sod1), compositions thereof, and methods of use
EP4419689A2 (en) Rnai agents for inhibiting expression of matrix metalloproteinase 7(mmp7), compositions thereof, and methods of use
WO2023150622A2 (en) Rnai agents for inhibiting expression of coronavirus (cov) viral genomes, compositions thereof, and methods of use
CN117440817A (en) RNAi agents for inhibiting expression of advanced glycation end product receptors, compositions and methods of use thereof
CN118541485A (en) RNAi agents for inhibiting expression of matrix metalloproteinase 7 (MMP 7), compositions thereof and methods of use
WO2024192379A1 (en) Rnai agents for inhibiting expression of mitochondrial amidoxime reducing component 1 (marc1), pharmaceutical compositions thereof, and methods of use