OA21190A - Carboxylic acid derivative-substituted imino aryl compound, preparation method therefor, herbicidal composition and use thereof. - Google Patents

Carboxylic acid derivative-substituted imino aryl compound, preparation method therefor, herbicidal composition and use thereof. Download PDF

Info

Publication number
OA21190A
OA21190A OA1202200177 OA21190A OA 21190 A OA21190 A OA 21190A OA 1202200177 OA1202200177 OA 1202200177 OA 21190 A OA21190 A OA 21190A
Authority
OA
OAPI
Prior art keywords
alkyl
cycloalkyl
substituted
halo
alkynyl
Prior art date
Application number
OA1202200177
Inventor
Lei Lian
Xuegang PENG
Rongbao HUA
Qi CUI
De ZHAO (
Original Assignee
Qingdao Kingagroot Chemical Compound Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao Kingagroot Chemical Compound Co., Ltd. filed Critical Qingdao Kingagroot Chemical Compound Co., Ltd.
Publication of OA21190A publication Critical patent/OA21190A/en

Links

Abstract

The present invention belongs to the technical field of pesticides, and in particular relates to a carboxylic acid derivative-substituted imino aryl compound, a preparation method therefor, a herbicidal composition and use thereof. The compound is as shown in general formula I: Q represents; Y represents halogen, haloalkyl or cyano; Z represents halogen; M represents CH or N; W represents OX5, SX5 or N(X5)2; X represents -CX1X2-(alkyl)n-, -alkyl-CX1X2-(alkyl)n-, or -(CH2)r-; X3 and X4 independently represent O, S, NH, Nalkyl, or the like. The compound has excellent herbicidal activity against gramineous weeds, broadleaf weeds, Cyperaceae weeds, and the like even at low application rates, and has high selectivity to crops.

Description

The invention relates to the field of pesticide technology, and in particular a type of carboxylic acid derivative-substituted iminoaryl compound, préparation method, herbicidal composition and use thereof.
Technical background
Weed control is one of the most important links in the course of achieving high-efficiency agriculture. Varions herbicides are available in the market, for example, patents WO00/50409 etc. disclose the use of a compound of general formula l-aryl-4-thiotriazine as a herbicide, WO95/06641 discloses a compound of substituted l-amino-3-phenyluracils with herbicidal activity, WO95/25725 discloses a compound of pyrimidinyl aryl ketone oximes with herbicidal and insecticidal activities. However, the herbicidal properties of these known compounds against harmful plants and their selectivities to crops are not completely satisfactory. And scientists still need to do continuously research and develop new herbicides with high efficacy, safety, économies and different modes of action due to problems such as the growing market, weed résistance, the service life and économies of pesticides as well as people’s increasing concem on environment.
Invention contents
The invention relates to the field of pesticide technology, and in particular a type of carboxylic acid derivative-substituted iminoaryl compound, préparation method, herbicidal composition and use thereof. The compound has excellent herbicidal activity against gramineous weeds, broadleaf weeds, cyperaceae weeds and so on even at low application rates, and has high selectivity for crops.
The technical solution adopted by the invention is as follows:
A carboxylic acid derivative-substituted iminoaryl compound, represented by general formula Γ:
Q Μ A3 η
Ο □1
Wherein, the dérivative refers to a dérivative suitable for agricultural chemistry, which is used to describe the change of the carboxylic acid fimctional group of the présent invention, and it refers to any ester, acylhydrazide, imidate, thioimidate, amidine, amide, orthoester, acyl cyanide, acyl halide, thioester, thionoester, dithiolester, nitrile or any other carboxylic acid dérivative well known in the art.
To be spécifie, the carboxylic acid derivative-substituted iminoaryl compound, represented by general formula I:
Zv/V/Y <AA^'xsxYw
X4 □
In the above general formulas l'and I,
Q2 04 „, Û4 RinAn'X q^n^q3 R7 n^Q5 R7r?7 q5
Q represents R2 , R6 or R6 ;
Y represents halogen, haloalkyl or cyano;
Z represents halogen;
M represents CH or N;
W represents OX5, SX5 or N(Xs)2;
X represents -CXiX2-(alkyl)n-, -alkyl-CXiX2-(alkyl)n- or -(CH2)r-;
Xi, X2 each independently represent H, halogen, cyano, amino, nitro, formyl, cyanoalkyl, hydroxyalkyl, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkylalkyl, alkoxy, alkylthio, alkylamino, haloalkoxy, haloalkylthio, alkyl carbonyl, alkoxy carbonyl, alkoxyalkyl, haloalkoxyalkyl, alkylaminoalkyl, aryl, heterocyclyl, arylalkyl or heterocyclic alkyl, wherein, the “alkyl”, “alkenyl” and “alkynyl” are each independently unsubstituted or substituted by halogen, the “cycloalkyl”, “cycloalkylalkyl”, “aryl”, “heterocyclyl”, “arylalkyl” and “heterocyclic alkyl” are each independently unsubstituted or substituted by at least one group selected from oxo, halogen, cyano, nitro, alkyl, alkenyl, alkynyl, cycloalkyl, haloalkyl, haloalkenyl, haloalkynyl, halocycloalkyl, alkyl-substituted cycloalkyl, -OR13, -SR13, -(CO)ORi3, -(SC>2)Ri3, -N(Ri3)2 and -O-alkyl-(CO)ORi3, or two adjacent carbon atoms on the ring together with unsubstituted or halogen-substituted -OCH2CH2- or -OCH2O- form a fused ring; and Xb X2 are not hydrogen at the same time;
X3, X4 each independently represent O, S, NH or N-alkyl;
X5 represents H, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, heterocyclyl, aryl, γθ yS ^A |'θ'χ12 |^crXl2 '/οΑχ ^A ,Xn 13 X 13 1 *11 i *11, T- *11, 5 O , 4 O > υ *11, υ » X14 » X14 »
Ο Χ13χΝ-Χΐ4 y|'N'Xi3 χΝγΧΐ3 àVx
Xi4 , X14 or o , wherein, the “alkyl”, “alkenyl” and “alkynyl” are each independently unsubstituted or substituted by at least one group selected from halogen, cyano,
O O o s A y, A nitro, cycloalkyl, cycloalkenyl, heterocyclyl, aryl, * X11, 1 Xl1, xn A 0 X11, o
A x \0Y°'Xn V” ΐΝΤΧAJI ';rX3 AAyX” \ Ο” 11, ο , X14 , X14 , X14 and X14 , the “cycloalkyl”, “cycloalkenyl”, “heterocyclyl” and “aryl” are each independently unsubstituted or substituted by at least one group selected from oxo, halogen, cyano, nitro, alkyl, alkenyl, alkynyl, cycloalkyl, haloalkyl, haloalkenyl, haloalkynyl, halocycloalkyl, alkyl-substituted cycloalkyl, -OR13, -SR13, -(CO)ORi3, -(SO2)Ri3, -N(Ri3)2 and -O-alkyl-(CO)ORi3, or two adjacent carbon atoms on the ring together with unsubstituted or halogen-substituted -OCH2CH2- or -OCH2O- form a fused ring;
.^n^x13 or N(X5)2 represents X14 or unsubstituted or substituted heterocyclyl with nitrogen atom at 1-position;
Qi, Q2, Q3, Q4, Qs each independently represent O or S;
Ri, R2 each independently represent H, cyano, alkyl, alkenyl, alkynyl, formyl alkyl, cyanoalkyl, amino, aminoalkyl, amino carbonyl, amino carbonylalkyl, aminosulfonyl, cycloalkyl, cycloalkylalkyl, cycloalkenyl, cycloalkenyl alkyl, heterocyclyl, heterocyclic alkyl, aryl, arylalkyl,
R4R5N-(CO)-NR3-, R5 , R3-S(O)m-(alkyl)n-, R3-O-(alkyl)n-, R3-(CO)-(alkyl)n-,
R3-O-(alkyl)n-(CO)-, R3-(CO)-O-(alkyl)n-, R3-S-(CO)-(alkyl)n-, R3-O-(CO)-alkyl- or
R3-O-(CO)-O-alkyl-, wherein, the “alkyl”, “alkenyl” and “alkynyl” are each independently unsubstituted or substituted by halogen, the “amino”, “aminoalkyl”, “amino carbonyl”, “amino carbonylalkyl” and “aminosulfonyl” are each independently unsubstituted or substituted by one or two groups selected from -Ru, -ORii, -(CO)Rn, -(CO)ORn, -alkyl-(CO)ORn, -(SO2)Rn, -(SO2)ORn, -alkyl-(SO2)Rn, -(CO)N(R12)2 and -(SO2)N(R12)2, the “cycloalkyl”, “cycloalkylalkyl”, “cycloalkenyl”, “cycloalkenyl alkyl”, “heterocyclyl”, “heterocyclic alkyl”, “aryl” and “arylalkyl” are each independently unsubstituted or substituted by at least one group selected from oxo, halogen, cyano, nitro, alkyl, alkenyl, alkynyl, cycloalkyl, haloalkyl, haloalkenyl, haloalkynyl, halocycloalkyl, alkyl-substituted cycloalkyl, -OR13, -SR13, -(CO)ORi3, -(SO2)Rb, -N(Rb)2 and -O-alkyl-(CO)ORi3, or two adjacent carbon atoms on the ring together with unsubstituted or halogen-substituted -OCH2CH2- or -OCH2O- form a fused ring;
R6 représente alkyl, alkenyl, alkynyl or cyano, wherein, the “alkyl”, “alkenyl” and “alkynyl” are each independently unsubstituted or substituted by at least one group selected from halogen, alkoxy and alkoxy carbonyl;
R?, R7’, Rs, Rs’ each independently represent H, alkyl, halogen, haloalkyl, amino, hydroxyalkyl or alkoxy;
X11 independently represents H, alkyl, alkenyl, alkynyl, haloalkyl, haloalkenyl, haloalkynyl, cycloalkyl, cycloalkylalkyl, cycloalkenyl, cycloalkenyl alkyl, heterocyclyl, heterocyclic alkyl, aryl, arylalkyl or Q M ' Ν χ3Χ^, wherein, the “cycloalkyl”, “cycloalkylalkyl”, “cycloalkenyl”, “cycloalkenyl alkyl”, “heterocyclyl”, “heterocyclic alkyl”, “aryl” and “arylalkyl” are each independently unsubstituted or substituted by at least one group selected from oxo, halogen, cyano, nitro, alkyl, alkenyl, alkynyl, cycloalkyl, haloalkyl, haloalkenyl, haloalkynyl, halocycloalkyl, alkyl-substituted cycloalkyl, -OR13, -SR13, -(CO)ORi3, -(SO2)Ri3, -N(Rb)2 and -O-alkyl-(CO)ORi3, or two adjacent carbon atoms on the ring together with unsubstituted or halogen-substituted -OCH2CH2- or -OCH2O- form a fused ring;
Xi2 independently represents alkyl, alkenyl, alkynyl, haloalkyl, haloalkenyl, haloalkynyl, cycloalkyl, cycloalkylalkyl, cycloalkenyl, cycloalkenyl alkyl, heterocyclyl, heterocyclic alkyl, aryl or arylalkyl, wherein, the “cycloalkyl”, “cycloalkylalkyl”, “cycloalkenyl”, “cycloalkenyl alkyl”, “heterocyclyl”, “heterocyclic alkyl”, “aryl” and “arylalkyl” are each independently unsubstituted or substituted by at least one group selected from oxo, halogen, cyano, nitro, alkyl, alkenyl, alkynyl, cycloalkyl, haloalkyl, haloalkenyl, haloalkynyl, halocycloalkyl, alkyl-substituted cycloalkyl, -OR13, -SR13, -(CO)ORi3, -(SO2)Ri3, -N(Rb)2 and -O-alkyl-(CO)ORi3, or two adjacent carbon atoms on the ring together with unsubstituted or halogen-substituted -OCH2CH2- or -OCH2O- form a fused ring;
X13, X14 each independently represent H, halogen, cyano, alkoxy, alkoxyalkyl, alkyl carbonyl, alkoxy carbonyl, alkylsulfonyl, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkylalkyl, cycloalkenyl, cycloalkenyl alkyl, aryl, arylalkyl, heterocyclyl or heterocyclic alkyl, or C, X13, X14, taken together, form unsubstituted or substituted cyclic structure, or N, X13, X14, taken together, form unsubstituted or substituted heterocyclyl with nitrogen atom at 1-position, wherein, the “alkyl”, “alkenyl” and “alkynyl” are each independently unsubstituted or substituted by halogen, the “cycloalkyl”, “cycloalkylalkyl”, “cycloalkenyl”, “cycloalkenyl alkyl”, “aryl”, “arylalkyl”, “heterocyclyl” and “heterocyclic alkyl” are each independently unsubstituted or substituted by at least one group selected from oxo, halogen, cyano, nitro, alkyl, alkenyl, alkynyl, cycloalkyl, haloalkyl, haloalkenyl, haloalkynyl, halocycloalkyl, alkyl-substituted cycloalkyl, -OR13, -SR13, -(CO)ORi3, -(SO2)Ri3, -N(Ri3)2 and -O-alkyl-(CO)ORi3, or two adjacent carbon atoms on the ring together with unsubstituted or halogen-substituted -OCH2CH2- or -OCH2Oform a fused ring;
R3, R4, R5 each independently represent H, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkylalkyl, cycloalkenyl, cycloalkenylalkyl, heterocyclyl, heterocyclic alkyl, aryl or arylalkyl, wherein, the “alkyl”, “alkenyl” and “alkynyl” are each independently unsubstituted or substituted by halogen, the “cycloalkyl”, “cycloalkylalkyl”, “cycloalkenyl”, “cycloalkenylalkyl”, “heterocyclyl”, “heterocyclic alkyl”, “aryl” and “arylalkyl” are each independently unsubstituted or substituted by at least one group selected from oxo, halogen, cyano, nitro, alkyl, alkenyl, alkynyl, cycloalkyl, haloalkyl, haloalkenyl, haloalkynyl, halocycloalkyl, alkyl-substituted cycloalkyl, -OR13, -SR13, -(CO)ORi3, -(SO2)Rb, -N (R 13)2 and -O-alkyl-(CO)ORi3, or two adjacent carbon atoms on the ring together with unsubstituted or halogen-substituted -OCH2CH2or -OCH2O- form a fused ring;
Ru independently represents alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkylalkyl, cycloalkenyl, cycloalkenylalkyl, phenyl, benzyl, wherein, the “alkyl”, “alkenyl” and “alkynyl” are each independently unsubstituted or substituted by halogen, the “phenyl” and “benzyl” are each independently unsubstituted or substituted by at least one group selected from halogen, cyano, nitro, alkyl, haloalkyl, alkoxy carbonyl, alkylthio, alkylsulfonyl, alkoxy and haloalkoxy;
Ri2 independently represents H, alkyl, alkenyl, alkynyl, alkoxy, alkylsulfonyl, cycloalkyl, cycloalkylalkyl, cycloalkenyl or cycloalkenylalkyl, or N(Ri2)2 in -(CO)N(Rj2)2 or -(SO2)N(Ri2)2 each independently represents unsubstituted or substituted heterocyclyl with nitrogen atom at 1-position;
Rb independently represents H, alkyl, haloalkyl, phenyl or phenyl substituted by at least one group selected from halogen, cyano, nitro, alkyl, haloalkyl, alkoxy carbonyl, alkylthio, alkylsulfonyl, alkoxy and haloalkoxy;
r represents an integer of 2 or more; m represents 0, 1 or 2; n independently represents 0 or 1.
Preferably, Y represents halogen, halo C1-C8 alkyl or cyano;
X represents -CXiX2-(C1-C8 alkyl)n-, -(C1-C8 alkyl)-CXiX2-(Cl-C8 alkyl)n- or -(CH2)r;
Xi, X2 each independently represent H, halogen, cyano, amino, nitro, formyl, cyano C1-C8 alkyl, hydroxy C1-C8 alkyl, C1-C8 alkyl, C2-C8 alkenyl, C2-C8 alkynyl, C3-C8 cycloalkyl, C3-C8 cycloalkyl C1-C8 alkyl, C1-C8 alkoxy, C1-C8 alkylthio, C1-C8 alkylamino, halo C1-C8 alkoxy, halo C1-C8 alkylthio, C1-C8 alkyl carbonyl, C1-C8 alkoxy carbonyl, C1-C8 alkoxy C1-C8 alkyl, halo C1-C8 alkoxy C1-C8 alkyl, C1-C8 alkylamino C1-C8 alkyl, aryl, heterocyclyl, aryl C1-C8 alkyl or heterocyclyl C1-C8 alkyl, wherein, the “C1-C8 alkyl”, “C2-C8 alkenyl” and “C2-C8 alkynyl” are each independently unsubstituted or substituted by halogen, the “C3-C8 cycloalkyl”, “C3-C8 cycloalkyl C1-C8 alkyl”, “aryl”, “heterocyclyl”, “aryl C1-C8 alkyl” and “heterocyclyl C1-C8 alkyl” are each independently unsubstituted or substituted by at least one group selected from oxo, halogen, cyano, nitro, C1-C8 alkyl, C2-C8 alkenyl, C2-C8 alkynyl, C3-C8 cycloalkyl, halo C1-C8 alkyl, halo C2-C8 alkenyl, halo C2-C8 alkynyl, halo C3-C8 cycloalkyl, C1-C8 alkyl-substituted C3-C8 cycloalkyl, -OR13, -SR13, -(CO)OR]3, -(SO2)Ri3, -N(Ri3)2 and -O-(C1-C8 alkyl)-(CO)ORi3, or two adjacent carbon atoms on the ring together with unsubstituted or halogen-substituted -OCH2CH2- or -OCH2O- form a fiised ring; and Xb X2 are not hydrogen at the same time;
X3, X4 each independently represent O, S, NH or N-(C1-C8)alkyl;
X5 represents H, C1-C8 alkyl, C2-C8 alkenyl, C2-C8 alkynyl, C3-C8 cycloalkyl, C3-C8 . ^-θ-ν Χυ J n'O' ÿ'rr^Y cycloalkenyl, heterocyclyl, aryl, * xn, * xn, X11, 5 ° , O , xn, o O Xl3'N'Xl4 £ y /'N'X13 À^N'X13 tjtN'Xl3 \'NYX13 'A/*11
Yo 11, x14 , x-14 , X14 , X14 or o , wherein, the “C1-C8 alkyl”, “C2-C8 alkenyl” and “C2-C8 alkynyl” are each independently unsubstituted or substituted by at least one group selected from halogen, cyano, nitro, C3-C8 cycloalkyl, C3-C8 cycloalkenyl,
s.O. s. S.
heterocyclyl, aryl, * xn, 1 xn,
9 9 ΥθΧ/θΎ /m'X13 sJL '/ .K tA xXii A Y χιι
XXn, /'O X11, X o o , X14 ,
O .^-Ν<γ-Χι3 χ\Ά^-Χΐ3 /Ό^Ύ Χ13
Xi4 , Xi4 and Xu , the “C3-C8 cycloalkyl”, “C3-C8 cycloalkenyl”, “heterocyclyl” and “aryl” are each independently unsubstituted or substituted by at least one group selected from oxo, halogen, cyano, nitro, C1-C8 alkyl, C2-C8 alkenyl, C2-C8 alkynyl, C3-C8 cycloalkyl, halo C1-C8 alkyl, halo C2-C8 alkenyl, halo C2-C8 alkynyl, halo C3-C8 cycloalkyl, C1-C8 alkyl-substituted C3-C8 cycloalkyl, -OR13, -SR13, -(CO)ORi3, -(SÛ2)Ri3,
-N(Ri3)2 and -O-(C1-C8 alkyl)-(CO)ORi3, or two adjacent carbon atoms on the ring together with unsubstituted or halogen-substituted -OCH2CH2- or -OCH2O- form a fused ring;
or N(X5)2 represents
X14 or heterocyclyl
nitrogen atom at 1-position that is unsubstituted or substituted by at least one group selected from oxo and C1-C8 alkyl;
Ri, R2 each independently represent H, cyano, C1-C8 alkyl, C2-C8 alkenyl, C2-C8 alkynyl, formyl C1-C8 alkyl, cyano C1-C8 alkyl, amino, amino C1-C8 alkyl, amino carbonyl, amino carbonyl Ç1-C8 alkyl, aminosulfonyl, C3-C8 cycloalkyl, C3-C8 cycloalkyl C1-C8 alkyl, C3-C8 cycloalkenyl, C3-C8 cycloalkenyl C1-C8 alkyl, heterocyclyl, heterocyclyl C1-C8 alkyl, aryl, aryl
C1-C8 alkyl, R4R5N-(CO)-NR3-, Rs , R3-S(O)m-(Cl-C8 alkyl)n-, R3-O-(C1-C8 alkyl)n-,
R3-(CO)-(C1-C8 alkyl)n-, R3-O-(C1-C8 alkyl)n-(CO)-, R3-(CO)-O-(C1-C8 alkyl)n-,
R3-S-(CO)-(C1-C8 alkyl)n-, R3-O-(CO)-(C1-C8 alkyl)- or R3-O-(CO)-O-(C1-C8 alkyl)-, wherein, the “C1-C8 alkyl”, “C2-C8 alkenyl” and “C2-C8 alkynyl” are each independently unsubstituted or substituted by halogen, the “amino”, “amino C1-C8 alkyl”, “amino carbonyl”, “amino carbonyl C1-C8 alkyl” and “aminosulfonyl” are each independently unsubstituted or substituted by one or two groups selected from -Rlb -ORn, -(CO)Rn, -(CO)ORn, -(C1-C8 alkyl)-(CO)ORn, -(SO2)Rn, -(SO2)ORn, -(C1-C8 alkyl)-(SO2)Rn, -(CO)N(Ri2)2 and -(SO2)N(Ri2)2, the “C3-C8 cycloalkyl”, “C3-C8 cycloalkyl C1-C8 alkyl”, “C3-C8 cycloalkenyl”, “C3-C8 cycloalkenyl C1-C8 alkyl”, “heterocyclyl”, “heterocyclyl C1-C8 alkyl”, “aryl” and “aryl C1-C8 alkyl” are each independently unsubstituted or substituted by at least one group selected from oxo, halogen, cyano, nitro, C1-C8 alkyl, C2-C8 alkenyl, C2-C8 alkynyl, C3-C8 cycloalkyl, halo C1-C8 alkyl, halo C2-C8 alkenyl, halo C2-C8 alkynyl, halo C3-C8 cycloalkyl, C1-C8 alkyl-substituted C3-C8 cycloalkyl, -OR13, -SR13, -(CO)ORi3, -(SO2)Ri3, -N(Ri3)2 and -O-(C1-C8 alkyl)-(CO)ORi3, or two adjacent carbon atoms on the ring together with unsubstituted or halogen-substituted -OCH2CH2- or -OCH2O- form a fused ring;
R6 represents C1-C8 alkyl, C2-C8 alkenyl, C2-C8 alkynyl or cyano, wherein, the “C1-C8 alkyl”, “C2-C8 alkenyl” and “C2-C8 alkynyl” are each independently unsubstituted or substituted by at least one group selected from halogen, C1-C8 alkoxy and C1-C8 alkoxy carbonyl;
R7, R7’, Rr, R$’ each independently represent H, C1-C8 alkyl, halogen, halo C1-C8 alkyl, amino, hydroxy C1-C8 alkyl or C1-C8 alkoxy;
X11 independently represents H, C1-C8 alkyl, C2-C8 alkenyl, C2-C8 alkynyl, halo C1-C8 alkyl, halo C2-C8 alkenyl, halo C2-C8 alkynyl, C3-C8 cycloalkyl, C3-C8 cycloalkyl C1-C8 alkyl, C3-C8 cycloalkenyl, C3-C8 cycloalkenyl C1-C8 alkyl, heterocyclyl, heterocyclyl C1-C8 z'v^tx'y alkyl, aryl, aryl Cl-C8 alkyl or Q M ^N'X3X^, wherein, the “C3-C8 cycloalkyl”, “C3-C8 cycloalkyl C1-C8 alkyl”, “C3-C8 cycloalkenyl”, “C3-C8 cycloalkenyl C1-C8 alkyl”, “heterocyclyl”, “heterocyclyl C1-C8 alkyl”, “aryl” and “aryl C1-C8 alkyl” are each independently unsubstituted or substituted by at least one group selected from oxo, halogen, cyano, nitro, C1-C8 alkyl, C2-C8 alkenyl, C2-C8 alkynyl, C3-C8 cycloalkyl, halo C1-C8 alkyl, halo C2-C8 alkenyl, halo C2-C8 alkynyl, halo C3-C8 cycloalkyl, C1-C8 alkyl-substituted C3-C8 cycloalkyl, -OR13, -SR13, -(CO)ORi3, -(SO2)Ri3, -N(Ri3)2 and -O-(C1-C8 alkyl)-(CO)ORi3, or two adjacent carbon atoms on the ring together with unsubstituted or halogen-substituted -OCH2CH2- or -OCH2O- form a fused ring;
X12 independently represents C1-C8 alkyl, C2-C8 alkenyl, C2-C8 alkynyl, halo C1-C8 alkyl, halo C2-C8 alkenyl, halo C2-C8 alkynyl, C3-C8 cycloalkyl, C3-C8 cycloalkyl C1-C8 alkyl, C3-C8 cycloalkenyl, C3-C8 cycloalkenyl C1-C8 alkyl, heterocyclyl, heterocyclyl C1-C8 alkyl, aryl or aryl C1-C8 alkyl, wherein, the “C3-C8 cycloalkyl”, “C3-C8 cycloalkyl C1-C8 alkyl”, “C3-C8 cycloalkenyl”, “C3-C8 cycloalkenyl C1-C8 alkyl”, “heterocyclyl”, “heterocyclyl C1-C8 alkyl”, “aryl” and “aryl C1-C8 alkyl” are each independently unsubstituted or substituted by at least one group selected from oxo, halogen, cyano, nitro, C1-C8 alkyl, C2-C8 alkenyl, C2-C8 alkynyl, C3-C8 cycloalkyl, halo C1-C8 alkyl, halo C2-C8 alkenyl, halo C2-C8 alkynyl, halo C3-C8 cycloalkyl, C1-C8 alkyl-substituted C3-C8 cycloalkyl, -ORb, -SRb, -(CO)ORb, -(SO2)Ri3, -N(Ri3)2 and -O-(C1-C8 alkyl)-(CO)ORi3, or two adjacent carbon atoms on the ring together with unsubstituted or halogen-substituted -OCH2CH2- or -OCH2O- form a fused ring;
Xi3, Xi4 each independently represent H, halogen, cyano, C1-C8 alkoxy, C1-C8 alkoxy C1-C8 alkyl, C1-C8 alkyl carbonyl, C1-C8 alkoxy carbonyl, C1-C8 alkylsulfonyl, C1-C8 alkyl, C2-C8 alkenyl, C2-C8 alkynyl, C3-C8 cycloalkyl, C3-C8 cycloalkylalkyl, C3-C8 cycloalkenyl, C3-C8 cycloalkenyl C1-C8 alkyl, aryl, aryl C1-C8 alkyl, heterocyclyl or heterocyclyl C1-C8 alkyl, or C, X13, X14, taken together, form 5~8 membered carbocyclyl or oxygen, sulfur or nitrogen-containing heterocyclyl, or N, X13, X14, taken together, form heterocyclyl with nitrogen atom at 1-position, wherein, the “C1-C8 alkyl”, “C2-C8 alkenyl” and “C2-C8 alkynyl” are each independently unsubstituted or substituted by halogen, the “C3-C8 cycloalkyl”, “C3-C8 cycloalkyl C1-C8 alkyl”, “C3-C8 cycloalkenyl”, “C3-C8 cycloalkenyl C1-C8 alkyl”, “aryl”, “aryl C1-C8 alkyl”, “heterocyclyl” and “heterocyclyl C1-C8 alkyl” are each independently unsubstituted or substituted by at least one group selected from oxo, halogen, cyano, nitro, C1-C8 alkyl, C2-C8 alkenyl, C2-C8 alkynyl, C3-C8 cycloalkyl, halo C1-C8 alkyl, halo C2-C8 alkenyl, halo C2-C8 alkynyl, halo C3-C8 cycloalkyl, C1-C8 alkyl-substituted C3-C8 cycloalkyl, -OR13, -SR13, -(CO)ORi3, -(SO2)Ri3, -N(Rb)2 and -O-(C1-C8 alkyl)-(CO)ORB, or two adjacent carbon atoms on the ring together with unsubstituted or halogen-substituted -OCH2CH2- or -OCH2O- form a fused ring, the “5~8 membered carbocyclyl or oxygen, sulfur or nitrogen-containing heterocyclyl” is unsubstituted or substituted by 1-4 groups selected from C1-C8 alkyl, C1-C8 alkoxy carbonyl and benzyl, or together with aryl or heterocyclyl forms a fused ring, the “heterocyclyl with nitrogen atom at l-position”is unsubstituted or substituted by at least one group selected from oxo and C1-C8 alkyl;
R.3, R4, R5 each independently represent H, C1-C8 alkyl, C2-C8 alkenyl, C2-C8 alkynyl, C3-C8 cycloalkyl, C3-C8 cycloalkyl C1-C8 alkyl, C3-C8 cycloalkenyl, C3-C8 cycloalkenyl C1-C8 alkyl, heterocyclyl, heterocyclyl C1-C8 alkyl, aryl or aryl C1-C8 alkyl, wherein, the “C1-C8 alkyl”, “C2-C8 alkenyl” and “C2-C8 alkynyl” are each independently unsubstituted or substituted by halogen, the “C3-C8 cycloalkyl”, “C3-C8 cycloalkyl C1-C8 alkyl”, “C3-C8 cycloalkenyl”, “C3-C8 cycloalkenyl C1-C8 alkyl”, “heterocyclyl”, “heterocyclyl C1-C8 alkyl”, “aryl” and “aryl C1-C8 alkyl” are each independently unsubstituted or substituted by at least one group selected from oxo, halogen, cyano, nitro, C1-C8 alkyl, C2-C8 alkenyl, C2-C8 alkynyl, C3-C8 cycloalkyl, halo C1-C8 alkyl, halo C2-C8 alkenyl, halo C2-C8 alkynyl, halo C3-C8 cycloalkyl, C1-C8 alkyl-substituted C3-C8 cycloalkyl, -OR13, -SR13, -(CO)ORi3, -(SC>2)Ri3, -N(Ri3)2 and -O-(C1-C8 alkyl)-(CO)ORi3, or two adjacent carbon atoms on the ring together with unsubstituted or halogen-substituted -OCH2CH2- or -OCH2O- form a fused ring;
Ru independently represents C1-C8 alkyl, C2-C8 alkenyl, C2-C8 alkynyl, C3-C8 cycloalkyl, C3-C8 cycloalkyl C1-C8 alkyl, C3-C8 cycloalkenyl, C3-C8 cycloalkenyl C1-C8 alkyl, phenyl, benzyl, wherein, the “C1-C8 alkyl”, “C2-C8 alkenyl” and “C2-C8 alkynyl” are each independently unsubstituted or substituted by halogen, the “phenyl” and “benzyl” are each independently unsubstituted or substituted by at least one group selected from halogen, cyano, nitro, C1-C8 alkyl, halo C1-C8 alkyl, C1-C8 alkoxy carbonyl, C1-C8 alkylthio, C1-C8 alkylsulfonyl, C1-C8 alkoxy and halo C1-C8 alkoxy;
R12 independently represents H, C1-C8 alkyl, C2-C8 alkenyl, C2-C8 alkynyl, C1-C8 alkoxy, C1-C8 alkylsulfonyl, C3-C8 cycloalkyl, C3-C8 cycloalkyl C1-C8 alkyl, C3-C8 cycloalkenyl or C3-C8 cycloalkenyl C1-C8 alkyl, or N(Ri2)2 in -(CO)N(Ri2)2 or -(SO2)N(Ri2)2 independently e N > 1 ] In . .
represents heterocyclyl 'X , '—/, kor with nitrogen atom at 1-position that is unsubstituted or substituted by at least one group selected from oxo and C1-C8 alkyl;
R13 independently represents H, C1-C8 alkyl, halo C1-C8 alkyl, phenyl or phenyl substituted by at least one group selected from halogen, cyano, nitro, C1-C8 alkyl, halo C1-C8 alkyl, C1-C8 alkoxy carbonyl, C1-C8 alkylthio, C1-C8 alkylsulfonyl, C1-C8 alkoxy and halo C1-C8 alkoxy;
r represents 2, 3,4, 5 or 6.
More preferably, Y represents halogen, halo C1-C6 alkyl or cyano;
X represents -CXiX2-(C1-C6 alkyl)n-, -(C1-C6 alkyl)-CXiX2-(Cl-C6 alkyl)n- or -(CH2)r-;
Xi, X2 each independently represent H, halogen, cyano, amino, nitro, formyl, cyano C1-C6 alkyl, hydroxy C1-C6 alkyl, C1-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, C3-C6 cycloalkyl, C3-C6 cycloalkyl C1-C6 alkyl, C1-C6 alkoxy, C1-C6 alkylthio, C1-C6 alkylamino, halo C1-C6 alkoxy, halo C1-C6 alkylthio, C1-C6 alkyl carbonyl, C1-C6 alkoxy carbonyl, C1-C6 alkoxy C1-C6 alkyl, halo C1-C6 alkoxy C1-C6 alkyl, C1-C6 alkylamino C1-C6 alkyl, aryl, heterocyclyl, aryl C1-C6 alkyl or heterocyclyl C1-C6 alkyl, wherein, the “C1-C6 alkyl”, “C2-C6 alkenyl” and “C2-C6 alkynyl” are each independently unsubstituted or substituted by halogen, the “C3-C6 cycloalkyl”, “C3-C6 cycloalkyl C1-C6 alkyl”, “aryl”, “heterocyclyl”, “aryl C1-C6 alkyl” and “heterocyclyl C1-C6 alkyl” are each independently unsubstituted or substituted by 1, 2 or 3 groups selected from oxo, halogen, cyano, nitro, C1-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, C3-C6 cycloalkyl, halo C1-C6 alkyl, halo C2-C6 alkenyl, halo C2-C6 alkynyl, halo C3-C6 cycloalkyl, C1-C6 alkyl-substituted C3-C6 cycloalkyl, -OR13, -SR13, -(CO)ORi3, -(SO2)Ri3, -N(Ri3)2 and -O-(C1-C6 alkyl)-(CO)ORi3, or two adjacent carbon atoms on the ring together with unsubstituted or halogen-substituted -OCH2CH2- or -OCH2O- form a fused ring; and Xi, X2 are not hydrogen at the same time;
X3, X4 each independently represent O, S, NH or N-(C1-C6)alkyl;
X5 represents H, C1-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, C3-C6 cycloalkyl, C3-C6
o o Xi3-N-Xi4 χ x X-N'X13 a\'Xi3 vh'X13 -\-NYX13 À/*11 \ O' 11 s x14 , x14 5 x14 ? x14 or o , wherein, the “C1-C6 alkyl”, “C2-C6 alkenyl” and “C2-C6 alkynyl” are each independently unsubstituted or substituted by at least one group selected from halogen, cyano, nitro, C3-C6 cycloalkyl, C3-C6 cycloalkenyl, χ^ ‘ίζθ'χθ'·χ11 ?*'N'Xl3 heterocyclyl, aryl, ^11, θ Xn, \ θ 11, Ο , X14 , o
'\'ΝχΧΐ3 V^N'Xl3 /ο'ΝχΧΐ3
Xi4 , X14 and Xu , the “C3-C6 cycloalkyl”, “C3-C6 cycloalkenyl”, “heterocyclyl” and “aryl” are each independently unsubstituted or substituted by 1,2 or 3 groups selected from oxo, halogen, cyano, nitro, C1-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, C3-C6 cycloalkyl, halo C1-C6 alkyl, halo C2-C6 alkenyl, halo C2-C6 alkynyl, halo C3-C6 cycloalkyl,
C1-C6 alkyl-substituted C3-C6 cycloalkyl, -OR13, -SR13, -(CO)ORi3, -(SChjRn, -N(Ri3)2 and -O-(C1-C6 alkyl)-(CO)ORi3, or two adjacent carbon atoms on the ring together with unsubstituted or halogen-substituted -OCH2CH2- or -OCH2O- form a fused ring;
-VN^Xl3 -Λμ'-'Χ i I N 7 il in-u or N(X5)2 represents xu or heterocyclyl , '—/, or with nitrogen atom at 1-position that is unsubstituted or substituted by 1, 2 or 3 groups selected from oxo and C1-C6 alkyl;
Ri, R2 each independently represent H, cyano, C1-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, formyl C1-C6 alkyl, cyano C1-C6 alkyl, amino, amino C1-C6 alkyl, amino carbonyl, amino carbonyl C1-C6 alkyl, aminosulfonyl, C3-C6 cycloalkyl, C3-C6 cycloalkyl C1-C6 alkyl, C3-C6 cycloalkenyl, C3-C6 cycloalkenyl C1-C6 alkyl, heterocyclyl, heterocyclyl C1-C6 alkyl, aryl, aryl
C1-C6 alkyl, R4R5N-(CO)-NR3-, «5 , R3-S(O)m-(Cl-C6 alkyl)n-, R3-O-(C1-C6 alkyl)n-,
R3-(CO)-(C1-C6 alkyl)n-, R3-O-(C1-C6 alkyl)n-(CO)-, R3-(CO)-O-(C1-C6 alkyl)n-, R3-S-(CO)-(C1-C6 alkyl)n-, R3-O-(CO)-(C1-C6 alkyl)- or R3-O-(CO)-O-(C1-C6 alkyl)-, wherein, the “C1-C6 alkyl”, “C2-C6 alkenyl” and “C2-C6 alkynyl” are each independently unsubstituted or substituted by halogen, the “amino”, “amino C1-C6 alkyl”, “amino carbonyl”, “amino carbonyl C1-C6 alkyl” and “aminosulfonyl” are each independently unsubstituted or substituted by one or two groups selected from -Rn, -ORn, -(CO)Rn, -(CO)ORn, -(C1-C6 alkyl)-(CO)ORn, -(SO2)Rn, -(SO2)ORn, -(C1-C6 alkyl)-(SO2)Rn, -(CO)N(Ri2)2 and -(SO2)N(Ri2)2, the “C3-C6 cycloalkyl”, “C3-C6 cycloalkyl C1-C6 alkyl”, “C3-C6 cycloalkenyl”, “C3-C6 cycloalkenyl C1-C6 alkyl”, “heterocyclyl”, “heterocyclyl C1-C6 alkyl”, “aryl” and “aryl C1-C6 alkyl” are each independently unsubstituted or substituted by 1,2 or 3 groups selected from oxo, halogen, cyano, nitro, C1-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, C3-C6 cycloalkyl, halo C1-C6 alkyl, halo C2-C6 alkenyl, halo C2-C6 alkynyl, halo C3-C6 cycloalkyl, C1-C6 alkyl-substituted C3-C6 cycloalkyl, -OR13, -SR13, -(CO)ORi3, -(SO2)Ri3, -N(Ri3)2 and -O-(C1-C6 alkyl)-(CO)ORi3, or two adjacent carbon atoms on the ring together with unsubstituted or halogen-substituted -OCH2CH2- or -OCH2O- form a fused ring;
R6 represents C1-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl or cyano, wherein, the “C1-C6 alkyl”, “C2-C6 alkenyl” and “C2-C6 alkynyl” are each independently unsubstituted or substituted by 1, 2 or 3 groups selected from halogen, C1-C6 alkoxy and C1-C6 alkoxy carbonyl;
R7, R7’, R8, R8’ each independently represent H, C1-C6 alkyl, halogen, halo C1-C6 alkyl, amino, hydroxy C1-C6 alkyl or C1-C6 alkoxy;
Xii independently represents H, C1-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, halo C1-C6 alkyl, halo C2-C6 alkenyl, halo C2-C6 alkynyl, C3-C6 cycloalkyl, C3-C6 cycloalkyl C1-C6 alkyl, C3-C6 cycloalkenyl, C3-C6 cycloalkenyl C1-C6 alkyl, heterocyclyl, heterocyclyl C1-C6 alkyl, aryl, aryl Cl-C6 alkyl or Q M x3 wherein, the “C3-C6 cycloalkyl”, “C3-C6 cycloalkyl C1-C6 alkyl”, “C3-C6 cycloalkenyl”, “C3-C6 cycloalkenyl C1-C6 alkyl”, “heterocyclyl”, “heterocyclyl C1-C6 alkyl”, “aryl” and “aryl C1-C6 alkyl” are each independently unsubstituted or substituted by 1, 2 or 3 groups selected from oxo, halogen, cyano, nitro, C1-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, C3-C6 cycloalkyl, halo C1-C6 alkyl, halo C2-C6 alkenyl, halo C2-C6 alkynyl, halo C3-C6 cycloalkyl, C1-C6 alkyl-substituted C3-C6 cycloalkyl, -ORb, -SR13, -(CO)ORi3, -(SO2)Ri3, -N(Ri3)2 and -O-(C1-C6 alkyl)-(CO)ORI3, or two adjacent carbon atoms on the ring together with unsubstituted or halogen-substituted -OCH2CH2- or -OCH2O- form a fused ring;
Xi2 independently represents C1-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, halo C1-C6 alkyl, halo C2-C6 alkenyl, halo C2-C6 alkynyl, C3-C6 cycloalkyl, C3-C6 cycloalkyl C1-C6 alkyl, C3-C6 cycloalkenyl, C3-C6 cycloalkenyl C1-C6 alkyl, heterocyclyl, heterocyclyl C1-C6 alkyl, aryl or aryl C1-C6 alkyl, wherein, the “C3-C6 cycloalkyl”, “C3-C6 cycloalkyl C1-C6 alkyl”, “C3-C6 cycloalkenyl”, “C3-C6 cycloalkenyl C1-C6 alkyl”, “heterocyclyl”, “heterocyclyl C1-C6 alkyl”, “aryl” and “aryl C1-C6 alkyl” are each independently unsubstituted or substituted by 1, 2 or 3 groups selected from oxo, halogen, cyano, nitro, C1-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, C3-C6 cycloalkyl, halo C1-C6 alkyl, halo C2-C6 alkenyl, halo C2-C6 alkynyl, halo C3-C6 cycloalkyl, C1-C6 alkyl-substituted C3-C6 cycloalkyl, -ORi3, -SRi3, -(CO)ORi3, -(SO2)Ri3, -N(Ri3)2 and -O-(C1-C6 alkyl)-(CO)ORi3, or two adjacent carbon atoms on the ring together with unsubstituted or halogen-substituted -OCH2CH2- or -OCH2O- form a fused ring;
Xi3, Xi4 each independently represent H, halogen, cyano, C1-C6 alkoxy, C1-C6 alkoxy C1-C6 alkyl, C1-C6 alkyl carbonyl, C1-C6 alkoxy carbonyl, C1-C6 alkylsulfonyl, C1-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, C3-C6 cycloalkyl, C3-C6 cycloalkylalkyl, C3-C6 cycloalkenyl,
C3-C6 cycloalkenyl C1-C6 alkyl, aryl, aryl C1-C6 alkyl, heterocyclyl or heterocyclyl C1-C6 alkyl, or C, Xj3, XM, taken together, form 5~8 membered carbocyclyl or oxygen, sulfur or Ν=Λ I \ nitrogen-containing heterocyclyl, or N, X13, X14, taken together, form heterocyclyl , \__/, or with nitrogen atom at 1-position, wherein, the “Cl-C6 alkyl”, “C2-C6 alkenyl” and “C2-C6 alkynyl” are each independently unsubstituted or substituted by halogen, the “C3-C6 cycloalkyl”, “C3-C6 cycloalkyl C1-C6 alkyl”, “C3-C6 cycloalkenyl”, “C3-C6 cycloalkenyl C1-C6 alkyl”, “aryl”, “aryl C1-C6 alkyl”, “heterocyclyl” and “heterocyclyl C1-C6 alkyl” are each independently unsubstituted or substituted by 1, 2 or 3 groups selected from oxo, halogen, cyano, nitro, C1-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, C3-C6 cycloalkyl, halo C1-C6 alkyl, halo C2-C6 alkenyl, halo C2-C6 alkynyl, halo C3-C6 cycloalkyl, C1-C6 alkyl-substituted C3-C6 cycloalkyl, -OR13, -SR13, -(CO)ORi3, -(SCbjRu» -N(Ri3)2 and -O-(C1-C6 alkyl)-(CO)ORi3, or two adjacent carbon atoms on the ring together with unsubstituted or halogen-substituted -OCH2CH2- or -OCH2O- form a fused ring, the “5~8 membered carbocyclyl or oxygen, sulfur or nitrogen-containing heterocyclyl” is unsubstituted or substituted by 1, 2 or 3 groups selected from C1-C6 alkyl, C1-C6 alkoxy carbonyl and benzyl, or . JQ> together with aryl or heterocyclyl forms a fused ring, the “ \and are unsubstituted or substituted by 1, 2 or 3 groups selected from oxo and C1-C6 alkyl; R3, R4, R5 each independently represent H, C1-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, C3-C6 cycloalkyl, C3-C6 cycloalkyl C1-C6 alkyl, C3-C6 cycloalkenyl, C3-C6 cycloalkenyl C1-C6 alkyl, heterocyclyl, heterocyclyl C1-C6 alkyl, aryl or aryl C1-C6 alkyl, wherein, the “C1-C6 alkyl”, “C2-C6 alkenyl” and “C2-C6 alkynyl” are each independently unsubstituted or substituted by halogen, the “C3-C6 cycloalkyl”, “C3-C6 cycloalkyl C1-C6 alkyl”, “C3-C6 cycloalkenyl”, “C3-C6 cycloalkenyl C1-C6 alkyl”, “heterocyclyl”, “heterocyclyl C1-C6 alkyl”, “aryl” and “aryl C1-C6 alkyl” are each independently unsubstituted or substituted by 1,2 or 3 groups selected from oxo, halogen, cyano, nitro, C1-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, C3-C6 cycloalkyl, halo C1-C6 alkyl, halo C2-C6 alkenyl, halo C2-C6 alkynyl, halo C3-C6 cycloalkyl, C1-C6 alkyl-substituted C3-C6 cycloalkyl, -OR13, -SR13, -(CO)ORi3, -(SChjRu, -N(Ri3)2 and -O-(C1-C6 alkyl)-(CO)ORi3, or two adjacent carbon atoms on the ring together with unsubstituted or halogen-substituted -OCH2CH2- or -OCH2O- form a fused ring;
Ru independently represents C1-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, C3-C6 cycloalkyl, C3-C6 cycloalkyl C1-C6 alkyl, C3-C6 cycloalkenyl, C3-C6 cycloalkenyl C1-C6 alkyl, phenyl, benzyl, wherein, the “C1-C6 alkyl”, “C2-C6 alkenyl” and “C2-C6 alkynyl” are each independently unsubstituted or substituted by halogen, the “phenyl” and “benzyl”are each independently unsubstituted or substituted by 1,2 or 3 groups selected from halogen, cyano, nitro, C1-C6 alkyl, halo C1-C6 alkyl, C1-C6 alkoxy carbonyl, C1-C6 alkylthio, C1-C6 alkylsulfonyl, C1-C6 alkoxy and halo C1-C6 alkoxy;
R12 independently represents H, C1-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, C1-C6 alkoxy, C1-C6 alkylsulfonyl, C3-C6 cycloalkyl, C3-C6 cycloalkyl C1-C6 alkyl, C3-C6 cycloalkenyl or C3-C6 cycloalkenyl C1-C6 alkyl, or N(Ri2)2 in -(CO)N(Ri2)2 or -(SO2)N(Ri2)2 independently e N \ il LÀ represents heterocyclyl V , '—/, or with nitrogen atom at 1-position that is unsubstituted or substituted by 1, 2 or 3 groups selected from oxo and C1-C6 alkyl;
R13 independently represents H, C1-C6 alkyl, halo C1-C6 alkyl, phenyl or phenyl substituted by 1, 2 or 3 groups selected from halogen, cyano, nitro, C1-C6 alkyl, halo C1-C6 alkyl, C1-C6 alkoxy carbonyl, C1-C6 alkylthio, C1-C6 alkylsulfonyl, C1-C6 alkoxy and halo C1-C6 alkoxy.
Still more preferably, X represents -CXiX2-(C1-C3 alkyl)n-, -(C1-C3 alkyl)-CXiX2-(Cl-C3 alkyl)n- or-(CH2)r-;
Xi, X2 each independently represent H, halogen, cyano, amino, nitro, formyl, cyano C1-C3 alkyl, hydroxy C1-C3 alkyl, C1-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, C3-C6 cycloalkyl, C3-C6 cycloalkyl C1-C3 alkyl, C1-C6 alkoxy, C1-C6 alkylthio, C1-C6 alkylamino, halo C1-C6 alkoxy, halo C1-C6 alkylthio, C1-C6 alkyl carbonyl, C1-C6 alkoxy carbonyl, C1-C6 alkoxy C1-C3 alkyl, halo C1-C6 alkoxy C1-C3 alkyl, C1-C6 alkylamino C1-C3 alkyl, aryl, heterocyclyl, aryl C1-C3 alkyl or heterocyclyl C1-C3 alkyl, wherein, the “C1-C6 alkyl”, “C2-C6 alkenyl” and “C2-C6 alkynyl” are each independently unsubstituted or substituted by halogen, the “C3-C6 cycloalkyl”, “C3-C6 cycloalkyl C1-C3 alkyl”, “aryl”, “heterocyclyl”, “aryl C1-C3 alkyl” and “heterocyclyl C1-C3 alkyl” are each independently unsubstituted or substituted by 1,2 or 3 groups selected from oxo, halogen, cyano, nitro, C1-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, C3-C6 cycloalkyl, halo C1-C6 alkyl, halo C2-C6 alkenyl, halo C2-C6 alkynyl, halo C3-C6 cycloalkyl, C1-C6 alkyl-substituted C3-C6 cycloalkyl, -OR13, -SR13, -(CO)ORi3, -(SC>2)Ri3,
-N(Rb)2 and -O-(C1-C3 alkyl)-(CO)ORi3, or two adjacent carbon atoms on the ring together with unsubstituted or halogen-substituted -OCH2CH2- or -OCH2O- form a fused ring; and Xi, X2 are not hydrogen at the same time;
X5 représente H, C1-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, C3-C6 cycloalkyl, C3-C6
O o O□
O S s-S^_^Xi211^ cycloalkenyl, heterocyclyl, aryl, xn, Xl1> X11, 0 Xl2, O ,
O O Xi3'n-*14
Π γ /'N'X13 'V%'X13 t^N'X13 \-Νγ-Χΐ3 -Af0*11 1ζ x14 , x-14 , X14 , x-14 or o , wherein, the “C1-C6 alkyl”, “C2-C6 alkenyl” and “C2-C6 alkynyl” are each independently unsubstituted or substituted by 1, or 3 groups selected from halogen, cyano, nitro, C3-C6 cycloalkyl, C3-C6 cycloalkenyl,
O OO , , , ν°Ύ VS'Y y-n^Y Y^rTXl1 heterocyclyl, aryl, * xn, * xn, \ X11, xn, t υ χθγ0^ V13
O , X14 .
O .^-N X13 _V%'Xl3 /ό'ΝΧι3
Xi4 , X14 and X14 , the “C3-C6 cycloalkyl”, “C3-C6 cycloalkenyl”, “heterocyclyl” and “aryl” are each independently unsubstituted or substituted by 1, 2 or 3 groups selected from oxo, halogen, cyano, nitro, C1-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, C3-C6 cycloalkyl, halo C1-C6 alkyl, halo C2-C6 alkenyl, halo C2-C6 alkynyl, halo C3-C6 cycloalkyl, C1-C6 alkyl-substituted C3-C6 cycloalkyl, -OR13, -SR13, -(CO)ORi3, -(SO2)Ri3, -N(Ri3)2 and
-O-(C1-C3 alkyl)-(CO)ORi3, or two adjacent carbon atoms on the ring together with unsubstituted or halogen-substituted -OCH2CH2- or -OCH2O- form a fused ring;
or N(X5)2 represents ;-N^Xl3
Xl4 or heterocyclyl
nitrogen atom at 1-position that is unsubstituted or substituted by 1, 2 or 3 groups selected from oxo and C1-C6 alkyl;
X11 independently represents H, C1-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, halo C1-C6 alkyl, halo C2-C6 alkenyl, halo C2-C6 alkynyl, C3-C6 cycloalkyl, C3-C6 cycloalkyl C1-C3 alkyl, C3-C6 cycloalkenyl, C3-C6 cycloalkenyl C1-C3 alkyl, heterocyclyl, heterocyclyl C1-C3 ? ΤΎ 1 '
F3C7N'X) alkyl, aryl, aryl Cl-C3 alkyl or I wherein, the “C3-C6 cycloalkyl”, “C3-C6 cycloalkyl C1-C3 alkyl”, “C3-C6 cycloalkenyl”, “C3-C6 cycloalkenyl C1-C3 alkyl”, “heterocyclyl”, “heterocyclyl C1-C3 alkyl”, “aryl” and “aryl C1-C3 alkyl” are each independently unsubstituted or substituted by 1, 2 or 3 groups selected from oxo, halogen, cyano, nitro, C1-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, C3-C6 cycloalkyl, halo C1-C6 alkyl, halo C2-C6 alkenyl, halo C2-C6 alkynyl, halo C3-C6 cycloalkyl, C1-C6 alkyl-substituted C3-C6 cycloalkyl, -OR43, -SR13, -(CO)ORi3, -(SO2)Ri3, -N(Ri3)2 and -O-(C1-C3 alkyl)-(CO)ORi3, or two adjacent carbon atoms on the ring together with unsubstituted or halogen-substituted -OCH2CH2- or -OCH2O- form a fused ring;
X12 independently represents C1-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, halo C1-C6 alkyl, halo C2-C6 alkenyl, halo C2-C6 alkynyl, C3-C6 cycloalkyl, C3-C6 cycloalkyl C1-C3 alkyl, C3-C6 cycloalkenyl, C3-C6 cycloalkenyl C1-C3 alkyl, heterocyclyl, heterocyclyl C1-C3 alkyl, aryl or aryl C1-C3 alkyl, wherein, the “C3-C6 cycloalkyl”, “C3-C6 cycloalkyl C1-C3 alkyl”, “C3-C6 cycloalkenyl”, “C3-C6 cycloalkenyl C1-C3 alkyl”, “heterocyclyl”, “heterocyclyl C1-C3 alkyl”, “aryl” and “aryl C1-C3 alkyl” are each independently unsubstituted or substituted by 1, 2 or 3 groups selected from oxo, halogen, cyano, nitro, C1-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, C3-C6 cycloalkyl, halo C1-C6 alkyl, halo C2-C6 alkenyl, halo C2-C6 alkynyl, halo C3-C6 cycloalkyl, C1-C6 alkyl-substituted C3-C6 cycloalkyl, -OR13, -SR13, -(CO)ORi3, -(SO2)Ri3, -N(Ri3)2 and -O-(C1-C3 alkyl)-(CO)ORi3, or two adjacent carbon atoms on the ring together with unsubstituted or halogen-substituted -OCH2CH2- or -OCH2O- form a fused ring;
X13, X14 each independently represent H, halogen, cyano, C1-C6 alkoxy, C1-C6 alkoxy C1-C3 alkyl, C1-C6 alkyl carbonyl, C1-C6 alkoxy carbonyl, C1-C6 alkylsulfonyl, C1-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, C3-C6 cycloalkyl, C3-C6 cycloalkylalkyl, C3-C6 cycloalkenyl,
C3-C6 cycloalkenyl C1-C3 alkyl, aryl, aryl C1-C3 alkyl, heterocyclyl or heterocyclyl C1-C3 alkyl, or C, X13, X14, taken together, form 5~8 membered saturated carbocyclyl, or \/NH, or N, X13, X14, taken together, form heterocyclyl
or
with nitrogen atom at 1-position, wherein, the “C1-C6 alkyl”, “C2-C6 alkenyl” and “C2-C6 alkynyl” are each independently unsubstituted or substituted by halogen, the “C3-C6 cycloalkyl”, “C3-C6 cycloalkyl C1-C3 alkyl”, “C3-C6 cycloalkenyl”, “C3-C6 cycloalkenyl C1-C3 alkyl”, “aryl”, “aryl C1-C3 alkyl”, “heterocyclyl” and “heterocyclyl C1-C3 alkyl” are each independently unsubstituted or substituted by 1,2 or 3 groups selected from oxo, halogen, cyano, nitro, C1-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, C3-C6 cycloalkyl, halo C1-C6 alkyl, halo
C2-C6 alkenyl, halo C2-C6 alkynyl, halo C3-C6 cycloalkyl, C1-C6 alkyl-substituted C3-C6 cycloalkyl, -ORi3, -SRn, -(CO)ORn, -(SO2)R,3, -N(Ri3)2 and -O-(C1-C3 alkyl)-(CO)ORi3, or two adjacent carbon atoms on the ring together with unsubstituted or halogen-substituted
-OCH2CH2- or -OCH2O- form a fused ring, the “5~8 membered saturated carbocyclyl, or NH” is unsubstituted or substituted by 1, 2 or 3 groups selected from C1-C6 alkyl, C1-C6
N=A I \ alkoxy carbonyl and benzyl, or together with phenyl or thienyl forms a fused ring, the “ V , ï’-n^ VS ZO \__/, and are unsubstituted or substituted by 1, 2 or 3 groups selected from oxo and C1-C6 alkyl.
ooo o rj^lA
S^N^O S^N^S O^N^O FaC^N^O
Further more preferably, Q represents Ι,Ι,Ι, I
In the définition of the compound represented by the above Formula and ail of the following structural formulas, the technical terms used, whether used alone or used in compound word, represent the following substituents: an alkyl having more than two carbon atoms may be linear or branched. For example, the alkyl in the compound Word -alkyl-(CO)ORn may be -CH2-, -CH2CH2-, -CH(CH3)-, -CH2CH2CH2-, -C(CH3)2-, and the like; -(CH2)r- may be -CH2CH2-, -CH2CH2CH2-, and the like. The alkyl is, for example, Ci alkyl: methyl; C2 alkyl: ethyl; C3 alkyl: propyl such as n-propyl or isopropyl; C4 alkyl: butyl such as n-butyl, isobutyl, tert-butyl or 2-butyl; C5 alkyl: pentyl such as n-pentyl; Cg alkyl: hexyl such as n-hexyl, isohexyl and 1,3-dimethylbutyl. Similarly, the alkenyl is, for example, vinyl, allyl, l-methylprop-2-en-l-yl, 2-methylprop-2-en-l-yl, but-2-en-l-yl, butyl-3-en-l-yl, l-methylbut-3-en-l-yl and l-methylbut-2-en-l-yl. The alkynyl is, for example, ethynyl, propargyl, but-2-yn-l-yl, but-3-yn-l-yl, l-methylbut-3-yn-l-yl. The multiple bond(s) may be placed at any position of each unsaturated group. The cycloalkyl is a carbocyclic saturated ring System having, for example, three to six carbon atoms, such as cyclopropyl, cyclobutyl, cyclopentyl or cyclohexyl. Similarly, the cycloalkenyl is monocycloalkenyl having, for example, three to six carbon ring 5 members, such as cyclopropenyl, cyclobutenyl, cyclopentenyl, and cyclohexenyl, wherein double bond can be at any position. Halogen is fluorine, chlorine, bromine or iodine.
Unless otherwise specified, the aryl of the présent invention includes, but is not limited to,
etc., but also includes, but is not limited to,heteroaryl, which is an aromatic cyclic group having, for example, 3 to 6 ring atoms and optionally being fused with a benzo ring, and 1 to 4 (for example, 1, 2 , 3 or 4) heteroatoms of the ring are . -O -Ô selected from the group consisting of oxygen, nitrogen and sulfur. For example, N , N ,
If a group is substituted by a group, which should be understood to mean that the group is substituted by one or more groups, which are same or different groups, selected from the mentioned groups. In addition, the same or different substitution characters contained in the same or different substituents are independently selected, and may be the same or different. This is also applicable to ring Systems formed with different atoms and units. Meanwhile, the scope of the daims will exclude those compounds chemically unstable under standard conditions known to those skilled in the art.
In addition, unless specifically defined, the term occurring before or after multiple juxtaposed substituents (separated by or or) in the présent invention has a limiting effect on each of the substituents, such as the wording “unsubstituted or halogen-substituted” in the term “unsubstituted or halogen-substituted -OCH2CH2- or -OCH2O-” has a limiting effect on each group “-OCH2CH2-” “-OCH2O-” occurring thereafter; alkylamino refers to the amino group which is monosubstituted or disubstituted by alkyl, other substituted amino groups are similarly defined; a group (including heterocyclyl, aryl, etc.) without being specified a linking site may be attached at any site, including a C or N site; if it is substituted, the substituent may be substituted at any site as long as it comply with the valence bond theory. For example, if the heteroaryl
It should be pointed out that, when the carbon atom (C*) connected to Xi and X2 in the general formula is a chiral center (i.e., Xi and X2 are not the same), it is in R configuration or S configuration, preferably R configuration, and based on the content of stereoisomers having R and S configurations at this position, it has a stereochemical purity of 60-100% (R), preferably 70-100% (R), more preferably 80-100% (R), still more preferably 90-100% (R), still more preferably 95-100% (R). Wherein, “stereochemical purity” means the amount of the stated stereoisomer expressed as a percentage of the total amount of stereoisomers having the given chiral centre.
In the présent invention the stéréo Chemical configuration at the marked * position of formula I is fixed as being predominantly (R) according to the Cahn-Ingold-Prelog System, however is the subject matter of the invention is also directed to ail stereoisomers at other locants which are encompassed by formula I, and their mixtures. Such compounds of the formula I contain, e.g. one or more additional asymmetric carbon atoms or else double bonds which are not stated specifically in the formula I. It will be understood that the présent invention embraces both the pure isomers and more or less enriched mixtures thereof, where the asymmetric carbon atom in marked * position is in the R-configuration or, in mixtures, a compound or compounds of same Chemical constitution hâve the R-configuration in marked * position or are présent in a ratio that compounds having the R-configuration are predominantly présent (at least 60% R-configuration) whilst the other asymmetric carbon atom(s) may be présent in racemic form or are more or less resolved too. Provided the condition for the stereochemical configuration at marked * position is met, the possible stereoisomers which are defined by their spécifie spatial form, such as enantiomers, diastereomers, Z- and E-isomers, are ail encompassed by formula I and can be obtained by customary methods from mixtures of the stereoisomers, or else be prepared by stereoselective reactions in combination with the use of stereochemically pure raw materials.
The invention also encompasses any keto and enol tautomer forms and mixtures and salts thereof, if respective functional groups are présent.
Stereoisomers can be obtained by optical resolution from the mixture obtained in the préparation. The stereoisomers may also be prepared selectively by using stereoselective reactions and using optically active raw materials and/or auxiliaries.lt is generally possible to use customary methods for optical resolutions (cf. Textbooks of Stereochemistry), for example following processes for separating mixtures into diastereomers, for example physical processes, such as crystallization, chromatographie processes, in particular column chromatography and high pressure liquid chromatography, distillation, if appropriate under reduced pressure, extraction and other processes, it is possible to separate the remaining mixtures of enantiomers, generally by chromatographie séparation on chiral solid phases. Suitable for préparative amounts or use on an industrial scale are processes such as the crystallization of diastereomeric salts which can be obtained from the compounds (I) using optically active acids and, if appropriate, provided that acidic groups are présent, using optically active bases.
A method for preparing the carboxylic acid derivative-substituted iminoaryl compound is provided, which comprises the following steps:
subjecting a compound represented by general formula II and a compound represented by general formula III’ to an élimination reaction to obtain a compound represented by general formula Γ, with the Chemical reaction équation shown as follows:
o □ □ ' □· or, subjecting a compound represented by general formula II and a compound represented by general formula III to an élimination reaction to obtain a compound represented by general formula I, with the Chemical reaction équation shown as follows:
Z^/^Y z-^/Y
JL + x^j/v ------JL X w
X3H Hal T xfy X4 X4 □ □ □ wherein, Hal represents halogen, other substituents Q, M, W, Y, Z, X, X3 and X4 are as defined above;
preferably, the reaction is carried out in the presence of a base and a solvent.
The base is at least one selected from inorganic bases (such as K2CO3, Na2CÛ3, CS2CO3, NaHCO3, KF, CsF, KOAc, AcONa, K3PO4, t-BuONa, EtONa, NaOH, KOH, NaOMe and the like) and organic bases (such as pyrazole, triethylamine, DIEA and the like).
The solvent is at least one selected from DMF, methanol, éthanol, acetonitrile, dichloroethane, DMSO, Dioxane, dichloromethane and ethyl acetate.
In addition, when Q represents Re or
prepared by firstly preparing the intermediate product r6 , the target product can also be
through the above method, and then performing conventional substitution reaction with R6-Hal (Hal represents halogen, R6 represents alkyl, alkenyl, alkynyl, or haloalkyl).
The présent invention also provides a herbicidal composition, comprising (i) at least one of the carboxylic acid derivative-substituted iminoaryl compounds in a herbicidally effective amount; (component A); preferably, further comprising (ii) one or more other herbicides (component B) in a herbicidally effective amount and/or safeners; more preferably, further comprising (iii) a formulation auxiliary accepted in agricultural chemistry.
In a spécifie embodiment, the other herbicide is one or more selected from the following compounds and acids, salts and esters thereof:
(1) HPPD inhibitor selected from: topramezone(CAS NO.: 210631-68-8), isoxaflutole(CAS NO.: 141112-29-0), tembotrione(CAS NO.: 335104-84-2), tefuryltrione(CAS NO.: 473278-76-1), shuangzuocaotong(CAS NO.: 1622908-18-2), huanbifucaotong(CAS NO.: 1855929-45-1), sanzuohuangcaotong(CAS NO.: 1911613-97-2), benzuofucaotong(CAS NO.:
1992017-55-6), and (2) PDS inhibitor selected from: flurtamone (CAS NO.: 96525-23-4), diflufenican (CAS NO.: 83164-33-4), and picolinafen (CAS NO.: 137641-05-5);
(3) DOXP inhibitor selected from: clomazone (CAS NO.: 81777-89-1), and bixlozone (CAS NO.: 81777-95-9);
(4) ALS inhibitor selected from: tribenuron-methyl(CAS NO.: 101200-48-0), thifensulfuron methyl(CAS NO.: 79277-27-3), pyrazosulfuron-ethyl(CAS NO.: 93697-74-6), thiencarbazone-methyl(CAS NO.: 317815-83-1), halosulfuron methyl(CAS NO.: 100784-20-1), rimsulfuron(CAS NO.: 122931-48-0), nicosulfuron(CAS NO.: 111991-09-4), and imazamox(CAS NO.: 114311-32-9);
(5) ACCase inhibitor selected from: clethodim (CAS NO.: 99129-21-2), sethoxydim (CAS NO.: 74051-80-2), and quizalofop-P-methyl (CAS NO.: 100646-51-3);
(6) PPO inhibitor selected from: oxyfluorfen(CAS NO.: 42874-03-3), oxadiazon(CAS NO.: 19666-30-9), oxadiargyl(CAS NO.: 39807-15-3), sulfentrazone(CAS NO.: 122836-35-5), pyraclonil(CAS NO.: 158353-15-2), flumioxazin(CAS NO.: 103361-09-7), saflufenacil(CAS NO.: 372137-35-4), carfentrazone-ethyl(CAS NO.: 128639-02-1), and trifludimoxazin(CAS NO.: 1258836-72-4);
(7) PSII inhibitor selected from: metribuzin(CAS NO.: 21087-64-9), terbuthylazine(CAS NO.: 5915-41-3), amicarbazone(CAS NO.: 129909-90-6), chlorotoluron(CAS NO.: 15545-48-9), isoproturon(CAS NO.: 34123-59-6), bromacil(CAS NO.: 314-40-9), propaml(CAS NO.: 709-98-8), desmedipham(CAS NO.: 13684-56-5), phenmedipham(CAS NO.: 13684-63-4), bentazone(CAS NO.: 25057-89-0), and bromoxynil(CAS NO.: 1689-84-5);
(8) inhibitor of microtubule assembly selected from: butralin (CAS NO.: 33629-47-9), and pendimethalin (CAS NO.: 40487-42-1);
(9) VLCFA inhibitor selected from: butachlor (CAS NO.: 23184-66-9), pretilachlor (CAS NO.: 51218-49-6), mefenacet (CAS NO.: 73250-68-7), s-metolachlor (CAS NO.: 87392-12-9), flufenacet (CAS NO.: 142459-58-3), pyroxasulfone (CAS NO.: 447399-55-5), and anilofos (CAS NO.: 764249-01-0);
(10) lipid synthesis (non-acetyl-CoA carboxylase) inhibitor: prosulfocarb (CAS NO.: 52888-80-9);
(11) Synthetic hormone inhibitor selected from: , fluroxypyr(CAS
NO.: 69377-81-7), florpyrauxifen benzyl(CAS NO.: 1390661-72-9), halauxifen-methyl(CAS NO.: 943831-98-9), triclopyr(CAS NO.: 55335-06-3), clopyralid(CAS NO.: 1702-17-6), picloram(CAS NO.: 1918-02-1), aminopyralid(CAS NO.: 150114-71-9), dicamba(CAS NO.: 1918-00-9), 2-methyl-4-chlorophenoxyacetic acid(CAS NO.: 94-74-6), and 2,4-dichlorophenoxy acetic acid(CAS NO.: 94-75-7);
(12) EPSPS inhibitor: glyphosate (CAS NO.: 1071-83-6);
(13) GS inhibitor selected from: glufosinate ammonium (CAS NO.: 77182-82-2), and glufosinate-P-ammonium (CAS NO.: 35597-44-5);
(14) PSI inhibitor selected from: paraquat dichloride (CAS NO.: 1910-42-5), and diquat dibromide monohydrate (CAS NO.: 2764-72-9);
(15) Cellulose synthesis inhibitor selected from: triaziflam (CAS NO.: 131475-57-5), and indaziflam (CAS NO.: 950782-86-2);
(16) others: cinmethylin (CAS NO.: 87818-31-3).
In the context of the présent spécification, if an abbreviation of a generic name of an active compound is used, it includes in each case ali customary dérivatives, such as esters and salts, as well as isomers, in particular optical isomers, especially one or more commercially available forms. If the generic name dénotés an ester or a sait, it also includes in each case ail other conventional dérivatives, such as other esters and salts, free acids and neutral compounds, as well as isomers, in particular optical isomers, especially one or more commercially available forms. The Chemical name given to a compound means at least one compound encompassed by the generic name, and generally the preferred compound. In the case of sulfonamides such as sulfonylurea, salts also include salts formed by the exchange of cations with hydrogen atoms in the sulfonamide group.
Wherein, the active ingrédient A to the active ingrédient B in the herbicidal composition is in a weight ratio of 1:1000—1000:1, 1:800—800:1 or 1:600—600:1, preferably 1:500—500:1, 1:400-400:1 or 1:300-300:1, more preferably 1:200-200:1, 1:100-100:1 or 1:80-80:1, further preferably 1:50-50:1, 1:30-30:1, 1:20-20:1, 1:10-10:1, 1:5-1:1 or 1:1-5:1. In some embodiments, the active ingrédients A and B together account for 1-95%, preferably 10-80%, of the total weight of the herbicidal composition.
The safener is selected from one or more of isoxadifen-ethyl (CAS: 163520-33-0), cyprosulfamide (CAS: 221667-31-8), mefenpyr-diethyl (CAS: 135590-91-9), cloquintocet-mexyl (CAS: 99607-70-2), gibberellic acid (CAS: 77-06-5), fiirilazole (CAS: 121776-33-8), and metcamifen (CAS: 129531-12-0).
The préparation adjuvant comprises, for example, a carrier and/or a surfactant.
The term “carrier” herein refers to an organic or inorganic, naturel or synthetic substance, which facilitâtes the application of the active ingrédients. In general, the carrier is inert and must be agriculturally acceptable, especially is acceptable to a plant to be treated. The carrier may be a solid, such as clay, a naturel or synthetic silicate, silica, a resin, a wax, a solid fertilizer and so on; or a liquid such as water, an alcohol, a ketone, a petroleum fraction, an aromatic or paraffinic hydrocarbon, a chlorohydrocarbon, liquefied gas and so on.
The surfactant, which may be ionic or non-ionic, can include an emulsifier, a dispersant or a wetting agent. Examples which may be mentioned are a sait of polyacrylic acid, a sait of lignosulfonic acid, a sait of phenolsulfonic acid or of naphthalenesulfonic acid, a polymer of ethylene oxide with an aliphatic alcohol or with an aliphatic acid or with an aliphatic amine or with a substituted phénol (in particular, an alkylphenol or an arylphenol), a sulfosuccinate, a taurine dérivative (especially an alkyl taurate) and a phosphoric ester of an alcohol or of a polyhydroxyethylated phénol, an alkyl sulfonate, an alkylaryl sulfonate, an alkyl sulfate, a laurylether sulfate, a fatty alcohol sulfate, a sulfated hexadecanol, heptadecanol and octadecanol and a sulfated fatty alcohol polyglycol ether, and further include a condensate of naphthalene or naphthalenesulfonic acid with phénol and formaldéhyde, polyoxyethylene octylphenyl ether, ethoxylated isooctylphenol, octylphenol or nonylphenol, a polyethylene glycol alkylphenyl ether, a polyethylene glycol tributylphenyl ether, a polyethylene glycol tristearylphenyl ether, a alkylaryl polyether alcohol, an alcohol and fatty alcohol/ethylene oxide condensate, ethoxylated castor oil, a polyoxyethylene alkyl ether, an ethoxylated polyoxypropylene, a lauryl alcohol polyglycol ether acetal, a sorbitol ester, a lignin sulfite waste liquid, a protein, a denatured protein, a polysaccharide (e.g., methylcellulose), a hydrophobie modified starch, a polyvinyl alcohol, a polycarboxylate, a polyalkoxylate, a polyvinylamine, a polyvinylpyrrolidone, and a copolymer thereof. At least one surfactant may be required to facilitate dispersion of the active ingrédient in water and proper application thereof to a plant.
The composition can also comprise varions other components, such as a protective colloid, an adhesive, a thickener, a thixotropic agent, a pénétrant, a stabilizer, a chelating agent, a dye, a colorant or a polymer.
The composition of the présent invention may be diluted prior to use or used directly by users. The compositon can be prepared through a conventional processing method, that is, the active ingredient(s) is mixed with a liquid solvent or a solid carrier, and then one or more of the surfactants such as a dispersant, a stabilizer, a wetting agent, an adhesive, or a defoaming agent, etc. are added.
The herbicidal composition may be in a form of a formulation which is selected from: a dispersible oil suspension, a water suspension, a suspoemulsion, a wettable powder, an emulsifiable concentrate, a water-dispersible granule (a dry suspension), an aqueous émulsion and a microemulsion.
In short, the composition of the présent invention can be mixed with solid and liquid additives conventionally used in formulations of the prior art. As the extemal conditions change, the amount of active ingrédients used is also different. The extemal conditions are, for example, température, humidity, the nature of the herbicide used, etc. It can hâve a large variation range, for example between 0.001 and 1.0 kg/ha, or more active substances, but preferably between
0.005 and 750 g/ha, especially between 0.005 and 500 g/ha.
A method for controlling an undesirable plant is provided, which comprises applying at least one of the carboxylic acid derivative-substituted iminoaryl compounds or the herbicidal composition in a herbicidally effective amount on a plant or in its area or to soil or water to control the emergence or growth of undesirable plant.
Use of at least one of the carboxylic acid derivative-substituted iminoaryl compounds or the herbicidal composition for controlling a undesirable plant; preferably, the carboxylic acid derivative-substituted iminoaryl compound is used to control a weed in a useful crop, the useful crop is a genetically modified crop or a crop treated by genome editing technique.
The compounds of the formula I according to the invention hâve an outstanding herbicidal activity against a broad spectrum of economically important monocotyledonous and dicotyledonous harmful plants (undesirable plants). The active compounds also act efficiently on perennial weeds which produce shoots from rhizomes, root stocks or other perennial organs and which are difficult to control. In this context, it is generally immaterial whether the substances are applied pre-sowing, pre-emergence or post-emergence. Specifically, examples may be mentioned of some représentatives of the monocotyledonous and dicotyledonous weed flora which can be controlled by the compounds according to the invention, without these being a restriction to certain species. Examples of weed species on which the active compounds act efficiently are, from amongst the monocotyledons, Avena, Lolium, Alopecurus, Phalaris, Echinochloa, Digitaria, Setaria and also Cyperus species from the annual sector and from amongst the perennial species Agropyron, Cynodon, Imperata and Sorghum, and also perennial Cyperus species.
In the case of the dicotyledonous weed species, the spectrum of action extends to species such as, for example, Galium, Viola, Veronica, Lamium, Stellaria, Amaranthus, Sinapis, Ipomoea, Sida, Matricaria and Abutilon from amongst the annuals, and Convolvulus, Cirsium, Rumex and Artemisia in the case of the perennial weeds. The active compounds according to the invention also effect outstanding control of harmful plants which occur under the spécifie conditions of rice growing such as, for example, Echinochloa, Sagittaria, Alisma, Eleocharis, Scirpus and Cyperus. If the compounds according to the invention are applied to the soil surface prior to germination, then the weed seedlings are either prevented completely from emerging, or the weeds grow until they hâve reached the cotylédon stage but then their growth stops, and, eventually, after three to four weeks hâve elapsed, they die completely. In particular, the compounds according to the invention exhibit excellent activity against Apera spica venti, Chenopodium album, Lamium purpureum, Polygonum convulvulus, Stellaria media, Veronica hederifolia, Veronica persica, Viola tricolor and against Amaranthus, Galium and Kochia species.
The undesirable plants also include herbicide-resistant or tolérant weed species.
Although the compounds according to the invention hâve an excellent herbicidal activity against monocotyledonous and dicotyledonous weeds, crop plants of economically important crops such as, for example, wheat, barley, rye, rice, corn, sugarbeet, cotton and soya, are not damaged at ail, or only to a negligible extent. In particular, they hâve excellent compatibility in cereals, such as wheat, barley and corn, in particular wheat. For these reasons, the présent compounds are highly suitable for selectively controlling undesirable plant growth in plantings for agricultural use or in plantings of omamentals.
Owing to their herbicidal properties, these active compounds can also be employed for controlling harmfiil plants in crops of known or still to be developed genetically engineered plants. The transgenic plants generally hâve particularly advantageous properties, for example résistance to certain pesticides, in particular certain herbicides, résistance to plant diseases or causative organisms of plant diseases, such as certain insects or microorganisms such as fiingi, bacteria or viruses. Other particular properties relate, for example, to the quantity, quality, storage-stability, composition and to spécifie ingrédients of the harvested product. Thus, transgenic plants having an increased starch content or a modified quality of the starch or those having a different fatty acid composition of the harvested produce are known.
The use of the compounds of the formula I according to the invention or their salts in economically important transgenic crops of usefiil and omamental plants, for example of cereal, such as wheat, barley, rye, oats, millet, rice, maniok and corn, or else in crops of sugarbeet, cotton, soya, rapeseed, potato, tomato, pea and other vegetable species is preferred. The compounds of the formula I can preferably be used as herbicides in crops of usefiil plants which are résistant or which hâve been made résistant by genetic engineering toward the phytotoxic effects of the herbicides.
Conventional ways for preparing novel plants which hâve modified properties compared to known plants comprise, for example, traditional breeding methods and the génération of mutants. Altematively, novel plants having modified properties can be generated with the aid of genetic engineering methods (see, for example, EP-A 0 221 044, EP-A 0 131 624). For example, there hâve been described several cases of:
- genetically engineered changes in crop plants in order to modify the starch synthesized in the plants (for example WO 92/11376, WO 92/14827, WO 91/19806),
- transgenic crop plants which are résistant to certain herbicides of the glufosinate- (cf., for example, EP-A 0 242 236, EP-A 0 242 246) or glyphosate-type (WO 92/00377), or of the sulfonylurea-type (EP-A 0 257 993, U.S. Pat. No. 5,013,659A),
- transgenic crop plants, for example cotton, having the ability to produce Bacillus thuringiensis toxins (Bt toxins) which impart résistance to certain pests to the plants (EP-A 0 142 924, EP-A0 193 259),
- transgenic crop plants having a modified fatty acid composition (WO 91/13972).
Numerous molecular biological techniques which allow the préparation of novel transgenic plants having modified properties are known in principle; see, for example, Sambrook et al., 1989, Molecular Cloning, A Laboratory Manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.; or Winnacker Gene und Klone [Genes and Clones], VCH Weinheim, 2nd édition 1996, or Christou, Trends in Plant Science 1 (1996) 423-431). In order to carry out such genetic engineering manipulations, it is possible to introduce nucleic acid molécules into plasmids which allow a mutagenesis or a change in the sequence to occur by recombination of DNA sequences. Using the abovementioned standard processes it is possible, for example, to exchange bases, to remove partial sequences or to add naturel or synthetic sequences. To link the DNA fragments with each other, it is possible to attach adaptors or linkers to the fragments.
Plant cells having a reduced activity of a gene product can be prepared, for example, by expressing at least one appropriate antisense-RNA, a sense-RNA to achieve a cosuppression effect, or by expressing at least one appropriately constructed ribozyme which specifically cleaves transcripts of the above-mentioned gene product.
To this end it is possible to employ both DNA molécules which comprise the entire coding sequence of a gene product including any flanking sequences that may be présent, and DNA molécules which comprise only parts of the coding sequence, it being necessary for these parts to be long enough to cause an antisense effect in the cells. It is also possible to use DNA sequences which hâve a high degree of homology to the coding sequences of a gene product but which are not entirely identical.
When expressing nucleic acid molécules in plants, the synthesized protein can be localized in any desired compartment of the plant cells. However, to achieve localization in a certain compartment, it is, for example, possible to link the coding région with DNA sequences which ensure localization in a certain compartment. Such sequences are known to the person skilled in the art (see, for example, Braun et al., EMBO J. 11 (1992), 3219-3227; Wolter et al., Proc. Natl. Acad. Sci. USA 85 (1988), 846-850; Sonnewald et al., Plant J. 1 (1991), 95-106).
The transgenic plant cells can be regenerated to whole plants using known techniques. The transgenic plants can in principle be plants of any desired plant species, i.e. both monocotyledonous and dicotyledonous plants. In this manner, it is possible to obtain transgenic plants which hâve modified properties by overexpression, suppression or inhibition of homologous (=natural) genes or gene sequences or by expression of heterologous (=foreign) genes or gene sequences.
When using the active compounds according to the invention in transgenic crops, in addition to the effects against harmful plants which can be observed in other crops, there are frequently effects which are spécifie for the application in the respective transgenic crop, for example a modified or specifically broadened spectrum of weeds which can be controlled, modified application rates which can be used for the application, preferably good combinability with the herbicides to which the transgenic crops are résistant, and an effect on the growth and the yield of the transgenic crop plants. The invention therefore also provides for the use of the compounds according to the invention as herbicides for controlling harmful plants in transgenic crop plants.
In addition, the substances according to the invention hâve outstanding growth-regulating properties in crop plants. They engage in the plant metabolism in a regulating manner and can this be employed for the targeted control of plant constituents and for facilitating harvesting, for example by provoking desiccation and stunted growth. Furthermore, they are also suitable for generally regulating and inhibiting undesirable végétative growth, without destroying the plants in the process. Inhibition of végétative growth plays an important rôle in many monocotyledon and dicotyledon crops because lodging can be reduced hereby, or prevented completely.
The compounds according to the invention can be applied in the customary formulations in the form of wettable powders, emulsifiable concentrâtes, sprayable solutions, dusts or granules. The invention therefore also provides herbicidal compositions comprising compounds of the formula I. The compounds of the formula I can be formulated in varions ways depending on the prevailing biological and/or chemico-physical parameters. Examples of suitable formulation options are: wettable powders (WP), water-soluble powders (SP), water-soluble concentrâtes, emulsifiable concentrâtes (EC), émulsions (EW), such as oil-in-water and water-in-oil émulsions, sprayable solutions, suspension concentrâtes (SC), oil dispersions (OD), oil- or water-based dispersions, oil-miscible solutions, dusts (DP), capsule suspensions (CS), seed-dressing compositions, granules for broadeasting and soil application, granules (GR) in the form of microgranules, spray granules, coating granules and adsorption granules, water-dispersible granules (WG), water-soluble granules (SG), ULV formulations, microcapsules and waxes. These individual formulation types are known in principle and are described, for example, in Winnacker-Küchler, Chemische Technologie [Chemical Technology], Volume 7, C. Hauser Verlag Munich, 4th. Edition 1986; Wade van Valkenburg, Pesticide Formulations, Marcel Dekker, N.Y., 1973; K. Martens, Spray Drying Handbook, 3rd Ed. 1979, G Goodwin Ltd. London.
The necessary formulation auxiliaries, such as inert materials, surfactants, solvents and other additives, are likewise known and are described, for example, in Watkins, Handbook of Insecticide Dust Diluents and Carriers, 2nd Ed., Darland Books, Caldwell N.J., H. v. Olphen, Introduction to Clay Colloid Chemistry; 2nd Ed., J. Wiley & Sons, N.Y.; C. Marsden, Solvents Guide; 2nd Ed., Interscience, N.Y. 1963; McCutcheon's Détergents and Emulsifïers Annual, MC Publ. Corp., Ridgewood N.J.; Sisley and Wood, Encyclopedia of Surface Active Agents, Chem. Publ. Co. Inc., N.Y. 1964; Schônfeldt, Grenzflüchenaktive Àthylenoxidaddkte [Surface-active ethylene oxide adducts], Wiss. Verlagagesell. Stuttgart 1976; Winnacker-Küchler, Chemische Technologie [Chemical Technology], Volume 7, C. Hauser Verlag Munich, 4th Edition 1986.
Wettable powders are préparations which are uniformly dispersible in water and which contain, in addition to the active compound and as well as a diluent or inert substance, surfactants of ionic and/or nonionic type (wetting agents, dispersants), for example polyethoxylated alkyl phénols, polyethoxylated fatty alcohols, polyethoxylated fatty amines, fatty alcohol polyglycol ethersulfates, alkanesulfonates, alkylbenzenesulfonates, sodium ligninsulfonate, sodium 2,2'-dinaphthylmethane-6,6'-disulfonate, sodium dibutyinaphthalenesulfona-te or else sodium oleoylmethyltaurinate. To préparé the wettable powders, the herbicidally active compounds are frnely ground, for example in customary apparatus such as hammer mills, fan mills and air-jet mills, and are mixed simultaneously or subsequently with the formulation auxiliaries.
Emulsifiable concentrâtes are prepared by dissolving the active compound in an organic solvent, for example butanol, cyclohexanone, dimethylformamide, xylene or else relatively high-boiling aromatic compounds or hydrocarbons or mixtures of the solvents, with the addition of one or more surfactants of ionic and/or nonionic type (emulsifïers). Examples of emulsifïers which can be used are calcium alkylarylsulfonates, such as Ca dodecylbenzenesulfonate, or nonionic emulsifïers, such as fatty acid polyglycol esters, alkylaryl polyglycol ethers, fatty alcohol polyglycol ethers, propylene oxide-ethylene oxide condensation products, alkyl polyethers, sorbitan esters, for example sorbitan fatty acid esters or polyoxyethylene sorbitan esters, for example polyoxyethylene sorbitan fatty acid esters.
Dusts are obtained by grinding the active compound with finely divided solid substances, for example talc, naturel clays, such as kaolin, bentonite and pyrophyllite, or diatomaceous earth. Suspension concentrâtes can be water- or oil-based. They can be prepared, for example, by wet milling using commercially customary bead mills, with or without the addition of surfactants as already mentioned above, for example, in the case of the other formulation types.
Emulsions, for example oil-in-water émulsions (EW), can be prepared for example by means of stirrers, colloid mills and/or static mixers using aqueous organic solvents and, if desired, surfactants as already mentioned above, for example, in the case of the other formulation types.
Granules can be prepared either by spraying the active compound onto adsorptive, granulated inert material or by applying active-compound concentrâtes to the surface of carriers such as sand, kaolinites or granulated inert material, by means of adhesive binders, for example polyvinyl alcohol, sodium polyacrylate or else minerai oils. Suitable active compounds can also be granulated in the manner which is customary for the préparation of fertilizer granules, if desired as a mixture with fertilizers. Water-dispersible granules are generally prepared by the customary processes, such as spray-drying, fluidized-bed granulation, disk granulation, mixing using high-speed mixers, and extrusion without solid inert material.
For the préparation of disk, fluidized-bed, extrader and spray granules, see for example processes in Spray-Drying Handbook 3rd ed. 1979, G. Goodwin Ltd., London; J. E. Browning, Agglomération, Chemical and Engineering 1967, pages 147 ff.; Perry's Chemical Engineer's Handbook, 5th Ed., McGraw-Hill, New York 1973, pp. 8-57. For further details on the formulation of crop protection products, see for example G C. Klingman, Weed Control as a Science, John Wiley and Sons Inc., New York, 1961, pages 81-96 and J. D. Freyer, S. A. Evans, Weed Control Handbook, 5th Ed., Blackwell Scientifîc Publications, Oxford, 1968, pages 101-103.
The agrochemical formulations generally contain from 0.1 to 99% by weight, in particular from 0.1 to 95% by weight, of active compound of the formula I. In wettable powders the concentration of active compound is, for example, from about 10 to 99% by weight, the remainder to 100% by weight consisting of customary formulation constituents. In emulsifiable concentrâtes the concentration of active compound can be from about 1 to 90%, preferably from 5 to 80%, by weight. Formulations in the form of dusts contain from 1 to 30% by weight of active compound, preferably most commonly from 5 to 20% by weight of active compound, while sprayable solutions contain from about 0.05 to 80%, preferably from 2 to 50%, by weight of active compound. In the case of water-dispersible granules the content of active compound dépends partly on whether the active compound is in liquid or solid form and on the granulation auxiliaries, Allers, etc. that are used. In water-dispersible granules the content of active compound, for example, is between 1 and 95% by weight, preferably between 10 and 80% by weight.
In addition, the formulations of active compound may comprise the tackifiers, wetting agents, dispersants, emulsifiers, pénétrants, preservatives, antifreeze agents, solvents, Allers, carriers, colorants, antifoams, évaporation inhibitors and pH and viscosity regulators which are customary in each case.
Based on these formulations it is also possible to produce combinations with other pesticidally active substances, for example insecticides, acaricides, herbicides and fungicides, and also with safeners, fertilizers and/or growth regulators, for example in the form of a ready-mix or tank mix.
Suitable active compounds which can be combined with the active compounds according to the invention in mixed formulations or in a tank mix are, for example, known active compounds as described in for example World Herbicide New Product Technology Handbook, China Agricultural Science and Farming Techniques Press, 2010.9 and in the literature cited therein. For example the following active compounds may be mentioned as herbicides which can be combined with the compounds of the formula I (note: the compounds are either named by the common name in accordance with the International Organization for Standardization (ISO) or by the Chemical names, if appropriate together with a customary code number): acetochlor, butachlor, alachlor, propisochlor, metolachlor, s-metolachlor, pretilachlor, propachlor, ethachlor, napropamide, R-Ieft handed napropamide, propanil, mefenacet, diphenamid, diflufenican, ethaprochlor, beflubutamid, bromobutide, dimethenamid, dimethenamid-P, etobenzanid, flufenacet, thenylchlor, metazachlor, isoxaben, flamprop-M-methyl, flamprop-M-propyl, allidochlor, pethoxamid, chloranocryl, cyprazine, mefluidide, monalide, delachlor, prynachlor, terbuchlor, xylachlor, dimethachlor, cisanilide, trimexachlor, clomeprop, propyzamide, pentanochlor, carbetamide, benzoylprop-ethyl, cyprazole, butenachlor, tebutam, benzipram, mogrton, dichlofluanid, naproanilide, diethatyl-ethyl, naptalam, flufenacet, EL-177, benzadox, chlorthiamid, chlorophthalimide, isocarbamide, picolinafen, atrazine, simazine, prometryn, cyanatryn, simetryn, ametryn, propazine, dipropetryn, SSH-108, terbutryn, terbuthylazine, triaziflam, cyprazine, proglinazine, trietazine, prometon, simetone, aziprotryne, desmetryn, dimethametryn, procyazine, mesoprazine, sebuthylazine, secbumeton, terbumeton, methoprotryne, cyanatryn, ipazine, chlorazine, atraton, pendimethalin, eglinazine, cyanuric acid, indaziflam, chlorsulfuron, metsulfuron-methyl, bensulfuron methyl, chlorimuron-ethyl, tribenuron-methyl, thifensulfuron-methyl, pyrazosulfuron-ethyl, mesosulfuron, iodosulfuron-methyl sodium, foramsulfuron, cinosulfuron, triasulfuron, sulfometuron methyl, nicosulfuron, ethametsulfuron-methyl, amidosulfuron, ethoxysulfuron, cyclosulfamuron, rimsulfuron, azimsulfuron, flazasulfuron, monosulfuron, monosulfuron-ester, flucarbazone-sodium, flupyrsulfuron-methyl, halosulfuron-methyl, oxasulfuron, imazosulfuron, primisulfuron, propoxycarbazone, prosulfuron, sulfosulfuron, trifloxysulfuron, triflusulfuron-methyl, tritosulfuron, sodium metsulfuron methyl, flucetosulfuron, HNPC-C, orthosulfamuron, propyrisulfuron, metazosulfuron, acifluorfen, fomesafen, lactofen, fluoroglycofen, oxyfluorfen, chlomitrofen, aclonifen, ethoxyfen-ethyl, bifenox, nitrofluorfen, chlomethoxyfen, fluorodifen, fluoronitrofen, furyloxyfen, nitrofen, TOPE, DMNP, PPG1013,
AKH-7088, halosafen, chlortoluron, isoproturon, linuron, diuron, dymron, fluometuron, benzthiazuron, methabenzthiazuron, cumyluron, ethidimuron, isouron, tebuthiuron, buturon, chlorbromuron, methyldymron, phenobenzuron, SK-85, metobromuron, metoxuron, afesin, monuron, siduron, fenuron, fluothiuron, neburon, chloroxuron, noruron, isonoruron, 3-cyclooctyl-l, thiazfluron, tebuthiuron, difenoxuron, parafluron, methylamine tribunil, karbutilate, trimeturon, dimefuron, monisouron, anisuron, methiuron, chloreturon, tetrafluron, phenmedipham, phenmedipham-ethyl, desmedipham, asulam, terbucarb, barban, propham, chlorpropham, rowmate, swep, chlorbufam, carboxazole, chlorprocarb, fenasulam, BCPC, CPPC, carbasulam, butylate, benthiocarb, vemolate, molinate, triallate, dimepiperate, esprocarb, pyributicarb, cycloate, avadex, EPTC, ethiolate, orbencarb, pebulate, prosulfocarb, tiocarbazil, CDEC, dimexano, isopolinate, methiobencarb, 2,4-D butyl ester, MCPA-Na, 2,4-D isooctyl ester, MCPA isooctyl ester, 2,4-D sodium sait, 2,4-D dimethyla mine sait, MCPA-thioethyl, MCPA, 2,4-D propionic acid, high 2,4-D propionic acid sait, 2,4-D butyric acid, MCPA propionic acid, MCPA propionic acid sait, MCPA butyric acid, 2,4,5-D, 2,4,5-D propionic acid, 2,4,5-D butyric acid, MCPA amine sait, dicamba, erbon, chlorfenac, saison, TBA, chloramben, methoxy-TBA, diclofop-methyl, fluazifop-butyl, fluazifop-p-butyl, haloxyfop-methyl, haloxyfop-P, quizalofop-ethyl, quizalofop-p-ethyl, fenoxaprop-ethy, fenoxaprop-p-ethyl, propaquizafop, cyhalofop-butyl, metamifop, clodinafop-propargyl, fenthiaprop-ethyl, chloroazifop-propynyl, poppenate-methyl, trifopsime, isoxapyrifop, paraquat, diquat, oryzalin, ethalfluralin, isopropalin, nitralin, profluralin, prodinamine, benfluralin, fluchloraline, dinitramina, dipropalin, chlomidine, methalpropalin, dinoprop, glyphosate, anilofos, glufosinate ammonium, amiprophos-methyl, sulphosate, piperophos, bialaphos-sodium, bensulide, butamifos, phocarb, 2,4-DEP, H-9201, zytron, imazapyr, imazethapyr, imazaquin, imazamox, imazamox ammonium sait, imazapic, imazamethabenz-methyl, fluroxypyr, fluroxypyr isooctyl ester, clopyralid, picloram, trichlopyr, dithiopyr, haloxydine, 3,5,6-trichloro-2-pyridinol, thiazopyr, fluridone, aminopyralid, diflufenzopyr, triclopyr-butotyl, Cliodinate, sethoxydim, clethodim, cycloxydim, alloxydim, clefoxydim, butroxydim, tralkoxydim, tepraloxydim, buthidazole, metribuzin, hexazinone, metamitron, ethiozin, ametridione, amibuzin, bromoxynil, bromoxynil octanoate, ioxynil octanoate, ioxynil, dichlobenil, diphenatrile, pyraclonil, chloroxynil, iodobonil, flumetsulam, florasulam, penoxsulam, metosulam, cloransulam-methyl, diclosulam, pyroxsulam, benfuresate, bispyribac-sodium, pyribenzoxim, pyriftalid, pyriminobac-methyl, pyrithiobac-sodium, benzobicylon, mesotrione, sulcotrione, tembotrione, tefuryltrione, bicyclopyrone, ketodpiradox, isoxaflutole, clomazone, fenoxasulfone, methiozolin, fluazolate, pyraflufen-ethyl, pyrazolynate, difenzoquat, pyrazoxyfen, benzofenap, nipyraclofen, pyrasulfotole, topramezone, pyroxasulfone, cafenstrole, flupoxam, aminotriazole, amicarbazone, azafenidin, carfentrazone-ethyl, sulfentrazone, bencarbazone, benzfendizone, butafenacil, bromacil, isocil, lenacil, terbacil, flupropacil, cinidon-ethyl, flumiclorac-pentyl, flumioxazin, propyzamide, MK-129, flumezin, pentachlorophenol, dinoseb, dinoterb, dinoterb acetate, dinosam, DNOC, chloronitrophene, medinoterb acetate, dinofenate, oxadiargyl, oxadiazon, pentoxazone, Flufenacet, fluthiacet-methyl, fentrazamide, flufenpyr-ethyl, pyrazon, brompyrazon, metflurazon, kusakira, dimidazon, oxapyrazon, norflurazon, pyridafol, quinclorac, quinmerac, bentazone, pyridate, oxaziclomefone, benazolin, clomazone, cinmethylin, ZJ0702, pyribambenz-propyl, indanofan, sodium chlorate, dalapon, trichloroacetic acid, monochloroacetic acid, hexachloroacetone, flupropanate, cyperquat, bromofenoxim, epronaz, methazole, flurtamone, benfuresate, ethofumesate, tioclorim, chlorthal, fluorochloridone, tavron, acrolein, bentranil, tridiphane, chlorfenpropmethyl, thidiarizonaimin, phenisopham, busoxinone, methoxyphenone, saflufenacil, clacyfos, chloropon, alorac, diethamquat, etnipromid, iprymidam, ipfencarbazone, thiencarbazone-methyl, pyrimisulfan, chlorflurazole, tripropindan, sulglycapin, prosulfalin, cambendichlor, aminocyclopyrachlor, rodethanil, benoxacor, fenclorim, flurazole, fenchlorazole-ethyl, cloquintocet-mexyl, oxabetrinil, MG/91, cyometrinil, DKA-24, mefenpyr-diethyl, furilazole, fluxofenim, isoxadifen-ethyl, dichlormid, halauxifen-methyl, DOW florpyrauxifen, UBH-509, D489, LS 82-556, KPP-300, NC-324, NC-330, KH-218, DPX-N8189, SC-0744, DOWCO535, DK-8910, V-53482, PP-600, MBH-001, KIH-9201, ET-751, KIH-6127 and KIH-2023.
For use, the formulations which are présent in commercially available form are, if appropriate, diluted in the customary manner, for example using water in the case of wettable powders, emulsifiable concentrâtes, dispersions and water-dispersible granules. Products in the form of dusts, granules for soil application or broadcasting and sprayable solutions are usually not further diluted with other inert substances prior to use. The application rate of the compounds of the formula I required varies with the extemal conditions, such as température, humidity, the nature of the herbicide used and the like. It can vary within wide limits, for example between 0.001 and 1.0 kg/ha or more of active substance, but it is preferably between 0.005 and 750 g/ha, especially between 0.005 and 250g/ha.
Spécifie Mode for Carrying out the Invention
The following embodiments are used to illustrate the présent invention in detail and should not be taken as any limit to the présent invention. The scope of the invention would be explained through the Claims.
In view of économies and variety of a compound, we preferably synthesized several compounds, part of which are listed in the following Table 1 and Table A. The structure and information of a certain compound are shown in Table 1 and Table A. The compounds in Table 1 and Table A are listed for further explication of the présent invention, other than any limit therefor. The subject of the présent invention should not be interpreted by those skilled in the art as being limited to the following compounds.
Table 1 : Structures and 'H NMR data of compounds rAA^NYXYW
Q M X3
X4
NO. Q X X3 X4 w Y Z M ‘HNMR
1 ω / K -z >0 □H CH(Me) 0 O OMe Cl F CH ‘H NMR (500 MHz, DMSO) δ 8.49 (s, 1H), 8.01 (d, 7=7.5 Hz, 1H), 7.88 (d, 7=9.5 Hz, 1 H), 4.89-4.87 (m, 1H), 3.68 (s, 3H), 3.62 (s, 6H), 1.47-1.45 (m, 3H).
2 ' ω CH(Me) O O OEt Cl F CH ‘H NMR (500 MHz, DMSO) δ 8.49 (s, 1H), 8.01 (d, J= 7.5Hz, 1H), 7.88 (d, 7= 9.5 Hz, 1H), 4.87-4.85 (m, 1H), 4.15-4.13 (m, 2H), 3.61 (s, 6H), 1.46-1.44 (m, 3H), 1.18 (t, 7=7.5 Hz, 3H).
3 ω / H-z >0 CH(Me) O S OEt Cl F CH ‘H NMR (500 MHz, DMSO-76) δ 8.52 (s, 1H), 8.00 (d, 7= 7.5 Hz, 1H), 7.89 (d, 7=9.5 Hz, 1H), 5.08 (q, 7= 6.5 Hz, 1H), 4.57 (q, 7= 7.0 Hz, 2H), 3.63 (s, 6H), 1.51 (d,7=6.5 Hz, 3H), 1.35 (t, 7= 7.0 Hz, 3H).
4 0 S^N^O 1 CH(Me) O O '/-0^ Cl F CH ‘H NMR (500 MHz, DMSO-76) δ 8.52 (s, 1 H), 8.02 (d, 7= 8.0 Hz, 1H), 7.89 (d, 7=9.5 Hz, 1H), 4.88 (q, 7= 7.0 Hz, 1H), 4.14-4.01(m, 2H), 3.64 (s, 6H), 1.63-1.56 (m, 2H), 1.48 (d, 7= 7.0 Hz, 3H), 0.87 (t,7=7.5 Hz, 3H).
5 Ο '''Ν'^ΐΑ S^N'X) 1 CH(Me) O O cA Cl F CH ’HNMR(500 MHz, DMSO-</6) 8 8.51 (s, 1H), 8.02 (d, 7=8.0 Hz, 1H), 7.89 (d, 7= 9.5 Hz, 1H), 5.00-4.95 (m, 1 H), 4.82 (q, 7= 7.0 Hz, 1H), 3.64 (s, 6H), 1.46 (d, 7= 7.0 Hz, 3H), 1.22-1.18 (m, 6H).
6 ω / -Ζ >Ο CH(Me) O O Cl F CH Ή NMR(500 MHz, DMSO-ds) δ 8.50 (s, 1H), 8.02 (d, 7= 7.5 Hz, 1H), 7.90 (d, 7= 9.5 Hz, 1H), 5.84-5.65 (m, 1H), 5.16-4.98 (m, 2H), 4.87 (q, 7= 7.0 Hz, 1H), 4.29-4.16 (m, 1 H), 4.16-4.09 (m, 1H), 3.67- 3.61 (s, 6H), 2.41-2.31 (m, 2H), 1.47 (d, 7= 7.0 Hz, 3H).
7 Ο -Λ,λ S^N^O CH(Me) O 0 A o Cl F CH
3 Ο S^N^O 1 CH(Me) O O 0^ K Cl F CH
9 ω / Η -ζ >0 οΑ CH(Me) O 0 /O Cl F CH ‘HNMR(500 MHz, DMSO-76) δ 8.52 (s, 1H), 8.03 (d, 7= 7.5 Hz, 1H), 7.89 (d, 7=9.5 Hz, 1H), 4.89 (q, 7= 7.0 Hz, 1H), 4.02-3.92 (m, 1H), 3.64 (s, 6H), 1.49 (d, 7= 7.0 Hz, 3H), 1.31 -1.25 (m, 1H), 0.52-0.48 (m, 2H), 0.30-0.23 (m,2H).
10 0 Άΐ S^N^O CH(Me) O O Cl F CH ‘H NMR(500 MHz, DMSO-ds) δ 8.53 (s, 1 H), 8.03 (d, 7= 7.5 Hz, 1H), 7.90 (d, 7=9.5 Hz, 1H), 4.94 (q, 7= 7.0 Hz, 1 H), 4.68 (t, 7=4.0 Hz, 1H), 4.59 (t, 7= 4.0 Hz, 1 H), 4.50 — 4.29 (m,2H), 3.64 (s, 6H), 1.50 (d, 7= 7.0 Hz,3H).
II Ο S^N^O 1 CH(Me) O o /-O 'F Cl F CH ‘H NMR (500 MHz, DMSO-rfs) δ 8.52 (s, 1H), 8.02 (d, 7= 7.5 Ηζ,ΙΗ), 7.90 (d, 7= 9.0 Hz, 1H), 4.90 (q, 7=7.0 Hz, IH), 4.54 (ζ 7= 6.0 Hz, 1H), 4.44 (t, 7 =6.0 Hz, 1H), 4.29-4.16 (m, 2H), 3.64 (s, 6H), 2.04-1.96 (m, 2H), 1.48 (d, 7=7.0 Hz, 3H).
12 ' tn CH(Me) O o /'O Xf3 Cl F CH ‘H NMR (500 MHz, DMSO-î/s) δ 8.53 (s, 1H), 8.02 (d, 7= 7.5 Hz, 1H), 7.89 (d, 7=9.0 Ηζ,ΙΗ), 4.91 (q, 7=7.0 Hz, 1H), 4.23-4.13 (m, 2H), 3.64 (s, 6H), 2.33-2.27 (m, 2H), 1.84-1.82 (m, 2H), 1.49 (d, 7= 7.0 Hz, 3H).
13 ω / H -Z >O CH(Me) O o ho \ Cl F CH
14 ω , -z >0 CH(Me) o o Ao 0^ Cl F CH ‘H NMR (500 MHz, ChIorofonn-7) δ 8.55 (s, 1H), 7.91 (d,7= 8.0 Hz, 1H), 7.36 (d, 7=9.0 Ηζ,ΙΗ), 4.88 (q, 7= 7.0 Hz, 1H), 4.45 — 4.28 (m, 2H), 3.82 (s, 6H), 3.65 (t, 7= 4.5 Hz,2H), 3.40 (s, 3H), 1.62-1.58 (m, 3H).
15 O S^N^O 1 CH(Me) o 0 /0 Cl F CH
16 ô S^N^O 1 CH(Me) o o /'O X \ CI F CH
17 ω / Xo <Μ CH(Me) o o o Cl F CH ‘H NMR (500 MHz, Chloroform-7) δ 8.55 (s, 1H), 7.92 (d, 7= 8.0 Hz, 1 H), 7.36 (d, 7= 9.0 Hz, 1H), 4.90 (q, 7= 7.0 Hz, 1H), 4.344.20 (m, 4H),
3.81 (s,6H), 1.62-1.58 (oi, 3H), 1.33-1.31 (m, 3H).
18 ω , Η-ζ >ο CH(Me) O O 0 Cl F CH
19 7 ω CH(Me) O O Λο K ΛοΑο Cl F CH
20 Ο 'ν'^ιΑ s^n^o CH(Me) 0 O /-o Cl F CH ‘HNMR(500 MHz, DMSO) δ 8.54 (s, 1H), 8.03 (d, J =7.5 Hz, 1 H), 7.91 (d, J= 9.5Hz, 1H), 5.01 (q, .7=7.0 Hz, IH), 3.63 (s, 6H), 1.99-1.96 (m, 6H), 1.53 (d, J = 7.0 Hz, 3H).
21 ω / -Ζ >Ο CH(Me) 0 O /—o 0 Cl F CH
22 ω / -ζΗο CH(Me) O O /—O 0 Cl F CH
23 ο S^N^O CH(Me) O O /O \ Λ Cl F CH
24 ω / Η -Ζ >=Ο <Η CH(Me) O O /- ο Cl F CH ‘H NMR (500 MHz, Chloroform-rf) δ 8.50 (s, IH), 7.86 (d, .7=7.5 Hz, lH),7.30(d, .7=9.0 Hz, 1 H), 4.83 (q, J =6.5 Hz, 1 H), 4.26- 4.19 (m, IH), 4.16-4.02 (m, 2H), 3.87-3.80 (m, IH), 3.78-3.74 (m, 7H), 1.97-1.94(m, IH), 1.91-1.82 (m, 2H), 1.65- 1.57(oi, IH), 1.54 (d,J= 6.5 Hz, 3H).
25 ' <η CH(Me) O s /-ο \^,o^ Cl F CH
26 ' en CH(Me) O O /O 1,0. VJ Cl F CH Ή NMR (500 MHz, DMSO) δ 8.50 (s, 1H), 8.02 (d,J= 7.5 Hz, 1H), 7.90 (d, ./=9.5 Hz, 1 H), 7.66 (d,J= 2.5 Hz, 1H), 6.54 (d, ./=2.5 Hz, 1H), 6.45-6.42 (m, 1H), 5.18-5.16 (m, 2H), 4.92 -4.9 l(m, 1H), 3.64 (s, 6H), 1.46 (d,J= 7.0 Hz, 3 H).
27 7 ω CH(Me) O O /O \ s VJ Cl F CH
28 v° °=y~ ' en CH(Me) O O ^O\ ,S^ VJ Cl F CH
29 ' en CH(Me) O O <·° L ZI Cl F CH
30 Ô S^N^O 1 CH(Me) O O Vo \ Cl F CH
31 7 en CH(Me) O O /° 1 SiS N Cl F CH
32 ω / K -Z >o CH(Me) O O V° i J f1 chf2 Cl F CH
33 ô ^ν^γΑ S^N^O 1 CH(Me) O O 7P_\^c°2Et N Cl F CH
34 en / H. -Z >o CH(Me) 0 0 Vo \ 3. V . Cl F CH
35 O 'Ν'^ΐΑ S^N^O CH(Me) O O J Ο-Λ \=N Cl F CH
36 O S^N^O CH(Me) O O °-A Cl F CH
37 ω , W -ζ >0 CH(Me) O O / ?λ O ___) Zr~Z O Cl F CH
38 ο S^N^O 1 CH(Me) O 0 ho \ Ό. V 11 N-N Cl F CH
39 ω , Η -ζ >ο CH(Me) O O N-N Cl F CH
40 Μ ' U) CH(Me) O O /~-o 1 S(N'N CI F CH
41 ω / _ζΚο ο^Χ CH(Me) O O /-ο 1 V'N Cl F CH
42 ω > Η_ -ζ >Ο CH(Me) O 0 Cl F CH Ή NMR(500 MHz, DMSCWî) 6 8.51 (s, 1H), 8.04 (d,J= 7.5 Hz, 1 H), 7.91 (d, J=9.5Hz, 1H), 7.37-7.27 (tn, 5H), 5.25 (d,J= 12.5 Hz, 1H), 5.16 (d,J= 12.5 Hz, 1H), 4.96 (q, ./=7.0 Hz, 1H), 3.64 (d,J= 6.0Hz, 6H), 1.50 (d, J =7.0 Hz, 3H).
43 (Λ / κ >° οΗ CH(Me) O 0 A° \ Cl F CH
44 ω , Η -ζ >ο ο^Χ CH(Me) O O /0 Cl F CH
45 ο S^N^O 1 CH(Me) O O Cl F CH
46 0 S^N^O 1 CH(Me) O O ^°\ z^/CF3 Cl F CH
47 Ô S^N^O 1 CH(Me) 0 O /^o C^'NO2 Cl F CH
48 ω / -Ko οΑ CH(Mc) O O Aq Cl F CH
49 ô hKrA CH(Me) O O Ao OMe Cl F CH
50 ω / Η >0 cA CH(Me) O O Ao 'L~~~C^~'SEt Cl F CH
51 Ο ^hKbA S^hKo 1 CH(Me) O O AO__/NH2 1K Cl F CH
52 ω , Κ -2 >0 οΑ CH(Me) O O Ao 'Î'~^Z/^~-SO2Me Cl F CH
53 j-Λ °Κ’ ' V) CH(Me) O O Ao COOEt AK Cl F CH
54 ο 'tKrA S^KK) 1 CH(Me) O O Ao \ jo Cl F CH
55 ω ζ Ά -ζ >0 οΑ CH(Me) O O A*O /\ AK Cl F CH
56 °αα ' ω CH(Me) O O AK~COOH Cl F CH
57 Ο >Λ,λ S^N^O 1 CH(Me) O O Ao F\ OMe aX Cl F CH
58 ο 'hKtA S^tjl^o CH(Me) O O A r0 / Z Aa Cl F CH
59 0 α,α S^N^O 1 CH(Me) O O ho AK Cl F CH 1HNMR(5OO MHz, Chloroform-d) δ 8.65 (s, 1H), 8.53-8.48 (m, 2H), 7.86 (d,J = 8.0 Hz, 1 H), 7.70 (d, J = 8.0 Hz, 1H), 7.37 (d, J = 9.0 Hz, 1 H), 7.28-7.30 (m, 1H), 5.26 (s,
2H), 4.92 (q, J = 7.0 Hz, 1H), 3.83 (s, 6H), 1.62 (d, J = 7.0 Hz, 3H).
60 ω / -Ho CH(Me) O O Λο Cl F CH ‘HNMR(500 MHz, Chloroform-J) δ 8.58 (d,J= 5.0 Hz, 2H), 8.55 (s, 1H), 7.72 (d, J= 5.0 Ha 2H), 7.47 (d,7=8.0 Hz, 1H), 7.36 (d,J= 9.0 Hz, 1 H), 5.26 (s, 2H), 4.92 (q, 7=7.0 Ha 1H), 3.83 (s, 6H), 1.62 (d, 7= 7.0 Ha3H).
61 ω , >-< -ζ >Ο Ο <·* CH(Me) O O /'O Cl F CH
62 ω / Η -Ζ >Ο CH(Me) 0 O Ao A3 Cl F CH
63 Ο S^N^O 1 CH(Me) 0 0 AV-n Cl F CH
64 ω / ι Η -ζ >ο CH(Me) O O γν. _-O O Cl F CH
65 ω / A -Ζ >Ο CH(Me) 0 0 'C^-5 Cl F CH
66 ω / Η. -ζ >ο CH(Me) O O O O-^ •^4 Cl F CH
67 ω , κ -Ζ >Ο CH(Me) 0 o Cl F CH
68 (Λ / -ζΗο CH(Me) O o Cl F CH
69 ο s^bi^o 1 CH(F) O o OMe Cl F CH
70 ' en CH(F) O o OEt Cl F CH ‘H NMR (500 MHz, DMSO) δ 8.75 (s, 1H), 8.08 (d, J= 7.5Hz, 1H), 7.95 (d, J = 9.5Hz, 1H), 6.49 (d, J= 56.5 Hz, 1 H), 4.30-4.28 (tn, 2H), 3.64 (s, 6H), 1.27-1.25 (m, 3H).
71 ' en CH(C1) o o OMe Cl F CH
72 ω / -ζ >ο <Η CH(Et) o o OMe Cl F CH ‘H NMR (500 MHz, DMSO) δ 8.53 (s, 1H), 8.03 (d, .7= 7.5 Hz, 1H), 7.89 (d, J =9.5 Hz, 1H), 4.76 (t, .7= 6.5 Hz, 1H), 3.71 (s, 3H), 3.64 (s, 6H), 1.94-1.79 (m, 2H), 0.98 (t, J =7.5 Hz,3H).
73 ο S^N^O 1 CH o o OMe Cl F CH
74 ω / Η. -ζ >ο <Η CH o o OEt Cl F CH ‘H NMR (500 MHz, DMSO) δ 8.52 (s, 1H), 8.03 (d, .7=7.5 Hz, 1 H), 7.89 (d, J = 9.5 Hz, 1 H), 4.75 (t,-7= 6.5 Hz, 1 H), 4.254.09 (m, 2H), 3.64 (s, 6H), 1.84-1.78 (m, 2H), 1.48-1.42 (m, 2H), 1.21 (t, J =5.5 Hz, 3H), 0.94 (t, J =7.5 Hz, 3H).
75 ω / κ. -ζ >0 ^CH o o OMe Cl F CH Ή NMR (500 MHz, DMSO) δ 8.54 (s, 1H), 8.03 (d, .7=7.5 Hz, 1H), 7.90 (d, .7=9.5 Hz, 1 H), 4.58 (d, .7= 5.5 Hz, 1H), 3.71 (s, 3H), 3.64 (s, 6H), 2.19-2.14 (m, 1H), 1.00 (d, J =6.5 Hz, 6H).
76 J-f ' en Y CH o o OEt Cl F CH ‘H NMR (500 MHz, DMSO) δ 8.54 (s, 1H), 7.99 (d,J= 7.5 Hz, 1H), 7.89 (d, .7=9.5 Hz, 1H), 4.27-4.19 (m, 1H), 4.18-4.12 (m, 2H), 3.63 (s,
611), 1.25 - 1.18 (m, 4H), 0.68 0.63 (m,2H), 0.55-0.52 (m, 2H).
77 w 7 ω CH(CFj) O O OMe Cl F CH
78 ω / -Z >o □H CH O O OMe Cl F CH
79 O S^N^O 1 ς CH O O OEt Cl F CH Ή NMR (500 MHz, DMSO) 8 8.60 (s, 1H), 8.05 (d, 7= 7.5 Hz, 1H), 7.91 (d, 7= 9.5 Hz, 1 H), 5.67 (s, 1H), 4.20 (q, J =7.0 Hz, 2H), 3.833.78 (m, 1 H), 3.76 - 3.70 (m, 1H), 3.64 (s, 6H), 1.25-2.16 (m, 6H).
80 ω , -Z >O 1 °^l CH O O OMe Cl F CH ‘H NMR (500 MHz, DMSO) δ 8.56 (s, 1H), 8.04 (d,7= 7.5 Hz, 1H), 7.90 (d, 7=9.5 Hz, 1H), 5.06-4.99 (m, 1H), 3.83-3.80 (m, 2H), 3.71 (s, 3H), 3.64 (s, 6H), 3.35 (s, 3H).
81 CH(COOMe) O O OMe Cl F CH
82 ω / K -Z >o CH(Ph) O O OMe Cl F CH
83 °1k“ 7 U) CH(Me) O O OMe Br F CH ‘H NMR (500 MHz, DMSO-76) δ 8.46 (s, 1H), 8.03 (d, 7= 9.5 Hz, 1H), 7.99 (d, J= 8.0 Hz, 1H), 4.90 (q, 7= 7.0 Hz, 1H), 3.70 (s, 3H), 3.65 -3.62 (m, 6H), 1.48 (d, 7= 7.0 Hz, 3H).
84 ω / -Z >O CH(Me) O O OEt Br F CH ‘H NMR (500 MHz, DMSO-7È) δ 8.46 (s, 1H), 8.03 (d, 7= 9.0 Hz, 1H), 7.99 (d, 7=7.5 Hz, 1 H), 4.86 (q, 7= 7.0 Hz, 1 H), 4.23-
4.09 (m, 2H), 3.64 (s, 6H), 1.47 (d, J =7.0 Hz,3H), 1.21 (t, 7=7.0 Hz,3H).
85 ω / Η. -ζ >° CH(Me) O 0 OMe CFj F CH ‘H NMR (500 MHz, DMSO-76) δ 8.45 (s, 1H), 8.21 (d, 7=7.0 Hz, 1H), 8.11 (d, J =9.5 Hz, 1H), 4.94 (q, J =7.0 Hz, 1H), 3.70 (s, 3H), 3.64 (s, 6H), 1.48(d,7= 7.0 Hz, 3H).
86 ο s^rji^o CH(Me) O O OEt CF, F CH Ή NMR (500 MHz, DMSO-î/ê) δ 8.45 (s, 1H), 8.21 (d, 7=7.0 Hz, 1H), 8.10 (d, J= 10.0 Hz, 1H), 4.90 (q, J =7.0 Hz, 1 H), 4.22 — 4.10 (m,2H), 3.65 (s, 6H), 1.48 (d, 7= 7.0 Hz, 3H), 1.20 (t, 7=7.0 Hz, 3H).
87 ω / Η. -ζ >ο CH(Me) O 0 OMe CN F CH ‘H NMR (500 MHz, DMSO-J6) δ 8.48 (s, 1H), 8.29 (d, 7= 9.5 Hz, 1H), 8.13 (d, 7=7.0 Hz, 1H), 4.94 (q, 7 =7.0 Hz, 1H), 3.71 (s, 3H), 3.65 -3.63 (m, 6H), 1.50 (d, 7= 7.0 Hz, 3H).
88 °5^· ' (Λ CH(Me) 0 O OEt CN F CH ‘H NMR (500 MHz, DMSO-76) δ 8.48 (s, 1H), 8.28 (d, 7= 9.5 Hz, 1H), 8.13 (d, 7=7.0 Hz, 1H), 4.91 (q, 7=7.0 Hz, 1H), 4.23 — 4.12 (m, 2H), 3.64 (s, 6H), 1.50 (d, 7= 7.0 Hz, 3 H), 1.21 (t, 7=7.0 Hz,3H).
89 C0 / Η -ζ >Ο CH(Me) O O OEt Cl F N
90 » ) ΛοΚ CH(Me) O O OEt Cl F CH
91 1 θ Αλα S^N^O CH(Me) O O OEt Cl F CH
92 CO τH -Z >o CH(Me) O O OEt Cl F CH
93 1 ° S^N^O 1 CH(Me) O O OEt Cl F CH
94 0 A^N^lA S^N^O 1 CH(Me) O O OEt Cl F CH
95 JT ^-r ' V) CH(Me) O O OEt Cl F CH
96 A ° ^^''rA'tA S^N^O λ CH(Me) O O OEt Cl F CH
97 O TA* s^bi^o ch2f CH(Me) O O OEt Cl F CH
98 0 H2%An\ S^N^O 1 CH(Me) O O OEt Cl F CH
99 J$A AT ü ω z CH(Me) O O OEt Cl F CH
100 ω To T -Z >O □T CH(Me) O O OEt Cl F CH
101 J*a AT° —Ο ω CH(Me) O O OEt Cl F CH
102 ω ω— -Z >O CH(Me) O O OEt Cl F CH
103 I 0 ü Άό^ν^ν^ sAnA0 1 CH(Me) O O OEt Cl F CH
104 °=( <Λ ZI Ή' -Z >o CH(Me) O O OEt Cl F CH
105 ô ô ην^''νχ^'γΑ I X X S^ O 1 CH(Me) O O OEt Cl F CH
106 I Ni Z M ω zi H -Z >o oX CH(Me) O O OEt Cl F CH
107 O MeO2S.NXN.\ S^N^O CH(Me) O O OEt Cl F CH
108 ω -vX>o oX i CH(Me) O O OEt Cl F CH
109 ô >Α,λ S^N^O CH(Me) O O OEt Cl F CH
110 °\ en ) -Z >o cH CH(Me) O O OEt Cl F CH
111 ô S^X^O O^J OH CH(Me) O O OEt Cl F CH
112 M Z~\ z4 X° 1 ω o CH(Me) O O OEt Cl F CH
113 X -< w P o=< _o CH(Me) O O OEt Cl F CH
114 ''N' O S^N^O CH(Me) O O OEt Cl F CH
115 1 0 S^nXd 1 CH(Me) O o OEt Cl F CH
116 ô HN^N^ S^nXd Ph CH(Me) O o OEt CI F CH
117 Cl Ck Λ Λ Tjl ? v S^nX) 1 CH(Me) O o OEt Cl F CH
118 ω / O CH(Me) o o OEt Cl F CH
119 r-\ θ ο I ü s, ΐΆ S^N^O 1 CH(Me) o o OEt Cl F CH
120 5^‘ o.—J <n CH(Me) o o OEt Cl F CH
121 ô Μθ°'γχΐϊγχ^Ν^Ν?!ί CH(Me) o 0 OEt CI F CH
122 s° Xo CH(Me) o o OEt Cl F CH
123 s cXnX) 1 CH(Me) o o OEt Cl F CH
124 ω / >-< -Z >o (Λ CH(Me) o 0 OMe Cl F CH ‘H NMR (500 MHz, DMSO) δ 8.51 (s, 1H), 8.00 (d,J= 7.5 Hz, 1H), 7.88 (d, J=9.0Hz, 1H), 4.89 (q,J= 7.0 Hz, 1H), 4.14 (s, 3H), 3.70 (s, 3H), 3.62 (s, 3H), 1.47 (d, J= 7.0 Hz, 3H).
125 0 S^hXs 1 CH(Me) o s OMe Cl F CH
126 o=< z— /2¼ > tn CH(Me) O O OEt Cl F CH
127 ω > H. -Z >0 ω CH(Me) O s OEt Cl F CH
128 I ,w JH H z/z”^ / ω CH(Me) O O 7-o^ Cl F CH
129 ω / K -Z >0 ω CH(Me) O O Cl F CH
130 ω / >-< -Z >0 CH(Me) O 0 Ao Cl F CH
131 ω / H. -Z >o ω CH(Me) 0 O 0^ Cl F CH
132 •s P M /z~ /2¼ / ω CH(Me) 0 O Ao Cl F CH
133 0 'N^rA S^N^S 1 CH(Me) O O ho ^0 \ Cl F CH
134 ω / Kz —Z )=o AA ω hv CH(Me) O O /-o 0— Cl F CH
135 /w □=< z/2A ' en CH(Me) 0 O Λο °Λ Cl F CH
136 u> / K -Z >o ω r^v CH(Me) O O /'Ο \ Cl F CH
• 137 ω / _Z^>O CH(Me) O O 0 Cl F CH
138 0 'Ν'^ίΑ S^N^S 1 CH(Me) O O 0 Cl F CH
139 ü ^ν^γΑ S^N^S CH(Me) o 0 Ao 9 X ΛοΛο Cl F CH
140 ω / -Ho CH(Me) o o Ao Cl F CH
141 ü '''hVhA S^N^S 1 CH(Me) o o Ao \^,o^ Cl F CH
142 ü '''hVrA S^N^S CH(Me) o o Ao ^^0 Cl F CH
143 0=< Z— /H ' V) CH(Me) o o A° \ 'O Cl F CH
144 U> / -Z >o A2^ ω CH(Me) o o Λ° 1 Z Aa Cl F CH
145 ω / H —Z )=o Aa ω X CH(Me) o 0 Ao VA Cl F CH
146 ω / >-< -Z >0 ω CH(Me) o o /'O Cl F CH
147 \ 1 ω / H —Z )=o A=> ω r'V CH(F) o o OMe Cl F CH
148 ω / >-< -Z >0 A^ u> CH(F) o o OEt Cl F CH
149 0 '^Ν'^γΑ S^N^S 1 CH(C1) o o OMe Cl F CH
150 ω / A< -Z >C A^r ω <>< CH(Et) o o OMe Cl F CH
151 ω / H -Z >o ω r>< CH o o OMe Cl F CH
152 ω / —ζ )=ο ω CH O O OEt Cl F CH
153 ω / κ —Ζ >=Ο ω ^CH O O OMe Cl F CH
154 ϋ ^ν^ιΑ S^N^S Y CH O O OEt Cl F CH
155 ω / >-< -ζ >ο ω CH(CF3) O O OMe Cl F CH
156 0 ^N^hA S^N^S 1 ς CH O O OMe Cl F CH
157 ω / -ζ >ο ω ς CH O O OEt Cl F CH
158 Α-< ' <η 1 CH O O OMe Cl F CH
159 ω / >-< —ζ >=ο ω CH(COOMe) O O OMe Cl F CH
160 0 N^tA S^N^S 1 CH(Ph) O O OMe Cl F CH
161 ω / -ζ >ο Α^τ ω CH(Me) 0 O OEt Br F CH ‘H NMR (500 MHz, DMSO-dô) δ 8.45 (s, 1H), 8.01 (d,J=9.0 Hz, 1H), 7.97 (d, J =7.5 Hz, 1H), 4.87-4.85 (m, 1H), 4.29-4.00 (m, 5H), 3.62 (s, 3H), 1.47 (d, J= 7.0 Hz, 3H), 1.20 (t, .7= 7.0 Hz, 3H).
162 ω / Α< -ζ >ο Α=> CH(Me) O O OEt CFj F CH
163 0=< Z— ' tf) CH(Me) O O OEt CN F CH
164 O=\ Z— CH(Me) O O OMe Cl F CH Ή NMR (500 MHz, DMSO) δ 8.51 (s, 1H), 7.95 (d, J =7.5 Hz, 1H), 7.88 (d, J = 9.5Hz, 1H), 4.90 (q, J =7.0 Hz, 1H), 3.70 (s, 3H), 3.40 (s, 3H), 2.59 (s, 3H), 1.47(d,7= 7.0 Hz, 3H).
165 -Z >o CH(Me) O O OEt Cl F CH
166 s 'N^A S^N^S 1 CH(Me) 0 O OEt Cl F CH
167 o n^A S^N^O CH(Me) O O SMe Cl F CH
168 ω / A -Z >o CH(Me) O O SEt Cl F CH ‘H NMR (500 MHz, DMSO-ds) δ 8.58 (s, 1H), 8.06 (d, 7= 8.0 Hz, 1 H), 7.91 (d, 7=9.5 Hz, 1 H), 4.94 (q, 7= 7.0 Hz, 1H), 3.63 (s, 6H), 2.89-2.83 (m,2H), 1.46 (d, 7= 7.0 Hz, 3H), 1.18 (t,7= 7.5 Hz,3H).
169 °1a 7 ω CH(Me) O O As Cl F CH
170 ω / A -z >0 fa CH(Me) O O Cl F CH
171 ω / A -Z >o fa CH(Me) O O Cl F CH
172 O S^N^O CH(Me) 0 O / <° cA Cl F CH
173 ' U) CH(Me) O O /S \ Cl F CH
174 ω / H -z >O CH(Me) O O As °„k Cl F CH
175 M CH(Me) 0 O <□ J •4, Cl F CH
176 O 'Ν'^Γ'Λ S^N^O 1 CH(Me) O O As Cl F CH
177 1 ω / H. -Z >O CH(Me) O O As V/=N V? Cl F CH
178 ω / >< -Z >o CH(Me) O O SEt CN F CH
179 ω / H. —Z >=O ω CH(Me) O O SMe Cl F CH
180 ü S^N^S 1 CH(Me) O O SEt Cl F CH
181 ω , H -z >0 CH(Me) O O NHEt Cl F CH
182 ω z H. -Z >o CH(Me) O O b~NH \ Cl F CH
183 ^A° ' ω CH(Me) O O / / ° -|-NH Cl F CH Ή NMR(500 MHz, DMSO-rfs) δ 11.82 (s, 1H), 8.34 (s, 1H), 8.08 (d,J= 8.0 Ha 1H), 7.83 (d, J=9.5Hz,lH), 4.50 (q,J= 6.5 Ha 1H), 3.64 (s, 6H), 3.62 (s, 3H), 3.35-3.28 (m, 2H), 2.532.49 (m, 2H), 1.66 (d,J= 6.5 Ha3H).
184 ω , -Ho CH(Me) O O /N H Cl F CH
185 ω / Η -ζ >0 □Η- CH(Me) O O AnH Cl F CH
186 Ô S^N^O 1 CH(Me) O O T '/ 1 / o Cl F CH
187 Η ' <η CH(Me) O O /~NH >O. °zN Λ CN F CH
188 (Λ / Η. —ζ >=ο ω i ί CH(Me) O O /-NH Λ/ °/N A Cl F CH
189 ω / Η. -ζ >ο □Η- C(Me)2 O O OMe Cl F CH ‘H NMR (500 MHz, DMSO) δ 8.46 (s, 1H), 8.00 (d, 7= 7.5 Hz, 1H), 7.89 (d, 7= 9.5 Hz, 1H), 3.68 (s, 3H), 3.64 (s, 6H), 1.54 (s, 6H).
190 ω / Η_ -ζ >ο οΗ- C(F)2 O O OMe Cl F CH
191 ω / -ζ >ο AAω r'V C(Me)2 O O OMe CI F CH
192 ω / Η -ζ >ο ω ζν C(F)2 O O OMe Cl F CH
193 Η ο=( Ζ— ο d? CH(Me) O O OH Cl F CH 1H NMR (500 MHz, DMSO) δ 12.89 (s, 1H), 8.49 (s, 1H), 7.92-7.90 (m, 2H), 6.60 (s, 1 H), 4.76 (q, J = 7.0 Hz, 1H), 3.42 (s, 3 H), 1.46 (d, J = 7.0Hz,3H).
194 ω1 Ο —Ζ \=ο CH(Me) O O OMe Cl F CH ‘H NMR (500 MHz, DMSO) δ 8.52 (s, 1H), 7.93 (d, 7 =7.5 Hz, 1H), 7.88 (d, 7= 9.5 Hz, 1H), 6.61 (s, 1H), 4.89-4.87 (m, 1H), 3.70 (s,
3H), 3.43 (s, 3H), 1.48 (d, 7= 7.0 Hz, 3H).
195 Μ5 O=< Z— O d? CH(Me) 0 s OMe Cl F CH
196 J1 O —Z \=o CH(Me) 0 O OEt Cl F CH ‘H NMR (500 MHz, DMSO-76) δ 8.52 (s, 1H), 7.94-7.85 (m, 2H), 6.61 (s, 1 H), 4.86 (q, 7= 7.0 Hz, 1 H), 4.16 (q, 7 =7.0 Hz, 2H), 3.42 (s, 3H), 1.47 (d, 7= 7.0Hz,3H), 1.20 (d,7=7.0 Hz, 3H).
197 O —Z /=O CH(Me) O s OEt Cl F CH
198 0 rV f3c^n^o CH(Me) O 0 Cl F CH ‘H NMR (500 MHz, DMSO-76) δ 8.52 (s, 1H), 7.95-7.83 (m, 2H), 6.61 (s, 1 H), 4.88 (q, 7= 7.0Hz, 1H), 4.17 - 3.98 (m, 2H), 3.43 (s, 3H), 1.63-1.56 (m, 2H), 1.48 (d, 7= 7.0 Hz, 3H), 0.87 (t,7=7.0Hz, 3H).
199 ω1 • O —Z )=O CH(Me) O O cA Cl F CH 1H NMR (500 MHz, Chloroform-d) δ 8.55 (s, 1 H), 7.84 (d, J = 7.5 Hz, 1H), 7.35 (d, J = 8.5 Hz, 1H), 6.41 (s, 1H), 5.13-5.10 (m, 1 H), 4.79-4.76 (m, 1 H),3.60 (s, 3H), 1.53 (d, J = 7.0 Hz, 3H), 1.36 -1.24 (m, 6H).
200 <? O —Z /=O CH(Me) O O ^θχ/ΧΖ Cl F CH ‘H NMR (500 MHz, DMSO-d6) δ 8.52 (s, 1 H), 7.91 (d, J = 8.0 Hz, 1H), 7.88 (d, J = 9.0 Hz, 1H), 6.61 (s, 1H), 4.87 (q, J = 7.0 Hz, 1 H), 4.18- 4.05 (m, 1H), 3.42 (s, 3H), 1.59- 1.53 (m, 2H), 1.47 (d, J = 7.0Hz,3H), 1.35 -1.25(m, 3H), 0.84 (t, J = 7.5
Hz,3H)
201 A° Z— O Ll? CH(Me) O O Cl F CH Ή NMR (500 MHz, DMS0-<4) δ 8.52 (s, 1H), 7.92 - 7.90 (m, 1H), 7.87 (d, J= 9.5 Hz, 1 H), 6.60 (s, 1H), 4.89 (q, 7=7.0 Hz, 1H), 3.98-3.95 (m, 1H), 3.88-3.84 (m, 1H), 3.42 (s, 3H), 1.91-1.86 (m, 1H), 1.49 (d, J=7.0 Hz, 3H), 0.93-0.81 (m, 6H).
202 A° o=< z— O LL CH(Me) O O Cl F CH ‘H NMR (500 MHz, DMSO) δ 8.50 (s, 1H), 7.90-7.89 (m, 2H), 6.61 (s, 1 H), 4.72-4.71 (m, 1H), 3.42 (s, 3H), 1.45-1.37 (m, 12H).
203 A O=< Z— O LL? CH(Me) O 0 Cl F CH ‘H NMR (500 MHz, DMSO-rfj) δ 8.52 (s, 1H), 7.91-7.87 (m, 2H), 6.61 (s, 1 H), 4.89-4.84 (m, 1H),4.17 — 4.04 (m, 2H), 3.42 (s, 3H), 1.58-1.55 (m, 2H), 1.47 (d, J= 7.0 Hz, 3H), 1.27-1.23 (m, 4H), 0.85-0.79 (m, 3H).
204 J1 O —Z )=O oA CH(Me) O O Cl F CH ‘H NMR (500 MHz, DMSO-</6) δ 8.50 (s, 1 H), 7.89 (d,J= 8.0 Hz, 1H), 7.86 (d, J =9.5 Hz, 1H), 6.58 (s, 1H), 4.88-4.81 (m, 1H), 3.41 (s, 3H), 3.38-3.36 (m,2H), 1.57 — 1.51 (m, 2H), 1.45 (d, 7=7.0 Hz,3H), 1.42- 1.37 (m,2H), 1.22-1.18 (m, 2H), 0.86 (t, J= 7.0 Hz, 3H).
205 <? O —Z Ao fa CH(Me) O O Cl F CH ‘H NMR (500 MHz, DMSO-76) δ 8.51 (s, 1H), 7.92-7.86 (m, 2H), 6.60 (s, 1H), 4.89 -4.84 (m, 1H), 4.17-4.04 (m, 2H), 3.43 (s, 3H), 1.59-1.53 (m, 2H), 1.47 (d, 7= 7.0 Hz, 3H), 1.26-1.19 (m,
8H), 0.84 (ζ J= 7.0 Hz, 3H).
206 Ο iV f3ct'n''Ad CH(Me) O O CI F CH ‘H NMR (500 MHz, DMSO) δ 8.51 (s, 1H), 7.96-7.83 (m, 2H), 6.60 (s, 1 H), 4.88-4.86 (m, 1 H), 4.21- 4.11 (m,3H), 3.42 (s, 3H), 1.47 (d,J= 7.0 Hz, 3H), 1.24-1.22 (m, 14H).
207 J1 o —Z \=o CH(Me) O O Cl F CH ‘H NMR (500 MHz, DMSO) δ 8.51 (s, 1H), 7.90-7.88 (m, 2H), 6.60 (s, 1H), 4.86 (m, 2H), 3.42 (s, 3H), 1.46 (d, J= 7.0 Hz, 3 H), 1.17 -1.06(m, 13H), 0.84-0.82 (m, 3H).
208 O=< Z— o IL· CH(Me) O 0 Cl F CH 1H NMR (500 MHz, DMSO) δ 8.53 (s, 1H), 7.98-7.86 (m, 2H), 6.62 (s, 1H), 5.92-5.90 (m, 1H), 5.28-5.26 (m, 2 H), 4.93-4.91 (m, 1H), 4.68-4.66 (m, 2H), 3.42 (s, 3H), 1.49 (d, J = 7.0 Hz, 3H).
209 J1 o —Z /=O fa CH(Me) O O Cl F CH ‘H NMR (500 MHz, DMSO-rfs) δ 8.49 (s, 1H), 8.00-7.84 (m, 2H), 6.59 (s, 1H), 5.77-5.68 (m, 1H), 5.08-5.02 (m, 1H), 5.00-4.97 (m, 1H), 4.86-^1.80 (m, 1H), 4.23-4.08 (m, 2H), 3.40 (s, 3H), 2.35-2.31 (m, 2H), 1.44 (d, 7=7.0 Hz, 3 H).
210 fa oY z— u d? CH(Me) O 0 Cl F CH
211 O=/ Z— U if? CH(Me) O 0 Cl F CH
212 JA o=< z— O LL CH(Me) O O A o Cl F CH 1H NMR (500 MHz, DMSO) δ 8.53 (s, 1H), 7.97-7.84 (m, 2H), 6.61 (s, 1H), 4.98-4.89 (m, 1 H), 4.81 (s, 2H), 3.60-3.56 (m, 1H), 3.42 (s, 3H), 1.49 (d, J = 7.0 Hz, 3H).
213 A0 O=< Z— O LL CH(Me) O O cA E Cl F CH
214 J1 O —z \=o □A CH(Me) O O Cl F CH 1H NMR (500 MHz, DMSO-d6) δ 8.51 (s, 1H), 7.91 (d, J = 8.0 Hz, 1H), 7.88 (d, 3 = 9.0 Hz, 1H), 6.61 (s, 1H), 5.16 (d, 3 = 6.5 Hz, 1H), 4.82 (q, 3 = 7.0 Hz, 1H), 3.42 (s, 3H), 1.88- 1.77 (m, 2H), 1.68-1.49 (m, 6H), 1.45 (d, 3 = 7.0 Hz, 3H).
215 J1 O —z \=o oA CH(Me) O O Ao Cl F CH
216 O —Z /=O oA CH(Me) O O /o^F Cl F CH ‘H NMR (500 MHz, DMSO) δ 8.53 (s, 1H), 7.92 (d, 7=7.5 Hz, 1H), 7.88 (d, 7=9.5 Hz, 1 H), 6.61 (s, 1H), 4.93 (q, 7= 6.5 Hz, 1 H), 4.684.58 (m, 2H), 4.42 — 4.34 (m, 2H), 3.42 (s, 3H), 1.50 (d, 7= 7.0 Hz, 3H).
217 J1 O —z \=o oA CH(Me) O O F v°af Cl F CH ‘H NMR (500 MHz, DMSO) δ 8.53 (s, 1H), 7.94-7.82 (m, 2H), 6.61 (s, 1 H), 4.99-4.97 (m, 1H), 4.47-4.45 (m, 2H), 3.44-3.42 (m,4H), 1.50 (d, 7= 7.0 Hz, 3H).
218 O A Fjc iAo CH(Me) O O X°-cf3 Cl F CH ‘H NMR (500 MHz, DMSO-ds) δ 8.51 (s, 1H), 7.92-7.87 (m, 2H), 6.61 (s, 1H), 5.11-4.68 (m, 3H), 3.42 (s, 3H), 1.45 (d, 7= 7.0 Hz, 3H).
219 <7 Ο —ζ \=ο ο>-ΖΛ CH(Me) O o /-O Cl F CH
220 0 f3cxn^o CH(Me) 0 o V Cl F CH ‘H NMR (500 MHz, DMSO-<4) δ 8.55 (s, 1H), 7.93-7.87 (m, 2H), 6.62 (s, 1 H), 4.99 (q, 7= 7.0 Hz, 1H), 4.54 -4.35 (m, 2H), 3.42 (s, 3H), 1.69-1.59 (m, 3H), 1.51 (d, 7= 7.0 Hz, 3H).
221 οχ ζ— ο IL· CH(Me) O o LL· o Cl F CH ‘H NMR (500 MHz, DMSO-rfi) δ 8.51 (s, 1H), 7.94 - 7.85 (m, 2H), 6.62 (s, 1H), 4.89 (q, 7= 7.0 Hz, 1H), 4.42 -4.27 (m, 2H), 3.42 (s, 3H), 2.77-2.65 (m, 2H), 1.47 (d, 7= 7.0 Hz, 3H).
222 J1 ο —ζ \=ο CH(Me) O o A Tl Cl F CH
223 οχ ζ— ο LL CH(Me) O o /'O '''CF3 Cl F CH
224 οχ ζ— ο IL· CH(Me) O o o Cl F CH
225 1 κ οχ ζ— ο IX? CH(Me) O o Cl F CH ‘H NMR (500 MHz, DMSO-7s) δ 8.52 (s, 1H), 7.92 (d, 7= 8.0Hz, 1 H), 7.88 (d, 7= 9.5 Hz, 1H), 6.62 (s, 1H), 6.58-6.52 (m, 1H), 6.13-6.06 (m, 1H), 4.96-4.87 (m, 1 H), 4.874.73 (m, 2H), 3.43 (s, 3H), 1.48 (d, 7= 7.0 Hz, 3H).
226 ω1 Ο —Ζ )=ο CH(Me) O o Cl F CH ‘H NMR (500 MHz, DMSO-A) δ 8.53 (s, 1 H), 7.91-7.85 (m, 2H), 6.59 (s, 1H), 5.09 (s, 2H), 5.02-4.99 (m, 1H), 3.40 (s, 3H), 1.49 (d, 7= 7.0 Hz, 3H).
227 J1 Ο —Ζ )=Ο ο CH(Me) O O \°^^CN Cl F CH ‘H NMR (500 MHz, DMSO-i/t) δ 8.53 (s, 1H), 7.93 (d, 7= 8.0, 1H), 7.88 (d, 7= 9.5 Hz, 1H), 6.61 (s, 1H), 4.93 (q, 7=7.0 Hz, 1H), 4.36-4.26 (m, 2H), 3.42 (s, 3H), 2.94-2.90 (m,2H), 1.50 (d, 7=7.0 Hz, 3H).
228 ο=< ζ— ο ιΓ CH(Me) O O Cl F CH Ή NMR (500 MHz, DMSO) δ 8.52 (s, 1H), 7.95-7.86 (m, 2H), 6.61 (s, 1H), 4.87-4.85 (m, 1H), 4.14-4.12 (m, 2H), 3.60-3.58 (m, 2H), 3.42 (s, 3H), 1.49 (d, 7= 7.0 Hz, 3H).
229 ο=ς ζ— ο LL CH(Me) O O ho ^~~O \ Cl F CH
230 ο=< ζ— ο d? CH(Me) O O ho o-^ Cl F CH Ή NMR (500 MHz, DMSO-76) δ 8.52 (s, 1H), 7.92 (d, 7= 8.0 Hz, 1 H), 7.88 (d, 7=9.5 Hz, 1 H), 6.61 (s, 1H), 4.93-4.86 (m, 1H), 4.32-4.15 (m, 2H), 3.55 3.51 (m,2H), 3.42 (s, 3H), 3.23 (s, 3H), 1.48 (d, 7= 7.0 Hz, 3H).
231 <Τ ο —ζ \=ο CH(Me) O O /O °Λ Cl F CH ‘H NMR (500 MHz, DMSO-76) δ 8.50 (s, 1H), 7.92-7.84 (tn, 2H), 6.59 (s, 1H), 4.89-4.85 (m, 1 H), 4.28- 4.24 (m, 1H), 4.18-4.15 (m, 1H), 3.55-3.53 (m,2H), 3.42 — 3.38 (m, 5H), 1.46 (d, 7= 7.0 Hz, 3H), 1.03 (ζ 7= 7.0 Hz, 3H).
232 ω1 Ο —Ζ )=ο CH(Me) O O Cl F CH ‘H NMR (500 MHz, DMSO-rfs) δ 8.51 (s, 1H), 7.92 (d, 7= 8.0 Hz, 1H), 7.88 (d, 7=9.5 Hz, 1H), 6.60 (s, 1H), 4.88 (q, 7= 7.5 Hz, 1 H), 4.334.12 (m,2H), 3.59 -3.52 (m, 2H), 3.42 (s,
3H), 3.36 -3.33 (m, 2H), 1.47 (d, J =7.0 Hz,3H), 1.45-1.38 (m, 2H), 1.34-1.22 (m, 2H), 0.85 (t, J=7.5 Hz, 3H).
233 J*A° o=< z— ü LL CH(Me) O O /'O \ Cl F CH Ή NMR (500 MHz, DMSO-</6) δ 8.53 (s, 1 H), 7.93 -7.87 (m, 2H), 6.61 (s, 1H), 5.33-5.30 (m, 1H), 5.24-5.21 (m, 1H), 4.94-4.91 (m, 1H), 3.42 (s, 3H), 2.15 (s, 3H), 1.49 (d,J= 7.0 Hz, 3H).
234 J1 O —z To oT CH(Me) O 0 Cl F CH Ή NMR (500 MHz, DMSO-Jî) δ 8.52 (s, 1H), 7.92 (d, J =8.0 Hz, 1H), 7.88 (d, J = 9.5 Hz, 1 H), 6.61 (s, 1H), 5.00-4.83 (m, IH), 4.41-4.16 (m,2H), 3.43 (s, 3H), 2.74-2.71 (m, 2H), 2.08 (s, 3H), 1.49 (d,J= 7.0 Hz, 3H).
235 O /a f3c n o CH(Me) O O \°Y O Cl F CH
236 T° O=< z— O IL CH(Me) O O O >° Cl F CH ‘H NMR (500 MHz, DMSO-d6) δ 8.49 (s, III), 7.95-7.87 (m, 2H), 6.61 (s, 1H), 4.76 (q, J= 7.0Hz, 111),3.95 (t,J= 7.0Hz, 2H), 3.43 (s, 3H), 1.65-1.55 (m, 2H), 1.46 (d, J =7.0 Hz,3H), 1.20 (t,J= 7.0 Hz, 3H).
237 ω1 O —z To oT CH(Me) O 0 1 0 Cl F CH
238 J1 Ω —z To oT CH(Me) O O 0 Cl F CH ‘H NMR (500 MHz, DMSO-A) δ 8.53 (s, 1 H), 7.94 (d,J= 8.0 Hz, 1H), 7.88 (d, J=9.5Hz, 1H), 6.62 (s, 1H), 5.01-4.79(m, 3H), 3.42 (s, 3H), 2.09 (s, 3H), 1.54 (d,J= 7.0 Hz, 3H).
239 J Ο —Z \=o oX CH(Me) O O 0 Cl F CH Ή NMR (500 MHz, DMSO) δ 8.53 (s, 1H), 7.95 (d, .7=7.5 Hz, 1H), 7.88 (d, J=9.5Hz,lH), 6.62 (s, 1H), 5.01 (q, 7=7.0 Hz, 1H), 4.80 (s, 2H), 4.19-4.09 (m,2H), 3.43 (s, 3H), 1.53 (d, 7= 7.0 Hz, 3H), 1.19 (t, 7 =7.0 Hz, 3H).
240 O=< Z— ω VL· CH(Me) O 0 O Cl F CH ‘H NMR (500 MHz, DMSO-ds) δ 8.48 (s, 1H), 7.90 (d, 7= 8.0 Hz, 1H), 7.86 (d, 7=9.5 Hz, 1H), 6.59 (s, 1H), 4.89 - 4.79 (m, 1 H), 4.37-4.32 (m, 1H), 4.27-4.22 (m, 1H), 3.54 (s, 3H), 3.40 (s, 3H), 2.69-2.63 (m, 2H), 1.42 (d, 7= 7.0 Hz, 3H).
241 J1 O —Z \=o oX CH(Me) O O 0 Cl F CH ‘H NMR (500 MHz, DMSO-t/i) δ 8.51 (s, 1H), 7.95-7.83 (m, 2H), 6.60 (s, 1H), 5.18-5.08 (m, 1 H), 4.96- 4.89 (m, 1H), 3.64 (s, 3H), 3.40 (s, 3H), 1.49 (t, 7= 7.0 Hz, 3H), 1.41 (t, 7= 7.5 Hz, 3H).
242 J1 O —Z \=o oX CH(Me) O O X O ) Cl F CH
243 O=< Z— O d? CH(Me) O 0 O Cl F CH Ή NMR (500 MHz, DMSO) δ 8.52 (s, 1H), 7.92-7.90 (m, 2H), 6.62 (s, 1H), 4.87-4.85 (m, 1 H), 3.60 (s, 3H), 3.42 (s, 3H), 1.52-1.42 (tn, 9H).
244 x° O=< Z— O d? CH(Me) O O LL “•-M ° Cl F CH
245 J1 O —Z Xo oX CH(Me) O O Xo °x Y- o °x \ Cl F CH ‘H NMR (500 MHz, DMSO-dé) δ 8.55 (s, 1H), 7.95-7.88(m, 2H), 6.62 (s, 1H), 6.03 (s, 1H), 5.02-4.97
(m, IH), 3.73 (s, 3H), 3.42- 3.40 (m, 6H), 1.54-1.52(m, 3H).
246 o=< z— O LL? CH(Me) O o o °=< o Cl F CH IH NMR (500 MHz, DMSO) δ 8.53 (s, IH), 7.91-7.89 (m, 2H), 6.69 (s, IH), 6.61 -6.56(m, IH), 4.92-4.90 (m, 1 H), 4.10-4.08 (m, 2H), 3.42 (s, 3H), 1.52-1.40 (m, 6H), 1.20-1.18(01, 3H).
247 o=< z— o LL? CH(Me) O o Ao °u K ΛοΑο Cl F CH
248 J1 O —Z \=o o CH(Me) O 0 /-o N Cl F CH ‘H NMR (500 MHz, DMSO) δ 8.55 (s, IH), 7.93 (d, .7=7.5, Hz, IH), 7.88 (d, J = 9.5 Hz, 1 H), 6.60 (s, IH), 5.01 (q, J =7.0 Hz, IH), 3.42 (s, 3H), 1.98 (s, 3H), 1.94 (s, 3H), 1.53 (d,J= 7.0 Hz, 3H).
249 o=< z— o LL? CH(Me) o o Cl F CH Ή NMR (500 MHz, DMSO) δ 8.55 (s, 1 H), 7.93 (d, J =7.5 Hz, IH), 7.88 (d, .7=9.5 Hz, 1 H), 6.60 (s, IH), 5.01 (q, .7=7.0 Hz, IH), 3.42 (s, 3H), 2.35-2.30 (οι, 2H), 1.92 (s, 3H), 1.54 (d,J= 7.0 Hz, 3H), 1.07 (t, J =7.0 Hz, 3H).
250 o=Ç z— o t£? CH(Me) o o / Cl F CH ‘H NMR (500 MHz, DMSO-<4) δ 8.55 (s, IH), 7.93 (d, J =8.0 Hz, IH), 7.89 (d, .7=9.5 Hz, 1 H), 6.60 (s, IH), 5.01 (q, .7=7.0 Hz, IH), 3.42 (s, 3H), 2.65-2.58 (m, IH), 1.89 (s, 3H), 1.54 (d,J= 7.0 Hz, 3H), 1.09 (d, J=7.0 Hz, 6H).
251 Ο îV f3c n^o CH(Me) O 0 ,VO.NX- Cl F CH ‘H NMR (500 MHz, DMSO-J6) δ 8.55 (s, 1H), 7.94 - 7.92 (m, lH),7.88(d, J= 9.5 Hz, 1H), 6.60 (s, 1H), 5.02 (q, J=7.0Hz,lH), 3.42 (s, 3H), 2.40-2.27 (m, 4H), 1.54 (d, 7= 7.0 Hz, 3H), 1.07 (t, 7=7.5 Hz, 3H), 0.98 (t, 7= 7.5 Hz, 3H).
252 jh° o=< z— O d? CH(Me) 0 0 Cl F CH ‘H NMR (500 MHz, DMSO) δ 8.55 (s, 1 H), 7.94 (d,7= 7.5 Hz, IH), 7.88 (d, 7=9.5 Hz, 1H), 6.61 (s, 1H), 5.05-4.98 (m, 1H), 4.10 (q, J= 7.0 Hz, 2H), 3.42 (s,3H), 1.98 (s, 3H), 1.54 (d,7= 7.0Hz,3H), 1.27 (1,7=7.0 Hz, 3H).
253 o=< Z— O LL? CH(Me) O O Cl F CH ‘H NMR (500 MHz, DMSO) δ 8.56 (s, 1H), 7.93 (d, 7= 6.0 Hz, 1H), 7.89 (d, J=9.0 Hz, 1H), 6.61 (s, 1H), 5.01 (q,7=7.0 Hz, 1 H), 4.05 (s, 2H), 3.42 (s, 3H), 3.27 (s, 3H), 1.95 (s, 3H), 1.55 (d, 7= 7.5 Hz, 3H).
254 <? O —z \=o oV CH(Me) O O V°'N^CO2Et CI F CH ‘H NMR (500 MHz, DMSO-rfi) δ 8.58 (s, 1H), 7.93-7.88 (m, 2H), 6.61 (s, 1H), 5.13 (q, 7= 7.0 Hz, 1 H), 4.28 (q, 7= 7.0 Hz, 2H), 3.42 (s, 3H), 2.15 (s, 3H), 1.58 (d, 7= 7.0 Hz, 3H), 1.28 (t, 7= 7.0 Hz, 3H).
255 K o=/ z— O d? CH(Me) O O P / Cl F CH ‘H NMR (500 MHz, DMSO-<4) δ 8.78 (s, 1H), 8.57 (s, 1 H), 7.95 (d, 7= 8.0 Hz, 1H), 7.89 (d, 7= 9.5 Hz, 1 H), 7.78 (d, J=7.5 Hz, 2H), 7.60 7.50 (m, 3H), 6.59 (s, 1H), 5.09 (q, 7= 7.0 Hz, 1H), 3.40 (s, 3H), 1.59 (d,7=
7.0 Hz, 3H).
256 ω1 Ο —Ζ \=ο CH(Me) O o a-o CI F CH
257 A ο=< ζ— ο ιΓ CH(Me) O o /-q ¢23 o Cl F CH
258 ω1 Ο —Ζ )=ο ί CH(Me) O o /'O Cl F CH ‘H NMR (500 MHz, DMSO) δ 8.54 (s, 1H), 7.93 (d, 7= 7.5, Hz, IH), 7.89 (d, 7=9.5 Hz, 1H), 6.60 (s, 1 H), 4.98 (q, 7 =7.0 Hz, 1H), 3.42 (s, 3H), 2.49-2.42 (m,4H), 2.31 — 2.21 (m,4H), 1.53 (d, 7= 7.0 Hz,3H).
259 ο ο=< ζ— ο ί CH(Me) 0 o ’b o \ Z Λ Cl F CH ‘H NMR (500 MHz, DMSO-76) δ 8.52 (s, 1H), 7.92 (d, 7= 8.0 Hz, 1H), 7.88 (d, 7=9.5 Ha 1H), 6.61 (s, 1H), 4.89 (q, 7= 7.0 Ha 1 H), 4.38 -4.33 (m, 1H), 4.27 -4.23 (m, 1H),4.14-4.11 (m, 2H), 3.42 (s, 3 H), 1.78 (s, 3H), 1.71 (s, 3H), 1.48 (d, 7= 7.0 Ha 3H).
260 1 Α° ο=ς ζ— ο LL CH(Me) O o Χ°ΥΊ VO Cl F CH
261 <Τ Ο —Ζ )=ο CH(Me) 0 o ^0^0^ Cl F CH
262 ο=< ζ— ο LL CH(Me) o 0 Cl F CH 1H NMR (500 MHa DMSO-d6) δ 8.59 (s, 1H), 8.01 (d, J = 8.0 Ha 1H), 7.89 (d, J = 9.0 Ha 1H), 7.48-7.43 (m, 2H), 7.33-7.29 (m, 1H), 7.16- 7.14 (m,2H), 6.63 (s, 1 H), 5.17 (q, J = 7.0 Ha 1H), 3.44 (s, 3H), 1.65 (d, J = 7.0 Ha 3H).
263 JA O=J Z— O LL CH(Me) O O 0 v°'rA Cl F CH ‘H NMR (500 MHz, DMSO-76) δ 8.58 (s, 1 H), 7.98 (d,7= 7.5 Hz, 1H), 7.90 (d, 7=9.5 Hz, 1 H), 6.62 (s, 1H), 5.35 (q,7= 7.0 Hz, 1H), 3.43 (s, 3H), 2.80-2.84 (m,4H), 1.64 (d, 7= 7.0 Hz, 3H).
264 JA O=Z z— O LL CH(Me) O O Ao Cl F CH Ή NMR (500 MHz, DMSO-76) δ 8.52 (s, 1H), 7.96-7.82 (m, 2H), 6.61 (s, 1H), 4.97-4.82 (m, 111),4.193.98 (m, 3H), 3.76-3.55 (m, 2H), 3.42 (s, 3H), 1.98-1.71 (m, 3H), 1.61 1.41 (m,4H).
265 J1 O —Z Ao OA CH(Me) O s A L ° Cl F CH
266 J-7 o=< z— O LL CH(Me) O O A OA Cl F CH ‘H NMR (500 MHz, DMSO) δ 8.52 (s, 1H), 7.94-7.83 (m, 2H), 6.61 (s, 1H), 5.08-5.06 (m, 1 H), 4.91 (q, 7=7.0 Hz, 1H), 4.14-4.02 (m, 2H), 3.88-3.86 (m, 2H), 3.81-3.79(m, 2H), 3.43 (s, 3H), 1.48 (d, 7= 7.0 Hz, 3H).
267 J1 O —z \=o □A CH(Me) O 0 Ao v_/k VJ Cl F CH
268 JA O=J z— O IL CH(Me) O 0 Ao \ sx VJ Cl F CH Ή NMR (500 MHz, DMSO) δ 8.50 (s, 1H), 7.88-7.84 (m, 2H), 7.52 (t,7= 5.0 Hz, 1H), 7.17-7.15 (m, 1H), 6.99 (d, 7= 4.5 Hz, 1H), 6.63 (s, 1H), 5.40 — 5.32 (m,2H), 4.96-4.86 (m, 1H), 3.43 (s, 3H), 1.46 (d, 7= 7.0 Hz, 3H).
269 J1 O —Z 7=0 □A CH(Me) O O Ao \ /S. VJ Cl F CH
270 Π ω Ο —ζ y=o CH(Me) O o A <ο L ZI Cl F CH
271 ω1 Ο —Ζ /=Ο οΑ CH(Me) O o Ao V .N. H Cl F CH
272 ω1 Ο —ζ )=ο CH(Me) O o Ao i Cl F CH
273 ω1 ο —Ζ CH(Me) o o A° i ^-N chf2 Cl F CH
274 ο=< ζ— ο IL CH(Me) o o C°2Et N Cl F CH
275 Α° ο=< ζ— ο if? CH(Me) o o Ao N—' Cl F CH
276 X /° JM ο=< ζ— ο IL CH(Me) o o O-A An Cl F CH
277 <τ ο —Ζ Αο οΑ CH(Me) o o °^\ A Cl F CH
278 1 Α° ο=< ζ— ο IL CH(Me) o o z O Cl F CH
279 <? ο —Ζ Λ=Ο CH(Me) 0 0 Ao \ o. Il N-N Cl F CH
280 Α° ο=< ζ— ο LL CH(Me) o o Z;=/ Cl F CH
281 ω1 Ο —Ζ /=Ο οΑ CH(Me) o o Ao i V'N n-4 CI F CH
282 Α° ο=< ζ— ο IL CH(Me) o o ,Z-Z —Z 1 ^0-7 Cl F CH
283 J Ο —Z \=° fa CH(Me) O O /O Cl F CH ‘H NMR (500 MHz, DMSO-d6) δ 8.51 (s, 1H), 7.95-7.90 (m, 2H), 7.39 - 7.24 (m, 5H), 6.63 (s, 1H), 5.26-5.22 (m, 1H), 5.19-5.14 (m, 1 H), 4.97-4.92 (m, 1H), 3.43 (s, 3H), 1.49 (d, J= 7.0 Hz, 3H).
284 J1 o CH(Me) O O Cl F CH 1H NMR (500 MHz, DMSO-d6) δ 8.50 (s, 1H), 7.94-7.85 (m, 2H), 7.46-7.40 (m, 2H), 7.23 — 7.15 (m, 2H), 6.63 (s, 1H), 5.32-5.27 (m, 1H), 5.24-5.18 (m, 1H), 4.94 (q, J = 7.0 Hz, 1 H), 3.43 (s, 3H), 1.48 (d, J = 7.0 Hz, 3H).
285 ω1 Ο —Z Y=O CH(Me) O O F Cl F CH ‘H NMR (500 MHz, DMSO-rfs) δ 8.52 (s, 1H), 7.92 -7.87 (m, 2H), 7.41 -7.35 (m, 1H),7.22 — 7.17 (m,2H), 7.17-7.10 (m, 1H), 6.63 (s, 1H), 5.29-5.15 (m, 2H), 5.00 -4.95 (m, 1H), 3.43 (s, 3H), 1.51 (d,J=7.0 Hz, 3H).
286 J1 o —Z \=o CH(Me) O O X) Q Tl Cl F CH ‘H NMR (500 MHz, DMSO-<4) δ 8.50 (s, 1H), 7.93 - 7.87 (m, 2H), 7.41-7.38 (m, 2H), 7.17-7.12 (m, 2H), 6.62 (s, 1H), 5.23-5.14 (m, 2H), 4.94 (q, .7=7.0 Hz, 1H), 3.44 (s, 3H), 1.49 (d, .7= 7.0 Hz, 3H).
287 0 A f3c^n^o CH(Me) O O /O Cl F CH
288 J1 o —Z \=O CH(Me) O 0 'O Cl F CH
289 ω1 Ο —ζ Α° fa CH(Me) O O Ao cf3 Cl F CH
290 fa° ο=< ζ— ο d? CH(Me) O O Ao ^A^~NO2 Cl F CH
291 A Ο=< ζ— ο LL? CH(Me) O O Ao 'V^Ayk'CN Cl F CH
292 A ο=< ζ— ο ιί CH(Me) O O £~o OMe IA Cl F CH
293 A ο=< ζ— ο IX CH(Me) O O /Ό ^A^SEt Cl F CH
294 ω1 Ο —ζ Αο CH(Me) O O Ao__/nh2 Cl F CH
295 ω1 Ο —ζ Α° CH(Me) O O /O 'V^A/^~'SO2Me Cl F CH
296 ο Αλ Ρ3θΑ Ί3 CH(Me) O O Ao__zCOOEt Cl F CH
297 JA ο=< Ζ— ο d? CH(Me) O O Cl F CH
298 J1 ο —ζ Α° ο CH(Me) O O AA Cl F CH
299 ο=< ζ— ο ιχ? CH(Me) 0 O ^°A/A AA~~cooh Cl F CH
300 A □=< ζ— ο IX CH(Me) O O Ao A^OMe Cl F CH
301 ω1 Ο —ζ Αο οΑ CH(Me) O O A r0 / Z Aa Cl F CH 1HNMR(5OO MHz, Chloroform-d) δ 8.63 - 8.56 (m, 2H), 7.85 (d, J = 7.5 Hz, 1 H), 7.68 (d, J = 8.0 Hz,
1H), 7.36 (d, J = 9.0 Hz, 1 H), 7.21 -7.25(m,2H), 6.41 (s, 1H), 5.27 (s, 2H), 4.87 (q, J = 7.0 Ha 1H), 3.61 (d, J = 4.0 Ha 3H), 1.57 (d, J = 7.0 Ha 3H).
302 TA o=< z— O LL? CH(Me) O O Ao l/=sN V? Cl F CH lHNMR(500 MHa Chlorofonn-d) δ 8.62 - 8.59 (m, 2H), 8.54 (s, 1H), 7.81 (d,J = 7.5 Ha 1H), 7.71 (d, J = 4.5 Ha 1H), 7.36 (d, J = 9.0 Ha 1H), 7.30 -7.28 (m, 1H), 6.42 (s, 1H), 5.27 (s, 2H), 4.87 (q, J = 7.0 Ha 1H), 3.61 (d, J = 4.0 Ha 3H), 1.57 (d, J = 7.0 Ha3H).
303 0 /a f3An^o CH(Me) O O Ao Cl F CH *HNMR(500 MHa DMSO-rfs) δ 8.58 (d, .7=5.0 Ha2H), 8.17 (s, 1H), 7.63 (d,J= 5.0 Ha 2H), 7.30 (d, J =9.0 Ha 1H), 7.25-7.19 (m, 1H), 6.43 (s, 1H), 5.28 (s, 2H), 4.87 (q, J= 7.0 Ha 1 H), 3.62 (s, 3H), 1.56 (d, J=7.0 Ha 3H).
304 J1 O —Z /=O oA CH(Me) O O Ao N-A Cl F CH
305 □=/ z— O LL? CH(Me) O O Ao Cl F CH
306 JA o=< z— O LL CH(Me) O O A <° rs^\ z Χχ, Z Cl F CH
307 TA o=< z— O IL? CH(Me) O O A'o O Cl F CH
308 TA z— O IL CH(Me) O O O Cl F CH
309 O=\ Z— O l£? CH(Me) O O A Γ° O Cl F CH
310 0 f3c n^o CH(Me) O O A° _/==> CI F CH
311 J1 O —Z Vo □A CH(Me) O O A Λ° O Cl F CH
312 J1 O —Z Ao □A CH(F) O O OMe Cl F CH
313 A o=/ Z— O LL? CH(F) O O OEt Cl F CH 1HNMR(5OO MHz, DMSO) δ 8.55 (s, 1H), 7.95-7.83 (m, 2H), 6.61 (d,J= 2.0 Hz, 1H), 5.37 - 5.32 (tn, 1H), 4.19 (q, 7=6.0 Hz, 2H),3.43 (s, 3H), 1.24 (t, 7= 6.0 Hz, 3H).
314 0 f3AaKd CH(C1) O 0 OMe Cl F CH
315 J1 O —z Ao □A CH(Et) O O OMe Cl F CH ‘HNMR(500 MHz, DMSO-</6) δ 8.54 (s, 1H), 7.95-7.83 (m, 2H), 6.61 (s, 1H), 4.74 (t, 7= 7.5 Hz, 1H), 3.70 (s, 3H), 3.43 (s, 3H), 1.93-1.79 (m, 2H), 0.98 (t, 7= 7.5 Hz, 3H).
316 JH O=< Z— O d? CH O O OMe Cl F CH ‘H NMR (500 MHz, DMSO-76) δ 8.53 (s, 1 H), 7.92 (d, 7= 8.0 Hz, 1H), 7.88 (d, 7=9.5 Hz, IH), 6.61 (s, 1H), 4.78 (t, 7= 7.0 Hz, 1H), 3.70 (s, 3H), 3.42 (s, 3H), 1.81-1.78 (m, 2H), 1.46-1.42 (m, 2H), 0.94 (ζ 7= 7.0 Hz, 3H).
317 <? O —Z Ao oA CH O O OEt Cl F CH
318 «J1 Ο —Z Ao oA ^CH O O OMe Cl F CH ‘H NMR (500 MHz, DMSO-76) δ 8.54 (s, 1H), 7.94-7.87 (m, 2H), 6.61 (s, 1 H), 4.57 (d, J= 5.0 Hz, 1H), 3.70 (s, 3H), 3.42 (s, 3H), 2.20-2.13 (m, 1H), 1.00 (d, J= 6.5 Hz, 6H).
319 <7 o —z y=o oA Y CH O 0 OEt Cl F CH ‘H NMR (500 MHz, DMSO-76) δ 8.54 (s, 1H), 7.97-7.85 (m, 2H), 6.61 (s, 1 H), 4.23 (q, J= 7.0 Hz, 2H), 4.19 (d, 7= 9.0 Hz, 1H), 3.71 (s, 3H), 1.29-1.21 (m, 4H), 0.66-0.63 (m, 2H), 0.58-0.49 (m, 2H).
320 J1 O —Z )=O CH(CF3) 0 O OMe Cl F CH
321 J O —Z /=O oA CH(OMe) O O OMe CI F CH ‘H NMR (500 MHz, Chloroform-7) δ 8.64 (s, 1H), 7.89 (d, 7= 7.5 Hz, 1H), 7.37 (d, 7= 9.0 Hz, 1H), 6.41 (s, 1H), 5.48 (s, 1 H), 3.87 (s, 3H), 3.61-3.56 (m, 6H).
322 ÔP O -zA=° fa 1 CH(OMe) O O OEt Cl F CH ‘H NMR (500 MHz, DMSO-76) δ 8.63 (s, 1H), 7.96-7.89 (m, 2H), 6.62 (s, 1H), 5.60 (s, 1H), 4.23-4.18 (m, 2H), 3.47 (s, 3H), 3.43 (s, 3H), 1.24-1.21 (m, 3H).
323 J O —Z )=o o'Z' CH(OMe) O O ’^O Cl F CH ‘H NMR (500 MHz, DMSO-76) δ 8.63 (s, 1 H), 7.95-7.89 (m, 2H), 6.62 (s, 1H), 5.62 (s, 1 H), 4.15-4.09 (m, 2H), 3.47 (s, 3 H), 3.43 (s, 3H), 1.64-1.59 (m,2H), 0.98 — 0.73 (m, 3H).
324 J1 O —Z )=o CH(OMe) O O Cl F CH ‘H NMR (500 MHz, DMSO-rf6) δ 8.62 (s, 1H), 7.95-7.89 (m, 2H), 6.61 (s, 1H), 5.56 (s, 1H), 5.08-4.85
(m, 1H), 3.46-3.43 (m, 6H), 1.25-1.18 (m, 6H).
325 o=Z z— O d? CH(OMe) O O ’^'o Cl F CH
326 O=< Z— O d? CH(OMe) O O ^o F Cl F CH
327 O ° \=/z- ' O æ CH(OMe) 0 O Ad ^cf3 Cl F CH Ή NMR (500 MHz, DMSO-76) δ 8.02 (s, 1H), 7.34 (d, 7= 9.0 Hz, 1H), 7.22 (d, 7=5.5 Hz, 1H), 6.26 (s, 1H), 6.24 (s, 1H), 5.34-5.26(m, 1H), 4.12-4.00 (m, 1H), 4.10-4.02 (m, 3H), 3.34 (s, 3H).
328 <? O _zh=° CH(OMe) O O ’^o OMe Cl F CH
329 O f3c^n^o CH(OMe) O O ^O OEt Cl F CH
330 0 iV f3c^n^o CH(OMe) O O ^0 ’ Z) Cl F CH Ή NMR (500 MHz, DMSO-</6) δ 8.61 (s, 1H), 7.96-7.87 (m, 2H), 7.41-7.29 (m, 5H), 6.63 (s, 1H), 5.68 (s, 1H), 5.29-5.18 (m, 2H), 3.47 (s, 3H), 3.43 (s, 3H).
331 O=< Z— O d? CH O O OMe Cl F CH 1H NMR (500 MHz, DMSO) δ 8.62 (s, 1H), 7.94-7.86 (m, 2H), 6.61 (d,7= 2.0 Hz, 1 H), 5.36 (s, 1H), 3.48 (s, 3 H), 3.43 (s, 3H), 3.31-3.21 (m,2H), 1.531.42 (m, 3H).
332 Ô îV f3c^n^o 1 ς CH O O OEt Cl F CH
333 JA ο=ς ζ— ο d? 1 CH O 0 OMe Cl F CH ‘H NMR (500 MHz, DMSO-A) δ 8.56 (s, 1 H), 7.97-7.83 (m, 2H), 6.61 (s, 1H), 5.03-4.99 (m, 1 H), 3.873.74 (m, 2H), 3.71 (s, 3H), 3.43 (s, 3H), 3.36 (s, 3H).
334 J ο —ζ )=ο 1 ο CH 0 0 OEt Cl F CH
335 Η ο=ς ζ— ο IL· O'CF3 ^CH O O OEt Cl F CH
336 ω1 Ο —Ζ )=Ο CH(COOMe) O O OMe Cl F CH
337 Η ο=< ζ— ο d? CH(Ph) O 0 OMe Cl F CH Ή NMR (500 MHz, DMSO-<4) δ 8.61 (s, 1H), 7.95 (t, 7= 7.5 Hz, 1H), 7.89 (d, 7=9.5 Hz, 1H), 7.47-7.32 (m, 5H) 6.62 (s, 1 H), 5.17 (s, 1H), 3.70 (s, 3H), 3.43 (s, 3H).
338 ο=< ζ— ο d? CH(CN) O O OMe Cl F CH
339 ω1 ο —Ζ 2=0 CH(Me) O O OMe Br F CH
340 0 Λ* F3C Ν Ο CH(Me) O O OEt Br F CH
341 ω1 Ο —Ζ \=ο fa CH(Me) O O A O Br F CH
342 ο=< ζ— ο d? CH(Me) O O OMe cf3 F CH Ή NMR (500 MHz, DMSO-rfs) δ 8.45 (s, 1H), 8.19-8.05 (m, 2H), 6.65 (s, 1 H), 4.93 (q, 7= 7.0 Hz, 1H), 3.70 (s, 3H), 3.44 (s, 3H), 1.48 (d,7= 7.0 Hz, 3H).
343 □=< ζ— ο d? CH(Me) O O OEt CFj F CH
344 fa O=C Z— o d? CH(Me) 0 O OMe CN F CH ‘H NMR (500 MHz, DMSO-Js) δ 8.48 (s, 1H), 8.27 (d, 7= 9.0 Hz, IH), 8.05-8.03 (m, 1H), 6.65 (s, 1 H), 4.93 (q, 7= 7.0Hz, 1H), 3.70 (s, 3H), 3.43 (s, 3H), 1.50 (d, 7= 7.0 Hz, 3H).
345 O=< Z— o l£? CH(Me) O O OEt CN F CH
346 □=/ Z— o d? CH(Me) O O OEt CI F N
347 / b if CH(Me) O O OMe Cl F CH Ή NMR (500 MHz, DMSO-76) δ 8.54 (s, 1H), 8.18 (d,7= 8.0 Hz, 1H), 8.04 (d, 7= 9.5 Hz, IH), 6.95 (s, IH), 4.90 (q, 7= 7.0 Hz, IH), 3.70 (s, 3 H), 3.36 (s, 3H), 1.48 (d, 7= 7.0Hz, 3H).
348 ”=0 / b LL CH(Me) O O OEt Cl F CH
349 0 f3c/^^s CH(Me) O O OMe Cl F CH ‘H NMR (500 MHz, DMSO-ds) δ 8.51 (s, IH), 7.95-7.86 (m, 2H), 7.10 (s, IH), 4.89 (q, 7= 7.0 Hz, 1 H), 3.70 (s, 3H), 3.42 (s, 3H), 1.47 (d, 7= 7.0 Hz, 3H).
350 Π ω °\ / A CO γΛ CH(Me) O O OEt Cl F CH
351 s XN'^'N^ FaC^^^S CH(Me) O O OMe Cl F CH ‘H NMR (500 MHz, DMSO-76) δ 8.54 (s, IH), 8.18 (t,7=7.0 Hz, IH), 8.06 (d, 7= 9.0 Hz, IH), 7.62 (s, IH), 4.91 (q,7=7.0 Hz, IH), 3.70 (s, 3H), 3.35 (s, 3H), 1.48 (d,7= 7.0 Hz, 3H).
352 S CH(Me) O O OEt Cl F CH
353 ω1 O / ω A CH(Me) O s OMe Cl F CH
354 v? « / b C*î LL CH(Me) O s OEt Cl F CH
355 0 A^lA CH(Me) O O '/'O Cl F CH
356 0 'Λ* f3c/^/^s CH(Me) O O Cl F CH
357 O XN^N'^ f3c'vA CH(Me) O O Ao Cl F CH
358 ΊΊ ω ω r*· CH(Me) O 0 oX h. Cl F CH
359 J1 °\ / (Λ CH(Me) 0 O Ao Cl F CH
360 0 A^fA f3c'x^ïA>s CH(Me) O O b o \ Cl F CH
361 tn A / b CO LL CH(Me) O O Ao 0^ Cl F CH
362 0 A^fA f3cAAs CH(Me) O O /^o °A Cl F CH
363 0 xfAfA f3(AA CH(Me) 0 0 /0 \ Cl F CH
364 0 xfAfA f3cAAs CH(Me) O O 0 Cl F CH
365 ü 'fAfA f3cAAs CH(Me) O O 0 Cl F CH
366 0 A^fA f3cAAs CH(Me) O O X. r° °y° Cl F CH
367 y1 ,w / b CO CH(Me) O O ho Cl F CH
368 O hAhf3c^^s CH(Me) O O ho h^-O^ Cl F CH
369 =7 °\ / (Λ A CH(Me) O O ho ^^0 Cl F CH
370 0 ,<α,λ f3c^^s CH(Me) O O ho Cl F CH
371 J1 (Λ r* CH(Me) O O Z / o-^ “h Cl F CH
372 0 FaC^^S CH(Me) O O ho V? Cl F CH
373 ! Tl ω h ω CH(Me) O O /'O Cl F CH
374 ü F3C^^S CH(F) O O OMe Cl F CH
375 J1 °\_ Z f>° ω CH(F) O O OEt Cl F CH
376 J1 ω r* CH(C1) O O OMe Cl F CH
377 ü FaC-^^S CH(Et) O O OMe Cl F CH
378 'jj ω / b <*5 LL CH O O OMe Cl F CH
379 v? ω / b (Ό LL CH 0 0 OEt CI F CH
380 “Π w °\ / l>° (n ^CIH 0 O OMe Cl F CH
381 v? ω / b cri LL Y CH O O OEt CI F CH
382 0 f3c^^s CH(CFj) O o OMe Cl F CH
383 CO / o: <*3 LL ς CH O o OMe Cl F CH
384 J1 °\ / (Λ t* ς CH O o OEt Cl F CH
385 J1 O\ / ω A 1 0^ CH o o OMe Cl F CH
386 0 F3Cx^^S CH(COOMe) 0 0 OMe Cl F CH
387 J1 °\ / U> r* CH(Ph) o o OMe Cl F CH
388 O FaC^^^S CH(Me) o 0 OMe Br F CH Ή NMR (500 MHz, DMSO-76) δ 8.46 (s, 1H), 8.02 (d, J= 9.0Hz, 1H), 7.88 (d, 7= 7.5Hz, 1H), 7.09 (s, 1 H), 4.89 (q, 7= 7.0Hz, 1H), 3.69 (s, 3H), 3.42 (s, 3H), 1.47 (d, 7= 7.0 Hz, 3H).
389 J1 °\ / x>° CO r* CH(Me) o 0 OMe CFj F CH
390 O FaC^^^S CH(Me) o o OMe CN F CH ‘H NMR (500 MHz, DMSO-76) δ 8.48 (s, 1H), 8.29 (d, 7 =9.0 Hz, 1H), 8.05-8.03 (m, 1H), 7.13 (s, 1 H), 4.94 (q, 7= 7.0Hz, 1H), 3.71 (s, 3H), 3.42 (s, 3H), 1.49 (d, 7= 7.0 Hz, 3H).
391 J1 °\ / CO CH(Me) 0 0 OMe Br F CH ‘H NMR (500 MHz, DMSO-76) δ 8.48 (s, 1H), 8.19 (d, 7= 9.0 Hz, 1H), 8.15-8.12 (tn, 1H), 7.62 (s, 1 H), 4.91 (q, 7= 7.0 Hz, 1H), 3.70 (s, 3H), 2.53 (s, 3H), 1.48 (d, 7= 7.0 Hz, 3H).
392 S CH(Me) O O OMe cf3 F CH Ή NMR (500 MHz, DMSO-î/6) δ 8.44 (s, 1H), 8.38-8.35 (m, 1H), 8.24 (d, J= 9.5 Hz, 1 H), 7.63 (s, 1H), 4.92 (q, 7=7.0Hz, 111), 3.68 (s, 3H), 2.53 (s, 3H), 1.46 (d, 7=7.0 Hz,3H).
393 S f3c^^s CH(Me) O O OMe CN F CH Ή NMR (500 MHz, DMSO-7È) ôll.22(s, 1H), 8.92 (d,7= 9.0 Hz, 1H), 8.66 ( d, 7= 7.0Hz, 1H), 8.46 (s, 1 H), 5.01 (q, 7= 7.0 Hz, 1H), 3.74 (s, 3H), 2.53 (s, 3H), 1.53 (d, 7= 7.0 Hz, 311)
394 s FaC^^O CH(Me) O O OMe Br F CH Ή NMR (500 MHz, DMSO-A) δ 8.48 (s, 1H), 8.17-8.15 (m, 2H), 6.95 (s, 1 H), 4.90 (q, 7= 7.0 Hz, 1H), 3.70 (s, 3H), 3.36 (s, 3H), 1.48 (d, 7= 7.0 Hz, 3H).
395 S FaC^^O CH(Me) O O OMe CF3 F CH Ή NMR (500 MHz, DMSO-76) δ 8.47 (s, 1H), 8.40-8.38 (m, 1H), 8.23 (d, 7= 9.5 Hz, 1 H), 6.99 (s, 1H), 4.94 (q, 7= 7.0 Hz, 1H), 3.70 (s, 3H), 2.54 (s, 3H), 1.49 (d, 7= 7.0 Hz, 3H).
396 S xn^nV FaC^^^O CH(Me) O O OMe CN F CH Ή NMR (500 MHz, DMSO-76) δ 8.49 (s, 1H), 8.42 (d, 7= 9.0 Hz, 1H), 8.32 (d, 7= 7.0Hz, 1H), 6.99 (s, 1H), 4.94( q, 7= 7.0 Hz, 1H), 3.71 (s, 3H), 2.55 (s, 3H), 1.51 (d, 7= 7.0 Hz, 3H).
397 Ô JL A F3cAA) CH(Me) O O SMe Cl F CH
398 0 jlY F3C N^O CH(Me) 0 O SEt Cl F CH ‘H NMR (500 MHz, DMSO-76) δ 8.51 (s, 1 H), 7.94-7.85 (m, 2H), 6.61 (s, 1 H), 4.97 (q, 7= 7.0 Hz, 1 H), 4.81 (q, 7= 7.0 Hz, 2H), 3.42 (s,
3H), 1.45 (d,J= 7.0Hz,3H), 1.20 (t, J =7.0 Hz, 3H).
399 J Ο —z Το oT CH(Me) O O Cl F CH Ή NMR (500 MHz, DMSO-A) δ 8.58 (s, 1H), 7.95 (d, J =8.0 Hz, 1H), 7.89 (d, ./=9.5 Hz, 1 H), 6.61 (s, 1H), 4.93 (q,J= 7.0 Hz, 1H), 3.42 (s, 3H), 2.87-2.81 (m,2H), 1.56 — 1.51 (m, 2H), 1.47 (d, J =7.0 Hz, 3H), 0.93 — 0.88 (m, 3H).
400 ω1 Ο —ζ Το οΤ CH(Me) O O \'Y Cl F CH Ή NMR (500 MHz, DMSO-A) δ 8.57 (s, 1H), 7.97-7.95 (m, 1H), 7.89 (d, J= 9.5 Hz, 1H), 6.61 (s, 111),4.924.88 (m, 1H), 3.58-3.51 (m, 1H), 3.43 (s, 3H), 1.45 (d,J= 7.0 Hz, 3H), 1.26 (d, 7=6.5 Hz, 6H).
401 ω1 Ο —ζ Το οΤ CH(Me) O O As Cl F CH
402 <? ο —ζ Το οΤ CH(Me) O O s^ À Cl F CH
403 ω1 Ο —ζ Το CH(Me) O O As Cl F CH
404 ω1 Ο —ζ Το οΤ CH(Me) 0 O As 0^ Cl F CH
405 ο=< ζ— ο IL? CH(Me) O O /S \ Cl F CH
406 τ° ο=ς ζ— ο η LL CH(Me) O O o— Cl F CH ‘H NMR (500 MHz, DMSO-A) δ 8.63 (s, 1H), 8.00-7.94 (m, 1H), 7.90 (d, J= 9.5 Hz, 1 H), 6.61 (s, 1H), 5.00 (d, ./=7.5 Hz, 1H), 3.82 (s,2H), 3.64 (s, 3H), 3.42 (s, 3H), 1.47 (d, J =7.0
Hz, 3H).
407 JA o=< z— $ CH(Me) O o As °Λ K AoAo Cl F CH
408 JA O=J z— o d? CH(Me) O o 5 EMBED Unknown As Cl F CH
409 J1 o —z J=o CH(Me) O o As Cl F CH ‘H NMR (500 MHz, DMSO-<4) δ 8.58 (s, IH), 7.94 (d, 7= 8.0 Hz, IH), 7.89 (d, 7=9.5 Hz, 1 H), 7.30 - 7.28 (m, 5H), 6.62 (s, IH), 4.99 (q,7= 7.0 Hz, 1 H), 4.14 (s, 2H), 3.43 (s, 3H), 1.47 (d, 7= 7.0 Hz, 3H).
410 J1 o —Z /=O CH(Me) o o As V? Cl F CH
411 JA O=J z— o d? CH(Me) o o SEt CN F CH
412 J1 ω CH(Me) o 0 SMe Cl F CH
413 Tl w °\ / ω CH(Me) o o SEt Cl F CH
414 J1 o —Z /=O CH(Me) 0 0 NHEt Cl F CH
415 J1 o —z )=o CH(Me) o o Anh A o \ Cl F CH
416 JA O=J z— o d? CH(Me) o o 1 ΛΛ/7 Z Ljo °\ Cl F CH ‘H NMR (500 MHz, DMSO-76) δ 8.53 (s, IH), 8.03 (s, 1 H), 7.95 (d, 7= 8.0 Hz, IH), 7.88 (d, 7=9.5 Hz, 1H),6.61 (s, IH), 4.63 (d, 7= 7.0 Hz, IH), 3.54 (s, 3H), 3.42 (s, 3H), 3.34-3.29 (m,2H), 2.48-2.45 (m, 2H), 1.38 (d, 7= 7.0 Hz, 3H).
417 Ο f^nX CH(Me) O o Anh Cl F CH
418 □=< ζ— Ο d? CH(Me) 0 o /NH Cl F CH
419 0 fXXo CH(Me) O o ^z— / o Cl F CH Ή NMR (500 MHz, DMSO-d6) δ 8.49 (s, 1H), 7.94-7.80 (m, 2H), 6.62 (s, 1H), 5.19 (d, 7= 7.0 Hz, 1H), 3.72 (s, 3H), 3.43 (s, 3H), 3.14 (s, 3H), 1.41 (d,7= 7.0Hz,3H).
420 ? —ζ Χο οΧ CH(Me) o o H O - Cl F CH
421 ο=< ζ— ο d? CH(Me) o o Anh O^'°z °zN Λ Cl F CH ‘H NMR (500 MHz, DMSO) δ 8.48 (s, 1H), 7.95-7.83 (m, 2H), 6.62 (s, 1H), 5.22-5.20 (m, 1H), 3.95-3.93 (m, 1H), 3.42 (s, 3H), 3.04 (s, 3H), 1.38 (d, 7= 7.0 Hz, 3H), 1.06 (d, 7= 7.0 Hz, 6H).
422 J1 Ο —ζ \=ο οΧ CH(Me) o o Anh >/ °/N A CN F CH
423 ω1 Ο —Ζ /=Ο οΧ CH(Me) 0 o H VNY°^ 0 Cl F CH
424 ω1 Ο —Ζ \=ο οΧ CH(Me) o o Cl F CH ‘H NMR (500 MHz, DMSO) δ 8.57 (s, 1H), 7.90-7.88 (m, 2H), 6.59 (s, 1H), 6.26 (s, 1H), 5.96-5.94(m, 1H), 3.40 (s, 3H), 2.50 (s, 3H), 2.21 (s, 3H), 1.57 (d, 7= 7.0 Hz, 3H).
425 ο f3c'zÎî!ï^s CH(Me) 0 0 Anh o>°z °/N Λ Cl F CH
426 ι ο J-γ CH(Me) O O OMe Cl F CH ‘H NMR (500 MHz, DMSCWs) δ 8.52 (s, 1 H), 7.98-7.95 (m, 1H), 7.88 (d, J= 9.5 Hz, 1H), 6.60 (s, 1H), 4.90 (q, 7= 7.0 Hz, 1H), 3.89 (q, 7= 7.0 Hz, 2H), 3.70 (s, 3H), 1.47 (d, 7= 7.0 Hz, 3H), 1.26 (t, 7 =7.0 Hz, 3H).
427 •V° =—/ ο LL CH(Me) O O OMe Cl F CH ‘H NMR (500 MHz, DMSO-c/e) δ 8.52 (s, 1H), 7.99 (d, 7= 8.0 Hz, 1H), 7.90 (d, 7=9.5 Hz, 1H), 6.70 (s, 1H), 4.96 - 4.88 (m, 1H), 4.74-4.54 (m, 2H), 3.70 (s, 3H), 3.53-3.41 (m, 1H), 1.47 (d, 7=7.0 Hz, 3H).
428 F Ο f^n^nA F3C/J<5ï>/^0 CH(Me) O O OMe Cl F CH
429 4ί ο ο CO . co LL LL CH(Me) O O OMe Cl F CH
430 *Π -7 ω — O O A CH(Me) O O OMe Cl F CH
431 O F3c'xy^° Cl CH(Me) O 0 OMe Cl F CH 1H NMR (500 MHz, DMSO) δ 8.52 (s, 1H), 7.98-7.86 (m, 2H), 4.90-4.88 (m, 1H), 3.70 (s, 3H), 3.47 (s, 3H), 1.47 (d, J = 7.0 Hz, 3H).
432 n T ω ι3- O Z/l oa2Ao CH(Me) 0 O OMe Cl F CH ‘H NMR (500 MHz, DMSO-dj) δ 8.49 (s, 1H), 7.86-7.56 (m, 2H), 4.89 (t, 7= 7.0 Hz, 1H), 3.71 (s, 3H), 3.55 (s, 3H), 3.03 (s, 2H), 2.97-2.66 (m, 2H), 1.47 (d, 7= 7.5 Hz, 3H).
433 <? . O —z Ao □A C(Me)i O O OMe Cl F CH ‘H NMR (500 MHz, DMSO) δ 8.46 (s, 1H), 7.90-7.88 (m, 2H), 6.63 (s, 1H), 3.67 (s, 3H), 3.43 (s, 3H), 1.54 (s, 6H).
434 J Ο —Z )=o C(Me)2 O O Cl F CH ‘H NMR (500 MHz, DMSO) δ 8.47 (s, 1H), 7.91-7.84 (m, 2H), 6.64 (s, 1 H), 5.88-5.87 (m, 1H), 5.24-5.22 (m, 2H), 4.63 (d, J= 5.0 Hz, 2H), 3.43 (s, 3H), 1.55 (s, 6H).
435 J1 o -z^o □A C(F)2 O O OMe Cl F CH
436 0 XN^N'^ FsC'^^S C(Me)2 0 O OMe Cl F CH
437 J1 ω r* C(F)2 O O OMe Cl F CH
438 A° Α-Γ ' <n CH(Me) O O OH Cl F CH ‘H NMR (500 MHz, DMSO-<4) δ 12.84 (s, 1H), 8.49 (s, 1H), 8.05 (d, 7= 8.0 Hz, 1H), 7.89 (d, 7=9.5 Hz, 1H), 4.76 (q, 7= 7.0 Hz, 1H), 3.64 (s, 6H), 1.46 (d, 7= 7.0 Hz, 3H).
439 ω / A -Z >O □H CH(Me) O O 7o ^~cf3 Cl F CH Ή NMR (500 MHz, DMSO) δ 8.55 (s, 1H), 8.02-8.01 (m, 1H), 7.91-7.90 (m, 1H), 5.05-5.04 (m, 1 H), 4.99-4.77 (m, 2H), 3.64 (s, 6H), 1.52 (d, 7= 7.0 Ha 3H).
440 Jt-4. Aa 7 ω CH2CH2 O 0 OMe Cl F CH
441 ' tn CH(Me)CH2 O O OMe Cl F CH
442 0=4 z— o LL? CH(Me) O O Cl F CH ‘H NMR (500 MHa DMSO-76) δ 8.52 (s, 1H), 7.92 (d, 7 =7.5 Ha 1H), 7.88 (d, 7= 9.0 Ha 1H), 6.61 (s, 1H), 4.90 (q, 7= 7.0 Ha 1 H), 4.27 — 4.12 (m, 2H), 3.42 (s, 3H), 2.83-2.81 (m,
1H), 2.15-2.02 (m, 2H), 1.49 (d, J= 7.0 Hz, 3H).
443 <7 Ο —ζ /=ο oV CH(Me) O O CN Cl F CH ‘H NMR (500 MHz, DMSO) δ 8.53 (s, 1H), 7.90 (d, 7= 7.5 Hz, 1H), 7.87 (d, 7= 9.5 Hz, 1H), 6.59 (s, 1H), 5.60 (q, 7= 6.5 Hz, 1 H), 5.024.94 (m, 1H), 3.40 (s, 3H), 1.57 (d, 7= 6.5 Hz, 3H), 1.49 (d, 7= 6.5 Hz, 3H).
444 ο=< ζ— ο IL CH(Me) 0 O X'Oxy^CN Cl F CH Ή NMR (500 MHz, DMSO) δ 8.52 (s, 1H), 7.93 (d, 7= 7.5 Hz, 1H), 7.88 (d, 7= 9.5 Hz, 1H), 6.61 (s, 1H), 5.18-5.02 (m, 1 H), 4.97-4.80 (m, 1H), 3.42 (s, 3 H), 2.96 -2.90 (m, 2H), 1.49 (d, 7= 6.5 Hz, 3H), 1.28 (d, 7= 6.0 Hz, 3H).
445 ω1 ο —ζ )=ο oV CH(Me) O O X-O\^XCN Cl F CH Ή NMR (500 MHz, DMSO) δ 8.53 (s, 1H), 7.93 (d, 7= 8.0 Hz, 1 H), 7.88 (d, 7=9.5 Hz, 1 H), 6.61 (s, 1H), 4.95 (q, 7= 6.5 Hz, 1 H), 4.364.15 (m,2H), 3.43 (s, 3H), 3.30-3.22 (m, 1H), 1.51 (d,7= 7.0 Hz, 3H), 1.28 -1.20(m, 3H).
446 ο=< ζ— ο ιί? CH(Me) O O Cl F CH ‘H NMR (500 MHz, DMSO-76) δ 8.53 (s, 1 H), 7.96-7.85 (m, 2H), 6.61 (s, 1H), 4.90 (q, 7= 7.0 Hz, 1 H), 4.26 -4.13 (m,2H), 3.43 (s, 3H), 2.57-2.54 (m, 2H), 1.96-1.88 (m, 2H), 1.50 (d, 7= 7.0 Hz, 3H).
447 ο=< ζ— ο ιΤ CH(Me) O O H.Ο. V X CN Cl F CH Ή NMR (500 MHz, DMSO) δ 8.54 (s, 1H), 7.94 (d, 7 =7.5 Hz, 1H), 7.88 (d, 7=9.5 Hz, 1 H), 6.61 (s, 1H), 4.96 (q, 7= 7.0 Hz, 1H), 4.27 — 4.13 (m,2H), 3.42 (s, 3H), 1.52 (d, 7 =7.0
Hz, 3H), 1.341.26 (m,2H), 1.16-1.12 (m, 2H).
448 ! Π ω Ο ί Η CH(Me) O O 1 Cl F CH ‘H NMR (500 MHz, DMSO) δ 8.51 (s, 1H), 7.91 (d, 7=8.0 Hz, 1H), 7.88 (d, 7 = 9.5 Hz, 1 H), 6.61 (s, 1H), 4.88 (q, 7= 6.5 Hz, 1 H), 4.294.23 (m, 1H), 4.22-4.12 (m, 1H), 3.43 (s, 3 H), 2.59-2.55 (m, 2H), 2.20 (s, 6H), 1.48 (d, 7= 7.0 Hz, 3H).
449 fa ο=< ζ— ο ιΤ CH(Me) O 0 Cl F CH ‘H NMR (500 MHz, DMSO-76) δ 8.55 (s, 1H), 7.94 (d, 7= 8.0 Hz, 1H), 7.89 (d, 7=9.5 Hz, 1 H), 6.60 (s, 1H), 5.03 (q, 7= 7.0 Hz, 1H), 3.42 (s, 3H), 1.92 (s, 3H), 1.54 (d, 7= 7.0Hz,3H), 1.14 (s. 9H).
450 ω1 Ο —ζ Αο fa CH(Me) 0 O /O Cl F CH ‘H NMR (500 MHz, DMSO) δ 8.55 (s, 1H), 7.92 (d, 7= 7.5 Hz, 1H), 7.89 (d, 7=9.5 Hz, 1H), 6.60 (s, 1H), 5.03 (q, 7= 7.0 Hz, 1H), 3.42 (s, 3H), 2.28-2.15 (m, 1H), 1.63 (s, 3H), 1.55 (d, 7= 7.0 Hz, 3H), 0.95 - 0.85 (m, 2H), 0.86-0.80 (m, 2H).
451 Ο=Υ ζ— ο IL· CH(Me) O 0 \ J* °=<2j Z O \=o O Cl F CH ‘H NMR (500 MHz, DMSO) δ 8.50 (s, 2H), 7.88-7.86 (m, 4H), 6.60 (s, 2H), 4.86-4.77 (m,2H), 4.39 — 4.31 (m,4H), 3.42 (s, 6H), 1.41 (d,7=7.0 Hz,6H).
452 <Τ Ο —Ζ \=ο CH(Me) O O |-NH OH Cl F CH ‘H NMR (500 MHz, DMSO-76) δ 8.49 (s, 1H), 7.94 (d, 7= 8.0 Hz, 1H), 7.88 (d, 7=9.5 Hz, 1H), 6.61 (s, 1H), 4.62 (q, 7= 7.0 Hz, 1H), 3.45 -3.40 (m, 4H), 1.40 (d, 7= 7.0 Hz, 3H).
453 J Ο —Z \=o oA. CH(Me) O o -1Νγ ό Cl F CH ‘H NMR (500 MHz, DMSO) δ 8.59 (s, 1H), 8.00-7.85 (m, 2H), 7.78-7.76(m, 2H), 7.53-7.51 (m, 3H), 6.59 (s, 1H), 5.14 (q,J= 7.0 Hz, 1 H), 3.41 (s, 3H), 2.38 s, 3H), 1.61 (d, J= 7.0 Hz, 3H).
454 o=< z— 1 o CO LL· CH(Me) o o po Cl F CH Ή NMR (500 MHz, DMSO) δ 8.50 (s, 1H), 7.92 (d,J= 7.5 Hz, 1H), 7.88 (d, J = 9.5 Hz, 1 H), 6.62 (s, 1H), 5.20 (q, J =6.5 Hz, 1H), 3.593.52 (m, 6H), 3.53-3.48 (m, 1H), 3.47-3.44 (m, 1H), 3.43 (s, 3H), 1.41 (d, J= 6.5 Hz, 3H).
455 J1 o —Z /=O fa CH^ o o OMe Cl F CH ‘H NMR (500 MHz, DMSO-c/6) δ 8.53 (s, 1H), 7.93 (d, J= 8.0Hz, 1H), 7.88 (d, .7=9.5 Hz, 1H), 6.62 (s, 1 H), 4.80-4.77 (m, 1H), 3.70 (s, 3H), 3.43 (s, 3H), 1.80-1.70 (m, 2H), 1.66-1.60 (m, 1H), 0.95 (d, J= 6.5 Hz, 6H).
456 fa° o=< Z— o LL l o o OMe Cl F CH Ή NMR (500 MHz, DMSO-A) δ 8.54 (s, 1H), 7.97-7.85 (m, 2H), 6.61 (s, 1H), 4.18 (d, J= 9.0 Hz, 1H), 3.71 (s, 3H), 3.42 (s, 3H), 1.26-1.21 (m, 1H), 0.66-0.63 (m, 2H), 0.58-0.49 (m, 2H).
457 cl· O —Z )=O ofa CH o o OMe Cl F CH
458 cl· O —Z ofa 'Ύ CH o o OMe Cl F CH
459 O=< Z— o IL ^H o o OMe Cl F CH
460 Ο îV f3c^n^o O O OMe Cl F CH
461 A o=< z— o d? Y CH O o OMe Cl F CH
462 0 Af F3AljY0 CH^ O o OMe Cl F CH ‘H NMR (500 MHz, DMSOY) δ 8.54 (s, 1H), 8.03-7.83 (m, 2H), 6.61 (s, 1H), 4.85-4.82 (m, 1H), 3.70 (s, 3H), 3.43 (s, 3H), 1.88-1.82 (m, 1H), 1.70-1.65 (m, 1H), 0.93-0.80 (m, 1H), 0.47-0.43 (m, 2H), 0.16-0.11 (m, 2H).
463 J o —Z Ao oA _ CH O o OMe Cl F CH 1H NMR (500 MHz, DMSO) δ 8.52 (s, 1H), 7.94-7.86 (m, 2H), 6.61 (d,J= 2.0 Hz, 1H), 4.98-4.88 (m, 1H), 4.76-4.48 (m, 2H), 3.48 (s, 3H), 3.43 (s, 3 H).
464 o=< z— o LL r5 CH O o OMe Cl F CH
465 A° o=< z— o LL ^CF3 CH O o OMe Cl F CH
466 A° O=\ z— o d? ^OH CH O o OMe Cl F CH
467 o=< z— o LL CH(SMe) O o OMe Cl F CH
468 0 îV f3c^n^o 'Ά 1 CH O o OMe Cl F CH
469 A° o=< z— o LL CH O o OMe Cl F CH 1H NMR (500 MHz, DMSO) δ 8.55 (s, 1H), 7.95-7.83 (m, 2H), 7.36-7.30 (m, 3H), 7.287.22 (m, 2H),
6.61 (d, 7=2.0 Hz, 1H), 4.294.23 (m, 1H), 3.48 (s, 3H), 3.43 (s, 3H), 2.76-2.73 (m, 2H).
470 JA o=< z— O IL· C(F)2 O O OEt Cl F CH
471 J1 O —Z \=o C(Me)(Et) O O OMe Cl F CH Ή NMR (500 MHz, DMSO) δ 8.48 (s, 1 H), 7.89-7.87 (m, 2H), 6.63 (s, 1H), 3.69 (s, 3H), 3.43 (s, 3H), 1.89-1.87 (m,2H), 1.531.49 (m, 3H), 0.89 (t, 7= 7.5 Hz, 3H).
472 <? O —Z \=o fa Me C O O OMe Cl F CH
473 O F3c^y% CH(Me) O O OMe Cl F CH ‘H NMR (500 MHz, DMSO-76) δ 8.52 (s, 1H), 7.98 (d, 7= 7.5 Hz, 1H), 7.90 (d, 7=9.5 Hz, 1H), 4.89 (q, 7= 7.0 Hz, 1H), 3.70 (s, 3H), 3.43 (s, 3H), 2.28 (s, 3 H),1.47 (d,7= 7.0 Hz, 3H).
474 0 f3cy^° F CH(Me) O O OMe Cl F CH
475 O -ναλ FsryS) Br CH(Me) O O OMe Cl F CH ‘H NMR (500 MHz, DMSO-rfj) δ 8.52 (s, 1H), 8.20 (d, 7= 8.0 Hz, 1 H), 7.96- 7.91 (m, 1H), 4.89 (q, 7= 7.0 Hz, 1H), 3.70 (s, 3H), 3.49 (s, 3H), 1.47 (d, 7= 7.0 Hz, 3H).
476 0 f3c'^Y^° 1 CH(Me) O O OMe Cl F CH ‘H NMR (500 MHz, DMSO-rfi) δ 8.52 (s, 1H), 7.91 (d, 7=8.0 Hz, 1H), 7.88 (d, 7=9.5 Hz, 1 H), 4.89 (q, 7 =7.0 Hz, 1H), 3.70 (s, 3H), 3.46 (s, 3 H), 1.48 (d,7= 7.0 Hz, 3H).
477 / ο CO LL CH(Me) O O OMe Cl F CH Ή NMR (500 MHz, DMSO) δ 8.51 (s, 1H), 7.91-7.89 (m, 2H), 4.90 (q, 7= 7.0 Hz, 1 H), 3.72-3.70 (m, 6H), 3.39 (s, 3H), 1.47(d,7= 7.0 Hz, 3H).
478 Z /° AA / O LL· CH(Me) O O Cl F CH ‘H NMR (500 MHz, DMSO) δ 8.51 (s, 1H), 7.85-7.83 (m, 2H), 4.94-4.81 (m, 3H), 4.29 - 4.21 (m,2H), 4.20-4.06 (m, 2H), 3.62-3.60 (m, 2H), 2.99 (s, 3H), 1.49(d, 7= 8.0 Hz, 3H).
479 o=< z— O LL· CH2CH2 0 0 OMe Cl F CH Ή NMR (500 MHz, DMSO-de) δ 8.42 (s, 1H), 7.99 (d, 7= 8.0 Hz, 1H), 7.86 (d, 7=9.5 Hz, 1H), 6.62 (s, 1 H), 4.39 (t, 7= 6.0 Hz, 2H), 3.63 (s, 3H), 3.43 (s, 3H), 2.77 (t,7= 6.0 Hz, 2H).
480 o=( Z— O IL· CH2CH2 O 0 OEt Cl F CH Ή NMR (500 MHz, DMSO-76) δ 8.42 (s, 1H), 7.99 (d, 7= 8.0 Hz, 1H), 7.86 (d, 7= 9.5 Hz, 1 H), 6.62 (s, 1H), 4.39 (t, 7= 6.0 Hz, 2H), 4.10 (q, 7= 7.0 Hz, 2H), 3.44 (s, 3H), 2.75 (t, 7= 6.0 Hz,2H), 1.19 (t, 7= 7.0 Hz, 3H).
481 ω1 O —Z \=o CH(Me)CH2 O O OMe Cl F CH Ή NMR (500 MHz, DMSO-ds) δ 8.39 (s, 1H), 7.99 (d, 7= 8.0 Hz, 1H), 7.85 (d, 7=9.5 Hz, 1 H), 6.62 (s, 1H), 4.67 (q, 7 =6.5 Hz, 1H), 3.62 (s, 3H), 3.44 (s, 3H), 2.78-2.63 (m, 2H), 1.33 (d, 7= 6.5 Hz, 3H).
482 K O=< Z— O d? CH2CH(Me) O O OMe Cl F CH
483 J1 O —z \=o CH(Me)CH2 ch2 O O OMe Cl F CH
484 A° O=< Z— O IL CH(Me)CH2 CH2CH2 0 0 OMe Cl F CH
485 A O=< Z— O if? CH2CH2CH2 0 0 OMe Cl F CH ‘H NMR (500 MHz, DMSO-76) δ 8.40 (s, 1H), 7.96 (d, J= 8.0 Hz, 1H), 7.83 (d, 7=9.5 Hz, 1H), 6.59 (s, 1H), 4.16 (t,7= 7.0Hz, 2H), 3.58 (s, 3H), 3.41 (s, 3H), 2.41 (t,7= 7.0 Hz, 2H), 1.95-1.89 (m, 2H).
486 A O=< Z— O LL ^cf3 CH 0 0 OEt Cl F CH ‘H NMR (500 MHz, DMSO-<4) δ 8.58 (s, 1H), 8.02-7.88 (m, 2H), 6.63 (s, 1 H), 5.26-5.20 (m, 1H), 4.13 (d, 7 = 7.0,2H), 3.43 (s, 3H), 3.06 - 2.88 (m, 2H), 1.19 (d, 7= 7.0,3H).
487 J1 O —Z Ao □A CH 0 0 OMe Cl F CH ‘H NMR (500 MHz, DMSO-76) δ 8.59 (s, 1 H), 8.56 (s, 1H), 7.97 - 7.87 (m, 3H), 6.61 (d,7= 2.5 Hz, 2H), 5.01-4.98 (m, 1 H), 4.49 (d, 7= 5.0 Hz, 1H), 4.24-4.20 (m, 1H), 3.72 (s, 3H), 3.40 (s, 3H).
488 J1 O —Z Ao □A <Ih 0 0 OMe Cl F CH ‘H NMR (500 MHz, DMSO-76) δ 8.54 (s, 1 H), 7.96-7.85 (m, 2H), 6.61 (s, 1 H), 4.73 (d, 7= 7.5Hz, 1 H), 3.68 (s, 3H), 3.43 (s, 3H), 2.78-2.74 (m, 1H), 2.11-2.01 (m, 4H), 1.95-1.80 (m,2H).
489 A° O=< z— O LL 9 CH 0 0 OMe Cl F CH Ή NMR (500 MHz, DMSO-76) δ 8.52 (s, 1H), 7.98-7.82 (m, 2H), 6.61 (s, 1 H), 4.61 (dd,7 = 7.5,3.0 Hz, 1H), 3.70 (s, 3H), 3.42 (s, 3H), 2.33-2.29 (m, 1H), 1.871.30 (m,8H).
490 A° o=< z— O IL O O OMe CI F CH Ή NMR (500 MHz, DMSO-c/s) δ 8.51 (s, 1H), 7.98-7.78 (m, 2H), 6.59 (s, 1 H), 4.56-4.54 (m, 1 H), 3.67 (a, 3H), 3.40 (s, 3H), 1.90-1.53 (m, 6H), 1.25-1.14 (m, 5H)
491 O S^N^O CH(Me) O 0 SEt Cl F CH ‘H NMR (500 MHz, DMSO-</6) δ 8.58 (s, 1 H), 8.06 (d,J= 8.0 Hz, 1 H), 7.91 (d, ./=9.0 Hz, 1H), 4.94 (q,J= 6.5 Hz, 1H), 3.63 (s, 6H), 2.89-2.82 (m, 2H), 1.46 (d, 7=6.5 Hz, 3H), 1.18 (t,./=7.5 Hz, 3H).
492 . A , °A z— O IL CH(Me) O O Cl F CH ‘H NMR (500 MHz, DMSO-dt) δ 8.55 (s, 1H), 7.94 (d, 7= 8.0 Hz, 1H), 7.89 (d, J = 9.5 Hz, 1 H), 6.60 (s, 1H), 5.03 (q, 7= 7.0 Hz, 1H), 3.42 (s, 3H), 1.92 (s, 3H), 1.54 (d, 7= 7.0 Hz, 3H), 1.14 (s, 9H).
493 °fe O )—O CO / ILO=Ç O / CH(OMe) O O OMe Cl F CH Ή NMR (500 MHz, DMSO-<4>) δ 8.63 (s, 1H), 8.02 (d,7= 7.5 Hz, 1 H), 7.91 (d, J = 9.5Hz, 1H), 6.86-6.75 (m, 1H), 5.84 (s, 1H), 5.70 (s, 1H), 3.76 (s, 3H), 3.68 (s, 3H), 3.53 (s, 3H), 3.47 (s, 3H).
494 J1 O —Z Ao ofa C(0Me)2 O O OMe Cl F CH ‘H NMR (500 MHz, DMSO-c/s) δ 8.57 (s, 1H), 7.92 (d, 7= 7.5 Hz, 1H), 7.88 (d, J = 9.5 Hz, 1 H), 6.61 (s, 1H), 4.82-4.81 (m, 1H), 4.71 (d,7= 5.5 Hz, 1H), 3.72-3.71 (m, 3H), 3.43 (s, 3H), 3.39 (s, 3H), 3.38 (s, 3H).
495 Ο Λ f3c n^o CH(Me) O o /'O^Y^N 1 JT Cl F CH 1HNMR (500 MHz, DMSO-d6) δ 8.56 (s, IH), 8.04 (s, IH), 7.84 (d,J = 6.0 Hz, IH), 7.46-7.25 (m, 3H), 6.43 (s, IH), 5.23 (s, 2H), 4.53 (q, J = 7.0 Hz, 1 H), 3.43 (s, 3H), 1.45 (d, J = 7.0 Hz,3H).
496 o /a f3ctn^o ^OH CH O o OMe Cl F CH IH NMR (500 MHz, DMSO) δ 8.52 (s, IH), 7.96-7.87 (m, 2H), 6.61 (d,7= 2.0 Hz, IH), 4.29 -4.23 (m, IH), 3.48 (s, 3H), 3.43 (s, 3H), 3.29-3.28 (m, 2H), 1.89-1.82 (m, 2H).
497 J1 o —Z \=o ^Cl CH O o OMe Cl F CH IH NMR (500 MHz, DMSO) δ 8.50 (s, IH), 7.91-7.84 (m, 2H), 6.61 (d, 7= 2.0 Hz, IH), 4.29 -4.23 (m, IH), 3.48 (s, 3H), 3.43 (s, 3H), 3.09-2.96 (m, 2H), 1.84- 1.77 (m,2H).
498 0 f3c n o CH(Me) o o ofa r Cl F CH ‘H NMR (500 MHz, DMSO-76) δ 8.52 (s, IH), 7.94-7.86 (m, 2H), 6.61 (s, IH), 4.88-4.84 (m, 2H), 4.29 — 4.23 (m, 1 H), 4.19-4.13 (m, IH), 3.89-3.83 (m, 2H), 3.74- 3.70 (m, 2H), 3.43 (s, 3H), 1.94-1.89 (m, 2H), 1.47 (d, 7= 7.0 Hz, 3H).
499 fa o={ z— o LL? CH(Me) o o NH2 Cl F CH ‘H NMR (500 MHz, DMSO-A) δ 8.52 (s, IH), 7.97 (d, 7= 7.0 Hz, IH), 7.87 (d, 7=9.5 Hz, IH), 7.40 (s, IH), 4.58 (q, 7=7.0 Hz, IH), 3.42 (s, 3H), 1.40 (d, 7= 7.0 Hz, 3H).
500 fa O=< Z— o LL? CH(Me) 0 o ^-o Cl Cl F CH ‘H NMR (500 MHz, DMSO-76) δ 8.50 (s, IH), 7.94 - 7.79 (m, 2H), 6.59 (s, IH), 5.90-5.73
(m, 1 H), 4.944.82 (m, 1H), 4.76 - 4.62 (m, 2H), 3.40 (s, 3H), 2.10 (s, 3H), 1.45 (d,J= 7.0 Ha 3 H).
501 0 iV F3O'N'X> CH(Me) O O l-o ci A Cl F CH Ή NMR (500 MHa DMSO-</6) δ 8.51 (s, 1H), 7.94-7.84 (m, 2H), 6.59 (a 1 H), 5.64-5.63 (m, 1H), 5.48-4.45 (m, lH),4.95(q, J= 7.0 Ha 2H), 4.84-4.73(m, 1H), 3.97-3.96 (m, 1H), 3.40 (s, 3H), 1.49 (d,J= 7.0 Ha 3H).
502 <? O —z Ao □A CH(Me) O O y Cl F CH Ή NMR (500 MHa DMSO-rf6) δ 8.46 (s, 1H), 7.98 - 7.79 (m, 2H), 6.59 (s, 1H), 5.12 (q,J= 7.0 Ha 1H), 3.41 (s, 3H), 3.403.34 (m, 2H), 3.21 (m,2H), 1.37 (d, .7=7.0 Ha3H), 1.12 (t, J=7.0Ha3H), 1.00 (t,J= 7.0 Ha 3H).
503 J O —Z Z=O □A CH(Me) O O S H * sAci h O Cl F CH ‘H NMR (500 MHa DMSO-<4) δ 8.38 (s, 1H), 7.92 (d,J= 8.0 Ha 1H), 7.82 (d, .7=9.5 Ha 1H), 6.57 (s, 1H), 4.61-4.58 (m, 2H), 4.49-4.45(m,l H), 3.40 (s, 3H), 1.33 (d, .7=7.0 Ha 3H).
504 TA oA z— O LL CH(Me) O O OMe Cl F N *H NMR (500 MHa DMSO) δ 8.59-8.57 (m, 2H), 6.65 (s, 1 H), 4.96-4.92 (m, 1H), 3.70 (s, 3H),3.44(s,3H), 1.28 (d,J= 7.0 Ha3H)
505 s FaC^A CH(Me) O O OMe Cl F N
506 J1 °\ / ^A CO r’X CH(Me) O O OMe Cl F N
507 S F3cAAs CH(Me) O O OMe CI F N
508 0 iY F3C Nx) CH(Me) O O OMe Br F N
509 ω1 O —Z )=o oA CH(Me) O O OMe CF3 F N
510 JA O=K/ZO UL? CH(Me) O O OMe CN F N
511 XT At ' <n CH(Me) O O OMe Cl F N ‘H NMR (500 MHz, DMSO-76) δ 7.85 (s, 1H), 7.70 (d, 7= 8.0 Hz, 1H), 4.53 (q, 7=7.0 Hz, 1 H), 3.73 (d, 7= 6.0 Hz, 9H), 1.41 (d, 7= 7.0 Hz, 3H).
512 0 T^rA SANAS 1 CH(Me) O O OMe Cl F N
513 û ^rArA oA'n-Aq 1 CH(Me) O O OMe Cl F N
514 JT At ' tn CH(Me) O O OMe Br F N
515 ω / -z >o oT CH(Me) O O OMe cf3 F N
516 O ^N^lA S^N^O . 1 CH(Me) O O OMe CN F N
517 ω / K -Z >O □A CH(Me) O s OEt Cl F N
518 At ' to CH(Me) O O Cl F N
519 / -Z >O CH(Me) O O 0^ Cl F N
520 O S^N^O 1 CH(Me) O O Cl F N
521 ω / H -Z >O CH(Me) O O ho Cl F N
522 O S^N^O 1 CH(Me) O 0 Cl F N
523 ω / H -Z >o CH(Me) O 0 ho Cl F N
524 ω / -Z >O CH(Me) O O ho ^cf3 Cl F N
525 ' U) CH(Me) O O ho 0^ Cl F N
526 ω / >-< -Z >O CH(Me) O O o Cl F N
527 ω / H -Z >O CH(Me) O O ho N Cl F N
528 0 S^N^O 1 CH(Me) O O ho h^O^ Cl F N
529 Jh° °1k~ z ω CH(Me) O O ho Cl F N
530 ω / H -Z >O CH(Me) O O ho • Cl F N
531 ω , -z >0 CH(Me) 0 O ho V? CI F N
532 JA 7 ω CH(Me) O 0 /O Cl F N
533 ω / H -z >o CH(F) O o OEt Cl F N
534 5a_ 7 G) CH(Et) O o OMe Cl F N
535 O S^N^O 1 C1H o o OEt Cl F N
536 ô vA S^N^O 1 ^CH o o OMe Cl F N
537 o 1 Y CH o o OEt Cl F N
538 ω / H -Z >O ς CH o o OEt Cl F N
539 ω / H -z >o 1 °A CH o 0 OMe Cl F N
540 ts P o=< /z 7 ω CH(Me) o o OEt Br F N
541 ω / K -z >O CH(Me) o 0 OEt cf3 F N
542 JA °AA~ 7 ω CH(Me) o o OEt CN F N
543 w / -zKo ω CH(Me) o o OEt Br F N
544 0 ^nA|A· 1 CH(Me) o o SEt Cl F N
545 Ô S^N^O 1 CH(Me) O O / / ° -^NH Cl F N
546 ω , A -Z >O fa C(Me)i O O OMe Cl F N
547 fa O=< Z— O LL? CH(Me) O 0 OH Cl F N
548 fa O=< Z— O LL? CH(Me) O O OEl Cl F N
549 J1 O —Z >o fa CH(Me) O O 7’0^ Cl F N
550 J O —Z A° Aa O CH(Me) O O Cl F N
551 A z— O LL? CH(Me) O O Cl F N
552 fa o=C z— o LL? CH(Me) O O Cl F N
553 J O —z Ao fa CH(Me) O O Cl F N
554 J O —z Ao fa CH(Me) O O Cl F N
555 fa o=< z— O LL? CH(Me) O O Cl F N
556 A° O=< z— O LL? CH(Me) O O Cl F N
557 0 λν\ FsC^N^O CH(Me) O O Cl F N
558 οχ Z— ο IX? CH(Me) O o Cl F N
559 χ° οχ ζ— ο tx? CH(Me) O o Cl F N
560 1 I χ° οχ ζ— ο ιΤ CH(Me) O 0 Cl F N
561 Ô iV f3c ν^ο CH(Me) O o Ao Cl F N
562 JA οχ Ζ— ο tx CH(Me) O o Χ-°χ\ Cl F N
563 οχ Ζ— ο IX CH(Me) o o CI F N
564 κ οχ ζ— ο IX CH(Me) o 0 F \.°XF Cl F N
565 ω1 Ω —Ζ \=ο CH(Me) o o .^O^/CF3 Cl F N
566 ω1 Ο —Ζ \=ο CH(Me) o o F\ F ^O^XX Cl F N
567 JA οχ ζ— ο IX CH(Me) o o -¾ o J1 Cl F N
568 J1 Ο —ζ )=ο CH(Me) o o Cl F N
569 ω1 Ο —Ζ \=Ο CH(Me) o o ^CX/CN Cl F N
570 J1 ο —ζ \=ο CH(Me) o o \°^^CN Cl F N
100
571 x° O=< Z— o IL CH(Me) O O C1 F N
572 J o —Z Xo oX CH(Me) O O /O C1 F N
573 J1 o —z Xo oX CH(Me) O O Ao °~Λ C1 F N
574 J1 o —Z \=o oX CH(Me) O O C1 F N
575 <T o —z Xo oX CH(Me) O o /ό \ C1 F N
576 <? o —z \=o □X CH(Me) O o C1 F N
577 x° o=< z— o LL CH(Me) O o ο >° C1 F N
578 J1 o —z \=o oX CH(Me) O o o C1 F N
579 o=< z— o LL CH(Me) O o 0 C1 F N
580 J1 o —z Xo oX CH(Me) O o 0 C1 F N
581 J1 o —z \=o oX CH(Me) O o 0 Α°γν C1 F N
582 0 jrV F3C'^N^O CH(Me) O o ο Χθ^ο- C1 F N
583 J1 o —Z V=O oX CH(Me) O o \ /° ° \ )=° °\ C1 F N
101
584 0 rV f3c Ao CH(Me) O o o o Cl F N
585 0 iV fAAo CH(Me) O o A-q Cl F N
586 o=< Z— o LL? CH(Me) O o Cl F N
587 J O —Z Ao □A CH(Me) O o Cl F N
588 jA o=4 z— o IL? CH(Me) O o -V°'nA Cl F N
589 A 0=4 z— o d? CH(Me) O 0 Cl F N
590 ω1 O —z y=o .A CH(Me) O o Άι t z o Cl F N
591 A o=4 z— o LL? CH(Me) 0 o V^N^COzEt Cl F N
592 0 rV f3c n^o CH(Me) o o Cl F N
593 J1 o —z \=o CH(Me) o o /'0 Cl F N
594 j>4° o=X z— o LL? CH(Me) o o o z Λ Cl F N
595 ω1 O —Z \=O CH(Me) o o Cl F N
596 J1 o —z \=o □A CH(Me) 0 o ο Cl F N
102
597 ω1 Ο —ζ )=ο fa CH(Me) O o /0 Cl F N
598 ja° ο=/ ζ— ο IX? CH(Me) O o X) $-0 o\ Cl F N
599 JA° ο=< ζ— ο d? CH(Me) 0 o ω A θ'7 Cl F N
600 J1 ο —ζ \=ο fa* CH(Me) 0 o /O Cl F N
601 ÛP ο —Ζ /=Ο fa* CH(Me) o o A° K aX Cl F N
602 ω1 ο —ζ \=ο fa CH(Me) o o F Cl F N
603 ω1 Ο —Ζ \=ο CH(Me) o o F Cl F N
604 <? ο —ζ )=ο CH(Me) o o / Z XJ/ Cl F N
605 ω1 Ο —Ζ \=Ο fa CH(Me) o o /O V? Cl F N
606 fa Ο=< ζ— ο ιί? CH(Me) o o /O Cl F N
607 Ο —ζ \=ο fa* CH(F) o o OEt Cl F N
608 0 Χύ f3c ν ο CH(Et) o o OMe Cl F N
609 ο —Ζ /=Ο fa CH o 0 OMe Cl F N
103
610 oj z— O d? Xh O O OMe Cl F N
611 J1 O —z Ao □A Y CH O 0 OEl Cl F N
612 o=< Z— ü LL CH(OMe) O 0 OMe Cl F N
613 oj z— O LL CH(OMe) O 0 OEl Cl F N
614 ω1 O —Z A° □A CH(OMe) O O Cl F N
615 A° o=< z— O d? CH(OMe) O O Cl F N
616 A° o=Y z— O LL CH(OMe) O O ^0 ^cf3 Cl F N
617 J O —z Ao □A CH(OMe) O O ko Cl F N
618 0 Aa f3c n^o ς CH 0 0 OMe Cl F N
619 JA o=< z— O LL 1 CH O O OMe Cl F N
620 0 Aû f3c nA) CH(Ph) O O OMe Cl F N
621 J1 ω CH(Me) O 0 OMe Br F N
622 « / b <*3 LL CH(Me) O O OMe CN F N
104
623 / b LL CH(Me) O O OMe Βγ F N
624 S f3c-^^s CH(Me) O O OMe cf3 F N
625 ω1 fi ω CH(Me) O O OMe CN F N
626 / O if CH(Me) 0 O OMe Br F N
627 S FsC^^O CH(Me) O O OMe CF3 F N
628 S xn^nV FsC^^O CH(Me) O O OMe CN F N
629 J1 O —z )=o oV CH(Me) O O SEt Cl F N
630 J1 O —Z /=O oV CH(Me) O O Cl F N
631 0=< Z— O LL CH(Me) O O νγ Cl F N
632 <7 o —Z \=O CH(Me) 0 O ο— rA ° Cl F N
633 v° o=< z— O IL CH(Me) O O Cl F N
634 JK o=< z— O IL CH(Me) O O / / ° ήΝΗ Cl F N
635 v° z— O IL CH (Me) O O '''ζ— / Ο Cl F N
636 J1 O —z \=o d X CH(Me) O 0 ο V ζ II X ° Cl F N
105
637 ω1 Ο —ζ Αο □Α CH(Me) O O Cl F N
638 1 Ο f3c^^o CH(Me) O O OMe Cl F N
639 f3< Α° ο=Α — / CH(Me) O O OMe Cl F N
640 Ό FsC^y^0 Cl CH(Me) O O OMe Cl F N
641 Η ο -Ρ1 CO X LL CH(Me) O o OMe Cl F N
642 Α° ο=ς ζ— ο LU C(Me)2 O o OMe Cl F N
643 J1 Ο —ζ Αο οΑ C(Me)2 O o Cl F N
644 0 sAnA0 1 CH(Me) O 0 OH Cl F N
645 ω / A -Ζ >Ο ΟΑ CH(Me) O o ’/o '~'CF3 Cl F N
646 <τ ο —ζ Αο □Α CH(Me) O o Cl F N
647 <? ο —ζ Αο □A CH(Me) O o vV CN Cl F N
648 Α° ο=< ζ— ο LU CH(Me) O o λ'°^ΆΝ Cl F N
649 <? Ο —Ζ Αο □A CH(Me) O 0 Cl F N
106
650 o=Y z— O d? CH(Me) O O X'O^-^CN Cl F N
651 <7 O —z A° □A CH(Me) O O Cl F N
652 J1 O —Z A° □A CH(Me) O O Cl F N
653 J1 O —z \=o □A CH(Me) O O Cl F N
654 J1 O —z \=o oA CH(Me) O O /0 Cl F N
655 J1 O —z A° □A CH(Me) O O /0^°γΑΝΑΑΝΑΝχ ° tAA Cl F N
656 <7 O —z Ao □A CH(Me) O O |-NH OH Cl F N
657 J1 O —z Ao □A CH(Me) 0 O Χ·Νγ ô Cl F N
658 J1 O —z Ao □A CH(Me) O O po ,ΧςΝχΑ Cl F N
659 tJ1 O —z Ao oA i CH^ O O OMe Cl F N
660 o=Y Z— O IL Y CH O O OMe Cl F N
661 A o=< z— O IL CH^ 0 O OMe Cl F N
662 A o=< z— O IL ^F CH O 0 OMe Cl F N
107
663 ω1 Ο —Ζ \=Ο O —\ X \—O O O OMe Cl F N
664 ο=< ζ— ο IL· C(Me)(Et) O O OMe CI F N
665 0 f3c'AV'% CH(Me) O O OMe Cl F N
666 0 f3^y>° Br CH(Me) O 0 OMe Cl F N
667 ϋ FsC^^Y^O 1 CH(Me) O O OMe Cl F N
668 Ô '''bA^rA FaC^y^O /° CH(Me) O O OMe Cl F N
669 Ô ^N^bA f3c-^A^o OH CH(Me) O O Cl F N
670 o=< z— o LL· CH2CH2 O O OMe Cl F N
671 J1 O —z Ao fa ch2ch2 O O OEt Cl F N
672 o=< z— O LL· CH(Me)CH2 O O OMe Cl F N
673 o=< z— o d? CH2CH2CH2 0 O OMe Cl F N
674 J O —Z /=O ^CFa CH O O OEt Cl F N
108
675 fa □=< ζ— ο LL ? CH O O OMe Cl F N
676 cJ1 Ο —ζ \=ο 9 CH O 0 OMe Cl F N
677 fa ο=ς ζ— ο LL 9 CH O O OMe Cl F N
678 κ ο=< ζ— ο IL O 0 OMe Cl F N
679 ο '''Ν'^ΐΑ S^N^O 1 CH(Me) O O SEt Cl F N
680 ο χΥ f3c^n^o CH(Me) O O Cl F N
681 0 CH(OMe) O 0 OMe Cl F N
682 ω1 Ο —Ζ /=Ο fa C(0Me)2 O O OMe Cl F N
683 J1 ο —Ζ \=Ο fa CH(Me) O O Y Cl F N
684 ο ιΥ f3c n^o ['''OH CH O 0 OMe Cl F N
685 <? ο —ζ \=ο fa ^Cl CH O O OMe Cl F N
686 Jfa Ο=< ζ— ο IL CH(Me) O O θΎ r Cl F N
687 J1 ' Ο —ζ Αο fa CH(Me) O O nh2 Cl F N
109
688 JP Ο —Z /=O fa CH(Me) O O |-o cr Cl F N
689 fa o=< z— O IL· CH(Me) O O |-οχ Cl F N
690 fa o=< z— O IL· CH(Me) 0 O U Cl F N
691 JP O —z \=o fa CH(Me) O O s H '^'N'S<3-CI H O Cl F N
692 O n^A S^N^O CH(Me) S O OMe Cl F CH ‘H NMR (500 MHz, DMS0-<4) δ 7.96 (d, J= 1.0Hz, 1 H), 7.22 (d,J=8.0Hz, 1H), 7.12 (d, J= 9.0 Hz, 1H), 3.75 (s, 6H), 3.66 (s, 3H), 3.47 (q, J= 7.0 Hz, 1H), 1.56 (d, 7= 7.0 Hz, 3H).
693 O n^A S^N^O 1 CH(Me) S 0 OEt CI F CH
694 o n^A S^N^O 1 CH(Me) s s OEt Cl F CH
695 O S^N^O 1 CH(Me) s O 7'0^ Cl F CH
696 ω , fa >=° fa CH(Me) s O <A Cl F CH
697 ω / fa >=° fa CH(Me) s O Cl F CH
698 ω / fa -Z >O fa CH(Me) s O Ao Cl F CH
699 u> / fa\a fa CH(Me) s O ^°^F Cl F CH
110
700 ω / A -Z >O □A CH(Me) S O -/-O 'F Cl F CH
701 ω , -zHo □A CH(Me) S O /'O Acf3 Cl F CH
702 ω , A -Z >O □A CH(Me) s O Ao o^. Cl F CH
703 O sKNXo 1 CH(Me) s O O ,\<aA0^ Cl F CH
704 ω / K □A CH(Me) s O /O Cl F CH
705 ω > A -Z >O □A CH(Me) s O Ao Cl F CH
706 ω / A -z >0 □A CH(Me) s O A o \ Ck V? Cl F CH
707 ω , A -Z >O oA CH(Me) s O Ao Cl F CH
708 ω / A -Z >O □A CH(Me) s O /'O A/^N a9 Cl F CH
709 ω / A -z >0 □A CH(Me) s O Ao Cl F CH
710 J-Λ °1a ' ω CH(F) s O OEt Cl F CH
711 ω , y-. -z >O □A CH(Et) s O OMe Cl F CH
712 ω / -zHo □A CH s O OEt Cl F CH
111
713 ω / -ζ >ο fa ^CH S o OMe Cl F CH
714 ο 2 α S^N^O 1 Y CH S o OEt Cl F CH
715 ω / -ζΗο ofa ς CH S o OEt Cl F CH
716 V> / -ζΗο fa 1 °^l CH s o OMe Cl F CH
717 fa ' en CH(Me) s o OMe Br F CH
718 en > fa -Z >O fa CH(Me) s o OEt Br F CH
719 en / 2< -Z >O fa CH(Me) s 0 OMe cf3 F CH
720 ^fa ^fa~ ' en CH(Me) s o OEt cf3 F CH
721 o ^N^lA S^N^O CH(Me) s o OMe CN F CH
722 O 2a S^N^O 1 CH(Me) s 0 OEt CN F CH
723 A4 ,ω O=\ Z— 7¼ ' en CH(Me) s o OMe Cl F CH
724 0 N^rA S^N^S 1 CH(Me) s 0 OEt Br F CH
725 û Ύ^ΐΑ O^N^O 1 CH(Me) s o OMe Cl F CH
112
726 ω , A -Ζ >Ο fa CH(Me) S O SEt Cl F CH
727 °ΑΓ ' (Λ CH(Me) S O °Λ / / 0 -|-NH Cl F CH
728 (0 / -ζ >Ο fa C(Me)2 S O OMe Cl F CH
729 fa ο=< Ζ— ο IL CH(Me) S O OH Cl F CH
730 J1 ο —ζ Αο ofa CH(Me) S O OMe Cl F CH 1H NMR (500 MHz, Chloroform-d) δ 778 (d, J = 9.0 Hz, 1H), 7.22 (d, J = 8.0 Hz, 1H), 6.74 (d, J =1.0 Hz, 1H), 6.08 (s, 1H), 3.80 (s, 6H), 3.47 (q, J = 7.0 Hz, 1H), 1.53 (d, J = 7.0 Hz, 3H).
731 fa ο=< ζ— ο d? CH(Me) S O OEt Cl F CH
732 A ο=< ζ— ο IL CH(Me) S O Cl F CH
733 J1 ο —ζ Α° fa \ ο CH(Me) s O Cl F CH
734 0 Αα f3AAo CH(Me) s O Cl F CH
735 fa° οΑ ζ— ο d? CH(Me) s O Cl F CH
736 fa° ο=< ζ— ο IL CH(Me) s O Cl F CH
113
737 Ο iV f3c n^o CH(Me) S o Cl F CH
738 <? ο —ζ )=ο CH(Me) S o Cl F CH
739 ο —ζ )=ο CH(Me) S o Cl F CH
740 ο —ζ \=ο οΑί CH(Me) S o Cl F CH
741 π Ο —Ζ Αο CH(Me) S o Cl F CH
742 οχ ζ— ο d? CH(Me) s 0 Cl F CH
743 JA οχ ζ— ο IL CH(Me) s o Cl F CH
744 J1 ο —ζ \=ο CH(Me) s o Ao Cl F CH
745 οχ ζ— ο LL CH(Me) s o Χχ Cl F CH
746 J1 ο —ζ /=ο οΑτ CH(Me) s o Cl F CH
747 JA οχ ζ— ο IL CH(Me) s o LL Cl F CH
748 ω1 Ο —Ζ \=ο CH(Me) s o ^GX/CF3 Cl F CH
749 JA οχ ζ— ο ιΤ CH(Me) s o F\ F χ3^ΧΧ Cl F CH
114
750 0 iV f3c n^o CH(Me) S o \o^cf3 C1 F CH
751 o rV f3c^n Ί3 CH(Me) S o C1 F CH
752 <7 o —Z /=O CH(Me) S o ^O^CN C1 F CH
753 o A f3ctn^o CH(Me) S o C1 F CH
754 t JA o=< z— o LL? CH(Me) S o C1 F CH
755 JA o=< z— o IL CH(Me) S 0 Ao C1 F CH
756 ω1 O —Z \=o CH(Me) S o Ao °Λ C1 F CH
757 O iV F3CT'N^O CH(Me) S o ^?2£θ Q '/A/A C1 F CH
758 JA o=< z— o IL CH(Me) S o /'0 A-s \ C1 F CH
759 J1 o —z \=o i CH(Me)- S o C1 F CH
760 JAo=\ , z— o LL CH(Me) s o νογο^ ο C1 F CH
761 <7 o —z \=o CH(Me) s 0 ο C1 F CH
762 o Â4 f3c n^o CH(Me) s o 0 C1 F CH
115
763 A oA z— o LL CH(Me) S 0 O Cl F CH
764 oA z— o LL CH(Me) S 0 0 \°yv Cl F CH
765 O —z Ao □A CH(Me) S 0 0 Cl F CH
766 J1 O —z Ao oA CH(Me) S 0 O Cl F CH
767 A oA z— 0 LL CH(Me) S 0 A 0 A1 Cl F CH
768 J1 0 —z Ao □A CH(Me) S 0 /-0 N Cl F CH
769 J 0 —z Ao □A CH(Me) S 0 ! T Cl F CH
770 0 —z Ao □A CH(Me) S 0 Cl F CH
771 A oA z— 0 LL CH(Me) S 0 ''Ίό / b Cl F CH
772 J1 O —z Ao CH(Me) s 0 Cl F CH
773 J1 0 —z Ao □A CH(Me) s 0 Cl F CH
774 J1 0 —z Ao □A CH(Me) s 0 .^O'N^cC^Et Cl F CH
775 J 0 —z Ao oA CH(Me) s 0 F / 0^ Cl F CH
116
776 Ο îV f3c^n^o CH(Me) S O Aq Cl F CH
777 J1 O —z To oA CH(Me) S O A) O z A Cl F CH
778 O îV F3TrAo CH(Me) S O Cl F CH
779 J1 O —z To OT CH(Me) S O o. X° y-z Y/Ao Cl F CH
780 J1 O —z To □A CH(Me) S O Ao Cl F CH
781 J1 O —Z /=O oA CH(Me) S O °Ύ Cl F CH
782 J1 O —z To □A CH(Me) S 0 Ao V/s\ Cl F CH
783 A° o=< z— Q LL CH(Me) s O Ao Cl F CH
784 A° o=< z— O LL CH(Me) s 0 Ao AT Cl F CH
785 <T O —z To oA CH(Me) s O F Cl F CH
786 J O —z To □A CH(Me) s 0 ^.XT' Cl F CH
787 A° O=< z— O LL CH(Me) s O T r° / z Cl F CH
788 A° o=< z— O LL CH(Me) s O /0 Y/^N Cl F CH
117
789 Ο —z Ao □A CH(Me) s O Λο Cl F CH
790 JA o=< z— O IL CH(F) s O OEt Cl F CH
791 J1 O —z Ao fa CH(Et) s O OMe Cl F CH
792 J1 O —z Ao fa CH s O OMe Cl F CH
793 J1 O —z Ao fa l ^CH s O OMe Cl F CH
794 <? O —z Ao fa Y CH s O OEt Cl F CH
795 J1 O —z Ao □A CH(OMe) s O OMe Cl F CH
796 fa o=< z— O LL? CH(OMe) s O OEt Cl F CH
797 A o=< z— O LL CH(OMe) s O '’o Cl F CH
798 J1 O —z Ao □A CH(OMe) s O Cl F CH
799 o=< z— O LL? CH(OMe) s O r° O Tl ω Cl F CH
800 fa O=< z— O d? CH(OMe) s O Cl F CH
801 0 A f3c n o ς CH s O OMe Cl F CH
118
802 J1 Ο —Z )=o 1 °h CH S O OMe Cl F CH
803 JA o=< z— O d? CH(Ph) S O OMe Cl F CH
804 O=< z— O IX? CH(Me) S O OMe CF, F CH
805 J1 O —z y=o CH(Me) S O OMe CN F CH
806 s FaC-^^O CH(Me) s O OMe Cl F CH
807 J1 fr ω CH(Me) s 0 OMe Cl F CH
808 ω1 °\ / Sb ω CH(Me) s 0 OMe Cl F CH
809 v? ω / b eo LL CH(Me) s O OMe Br F CH
810 ν' ω / b CO LL CH(Me) s O OMe CN F CH
811 s ^N^N'h FaC^^^^^S CH(Me) s 0 OMe Br F CH
812 ,w / b LL CH(Me) s O OMe CF, F CH
813 S 'Ν'^'ΐΑ FaC^^^S CH(Me) s O OMe CN F CH
814 S f3cx^/^o CH(Me) s O OMe Br F CH
815 S 1 FaC^^^O CH(Me) s O OMe CF, F CH
119
816 S X^nV f3c^^o CH(Me) S o OMe CN F CH
817 oX Z— o IL· CH(Me) S o SEt Cl F CH
818 ω1 o —z Xo □X CH(Me) S o Cl F CH
819 x° o=( z— o IL· CH(Me) S o vy Cl F CH
820 oX z— o IL CH(Me) s o O *^0) —o Cl F CH
821 x° oX z— o IL CH(Me) s o As Cl F CH
822 x° oX z— o IL? CH(Me) s 0 / / ° ή-ΝΗ Cl F CH
823 ω1 O —Z Xo oX CH(Me) s o \ O Cl F CH
824 oX z— o IL CH(Me) s o o X T 1 J o Cl F CH
825 <T o —z Xo oX CH(Me) s o k Cl F CH
826 X —/ b II? CH(Me) s o OMe Cl F CH
827 f3( \ / X ο X CH(Me) s o OMe Cl F CH
828 ο=ζΧό / o IL? CH(Me) s 0 OMe Cl F CH
120
829 w F3C-t( nJ h2n '—<< o CH(Me) S o OMe Cl F CH
830 ω1 o —Z 7=0 fa C(Me)2 S o OMe Cl F CH
831 οχ z— o d? C(Me)2 S o Cl F CH
832 o sXA) CH(Me) S o OH Cl F CH
833 o sAA) 1 CH(Me) S o '/-o ^-CF3 Cl F CH
834 o /a F3C N^O CH(Me) S o Cl F CH
835 οχ z— o d? CH(Me) S o CN Cl F CH
836 0 iV f3c n^o CH(Me) s o Χ'°γ^οΝ Cl F CH
837 J1 o —z /=o fa CH(Me) s 0 X'°'^xCN Cl F CH
838 JA οχ z— o d? CH(Me) s o Cl F CH
839 J1 o —z J=o CH(Me) s o Cl F CH
840 J1 o —Z Jo fa CH(Me) s o Cl F CH
841 J o —Z 7=0 fa CH(Me) s o Cl F CH
121
842 JA o=< z— O LL CH(Me) S O /0 Cl F CH
843 O —z Ao □A CH(Me) S O ! U? \ /° °=< Λ Z z b $=° o Cl F CH
844 ω1 O —z Ao □A CH(Me) S O |-NH OH Cl F CH
845 H O=Y z— O LL CH(Me) S O X-Ny ό Cl F CH
846 JA o=< z— O LL CH(Me) S O JA Cl F CH
847 J O —z Ao oA CH^ S O OMe Cl F CH
848 A° O=Y z— O LL Y CH S O OMe Cl F CH
849 jh° O=Y z— O LL CH^ s O OMe Cl F CH
850 J1 O —z Ao □A ^F CH s O OMe Cl F CH
851 JA oA z— O d? o—\ I \__, O s O OMe Cl F CH
852 <7 O —z Ao □A C(Me)(Et) s 0 OMe Cl F CH
853 0 FacY^O CH(Me) s O OMe Cl F CH
854 0 A^rA FaC'yV Br CH(Me) s O OMe Cl F CH
122
855 Π ω °\ / ο CH(Me) s 0 OMe Cl F CH
856 “Π ω °\_ / CH(Me) s 0 OMe Cl F CH
857 ο f3c-'y'% ΟΗ CH(Me) s 0 9o^^oh Cl F CH
858 ω1 Ο —Ζ /=Ο □V CH2CH2 s 0 OMe Cl F CH
859 γ° ο=< ζ— ο LL CH2CH2 s 0 OEt Cl F CH
860 γ° ο=< ζ— ο d? CH(Me)CH2 s 0 OMe Cl F CH
861 J1 ο —ζ \=ο □V CH2CH2CH2 s 0 OMe Cl F CH
862 J1 ο —Ζ /=Ο □V ^cf3 CH s 0 OEt Cl F CH
863 γ° ο=< ζ— ο IL CH s 0 OMe Cl F CH
864 γ° ο=< ζ— ο d? ^Îh s 0 OMe Cl F CH
865 ω1 Ο —Ζ )=Ο oV 9 CH s 0 OMe Cl F CH
866 Y ογ ζ— ο d? s 0 OMe Cl F CH
123
867 ω , Α -Ζ >Ο □Α CH(Me) S o SEt Cl F CH
868 ο —ζ Αο □Α CH(Me) S o Cl F CH
869 ο CH(OMe) S o OMe Cl F CH
870 A ο=4 ζ— ο IL C(OMe)2 S o OMe Cl F CH
871 Ο iV F3AljAo CH(Me) S o i o Cl F CH
872 <τ ο —ζ Αο □A (Ά)Η CH S 0 OMe Cl F CH
873 ο —ζ Αο □Α HC| CH S 0 OMe Cl F CH
874 <τ ο —ζ Α° □Α CH(Me) S o oA Cl F CH
875 Α 0=4 Ζ— ο LL CH(Me) S o nh2 Cl F CH
876 <Τ ο —ζ Αο οΑ CH(Me) S o j-O cr Cl F CH
877 Ô îV f3AAo CH(Me) S o Cl F CH
878 J1 ο —ζ Α° cT^ ο CH(Me) s o A Cl F CH
879 <7 ο —ζ Αο □Α CH(Me) s o s H 0 Cl F CH
124
880 Ô F3C nAd CH(Me) S O OMe Cl F N
881 ω / η □A CH(Me) NH O OMe Cl F CH ‘H NMR (500 MHz, DMSO-de) δ 8.24 (d, J= 1.0 Hz, 1H),7.25 — 7.19 (m,2H), 4.46 (s, 1H), 3.75 (s, 6H), 3.65 (s, 3H), 3.56 (q,J= 7.0 Hz, 1H), 1.27 (d, J=7.0 Hz, 3H).
882 ο Α^ιΑ sAnH0 1 CH(Me) NH O OEt Cl F CH
883 ο sVnHo 1 CH(Me) NH s OEt Cl F CH
884 ω , -Ζ >=Ο 1 Ο Y ί CH(Me) NH 0 fo Cl F CH
885 ω , A -ζ >ο □Α CH(Me) N Me o Cl F CH ‘H NMR (500 MHz, DMSO-di) Ô8.32(d,j = 1.0 Hz, 1H),7.25 — 7.19 (m,2H), 4.95-4.90 (m, 1H), 3.75 (s, 6H), 3.56 (q,J= 7.0 Hz, 1 H), 3.00 (s,3H), 1.21-1.19 (m, 6H), 1.16 (d,J= 7.0 Hz, 3H).
886 ο Α^ιΑ sAnAo 1 CH(Me) NH o Cl F CH
887 ω / Aio οΑ CH(Me) NH o /O Cl F CH
888 ο Α^ιΑ . sVNV0 1 CH(Me) NH o A Cl F CH
889 ω / Α -Ζ >Ο □Α CH(Me) NH o /-0 H Cl F CH
125
890 ω / -ζ >ο fa CH(Me) N Me O /'O ^cf3 Cl F CH
891 ω / A -ζ >ο fa CH(Me) NH O A o Cl F CH
892 ω / A -ζ >ο ofa CH(Me) NH O O AA Cl F CH
893 fa far 7 ω CH(Me) NH O /O nV Cl F CH
894 Ο sY'N^O 1 CH(Me) NH O /O Cl F CH
895 ω , Υ\_ -Ζ >Ο fa CH(Me) NH O ° A oA Cl F CH
896 Ο S^N^O CH(Me) NH O /O Cl F CH
897 Ο Α^γΑ sY'N'^O 1 CH(Me) NH O /O A/^n A? Cl F CH
898 ω / fa -ζ >0 fa CH(Me) NH O Ao Cl F CH
899 fa ^fa~ ' tn CH(F) NH O OEt Cl F CH
900 Ο S^'N^O 1 CH(Et) NH O OMe Cl F CH
901 ω / A -ζ >ο fa CH NH O OEt Cl F CH
902 ω / -ζΗο fa ^CH NEt O OMe Cl F CH
126
903 (Λ / Η -z >0 oA Y CH NH O OEt Cl F CH
904 ω / K -Z >O □A ς CH NH O OEt CI F CH
905 O ^fAfA sAnAo 1 1 °~Ί CH NH O OMe Cl F CH
906 j-A A ' <n CH(Me) NH O OMe Br F CH
907 O fAiA sANAq 1 CH(Me) NH O OEt Br F CH
908 O sAnAo 1 CH(Me) NH O OMe cf3 F CH
909 O ΧνΆ sAnAo 1 CH(Me) NH O OEt CFj F CH
910 AA ' ω CH(Me) NH O OMe CN F CH
911 O fAfA sAnAo 1 CH(Me) NH O OEt CN F CH
912 O ^fAfA CH(Me) NH O OMe Cl F CH
913 ω / H -z >o ,)=¾. ω æv CH(Me) NH O OEt Br F CH
914 A °A ?/% CH(Me) NH O OMe Cl F CH
915 A Aa ' tn CH(Me) NH O SEt Cl F CH
127
916 Ο S^nX) CH(Me) Nil O °λ / / ° -|NH Cl F CH
917 ω / A -z >o □A C(Me)i NH O OMe Cl F CH
918 P o=< z— O LL? CH(Me) NH O OH Cl F CH
919 =/^0 oA z— o LL CH(Me) NH 0 OMe Cl F CH ‘H NMR (500 MHz, DMSO-A) δ 8.01 (t, 7=4.5 Hz, 1 H), 7.71 (d, 7=9.0 Hz, 1 H), 7.40 (d, 7= 8.0 Hz, 1H), 6.57 (s, 1 H), 4.56 (d, 7= 4.0 Hz, 1H), 3.62 (s, 3H), 3.40 (s, 3H), 1.90 (s, 3H).
920 A° oA z— o d? CH(Me) NH 0 OEt Cl F CH
921 A o=< z— o LL CH(Me) NH O Cl F CH
922 A O=< z— o d? CH(Me) NH 0 cA CI F CH
923 A O=\ z— \=/ o d? CH(Me) NEt 0 Cl F CH
924 A o=< z— o d? CH(Me) NH 0 Cl F CH
925 JlV f3c n^o CH(Me) NH O ν°η< Cl F CH
926 J1 o —Z K° o CH(Me) NH O ΥθχΧΑ/Χ Cl F CH
927 J1 o —z Ao □A CH(Me) NH O Cl F CH
128
928 o=A z— O d? CH(Me) NH O Cl F CH
929 O=< z— O co LL CH(Me) NH O Cl F CH
930 <7 O —z \=o CH(Me) NH O Cl F CH
931 z— O d? CH(Me) NH O Cl F CH
932 O iV F3CT'N'A) CH(Me) NMe O Cl F CH
933 J1 O —z Ao o CH(Me) NH O Cl F CH
934 o=< z— O d? CH(Me) NH O Cl F CH
935 J1 O —z )=o CH(Me) NH O Cl F CH
936 J1 O —Z Ao CH(Me) NH O F V°^F Cl F CH
937 o=< z— O d? CH(Me) NH O X°-cf3 Cl F CH
938 ô /a f3c^n^o CH(Me) NEt O F\ F Cl F CH
939 <T O —Z /=O CH(Me) NH O ^A-^GFa Cl F CH
940 ô /a f3c n o CH(Me) NH O Cl F CH
129
941 J1 Ο —Ζ \=ο fa CH(Me) NH O ^O^-CN Cl F CH
942 1 fa ο=< ζ— ο LL· CH(Me) NH O CI F CH
943 Α° ο=< ζ— ' \ ο IL· CH(Me) NH O Cl F CH
944 fa Ο=Υ Ζ— ο ιΤ CH(Me) NH O Ao Cl F CH
945 ο —ζ )=ο fa CH(Me) NH O /0 °Λ Cl F CH
946 fa ο=< ζ— ο LL· CH(Me) NH O --- Cl F CH
947 fa. ο=< ζ— ο IL· CH(Me) NH O /'O ^~s \ Cl F CH
948 ω1 Ο —Ζ \=ο fa CH(Me) NH 0 Cl F CH
949 ο=< ζ— ο IL· CH(Me) NH O Y°^ 0 Cl F CH
950 1 fa ο=< Ζ— ο (Ό U. CH(Me) NH O 0 αλΑ Cl F CH
951 ο=\ ζ , ο LL CH(Me) NH O O Cl F CH
952 fa °=ο- ο IL· CH(Me) NH 0 O CI F CH
953 ο=< Ζ— ο IL· CH(Me) NH O 0 \°yv Cl F CH
130
954 Ο —ζ Αο fa CH(Me) NII 0 O x'A'0'' Cl F CH
955 ο=< ζ— ο LL? CH(Me) NH O \ J° )=o °\ Cl F CH
956 ω1 Ο —ζ Αο fa CH(Me) NH 0 O Cl F CH
957 ω1 ο —ζ Αο fa CH(Me) NH 0 /O Cl F CH
958 ω1 ο —ζ Αο fa CH(Me) NH O Cl F CH
959 Ô Λ f3c ν ο CH(Me) NH O / A Cl F CH
960 J1 ο —ζ Αο fa CH(Me) NH 0 v°-zA Cl F CH
961 ω1 ο —ζ Αο fa CH(Me) NH 0 Cl F CH
962 fa O=C/Z_ ο LL? CH(Me) NH O Ad / Y O Cl F CH
963 fa o=Y z— O if? CH(Me) NH O V°'N<?^C02Et Cl F CH
964 J O —z Ao fa CH(Me) NH O X°-n^Q Cl F CH
965 2s P J-Λ o=< z— o LL? CH(Me) NH O /'O Cl F CH
966 JH° O=Y z— O IL? CH(Me) NH 0 Zd O V z A Cl F CH
131
967 ω1 Ο —Ζ /=Ο fa CH(Me) NH O P Cl F CH
968 Ô îV F3CT^N'AD CH(Me) NH O 0 \°'νΛ q' Cl F CH
969 <7 ο —Ζ \=Ο fa CH(Me) NH O /~~o \^,o^ Cl F CH
970 ω1 ο —ζ \=ο fa 1 CH(Me) NH o C'A Cl F CH
971 fa Ο=< ζ— ο LL? CH(Me) NH 0 /O Cl F CH
972 Ο JL A f3c^n^o CH(Me) NH 0 Ao Cl F CH
973 fa Ο=Υ ζ— ο IL CH(Me) NH o A° 'O Cl F CH
974 fa ο=/ ζ— ϋ IL CH(Me) NH 0 F ,;OXJ Cl F CH
975 fa Ο=Υ ζ— ο IL CH(Me) NH 0 1 U. Cl F CH
976 ω1 Ο —Ί \=ο fa CH(Me) NH o Ύ / Z Cl F CH
977 fa ο=< ζ— ο d? CH(Me) NH o λ y o-^ Cl F CH
978 Λ f3c^n^o CH(Me) NH o 9 Cl F CH
979 jh° ο=< ζ— ο d? CH(F) NH o OEt Cl F CH
132
980 J1 Ο —z Ao OA CH(Et) NH O OMe Cl F CH
981 A o=< z— O d? CH NH O OMe Cl F CH
982 J1 O —z Ao fa ^CH NH O OMe Cl F CH
983 A oA z— O LL? Y CH NH O OEt Cl F CH
984 <7 O —z Ao CH(OMe) NH O OMe Cl F CH
985 O Ac f3c n o CH(OMe) NH O OEt Cl F CH
986 <7 O —z Ao ofa CH(OMe) NH O Cl F CH
987 0 Ai f3c^n^o CH(OMe) NH O Cl F CH
988 A oA z— O LL? CH(OMe) NH O O τι ω Cl F CH
989 A OA z— O d? CH(OMe) NH O Cl F CH
990 A oA z— O d? ς CH NH O OMe Cl F CH
991 J1 O —z Ao □A CH NH O OMe Cl F CH
992 <7 o —z Ao □A CH(Ph) NH 0 OMe Cl F CH
133
993 A °=\,z~ o IL CH(Me) NH O OMe CFj F CH
994 A oA z— o d? CH(Me) NH O OMe CN F CH
995 S CH(Me) NH O OMe Cl F CH
996 0 A'n’< f3c^^s CH(Me) NH o OMe Cl F CH
997 s A’. FaC^^S CH(Me) NH o OMe CI F CH
998 ω / b ce LL· CH(Me) NH o OMe Br F CH
999 J1 °\ / A ω CH(Me) NH o OMe CN F CH
1000 S F3C^^S CH(Me) NH o OMe Br F CH
1001 A ”<A / b d? CH(Me) NH 0 OMe cf3 F CH
1002 s XN^rA f3cx^x^s CH(Me) NH o OMe CN F CH
1003 s xn^nV F3C'^^O CH(Me) NH o OMe Br F CH
1004 s AnX f3c/1<î^o CH(Me) NH o OMe cf3 F CH
1005 J1 O A CH(Me) NH o OMe CN F CH
1006 A □A z— b IL CH(Me) NH o SEt Cl F CH
134
1007 ! i ΊΊ ω Ο —ζ \=ο CH(Me) NH O Cl F CH
1008 JM° οχ ζ— ο IL CH(Me) NII O Cl F CH
1009 JA οχ Ζ— ο ιΤ CH(Me) NH O o— OT^ ° Cl F CH
1010 0 îV . f3c n^o CH(Me) NH O X o Cl F CH
1011 <7 ο —ζ V=o CH(Me) NH 0 O O<1 L t Z χνν Cl F CH
1012 ω1 ο —ζ )=ο ο CH(Me) NH 0 kV Cl F CH
1013 0 f3c n^o CH(Me) NH O Anh Λθζ °/N Λ Cl F CH
1014 J1 ο —ζ \=ο οΑί CH(Me) NH O Cl F CH
1015 “Π ω A CH(Me) NH O OMe Cl F CH
1016 F3< ' ο :α^α0 CH(Me) NH O OMe Cl F CH
1017 0 F3CxY'X) Cl CH(Me) NH O OMe Cl F CH
1018 Μ° f3c-χ Ηη2ν '— ο CH(Me) NH O OMe Cl F CH
1019 JA οχ ζ— ο d? C(Me)i NH 0 OMe Cl F CH
135
1020 x° oX z— o d? C(Me)j NH O Cl F CH
1021 O S^N\d 1 CH(Me) NH O OH Cl F CH
1022 o S^N^O 1 CH(Me) NH O /-o ^cf3 Cl F CH
1023 xf oX z— o d? CH(Me) NH 0 Cl F CH
1024 J1 o —z Xo O CH(Me) NH o \°Y CN Cl F CH
1025 J1 o —z Xo cX CH(Me) NH 0 Χ'θΎ^ΟΝ Cl F CH
1026 x° oX z— o LL? CH(Me) NH o X-O-^xLcn Cl F CH
1027 x° oX Z— o d? CH(Me) NH 0 Cl F CH
1028 T ω O —Z >=O oX CH(Me) NH o Cl F CH
1029 J1 o —z Xo oX CH(Me) NH o Cl F CH
1030 oX z— o d? CH(Me) NH o Cl F CH
1031 O iV F3crX''XD CH(Me) NH o /O Cl F CH
1032 JA° oX z— o d? CH(Me) NH o o=< Λ r z b $=° o S Cl F CH
136
1033 o=Y z— O LL CH(Me) NH O |-NH OH Cl F CH
1034 JA o=< z— O LL CH(Me) NH O YNy 0 Cl F CH
1035 JA oA z— O LL CH(Me) NH O Cl F CH
1036 oA Z— O LL CH^ NH O OMe Cl F CH
1037 JA3 OA z— ü LL Y CH NH O OMe Cl F CH
1038 O —Z Ao CH^ NH 0 OMe Cl F CH
1039 <? O —z \=o ^F CH NH O OMe Cl F CH
1040 JA° oA z— O LL? O —\ X X—o NH O OMe Cl F CH
1041 JA° oA z— O LL C(Me)(Et) NH O OMe Cl F CH
1042 v> P / O LL? CH(Me) NH O OMe Cl F CH
1043 0 F3c''yA>o Br CH(Me) NH O OMe Cl F CH
1044 h/ O IL CH(Me) NH O OMe Cl F CH
1045 α^λ / b CO LL CH(Me) NH O OMe Cl F CH
137
1046 Ô ''γΑν'Ά. FjcAA) OH CH(Me) NH 0 ^OH Cl F CH
1047 JX o=< z— o d? CH2CH2 NH O OMe Cl F CH
1048 J1 O —z \=o CH2CH2 NH O OEt Cl F CH
1049 JA O=Y z— o d? CH(Me)CH2 NH O OMe Cl F CH
1050 JX z— 0 d? CH2CH2CH2 NH O OMe Cl F CH
1051 J1 O □H ^cf3 CH NH O OEt Cl F CH
1052 JX oj z— o d? CH NH O OMe Cl F CH
1053 0 rV F3C Ijl^O ^Ih NH O OMe Cl F CH
1054 J1 o —Z^ ^>=O M 9 CH NH O OMe Cl F CH
1055 JA o=f z— o d? ^Ïh NH 0 OMe Cl F CH
1056 JM A ' ω CH(Me) NH 0 SEt Cl F CH
1057 X P o=< z— o d? CH(Me) NH O Cl F CH
1058 Ά'Υ o CH(OMe) NH O OMe Cl F CH
138
1059 J1 O —Z \=o ofa C(0Me)2 NH O OMe Cl F CH
1060 οχ z— o LL CH(Me) NH O 1 if Cl F CH
1061 J1 o —z )=o fa CH NH O OMe Cl F CH
1062 οχ z— o LL r^ci CH NH O OMe Cl F CH
1063 J1 o —Z \=O ofa CH(Me) NH o ofa Cl F CH
1064 JA οχ Z— o LL CH(Me) NH o nh2 Cl F CH
1065 JA οχ z— o LL CH(Me) NH o Cl Cl F CH
1066 JA οχ z— o LL CH(Me) NH o __^1 Cl F CH
1067 JA οχ z— o LL CH(Me) NH o M Cl F CH
1068 o Λ F3C N O CH(Me) NH o . H -VN^O £<>CI O Cl F CH
1069 JA οχ Z— o IL CH(Me) NH o OMe Cl F N
Table A is constructed in the same way as that of Table 1 above, except for replacing the
racemate compounds having a chiral center ( N'X3XYW x4 □ , wherein, X represents
-C*XiX2-(alkyl)n-, -alkyl-C*XiX2-(alkyl)n-, that is, Xi, X2 are not the same, the carbon atom at *
139 is the chiral center) (that is, compounds 1-188, 193-432, 438-439, 441-469, 471-478, 481-484, 486-493, 495-545, 547-641, 644-669, 672, 674-681, 683-727, 729-829, 832-857, 860, 862-869, 871-916, 918-1018, 1021-1046, 1049, 1051-1058 and 1060-1069) with the corresponding compounds in R configuration and deleting the compounds having no chiral center at the corresponding position, and in Table A, the entries in the column No. are listed in sequence as “1(R)-188(R), 193(R)-432(R), 438(R)-439(R), 441(R)-469(R), 471(R)-478(R), 481(R)-484(R), 486(R)-493(R), 495(R)-545(R), 547(R)-641(R), 644(R)-669(R), 672(R), 674(R)-681(R), 683(R)-727(R), 729(R)-829(R), 832(R)-857(R), 860(R), 862(R)-869(R), 871(R)-916(R), 918(R)-1018(R), 1021(R)-1046(R), 1049(R), 1051(R)-1058(R) and 1060(R)-1069(R)”. For example, “1(R)” corresponds to R configuration of compound “1” in Table 1, “194(R)” corresponds to R configuration of compound “194” in Table 1.
The method for preparing the compound of the invention will be explained in detail in the following program and embodiment. The material is commercial available or prepared through known method reported in the literature or shown in the route. Those skilled in the art should understand that the compound of the invention can also be synthesized by other synthetic route. Although the detailed material and reaction condition in the synthetic route hâve been explicated in the following text, it is still easy to be replaced by other similar material and condition. Isomer of the compound, for example, that produced with the variation of the préparation method of the présent invention is included in the scope of the présent invention. In addition, the following préparation method can be fiirther modified according to the disclosures of the présent invention by using common Chemical method known to those skilled in the art, for example, protection of suitable group in the process of the reaction, etc.
The following method of application can be used to improve fiirther understanding of the préparation method of the présent invention. The spécifie material, class and condition hâve been determined to be fiirther explication of the présent invention, not to be any limit of the reasonable scope thereof. Reagents of the following synthetic compound showed in the table can either be purchased from the market or easily prepared by those skilled in the art.
Examples of représentative compounds are as follows, the synthesis methods of other compounds are similar, and will not be described in detail here.
1. Synthesis of compound 1
1) 1-1 (10 g, 49.1 mmol, 1.0 eq), Fe powder (8.23 g, 147.4 mmol, 3.0 eq), NH4CI (5.26 g, 98.3 mmol, 2.0 eq) and water (50 ml) were added to 500 ml of EtOH solution in sequence. Then,
140 the reaction solution was reacted at 80°C for 1 hour. LCMS test showed the disappearance of raw materials. After filtration, the solution was concentrated to remove éthanol and then extracted with ethyl acetate. The organic phase was washed with saturated brine (100ml*l), and then concentrated to obtain 1-2 (12 g, crude product) (black solid).
2) 1-2 (12 g, 69.1 mmol, 1.0 eq, crude product) was added to 100 ml of toluene solution. Then, 1-3 (10.8 g, 69.1 mmol, 1.0 eq) was added to the reaction solution at 100°C. After the addition was completed, the reaction solution was reacted at 100°C for 1 hour. LCMS test showed the disappearance of raw materials, and the génération of a product. The reaction solution was concentrated to remove toluene. The resulting crude product was separated by column chromatography to obtain 1-4 (5g) (yellow solid).
3) 1-5 (3.8 g, 17.0 mmol, 1.0 eq) and AcONa (0.7 g, 8.5 mmol, 0.5 eq) were added to 50 ml of DMF solution. Then, 1-4 (5 g, 17.0 mmol, 1.0 eq) was added to the reaction solution at 60°C. After the addition was completed, the reaction solution was reacted at 60°C for 1 hour. LCMS test showed the disappearance of raw materials, and the occurrence of new peak. After the addition of water (50ml), the reaction solution was extracted with ethyl acetate. The organic phase was washed with saturated brine (100ml*l), and then concentrated. The resulting crude product was separated by column chromatography to obtain 1-6 (4.0 g, 71.3% yield) (white solid).
4) 1-6 (4 g, 12.1 mmol, 1.0 eq) was added to 40 ml of EtOH, and then NH2OHHCI (0.93 g,
141
13.3 mmol, 1.1 eq) aqueous solution (6 ml) was added dropwise to the reaction solution at 0°C. After the addition was completed, the reaction solution was stirred at 0°C for 2 hours. LCMS test showed that the raw materials were almost consumed, and one major new peak occurred. The reaction solution was concentrated to remove a part of éthanol and then poured into 10 ml of water, causing a solid to precipitate out. After filtration, the filter cake was washed with water and dried to obtain 1-7 (7 g, 71.7% yield) (white solid).
5) 1-7 (0.2 g, 0.58 mmol, 1.0 eq), a (0.14 g, 1.1 mmol, 2 eq) and K2CO3 (0.24 g, 1.74 mmol, 3 eq) were added to 5 mL of DMF solution in sequence. Then, the reaction solution was reacted at room température for 4 hours. LCMS test showed the disappearance of raw materials, and there were ail product peaks. After the addition of water (10ml), the reaction solution was extracted with ethyl acetate. The organic phase was washed with saturated brine (10ml*l), and then concentrated. The resulting crude product was separated by column chromatography to obtain 1 (0.15 g, 60 % yield) (white solid).
2. Synthesis of compound 1(R) configuration
1-7 (0.2 g, 0.58 mmol, 1.0 eq), b (0.14 g, 1.1 mmol, 2 eq), K2CO3 (0.24 g, 1.74 mmol, 3 eq) were added to 5 mL of DMF solution in sequence. Then, the reaction solution was reacted at room température for 4 hours. LCMS test showed the disappearance of raw materials, and there were ail product peaks. After the addition of water (10ml), the reaction solution was extracted with ethyl acetate. The organic phase was washed with saturated brine (10ml*l), and then concentrated. The resulting crude product was separated by column chromatography to obtain 1(R) (0.15 g, 60% yield, R/S=98/2) (white solid).
142
3. Synthesis of compound 194(R)
1) 1-1 (20 g, 98.3 mmol, 1.0 eq) was added to 200 ml of EtOH, and then NH2OHHC1 (7.5 g, 108.1 mmol, 1.1 eq) aqueous solution (30 ml) was added dropwise to the reaction solution at 0°C.
After the addition was completed, the reaction solution was stirred at 0°C for 3 hours. LCMS test showed that the raw materials were almost consumed and one major new peak occurred. The reaction solution was concentrated to remove a part of éthanol and then poured into 100 ml of water, causing a solid to precipitate out. After filtration, the filter cake was washed with water and dried to obtain 194-1 (20 g, 93% yield) (white solid).
10 1-1 194-1
2) 194-1 (5 g, 22.9 mmol, 1.0 eq), Fe powder (3.8 g, 68.6 mmol, 3 eq), NH4C1 (2.5 g, 45.8 mmol, 2 eq) and water (10ml) were added to 50 ml of EtOH in sequence. Then, the reaction solution was reacted at 80°C for 1 hour. LCMS test showed the occurrence of product peak. The reaction solution was filtered with celite and then concentrated to remove éthanol. After the 15 addition of water (20ml), the reaction solution was extracted with ethyl acetate and then concentrated to obtain a black crude product. The crude product was separated and purified by column chromatography to obtain 194-2 (2 g, 46.4% yield) (gray solid).
3) 194-2 (1 g, 5.3 mmol, 1.0 eq) and c (1.1 g, 5.3 mmol, 1.0 eq) were added to 20 ml of
143 acetic acid, and the reaction solution was reacted at 110°C for 1 hour. LCMS test showed that the reaction of raw materials was basically completed, and there was one major product peak. The reaction solution was concentrated to remove the solvent. The resulting crude product was separated by column chromatography to obtain 194-3 (1.5 g, 80.5% yield) (white solid).
çf3
4) 194-3 (0.4 g, 1.1 mmol, 1.5 eq), b (0.18 g, 1.5 mmol, 1.3 eq) and K2CO3 (0.2 g, 1.5 mmol, 1.3 eq) were added to 8 ml of DMF in sequence. Then, the reaction solution was reacted at 25°C for 4 hours. LCMS test showed the génération of a product. After the addition of water (10ml), the reaction solution was extracted with ethyl acetate. The organic phase was washed with saturated brine (10ml*l), and then concentrated. The resulting crude product was separated by column chromatography to obtain 194-4 (0.3 g, 60.2% yield) (white solid).
5) 194-4 (0.3 g, 0.69 mmol, 1.0 eq), Mel (0.13 g, 0.9 mmol, 1.3 eq) and K2CO3 (0.12 g, 0.9 mmol, 1.3 eq) were added to 6 ml of DMF in sequence. Then, the reaction solution was reacted 15 at 25°C for 2 hours. LCMS test showed the génération of a product. After the addition of water (10ml), the reaction solution was extracted with ethyl acetate. The organic phase was washed with saturated brine (10ml*l), and then concentrated. The resulting crude product was separated by column chromatography to obtain 194(R) (0.2 g, 64.6% yield, R/S=99/l) (white solid).
144
4. Synthesis of compound 504 (1) 504-1 (2 g, 1.0 eq), DessMartin (4.8 g, 2 eq) were added to 50 ml of DCM solution.
Then, the reaction solution was reacted at room température for 2 hours. LCMS test showed the completion of reaction. After the addition of NaHCO3 aqueous solution (100ml), the reaction solution was extracted with DCM. The organic phase was washed with saturated brine (100ml*2), and then concentrated. The resulting crude product was separated by column chromatography to obtain 504-2 (1.6 g, 82% yield) (white solid).
(2) 504-2 (1.6 g, 1.0 eq), water (10 ml), hydroxylamine hydrochloride (0.63 g, 2 eq) were added to 30 ml of éthanol solution. Then, the reaction solution was reacted at room température for 2 hours. LCMS test showed the completion of reaction. The reaction solution was concentrated. The resulting crude product was separated by column chromatography to obtain
504-3 (1.1 g, 69% yield) (white oil).
ci nh2ohhci^ F3C \ /Ν3, )“CI
EtOHHoO * / t) \
504-2 ° 504.3 OH (3) 504-3 (0.3 g, 1.0 eq) and K2CO3 (170 mg, 1.5 eq) were added to 10 ml of DMF, then a (150 mg, 1.5 eq) was added to the reaction solution at 25°C, followed by reacting at 25°C for 8 hours. LCMS test showed the génération of a product. After the addition of water (10ml), the reaction solution was extracted with ethyl acetate. The organic phase was washed with saturated brine (20ml* 1), and then concentrated. The resulting crude product was separated by column chromatography to obtain 504 (0.2 g, 54% yield) (white solid).
145
a
K2CO3, DMF
504
5. Synthesis of compound 919 (1) 919-1 (0.3 g, 1.0 eq) and NH2NH2H2O (0.5 g, 85% aqueous solution, 10 eq) were added to 10 ml of THF. Then, the reaction solution was stirred at 60°C for 3 hours. LCMS test showed the génération of a product. The reaction solution was concentrated. The resulting crude product was separated by column chromatography to obtain 919-2 (0.15 g, 48%yield) (white solid).
(2) 919-2 (0.15 g, 1.0 eq) and K2CO3 (74 mg, 1.3 eq) were added to 6 ml of DMF, then a (55 mg, 1.1 eq) was added to the reaction solution at 25°C, followed by reacting at 25°C for 8 hours. LCMS test showed the génération of a product. After the addition of water (10ml), the reaction solution was extracted with ethyl acetate. The organic phase was washed with saturated brine (20ml* 1), and then concentrated. The resulting crude product was separated by column chromatography to obtain 919 (50 mg, 27% yield) (white solid).
919-2 919
Biological activity évaluation:
The activity level criteria for plant damage (i.e., growth control rate) are as follows:
Level 5: growth control rate is above 85%;
Level 4: growth control rate is greater than or equal to 60% and less than 85%;
Level 3: growth control rate is greater than or equal to 40% and less than 60%;
Level 2: growth control rate is greater than or equal to 20% and less than 40%;
Level 1: growth control rate is greater than or equal to 5% and less than 20%;
Level 0: growth control rate is less than 5%.
146
The above growth control rates are fresh weight control rates.
Experiment on weeding effect in post-emergence stage:
Monocotyledonous and dicotyledonous weed seeds (Descurainia sophia, Capsella bursa-pastoris, Abutilon theophrasti, Galium aparine, Stellaria media, Lithospermum arvense, rorippa indica, Alopecunts aequalis, Alopecurus japonicus, Eleusine indica, Beckmannia syzigachne, Sclerochloa dura, Conyza Canadensis, Phleum paniculatum, Veronica didyma Tenore, Bromus japonicus, Aegilops tauschii, Phalaris arundinacea, Amaranthus retroflexus, Chenopodiaceae, Commelina communis, Sonchus arvensis, Convolvulus arvensis, Cirsium setosum, Bidens tripartita L., Solanum nigrum, Acalypha australis, Digitaria sanguinalis, Echinochloa crusgalli, Setaria viridis, Setaria glauca, Leptochloa chinensis, Monochoria vaginalis, Sagittaria trifolia, Scirpus juncoides, Cyperus rotundus, Cyperus iria, Cyperus dîffbrmis, Fimbristylis, Portulaca oleracea, Xanthium sibiricum, Pharbitis nil, etc.) and major crop seeds (wheat, corn, rice, soybean, cotton, oilseed râpe, millet, sorghum, potato, sesame, ricinus, etc.) were placed in plastic pots filled with soil, then covered with 0.5-2 cm of soil, allowed to grow in a good greenhouse environment. After 2 weeks of sowing, the test plants were treated in the 2-3 leaf stage. The tested compounds of the présent invention were respectively dissolved in acetone, then added with Tween 80 and 1.5 liter/ha of emulsifiable concentrate of methyl oleate as synergist, diluted with a certain amount of water to obtain a solution with a certain concentration, and sprayed with a spray tower onto the plants. After the application, the plants were cultured for 3 weeks in the greenhouse, and then the experimental results of the weeding were counted. The doses of the used compounds were 500, 250, 125, 60, 30, 15, 7.5g/ha, and the averages were obtained by repeating for three times. Représentative data are listed in Table 2.
Table 2. Results on weeding effect in post-emergence stage
Compound NO. Digitaria sanguinalis Echinochloa crusgalli Setaria viridis Eleusine indica Alopecurus japonicus Abutilon theophrasti Dose
1 5 5 5 5 5 5 15g/ha
1(R) 5 5 5 5 5 5 15g/ha
2 5 5 5 5 5 5 15g/ha
2(R) 5 5 5 5 5 5 15g/ha
3 5 5 5 5 4 5 15g/ha
147
3(R) 5 5 5 5 4 5 15g/ha
4 5 5 5 5 5 5 15g/ha
4(R) 5 5 5 5 5 5 15g/ha
5 5 5 5 5 5 5 15g/ha
5(R) 5 5 5 5 5 5 15g/ha
6 5 5 5 5 5 5 15g/ha
6(R) 5 5 5 5 5 5 15g/ha
9 5 5 5 5 5 5 15g/ha
9(R) 5 5 5 5 5 5 15g/ha
10 5 5 5 5 5 5 15g/ha
10(R) 5 5 5 5 5 5 15g/ha
11 5 5 5 5 5 5 15g/ha
11(R) 5 5 5 5 5 5 15g/ha
12 5 5 5 5 5 5 15g/ha
12(R) 5 5 5 5 5 5 15g/ha
14 5 5 5 5 4 5 15g/ha
14(R) 5 5 5 5 4 5 15g/ha
17 5 5 5 5 5 5 15g/ha
17(R) 5 5 5 5 5 5 15g/ha
20 5 5 5 5 5 5 15g/ha
20(R) 5 5 5 5 5 5 15g/ha
24 5 5 5 5 5 5 15g/ha
24(R) 5 5 5 5 5 5 15g/ha
26 5 5 5 5 5 5 15g/ha
26(R) 5 5 5 5 5 5 15g/ha
42 5 5 5 5 4 5 15g/ha
42(R) 5 5 5 5 4 5 15g/ha
59 5 5 5 5 N 5 15g/ha
59(R) 5 5 5 5 4 5 15g/ha
60 5 5 5 5 4 5 15g/ha
60(R) 5 5 5 5 4 5 15g/ha
72 5 5 5 5 4 5 15g/ha
148
72(R) 5 5 5 5 5 5 15g/ha
74 4 5 5 4 N 5 15g/ha
74(R) 4 5 5 5 N 5 15g/ha
76 5 5 5 5 5 5 15g/ha
76(R) 5 5 5 5 5 5 15g/ha
80 5 5 5 5 5 5 15g/ha
80(R) 5 5 5 5 5 5 15g/ha
83 4 5 5 5 4 5 15g/ha
83(R) 4 5 5 5 4 5 15g/ha
84 4 5 5 5 4 5 15g/ha
84(R) 4 5 5 5 4 5 15g/ha
85 5 5 5 5 N 5 15g/ha
85(R) 5 5 5 5 4 5 15g/ha
86 3 4 4 5 3 5 15g/ha
86(R) 3 4 4 5 3 5 15g/ha
87 5 5 5 5 5 5 15g/ha
87(R) 5 5 5 5 5 5 15g/ha
88 5 5 5 5 5 5 15g/ha
88(R) 5 5 5 5 5 5 15g/ha
124 5 5 5 5 4 5 15g/ha
124(R) 5 5 5 5 5 5 15g/ha
161 4 5 5 5 4 5 15g/ha
161(R) 4 5 5 5 4 5 15g/ha
164 5 5 5 5 5 5 15g/ha
164(R) 5 5 5 5 5 5 15g/ha
168 5 5 5 5 5 5 15g/ha
168(R) 5 5 5 5 5 5 15g/ha
183 5 5 5 5 5 5 15g/ha
183(R) 5 5 5 5 5 5 15g/ha
189 4 4 5 5 4 5 15g/ha
193 5 5 5 5 5 5 15g/ha
193(R) 5 5 5 5 5 5 15g/ha
149
194 5 5 5 5 5 5 15g/ha
194(R) 5 5 5 5 5 5 15g/ha
194 5 5 5 5 4 5 7.5g/ha
194(R) 5 5 5 5 5 5 7.5g/ha
196 5 5 5 5 5 5 15g/ha
196(R) 5 5 5 5 5 5 15g/ha
198 5 5 5 5 5 5 15g/ha
198(R) 5 5 5 5 5 5 15g/ha
199 5 5 5 5 5 5 15g/ha
199(R) 5 5 5 5 5 5 15g/ha
200 5 5 5 5 5 5 15g/ha
200(R) 5 5 5 5 5 5 15g/ha
201 5 5 5 5 5 5 15g/ha
201 (R) 5 5 5 5 5 5 15g/ha
202 5 5 5 5 5 5 15g/ha
202(R) 5 5 5 5 5 5 15g/ha
203 5 5 5 5 5 5 15g/ha
203(R) 5 5 5 5 5 5 15g/ha
204 5 5 5 5 5 5 15g/ha
204(R) 5 5 5 5 5 5 15g/ha
205 5 5 5 5 5 5 15g/ha
205(R) 5 5 5 5 5 5 15g/ha
206 5 5 5 5 5 5 15g/ha
206(R) 5 5 5 5 5 5 15g/ha
207 5 5 5 5 5 5 15g/ha
207(R) 5 5 5 5 5 5 15g/ha
208 5 5 5 5 5 5 15g/ha
208(R) 5 5 5 5 5 5 15g/ha
209 5 5 5 5 5 5 15g/ha
209(R) . 5 5 5 5 5 5 15g/ha
212 5 5 5 5 5 5 15g/ha
212(R) 5 5 5 5 5 5 15g/ha
150
214 5 5 5 5 5 5 15g/ha
214(R) 5 5 5 5 5 5 15g/ha
216 5 5 5 5 4 5 15g/ha
216(R) 5 5 5 5 4 5 15g/ha
217 5 5 5 5 5 5 15g/ha
217(R) 5 5 5 5 5 5 15g/ha
218 5 5 5 5 5 5 15g/ha
218(R) 5 5 5 5 5 5 15g/ha
220 5 5 5 5 5 5 15g/ha
220(R) 5 5 5 5 5 5 15g/ha
221 5 5 5 5 4 5 15g/ha
221 (R) 5 5 5 5 5 5 15g/ha
225 5 5 5 5 4 5 15g/ha
225(R) 5 5 5 5 5 5 15g/ha
226 5 5 5 5 5 5 15g/ha
226(R) 5 5 5 5 5 5 15g/ha
227 5 5 5 5 5 5 15g/ha
227(R) 5 5 5 5 5 5 15g/ha
228 5 5 5 5 5 5 15g/ha
228(R) 5 5 5 5 5 5 15g/ha
230 5 5 5 5 5 5 15g/ha
230(R) 5 5 5 5 5 5 15g/ha
231 5 5 5 5 5 5 15g/ha
231 (R) 5 5 5 5 5 5 15g/ha
232 5 5 5 5 5 5 15g/ha
232(R) 5 5 5 5 5 5 15g/ha
233 5 5 5 5 5 5 15g/ha
233(R) 5 5 5 5 5 5 15g/ha
234 5 5 5 5 5 5 15g/ha
234(R) 5 5 5 5 5 5 15g/ha
236 5 5 5 5 5 5 60g/ha
236(R) 5 5 5 5 5 5 60g/ha
151
238 5 5 5 5 5 5 15g/ha
238(R) 5 5 5 5 5 5 15g/ha
239 5 5 5 5 5 5 15g/ha
239(R) 5 5 5 5 5 5 15g/ha
240 5 5 5 5 5 5 30g/ha
240(R) 5 5 5 5 5 5 30g/ha
241 5 5 5 5 5 5 30g/ha
241 (R) 5 5 5 5 5 5 30g/ha
243 5 5 5 5 5 5 15g/ha
243(R) 5 5 5 5 5 5 15g/ha
245 5 5 5 5 5 5 30g/ha
245(R) 5 5 5 5 5 5 30g/ha
246 5 5 5 5 5 5 15g/ha
246(R) 5 5 5 5 5 5 15g/ha
248 5 5 5 5 5 5 15g/ha
248(R) 5 5 5 5 5 5 15g/ha
249 5 5 5 5 5 5 15g/ha
249(R) 5 5 5 5 5 5 15g/ha
250 5 5 5 5 5 5 15g/ha
250(R) 5 5 5 5 5 5 15g/ha
251 5 5 5 5 5 5 15g/ha
251 (R) 5 5 5 5 5 5 15g/ha
252 5 5 5 5 5 5 15g/ha
252(R) 5 5 5 5 5 5 15g/ha
253 5 5 5 5 5 5 15g/ha
253(R) 5 5 5 5 5 5 15g/ha
254 5 5 5 5 5 5 15g/ha
254(R) 5 5 5 5 5 5 15g/ha
255 5 5 5 5 5 5 30g/ha
255(R) 5 5 5 5 5 5 30g/ha
258 5 5 5 5 4 5 15g/ha
258(R) 5 5 5 5 4 5 15g/ha
152
259 5 5 5 5 5 5 30g/ha
259(R) 5 5 5 5 5 5 30g/ha
262 5 5 5 5 5 5 15g/ha
262(R) 5 5 5 5 5 5 15g/ha
263 5 5 5 5 5 5 60g/ha
263(R) 5 5 5 5 5 5 60g/ha
264 5 5 5 5 5 5 15g/ha
264(R) 5 5 5 5 5 5 15g/ha
266 5 5 5 5 5 5 30g/ha
266(R) 5 5 5 5 5 5 30g/ha
268 5 5 5 5 5 5 30g/ha
268(R) 5 5 5 5 5 5 30g/ha
283 5 5 5 5 5 5 15g/ha
283(R) 5 5 5 5 5 · 5 15g/ha
284 5 5 5 5 5 5 15g/ha
284(R) 5 5 5 5 5 5 15g/ha
285 5 5 5 5 5 5 30g/ha
285(R) 5 5 5 5 5 5 30g/ha
286 5 5 5 5 5 5 30g/ha
286(R) 5 5 5 5 5 5 30g/ha
301 5 5 5 5 5 5 15g/ha
301 (R) 5 5 5 5 5 5 15g/ha
302 5 5 5 5 5 5 15g/ha
302(R) 5 5 5 5 5 5 15g/ha
303 5 5 5 5 5 5 15g/ha
303(R) 5 5 5 5 5 5 15g/ha
313 5 5 5 5 5 5 15g/ha
313(R) 5 5 5 5 5 5 15g/ha
315 5 5 5 5 5 5 15g/ha
315(R) 5 5 5 5 5 5 15g/ha
316 5 5 5 5 5 5 15g/ha
316(R) 5 5 5 5 5 5 15g/ha
153
318 5 5 5 5 5 5 15g/ha
318(R) 5 5 5 5 5 5 15g/ha
319 5 5 5 5 5 5 30g/ha
319(R) 5 5 5 5 5 5 30g/ha
321 5 5 5 5 5 5 120g/ha
321 (R) 5 5 5 5 5 5 120g/ha
322 5 5 5 5 5 5 120g/ha
322(R) 5 5 5 5 5 5 120g/ha
331 5 5 5 5 5 5 15g/ha
331 (R) 5 5 5 5 5 5 15g/ha
333 5 5 5 5 5 5 15g/ha
333(R) 5 5 5 5 5 5 15g/ha
337 5 5 5 5 5 5 15g/ha
337(R) 5 5 5 5 5 5 15g/ha
342 5 5 5 5 4 5 15g/ha
342(R) 5 5 5 5 5 5 15g/ha
344 5 5 5 5 5 5 15g/ha
344(R) 5 5 5 5 5 5 15g/ha
347 5 5 5 5 5 5 30g/ha
347(R) 5 5 5 5 5 5 30g/ha
349 5 5 5 5 5 5 15g/ha
349(R) 5 5 5 5 5 5 15g/ha
351 5 5 5 5 5 5 60g/ha
351 (R) 5 5 5 5 5 5 60g/ha
388 5 5 5 5 4 5 15g/ha
388(R) 5 5 5 5 5 5 15g/ha
390 5 5 5 5 5 5 15g/ha
390(R) 5 5 5 5 5 5 15g/ha
391 5 5 5 5 5 5 60g/ha
391(R) 5 5 5 5 5 5 60g/ha
392 5 5 5 5 5 5 60g/ha
392(R) 5 5 5 5 5 5 60g/ha
154
393 5 5 5 5 5 5 60g/ha
393(R) 5 5 5 5 5 5 60g/ha
394 5 5 5 5 5 5 60g/ha
394(R) 5 5 5 5 5 5 60g/ha
395 5 5 5 5 5 5 60g/ha
395(R) 5 5 5 5 5 5 60g/ha
396 5 5 5 5 5 5 60g/ha
396(R) 5 5 5 5 5 5 60g/ha
398 5 5 5 5 5 5 15g/ha
398(R) 5 5 5 5 5 5 15g/ha
399 5 5 5 5 5 5 15g/ha
399(R) 5 5 5 5 5 5 15g/ha
400 5 5 5 5 4 5 15g/ha
400(R) 5 5 5 5 5 5 15g/ha
406 5 5 5 5 4 5 15g/ha
406(R) 5 5 5 5 5 5 15g/ha
409 5 5 5 5 5 5 30g/ha
409(R) 5 5 5 5 5 5 30g/ha
416 5 5 5 5 4 5 15g/ha
416(R) 5 5 5 5 5 5 15g/ha
419 5- 5 5 5 5 5 15g/ha
419(R) 5 5 5 5 5 5 15g/ha
421 5 5 5 5 5 5 15g/ha
421 (R) 5 5 5 5 5 5 15g/ha
424 5 5 5 5 5 5 30g/ha
424(R) 5 5 5 5 5 5 30g/ha
426 5 5 5 5 5 5 250g/ha
426(R) 5 5 5 5 5 5 250g/ha
431 5 5 5 5 5 5 15g/ha
431 (R) 5 5 5 5 5 5 15g/ha
432 5 5 5 5 5 5 15g/ha
432(R) 5 5 5 5 5 5 15g/ha
155
433 5 5 5 5 5 5 15g/ha
434 5 5 5 5 5 5 30g/ha
438 5 5 5 5 5 5 30g/ha
438(R) 5 5 5 5 5 5 30g/ha
439 5 5 5 5 5 5 30g/ha
439(R) 5 5 5 5 5 5 30g/ha
442 5 5 5 5 5 5 15g/ha
442(R) 5 5 5 5 5 5 15g/ha
443 5 5 5 5 5 5 15g/ha
443(R) 5 5 5 5 5 5 15g/ha
444 5 5 5 5 5 5 15g/ha
444(R) 5 5 5 5 5 5 15g/ha
445 5 5 5 5 5 5 15g/ha
445(R) 5 5 5 5 5 5 15g/ha
446 5 5 5 5 5 5 15g/ha
446(R) 5 5 5 5 5 5 15g/ha
447 5 5 5 5 5 5 15g/ha
447(R) 5 5 5 5 5 5 15g/ha
448 5 5 5 5 5 5 15g/ha
448(R) 5 5 5 5 5 5 15g/ha
449 5 5 5 5 5 5 15g/ha
449(R) 5 5 5 5 5 5 15g/ha
450 5 5 5 5 5 5 15g/ha
450(R) 5 5 5 5 5 5 15g/ha
451 N N N N N 5 15g/ha
451 (R) N N N N N 5 15g/ha
452 N N N N N 5 15g/ha
452(R) N N N N N 5 15g/ha
453 5 5 5 5 5 5 30g/ha
453(R) 5 5 5 5 5 5 30g/ha
454 5 5 5 5 5 5 60g/ha
454(R) 5 5 5 5 5 5 60g/ha
156
455 5 5 5 5 5 5 15g/ha
455(R) 5 5 5 5 5 5 15g/ha
456 5 5 5 5 5 5 30g/ha
456(R) 5 5 5 5 5 5 30g/ha
462 5 5 5 5 5 5 15g/ha
462(R) 5 5 5 5 5 5 15g/ha
463 5 5 5 5 5 5 15g/ha
463(R) 5 5 5 5 5 5 15g/ha
469 5 5 5 5 5 5 15g/ha
471 N N N N N 5 15g/ha
471 (R) N N N N N 5 15g/ha
473 5 5 5 5 5 5 30g/ha
473(R) 5 5 5 5 5 5 30g/ha
475 N N N N N 5 15g/ha
475(R) N N N N N 5 15g/ha
476 N N N N N 5 15g/ha
476(R) N N N N N 5 15g/ha
477 N N N N N 5 15g/ha
477(R) N N N N N 5 15g/ha
478 N N N N N 5 60g/ha
478(R) N N N N N 5 60g/ha
479 N N N N N ' 5 15g/ha
480 N N N N N 5 15g/ha
481 N N N N N 5 15g/ha
481 (R) N N N N N 5 15g/ha
485 5 5 5 5 5 5 15g/ha
486 5 5 5 5 5 5 15g/ha
487 5 5 5 5 5 5 15g/ha
488 5 5 5 5 5 5 15g/ha
489 5 5 5 5 5 5 15g/ha
490 5 5 5 5 5 5 15g/ha
491 5 5 5 5 5 5 15g/ha
157
491 (R) 5 5 5 5 5 5 15g/ha
493 5 5 5 5 5 5 15g/ha
494 5 5 5 5 5 5 15g/ha
495 5 5 5 5 5 5 15g/ha
495(R) 5 5 5 5 5 5 15g/ha
496 5 5 5 5 5 5 15g/ha
497 5 5 5 5 5 5 15g/ha
498 5 5 5 5 5 5 15g/ha
498(R) 5 5 5 5 5 5 15g/ha
499 5 5 5 5 5 5 15g/ha
499(R) 5 5 5 5 5 5 15g/ha
500 5 5 5 5 5 5 15g/ha
500(R) 5 5 5 5 5 5 15g/ha
501 5 5 5 5 5 5 15g/ha
501 (R) 5 5 5 5 5 5 15g/ha
502 5 5 5 5 5 5 15g/ha
502(R) 5 5 5 5 5 5 15g/ha
503 5 5 5 5 5 5 15g/ha
503(R) 5 5 5 5 5 5 15g/ha
504 5 5 5 5 5 5 15g/ha
504(R) 5 5 5 5 5 5 15g/ha
511 5 5 5 5 5 5 15g/ha
692 5 5 5 5 5 5 15g/ha
730 5 5 5 5 5 5 15g/ha
730(R) 5 5 5 5 5 5 15g/ha
881 5 5 5 5 5 5 30g/ha
885 5 5 5 5 5 5 30g/ha
919 5 5 5 5 5 5 30g/ha
919(R) 5 5 5 5 5 5 30g/ha
Control compound A 1 0 1 1 0 3 15g/ha
158
Control compound B 2 2 2 1 1 3 15g/ha
Control compound C 2 2 2 1 1 2 15g/ha
Control compound D 3 4 3 3 2 N 15g/ha
Control compound E 3 4 4 3 3 N 15g/ha
Control compound F 1 0 1 1 0 2 60g/ha
Note: N represents untested;
Control compound A:
Control compound B: F3C
N.
cA
Control compound C: F3C
Control compound D: F3C
o
Control compound E: F3C
Control compound F: F3C
o
Table 3. Results of R configuration, S configuration and racemate on weeding effect in post-emergence stage
159
Compound NO. Amaranthus retroflexus Echinochloa cnisgalli Eleusine indica Dose
1(R) 5 4 5 7.5g/ha
1 3 3 3 7.5g/ha
1(S) 1 1 1 7.5g/ha
194(R) 5 5 5 7.5g/ha
194 5 4 4 7.5g/ha
194(S) 2 1 1 7.5g/ha
Control compound D 2 1 2 7.5g/ha
Experiment on weed effect in pre-emergence stage:
The aforementioned seeds of monocotyledonous and dicotyledonous weeds and main crops were put into a plastic pot loaded with soil and covered with 0.5-2cm soil. The test compounds of the présent invention was dissolved with acetone, then added with tween 80, diluted by a 5 certain amount of water to reach a certain concentration, and sprayed immediately after sowing.
The obtained seeds were incubated for 4 weeks in the greenhouse after spraying and the test results were observed. It was observed that the herbicide mostly had excellent effect at the application rate of 500,250,125,60,30,15,7.5 g a.i./ha, especially to weeds such as Echinochloa cnisgalli, Digitaria sangiiinalis and Abutilon theophrasti, etc.. And many compounds had good 10 selectivity for corn, cotton, wheat, rice, soybean, and peanut etc.. In addition, evaluate the weed control effect with the above activity standard level. Many compounds show excellent activity and selectivity, which are shown in Table 4.
Table 4. Results on weeding effect in pre -emergence stage
Compou ndNO. Veron ica didy ma Ténor e Descu rainia sophia Capsel la bursapastori s Abutil on theoph rasti Amara nthus retrofl exus Setari a viridis Corn Cotton So ybe ans Pe an ut Dose
1(R) 5 5 5 5 5 5 0 0 0 0 30g/ha
2(R) 5 5 5 5 5 5 0 0 0 0 30g/ha
194(R) 5 5 5 5 5 5 0 0 0 0 15g/ha
194(R) 5 5 5 5 5 5 0 0 0 0 30g/ha
194(R) 5 5 5 5 5 5 0 0 0 0 60g/ha
196(R) 5 . 5 5 5 5 .5 0 0- - 0 0 30g/ha
198(R) 5 5 5 5 5 5 0 0 0 0 30g/ha
199(R) 5 5 5 5 5 5 0 0 0 0 30g/ha
208(R) 5 5 5 5 5 5 0 0 0 0 30g/ha
160
212(R) 5 5 5 5 5 5 0 0 0 0 30g/ha
216(R) 5 5 5 5 5 5 0 0 0 0 30g/ha
218(R) 5 5 5 5 5 5 0 0 0 0 30g/ha
239(R) 5 5 5 5 5 5 0 0 0 0 30g/ha
246(R) 5 5 5 5 5 5 0 0 0 0 30g/ha
248(R) 5 5 5 5 5 5 0 0 0 0 30g/ha
249(R) 5 5 5 5 5 5 0 0 0 0 30g/ha
253(R) 5 5 5 5 5 5 0 0 0 0 30g/ha
258(R) 5 5 5 5 5 5 0 0 0 0 30g/ha
264(R) 5 5 5 5 5 5 0 0 0 0 30g/ha
283(R) 5 5 5 5 5 5 0 0 0 0 30g/ha
301(R) 5 5 5 5 5 5 0 0 0 0 30g/ha
315(R) 5 5 5 5 5 5 0 0 0 0 30g/ha
333(R) 5 5 5 5 5 5 0 0 0 0 30g/ha
349(R) 5 5 5 5 5 5 0 0 0 0 30g/ha
398(R) 5 5 5 5 5 5 0 0 0 0 30g/ha
421 (R) 5 5 5 5 5 5 0 0 0 0 30g/ha
431 (R) 5 5 5 5 5 5 0 0 0 0 30g/ha
432(R) 5 5 5 5 5 5 0 0 0 0 30g/ha
433 5 5 5 5 5 5 0 0 0 0 30g/ha
434 5 5 5 5 5 5 0 0 0 0 30g/ha
It is indicated from the experiment of main weeds in wheat and rice fields that the compound of the présent invention generally hâve good weed control efficacy. Above ail, it is noted that the compound of the invention hâve extremely high activity to broad-leaved weeds and cyperaceae weeds, which are résistant to ALS inhibitor, like Sagittaria trifolia, Scirpus juncoides, Cyperus diffbrmis, Descurainia sophia, Capsella bursa-pastoris, Lithospermum arvense, Galium aparine L., and Cyperus rotundus L., etc. , and hâve excellent commercial value.
Transplanted rice safety évaluation and weed control effect évaluation in rice field:
Rice field soil was loaded into a 1/1,000,000 ha pot. The seeds of Echinochloa crusgalli,
Scirpus juncoides, Bidens tripartita L., Monochoria vaginalis, and Leptochloa chinensis were sowed and gently covered with soil, then left to stand still in greenhouse in the State of 0.5-lcm of water storage. The tuber of Sagittaria trifolia was planted in the next day or 2 days later. It was kept at 3-4cm of water storage thereafter. The weeds were treated by dripping the WP or SC water diluents prepared according to the common préparation method of the compounds of the présent invention with pipette homogeneously to achieve specified effective amount when Echinochloa crusgalli, Scirpus juncoides, Bidens tripartita L., Monochoria vaginalis, and
161
Leptochloa chinensis reached 0.5 leaf stage and Sagittaria trifolia reached the time point of primary leaf stage.
In addition, the rice field soil that loaded into the 1/1,000,000 ha pot was leveled to keep water storage at 3-4cm depth. The 5 leaf stage rice (japonica rice) was transplanted at 3 cm of transplanting depth the next day. The compound of the présent invention was treated by the same way after 5 days of transplantation.
The fertility condition of Echinochloa crusgalli, Scirpus juncoides, Bidens tripartita L„ Monochoria vaginalis, Leptochloa chinensis and Sagittaria trifolia 14 days after the treatment of the compound of the invention and the fertility condition of rice 21 days after the treatment of the compound of the invention respectively with the naked eye. Evaluate the weed control effect with the above activity standard level. Many compounds show excellent activity and selectivity.
Table 5. Evaluation effect of some compounds
Compound NO. Leptochloa chinensis Scirpus juncoides Monochoria vaginalis Rice Dose
194(R) 5 5 5 0 30 g/ha
196(R) 5 5 5 0 30 g/ha
212(R) 5 5 5 0 30 g/ha
218(R) 5 5 5 0 30 g/ha
421 (R) 5 5 5 0 30 g/ha
434 5 5 5 0 30 g/ha
Pyrazosulfuron-ethyl 2 1 2 1 30 g/ha
Note: The seeds of Echinochloa crusgalli, Scirpus juncoides, Monochoria vaginalis and Bidens tripartita L„ Sagittaria trifolia were collected from Heilongjiang Province of China. The tests indicated that the weeds were résistant to the common doses of Pyrazosulfuron-ethyl.
Composition activity test:
The active ingrédient B shuangzuocaotong, huanbifucaotong, benzuofucaotong, and sanzuohuangcaotong was produced by our company, the préparation methods of
purchased from reagent companies. The technical materials were ail dissolved in acetone and diluted with an aqueous solution containing 0.1% emulsifier Tween-80. The dilution is performed as required.
(1) Synthesis of Compound
162 (1.1) Cpd 1(3 g, 16 mmol, 1.0 eq), NaOH (0.72 g, 18 mmol, 1.1 eq) were added sequentially into 30 ml of DMF, and then Cpd 2 (1.28 g, 16.8 mmol, 1.05 eq) was added dropwise at 0 °C, and the reaction solution was stirred at 0 °C for 1 hour. When LCMS test showed that the reaction of raw materials was basically completed, there was one major new peak. The reaction solution was poured into 30 ml of water, and the mixture was separated, and the aqueous phase was extracted once with 50 ml of ethyl acetate, and the résultant organic phase was washed three times with saturated saline solution (50 ml), dried, evaporated to dryness under reduced pressure and separated by column chromatography to obtain Cpd 3 (3.6 g, 91% yield) (colorless oil).
CF3
Cpd 1
+ NaOH
DMF
Cpd 3 (1.2) Cpd 3(3.1 g, 13 mmol, 1.0 eq) was added to 30 ml of THF, then n-BuLi (6.42 ml, 2.5 M, 16 mmol, 1.2 eq) was slowly added at -78 °C, then the reaction solution was stirred at -78 °C for 0.5 hour, and slowly fed with CO2 for 10 minutes, then the reaction solution was slowly warmed to room température. The product was detected by LCMS. 20 ml of water was poured into the reaction solution, the mixture was separated, the aqueous phase was extracted once with 30 ml of ethyl acetate, and the résultant aqueous phase was gradually adjusted to pH = 4-5 with concentrated hydrochloric acid, filtered and dried to give Cpd 4(3.2 g, 87% yield) (white solid).
(1.3) Cpd 4(3.1 g, 11 mmol, 1.0 eq), Cpd 5 (1.66 g, 16.8 mmol, 1.5 eq), DMAP (0.13 g, 1.1 mmol, 0.1 eq) were sequentially added to 30 ml ofpyridine. Then, SOC12 (2.0 g, 16.8 mmol, 1.5 eq) was slowly added at 0 °C, and the reaction solution was stirred at room température for 3 hours. The product was detected by LCMS. Pyridine was removed by concentration, then 30 ml of water was poured into the reaction solution, and the mixture was separated. The aqueous phase was extracted three times with 30 ml of ethyl acetate, and the résultant organic phase was washed three times with saturated saline solution (50 ml), dried, and evaporated to dryness under reduced pressure and separated by column chromatography to to obtain Cpd 6(2.5 g, 63% yield)
163 (white solid).
CF3
Cpd 4 Cpd 5 Cpd 6 (1.4) Cpd 6(1 g, 2.8 mmol, 1.0 eq) and m-CPBA (0.54 g, 3.1 mmol, 1.1 eq) were added sequentially in 10 mL of dichloromethane. The reaction solution was then stirred at room température for 1 hour. The product was detected by LCMS, and the reaction of raw materials was basically completed. The reaction solution was poured into 10 ml of water, the reaction was quenched with sodium hydrogen sulfite, and the mixture was separated. The aqueous phase was extracted three times with 30 ml of dichloromethane, and the résultant organic phase was washed once with saturated saline solution (30 ml), dried, and evaporated to dryness under reduced pressure, and separated by column chromatography to give Cpd 7(0.85 g, 82% yield) (greyish white solid).
’H NMR (500 MHz, DMSO-îZ6) 12.57 (s, 1H), 8.07 (dd, J = 8.0, 7.0 Hz, 1H), 7.82 (d, J =
8.0 Hz, 1H), 3.57-3.47 (m, 2H), 2.48 (s, 3H), 1.70-1.52 (m, 2H), 1.08-0.93 (m, 3H).
Cpd6 Cpd7 (1.5) Cpd 7 (0.5 g, 98% purity) was passed through chiral HP LC (Column: CHIRALPAK IG; Column Size: 3 cm x 25 cm, 5 um; Injection: 3.0 ml; Mobile phase: Hex(0.2% FA) : IPA=50:50; Flow rate: 28ml/min; Wavelength: UV 254nm; Température: 25°C; Sample solution: 70mg/ml in EtOH/DCM; Run time= 60 mins) for séparation, and then concentrated to obtain Cpd B1 (R-configuration)(0.16 g, Rt=l0.51min, 100% ee, purity 98%) in white solids, which were confirmed by single crystal diffraction.
164
Cpd 7
Cpd B1 (2) Synthesis of Compound
(2.1) Cpd a (0.5g, 2.13mmol), Cpd b (313mg, 2.55mmol), a catalytic amount of TBAB (lOmg), and DMF (lOmL) were added to a round-bottom flask, and stirred at room température 5 15 °C for 24 hr. When there was a small amount of raw materials remained according to LC-MS détection, a further treatment was made. The reaction solution was poured into 50mL of water, and extracted with methyl tert-butyl ether twice (50mL x 2). The organic phase was dried, concentrated, and separated by column chromatography, to obtain Cpd c (300mg, yield 50%), as a white solid.
O l0 Cpd a Cpd b Cpd c (2.2) Cpd c (0.3g, l.Oômmol), methanol (20mL) were added to a 100 mL single-port flask, lithium hydroxide (44.5mg, l.Oômmol) was dissolved in 2 mL of water, and slowly added dropwise to the single-port flask at room température, followed by stirring at room température for 12 hr. After completed reaction of the raw materials according to LC-MS détection, the reaction solution was adjusted with 0.5M dilute HCl to pH = 5-6, concentrated, and then extracted with water and ethyl acetate. The organic phase was dried, and concentrated to obtain Cpd d (200mg, yield 70%) as a white solid.
(2.3) Cpd d (200mg, 0.74mmol), Cpd e (75mg, 0.74mmol), DCC (152mg, 0.74mmol), and
165 anhydrous DCM (20mL) were added to a 100 mL round-bottom flask, and reacted at room température for 12 hr. After completed reaction of the raw materials according to LC-MS détection, the reaction solution was concentrated, and separated by column chromatography to obtain the Cpd B2 (200mg, yield 77%), as a white solid.
Cpd d Cpd e Cpd B2 ’H NMR (500 MHz, Chloroform-Y) δ 5.28 (q, J= 7.0 Hz, 1H), 5.15 (s, 2H), 4.27 - 4.07 (m, 3H), 3.91-3.73 (m, 2H), 2.04-1.82 (m, 3H), 1.66 (d, ./=7.0 Hz, 3H), 1.59-1.54 (m, 1H).
(A)Post-emergence treatment by performing foliage spray:
Weeds were cultivated by a pot culture method. A 180 xl40 mm plastic nutritional bowl contained 4/5 topsoil from the field was placed in an enamel pan, wherein the soil had been air-dried and screened and had an initial moisture content of 20%. Full and uniform weed seeds were selected, soaked in warm water at 25°C for 6 hours, and germinated in a 28°C biochemical incubator (darkness). The weed seeds that had just germinated were evenly placed on the surface of the soil and then covered with 0.5-1 cm soil according to the sizes of seeds.
The culture was carried out in a controllable sunlight greenhouse at 20 to 30°C, in naturel light, and relative humidity of 57% to 72%. The soil was loam with an organic matter content of 1.63%, a pH value of 7.1, an alkali-hydrolyzable nitrogen of 84.3 mg/kg, a rapidly available phosphores of 38.5 mg/kg, and a rapidly available potassium 82.1 mg/kg.
pots with 20 weed seeds per pot were treated in one treatment with 4 réplications per treatment.
The agents were used for only once in the experiment. In the stage of weeds with 1.5-2 leaves, the weeds were thinned out to maintain 10 weeds per pot and 30 weeds for each treatment, then continued to be cultured to Conyza Canadensis 10cm in height, other weeds 3-4 leaves stage and treated.
The well-cultured weeds were evenly placed on a platform with an area of 0.5m2, and a solution of agents was sprayed on the stems and leaves thereof by the 3WP-2000-type walking spray tower at a dosage of450kg/ha and at a spray pressure of 0.3MPa. After ail the solution was sprayed, the valve was closed. After 30 seconds, the door of the spray tower was opened, and the
166 nutritional bowl was taken ont. Then the valve was opened, and the spray tube was cleaned by spraying 50 ml of water. After the treatment, the weeds were routinely cultured in a greenhouse.
(B)Soil sealing treatment:
Weeds are cultivated in a controllable sunlight greenhouse at 20 to 30°C, in natural light, and relative humidity of 57% to 72%. The soil was loam with an organic matter content of 1.63%, a pH value of 7.1, an alkali-hydrolyzable nitrogen of 84.3 mg/kg, a rapidly available phosphores of 38.5 mg/kg, and a rapidly available potassium 82.1 mg/kg. The test soil was placed quantitatively to 3/4 of the pots and then watered from the bottom of the pots to completely wet the soil to saturation. The test weed seeds were germinated, and uniformly and quantitatively sowed on the surface, then covered with 0.5-2 cm soil according to the seed size, and ready-for use 72 hours after sowing.
pots with 30 weed seeds per pot were treated in one treatment with 4 réplications per treatment.
The well-sowed weeds were evenly placed on a platform with an area of 0.5m2, and a solution of agents was sprayed on the soil thereof by the 3WP-2000-type walking spray tower at a dosage of 450kg/ha and at a spray pressure of 0.3MPa. After ail the solution was sprayed, the valve was closed. After 30 seconds, the door of the spray tower was opened, and the nutritional bowl was taken out. Then the valve was opened, and the spray tube was cleaned by spraying 50 ml of water.
(C)Data investigation and statistical analysis:
A method for investigating absolute number was employed, wherein whole seedlings of survival weeds were eut off with a blade along the soil surface, and the fresh weight of the weeds was weighed with an analytical balance. For dead weeds, the fresh weight thereof was zéro.
The investigation was performed after 21 days of the treatment for only once.
Theoretical fresh weight inhibition rate of a combination of two active ingrédients in each group was calculated by the Gowing method (E0=X+Y-X*Y/100), and then compared with an actually measured inhibition rate (E), thereby effect of the combination (hereafter referred to as combined effect) on weeds was evaluated: the value of Ε-Ε0, which was greater than 10%, corresponded to a synergistic effect, the value of Ε-Ε0, which was less than -10%, corresponded to an antagonistic effect, and the value of Ε-Ε0, which was from -10% to 10%, corresponded to an additional effect. An optimum ratio of the two active ingrédients was determined by the actual
167 control effect, characteristics of herbicides, and balance of a corresponding formula. Wherein, in the formula, X represented the fresh weight inhibition rate of the active ingrédient A in a dosage of P, and Y represented the fresh weight inhibition rate of the active ingrédient B in a dosage of Q. The statistical results were shown in the table 6.
Table 6. Actual control effect and combined effect of a combination of A on weeds
Components Weed Foliag e / Soil F/S Dose g a.i./ha Ratio Contro 1 effect (%) of A applie d alone (A) Contro 1 effect (%) of B applie d alone (B) Actual control effect of A+B (%) E(A+B) Theoretic al control effect of A+B(%) E0(A+B) E(A+B) -E0(A+ B)
A+topramez one Echino chloa caudat a Roshev F 1.5+7.5 1:5 65.9 38.5 93.5 79.0 14.5
A+isoxafluto le Echino chloa caudat a Roshev F 1.5+15 1:10 65.9 41.3 91.9 80.0 11.9
A+tembotrio ne Echino chloa caudat a Roshev F 1.5+15 1:10 65.9 31.7 88.3 76.7 11.6
A+tefuryltrio ne Echino chloa caudat a Roshev F 1.5+30 1:20 65.9 21.5 86.6 73.2 13.4
A+shuangzu ocaotong Echino chloa caudat a Roshev F 1.5+15 1:10 65.9 35.9 94.5 78.1 16.4
A+huanbifiic aotong Echino chloa caudat a Roshev F 1.5+60 1:40 65.9 27.4 87.4 75.2 12.2
168
A+sanzuohu angcaotong Echino chloa caudat a Roshev F 1.5+30 1:20 65.9 56.7 98.4 85.2 13.2
A+benzuofu caotong Echino chloa caudat a Roshev F 1.5+15 1:10 65.9 25.2 89.9 74.5 15.4
A+CpdBl Echino chloa caudat a Roshev F 1.5+7.5 1:5 65.9 47.8 96.2 82.2 14.0
A+glyphosat e Cyper us rotund us F 7.5+300 1:40 52.4 19.4 82.4 61.6 20.8
A+glyphosat e Conyz a Canad ensis F 45+450 1:10 75.6 51.2 100.0 88.1 11.9
A+glufosinat e ammonium Cyper us serotin us F 15+300 1:20 47.3 23.1 90.2 59.5 30.7
A+glufosinat e ammonium Conyz a Canad ensis F 45+300 3:20 75.6 57.8 100.0 89.7 10.3
A+glufosinat e-P-ammoni um Cyper us serotin us F 15+150 1:10 47.3 21.4 85.3 58.6 26.7
A+paraquat dichloride Cyper us diffor mis F 15+150 1:10 42.2 35.7 87.4 62.8 24.6
A+paraquat dichloride Conyz a Canad ensis F 45+225 1:5 75.6 48.4 100.0 87.4 12.6
A+diquat dibromide monohydrate Cyper us diffor mis F 15+300 1:20 42.2 18.4 79.2 52.8 26.4
169
A+diquat dibromide monohydrate Conyz a Canad ensis F 45+300 3:20 75.6 37.8 100.0 84.8 15.2
A+flurtamon e Capsel la bursapastori s F 0.75+75 1:100 48.3 56.7 95.4 77.6 17.8
A+diflufenic an Capsel la bursapastori s F 0.75+75 1:100 48.3 33.1 86.7 65.4 21.3
A+picolinafe n Capsel la bursapastori s F 0.75+45 1:60 48.3 44.4 91.5 71.3 20.2
A+clomazon e Eleusi ne indica F 3+150 1:50 47.8 46.5 95.1 72.1 23.0
A+bixlozone Eleusi ne indica F 3+180 1:60 47.8 36.7 88.8 67.0 21.8
A+tribenuro n-methyl Malac hium aquati cum F 7.5+3 5:2 62.8 27.9 90.1 73.2 16.9
A+thifensulf uron methyl Malac hium aquati cum F 7.5+4.5 5:3 62.8 30.8 87.2 74.3 12.9
A+pyrazosul furon-ethyl Malac hium aquati cum F 7.5+7.5 1:1 62.8 35.7 89.5 76.1 13.4
A+thiencarb azone-methy 1 Malac hium aquati cum F 7.5+3 5:2 62.8 41.1 93.3 78.1 15.2
A+halosulfur on methyl Malac hium aquati cum F 7.5+9 5:6 62.8 36.4 94.7 76.3 18.4
A+rimsulfur on Malac hium aquati cum F 7.5+1.5 5:1 62.8 26.2 92.4 72.5 19.9
A+nicosulfur on Malac hium F 7.5+3 5:2 62.8 31.4 88.5 74.5 14.0
170
aquati cum
A+imazamo X Malac hium aquati cum F 7.5+15 1:2 62.8 27.2 91.2 72.9 18.3
A+clethodim Erioch loa villosa F 0.75+30 1:40 42.9 35.5 89.5 63.2 26.3
A+sethoxydi m Erioch loa villosa F 0.75+45 1:60 42.9 36.7 92.3 63.9 28.4
A+quizalofo p-P-methyl Erioch loa villosa F 0.75+15 1:20 42.9 41.7 87.3 66.7 20.6
A+oxyfluorf en Lithos permit m arvens e F 3+60 1:20 63.5 31.5 91.4 75.0 16.4
A+oxadiazo n Lithos permit m arvens e F 3+90 1:30 63.5 24.3 92.1 72.4 19.7
A+oxadiargy 1 Lithos permit m arvens e F 3+30 1:10 63.5 38.7 89.8 77.6 12.2
A+sulfentraz one Lithos permit m arvens e F 3+90 1:30 63.5 26.5 94.1 73.2 20.9
A+pyraclonil Lithos permit m arvens e F 3+75 1:25 63.5 37.9 90.5 77.3 13.2
A+flumioxaz in Lithos permu m arvens e F 3+7.5 2:5 63.5 29.4 92.4 74.2 18.2
A+saflufena cil Lithos permu m arvens e F 3+0.75 4:1 63.5 39.7 98.4 78.0 20.4
A+carfentraz Lithos F 3+4.5 2:3 63.5 27.2 89.3 73.4 15.9
171
one-ethyl permit m arvens e
A+triiludimo xazin Lithos permit m arvens e F 3+4,5 2:3 63.5 31.8 94.8 75.1 19.7
A+metribuzi n Eclipta prostr aie F 0.75+15 1:20 59.2 36.3 89.3 74.0 15.3
A+terbuthyla zine Eclipta prostr ate F 0.75+150 1:200 59.2 31.7 94.1 72.1 22.0
A+amicarba zone Eclipta prostr ate F 0.75+60 1:80 59.2 43.7 90.7 77.0 13.7
A+chlorotol uron Eclipta prostr ate F 0.75+225 1:300 59.2 24.5 86.2 69.2 17.0
A+isoprotur on Eclipta prostr ate F 0.75+225 1:300 59.2 33.9 92.5 73.0 19.5
A+bromacil Eclipta prostr ate F 0.75+450 1:600 59.2 28.4 83.9 70.8 13.1
A+propanil Eclipta prostr ate F 0.75+300 1:400 59.2 21.7 93.8 68.1 25.7
A+desmedip ham Eclipta prostr ate F 0.75+300 1:400 59.2 16.2 90.5 65.8 24.7
A+phenmedi pham Eclipta prostr ate F 0.75+300 1:400 59.2 20.8 86.2 67.7 18.5
A+bentazone Eclipta prostr ate F 0.75+150 1:200 59.2 30.2 88.4 71.5 16.9
A+bromoxy nil Eclipta prostr ate F 0.75+60 1:80 59.2 41.2 92.6 76.0 16.6
A+butralin Leptoc hloa chinen sis S 3+180 1:60 33.2 47.4 92.3 64.9 27.4
A+pendimet halin Leptoc hloa chinen sis S 3+150 1:50 33.2 43.2 85.8 62.1 23.7
A+butachlor | Descur S 3+225 1:75 40.2 42.2 92.3 65.4 26.9
172
ainia sophia
A+pretilachl or Descur ainia sophia S 3+180 1:60 40.2 51.2 95.7 70.8 24.9
A+mefenace t Descur ainia sophia S 3+150 1:50 40.2 46.4 89.6 67.9 21.7
A+s-metolac hlor Descur ainia sophia S 3+150 1:50 40.2 31.3 94.3 58.9 35.4
A+flufenacet Descur ainia sophia S 3+150 1:50 40.2 45.6 96.3 67.5 28.8
A+pyroxasul fone Descur ainia sophia S 3+60 1:20 40.2 57.6 98.2 74.6 23.6
A+anilofos Descur ainia sophia S 3+75 1:25 40.2 38.3 97.3 63.1 34.2
A+prosulfoc arb Echino chloa crusga lli S 15+600 1:40 51.7 32.6 86.9 67.4 19.5
A+ Cpd B2 Veroni ca didym a Tenore F 0.75+90 1:120 57.3 42.1 92.6 75.3 17.3
A+fluroxypy r Veroni ca didym a Tenore F 0.75+60 1:80 57.3 39.3 90.3 74.1 16.2
A+florpyrau xifen benzyl Veroni ca didym a Tenore F 0.75+15 1:20 57.3 50.3 91.5 78.8 12.7
A+halauxife n-methyl Veroni ca didym a Tenore F 0.75+3 1:4 57.3 35.6 87.6 72.5 15.1
A+triclopyr Veroni ca didym a Tenore F 0.75+90 1:120 57.3 34.2 91.5 71.9 19.6
A+clopyralid Veroni ca F 0.75+45 1:60 57.3 28.9 83.3 69.6 13.7
173
didym a Tenore
A+picloram Veroni ca didym a Tenore F 0.75+300 1:400 57.3 43.6 88.7 75.9 12.8
A+atninopyr alid Veroni ca didym a Tenore F 0.75+30 1:40 57.3 32.2 90.2 71.0 19.2
A+dicamba Veroni ca didym a Tenore F 0.75+150 1:200 57.3 29.7 87.3 70.0 17.3
A+2-methyl4-chlorophen oxyacetic acid Veroni ca didym a Tenore F 0.75+150 1:200 57.3 39.3 90.9 74.1 16.8
A+2,4-dichlo rophenoxy acetic acid Veroni ca didym a Tenore F 0.75+150 1:200 57.3 32.6 85.2 71.2 14.0
A+triaziflam Amara nthus retrofl exus S 3+30 1:10 37.3 42.1 91.3 63.7 27.6
A+indazifla m Amara nthus retrofl exus S 3+15 1:5 37.3 49.3 93.3 68.2 25.1
A+cinmethyl in Lolium multifl orum Lamk. S 30+300 1:10 48.6 33.7 87.3 65.9 21.4
Note: The compound number represented by A is 194 (R).
In addition, the présent invention also provides other spécifie combinations of component A and component B, to further illustrate the composition of the présent invention. The compounds in the column Component A (Compound No.) are identified in Table 1. The second colùmn of
Table B1 lists spécifie compounds (for example topramezone in the first row) for component B. The remaining rows of Table B1 are similarly constructed.
Table Bl. List of ingrédients of the composition
174
Component A (Compound NO.) Component B
1 topramezone
1 isoxaflutole
1 tembotrione
1 tefuryltrione
1 shuangzuocaotong
1 huanbifucaotong
1 sanzuohuangcaotong
1 benzuofucaotong
1 / o « \ // u. '•-ω O zx Ζ=Λ
1 glyphosate
1 glufosinate ammonium
1 glufosinate-P-ammonium
1 paraquat dichloride
1 diquat dibromide monohydrate
1 flurtamone
1 diflufenican
1 picolinafen
1 clomazone
1 bixlozone
1 tribenuron-methyl
1 thifensulfuron methyl
1 pyrazosulfuron-ethyl
1 thiencarbazone-methyl
1 halosulfiiron methyl
1 rimsulfuron
1 nicosulfuron
1 imazamox
1 clethodim
1 sethoxydim
1 quizalofop-P-methyl
1 oxyfluorfen
1 oxadiazon
1 oxadiargyl
1 sulfentrazone
175
1 pyraclonil
1 flumioxazin
1 saflufenacil
1 carfentrazone-ethyl
1 trifludimoxazin
1 metribuzin
1 terbuthylazine
1 amicarbazone
1 chlorotoluron
1 isoproturon
1 bromacil
1 propanil
1 desmedipham
1 phenmedipham
1 bentazone
1 bromoxynil
1 butralin
1 pendimethalin
1 butachlor
1 pretilachlor
1 mefenacet
1 s-metolachlor
1 flufenacet
1 pyroxasulfone
1 anilofos
1 prosulfocarb
1 H P )—\ NJ o Q A..... K
1 fluroxypyr
1 florpyrauxifen benzyl
1 halauxifen-methyl
1 triclopyr
1 clopyralid
1 picloram
1 aminopyralid
1 dicamba
1 2-methyl-4-chlorophenoxyacetic
176
acid
1 2,4-dichlorophenoxy acetic acid
1 triaziflam
1 indaziflam
1 cinmethylin
Table B2 is constructed in the same way as that of Table B1 above, except for replacing the entries in the column “Component A (Compound No.)” with the corresponding entries in the column “Component A (Compound No.)” shown below. Therefore, for example, in Table B2, the entries in the column “Component A (Compound No.)” are ail expressed as “2” (that is, 5 Compound 2 identified in Table 1), and a mixture of Compound 2 and “topramezone” is specifically listed in the first row under the heading of Table B2. Tables B3 to B547 are similarly constructed.
Table Component A (Compound NO.) column entry Table Component A (Compound NO.) column entry Table Component A (Compound NO.) column entry Table Component A (Compound NO.) column entry
B2 2 B3 3 B4 4 B5 5
B6 6 B7 7 B8 8 B9 9
B10 10 Bll 11 B12 12 B13 13
B14 14 B15 15 B16 16 B17 17
B18 18 B19 19 B20 20 B21 21
B22 22 B23 23 B24 24 B25 25
B26 26 B27 27 B28 28 B29 29
B30 30 B31 31 B32 32 B33 33
B34 34 B35 35 B36 36 B37 37
B38 38 B39 39 B40 40 B41 41
B42 42 B43 43 B44 44 B45 45
B46 46 B47 47 B48 48 B49 49
B50 50 B51 51 B52 52 B53 53
B54 54 B55 55 B56 56 B57 57
B58 58 B59 59 B60 60 B61 61
B62 62 B63 63 B64 64 B65 65
B66 66 B67 67 B68 68 B69 69
177
B70 70 B71 71 B72 72 B73 73
B74 74 B75 75 B76 76 B77 77
B78 78 B79 79 B80 80 B81 81
B82 82 B83 83 B84 84 B85 85
B86 86 B87 87 B88 88 B89 89
B90 90 B91 91 B92 92 B93 93
B94 94 B95 95 B96 96 B97 97
B98 98 B99 99 B100 100 B101 101
B102 102 B103 103 B104 104 B105 105
B106 106 B107 107 B108 108 B109 109
B110 110 Bill 111 B112 112 B113 113
B114 114 B115 115 B116 116 B117 117
B118 118 B119 119 B120 120 B121 121
B122 122 B123 123 B124 124 B125 125
B126 126 B127 127 B128 128 B129 129
B130 130 B131 131 B132 132 B133 133
B134 134 B135 135 B136 136 B137 137
B138 138 B139 139 B140 140 B141 141
B142 142 B143 143 B144 144 B145 145
B146 146 B147 147 B148 148 B149 149
B150 150 B151 151 B152 152 B153 153
B154 154 B155 155 B156 156 B157 157
B158 158 B159 159 B160 160 B161 161
B162 162 B163 163 B164 164 B165 165
B166 166 B167 167 B168 168 B169 169
B170 170 B171 171 B172 172 B173 173
B174 174 B175 175 B176 176 B177 177
B178 178 B179 179 B180 180 B181 181
B182 182 B183 183 B184 184 B185 185
B186 186 B187 187 B188 188 B189 189
B190 190 B191 191 B192 192 B193 193
B194 194 B195 195 B196 196 B197 197
B198 198 B199 199 B200 200 B201 201
B202 202 B203 203 B204 204 B205 205
B206 206 B207 207 B208 208 B209 209
B210 210 B211 211 B212 212 B213 213
B214 214 B215 215 B216 216 B217 217
178
B218 218 B219 219 B220 220 B221 221
B222 222 B223 223 B224 224 B225 225
B226 226 B227 227 B228 228 B229 229
B230 230 B231 231 B232 232 B233 233
B234 234 B235 235 B236 236 B237 237
B238 238 B239 239 B240 240 B241 241
B242 242 B243 243 B244 244 B245 245
B246 246 B247 247 B248 248 B249 249
B250 250 B251 251 B252 252 B253 253
B254 254 B255 255 B256 256 B257 257
B258 258 B259 259 B260 260 B261 261
B262 262 B263 263 B264 264 B265 265
B266 266 B267 267 B268 268 B269 269
B270 270 B271 271 B272 272 B273 273
B274 274 B275 275 B276 276 B277 277
B278 278 B279 279 B280 280 B281 281
B282 282 B283 283 B284 284 B285 285
B286 286 B287 287 B288 288 B289 289
B290 290 B291 291 B292 292 B293 293
B294 294 B295 295 B296 296 B297 297
B298 298 B299 299 B300 300 B301 301
B302 302 B303 303 B304 304 B305 305
B306 306 B307 307 B308 308 B309 309
B310 310 B311 311 B312 312 B313 . 313
B314 314 B315 315 B316 316 B317 317
B318 318 B319 319 B320 320 B321 321
B322 322 B323 323 B324 324 B325 325
B326 326 B327 327 B328 328 B329 329
B330 330 B331 331 B332 332 B333 333
B334 334 B335 335 B336 336 B337 337
B338 338 B339 339 B340 340 B341 341
B342 342 B343 343 B344 344 B345 345
B346 346 B347 347 B348 348 B349 349
B350 350 B351 351 B352 352 B353 353
B354 354 B355 355 B356 356 B357 357
B358 358 B359 359 B360 360 B361 361
B362 362 B363 363 B364 364 B365 365
179
B366 366 B367 367 B368 368 B369 369
B370 370 B371 371 B372 372 B373 373
B374 374 B375 375 B376 376 B377 377
B378 378 B379 379 B380 380 B381 381
B382 382 B383 383 B384 384 B385 385
B386 386 B387 387 B388 388 B389 389
B390 390 B391 391 B392 392 B393 393
B394 394 B395 395 B396 396 B397 397
B398 398 B399 399 B400 400 B401 401
B402 402 B403 403 B404 404 B405 405
B406 406 B407 407 B408 408 B409 409
B410 410 B411 411 B412 412 B413 413
B414 414 B415 415 B416 416 B417 417
B418 418 B419 419 B420 420 B421 421
B422 422 B423 423 B424 424 B425 425
B426 426 B427 427 B428 428 B429 429
B430 430 B431 431 B432 432 B433 433
B434 434 B435 435 B436 436 B437 437
B438 438 B439 439 B440 440 B441 441
B442 442 B443 443 B444 444 B445 445
B446 446 B447 447 B448 448 B449 449
B450 450 B451 451 B452 452 B453 453
B454 454 B455 455 B456 456 B457 457
B458 458 B459 459 B460 460 B461 461
B462 462 B463 463 B464 464 B465 465
B466 466 B467 467 B468 468 B469 469
B470 470 B471 471 B472 472 B473 473
B474 474 B475 475 B476 476 B477 477
B478 478 B479 479 B480 480 B481 481
B482 482 B483 483 B484 484 B485 485
B486 486 B487 487 B488 488 B489 489
B490 490 B491 491 B492 492 B493 493
B494 494 B495 495 B496 496 B497 497
B498 498 B499 499 B500 500 B501 501
B502 502 B503 503 B504 504 B505 505
B506 506 B507 507 B508 508 B509 509
B510 510 B511 511 B512 512 B513 513
180
B514 514 B515 515 B516 516 B517 517
B518 518 B519 519 B520 520 B521 521
B522 522 B523 523 B524 524 B525 525
B526 526 B527 527 B528 528 B529 529
B530 530 B531 531 B532 532 B533 533
B534 534 B535 535 B536 536 B537 537
B538 538 B539 539 B540 540 B541 541
B542 542 B543 543 B544 544 B545 545
B546 546 B547 547 B548 692 B549 730
B550 881 B551 885 B552 919
Table Cl is constructed in the same way as that of Table B1 above, except for replacing the entries in the column “Component A (Compound No.)” with the corresponding entries in the column “Component A (Compound No.)” shown below. Therefore, for example, in Table Cl, the entries in the column “Component A (Compound No.)” are ail expressed as “1(R)” (that is, the R configuration of Compound 1 identified in Table A), and a mixture of Compound 1(R) and “topramezone” is specifically listed in the first row under the heading of Table Cl. Tables C2 to
C532 are similarly constructed.
Table Component A (Compound NO.) column entry Table Component A (Compound NO.) column entry Table Component A (Compound NO.) column entry Table Component A (Compound NO.) column entry
C2 2(R) C3 3(R) C4 4(R) C5 5(R)
C6 6(R) C7 7(R) C8 8(R) C9 9(R)
CIO 10(R) Cil 11(R) C12 12(R) C13 13(R)
C14 14(R) C15 15(R) C16 16(R) C17 17(R)
C18 18(R) C19 19(R) C20 20(R) C21 21 (R)
C22 22(R) C23 23(R) C24 24(R) C25 25(R)
C26 26(R) C27 27(R) C28 28(R) C29 29(R)
C30 30(R) C31 31(R) C32 32(R) C33 33(R)
C34 34(R) C35 35(R) C36 36(R) C37 37(R)
C38 38(R) C39 39(R) C40 40(R) C41 41(R)
C42 42(R) C43 43(R) C44 44(R) C45 45(R)
C46 46(R) C47 47(R) C48 48(R) C49 49(R)
C50 50(R) C51 51(R) C52 52(R) C53 53(R)
C54 54(R) C55 55(R) C56 56(R) C57 57(R)
181
C58 58(R) C59 59(R) C60 60(R) C61 61(R)
C62 62(R) C63 63(R) C64 64(R) C65 65(R)
C66 66(R) C67 67(R) C68 68(R) C69 69(R)
C70 70(R) C71 71 (R) C72 72(R) C73 73(R)
C74 74(R) C75 75(R) C76 76(R) C77 77(R)
C78 78(R) C79 79(R) C80 80(R) C81 81 (R)
C82 82(R) C83 83(R) C84 84(R) C85 85(R)
C86 86(R) C87 87(R) C88 88(R) C89 89(R)
C90 90(R) C91 91(R) C92 92(R) C93 93(R)
C94 94(R) C95 95(R) C96 96(R) C97 97(R)
C98 98(R) C99 99(R) C100 100(R) C101 101(R)
C102 102(R) C103 103(R) C104 104(R) C105 105(R)
C106 106(R) C107 107(R) C108 108(R) C109 109(R)
C110 110(R) cm lll(R) C112 112(R) C113 113(R)
C114 114(R) C115 115(R) C116 116(R) C117 117(R)
C118 118(R) C119 119(R) C120 120(R) C121 121(R)
C122 122(R) C123 123(R) C124 124(R) C125 125(R)
C126 126(R) C127 127(R) C128 128(R) C129 129(R)
C130 130(R) C131 131(R) C132 132(R) C133 133(R)
C134 134(R) C135 135(R) C136 136(R) C137 137(R)
C138 138(R) C139 139(R) C140 140(R) C141 141(R)
C142 142(R) C143 143(R) C144 144(R) C145 145(R)
C146 146(R) C147 147(R) C148 148(R) C149 149(R)
C150 150(R) C151 151(R) C152 152(R) C153 153(R)
C154 154(R) C155 155(R) C156 156(R) C157 157(R)
C158 158(R) C159 159(R) C160 160(R) C161 161(R)
C162 162(R) C163 163(R) C164 164(R) C165 165(R)
C166 166(R) C167 167(R) C168 168(R) C169 169(R)
C170 170(R) C171 171(R) C172 172(R) C173 173(R)
C174 174(R) C175 175(R) C176 176(R) C177 177(R)
C178 178(R) C179 179(R) C180 180(R) C181 181(R)
C182 182(R) C183 183(R) C184 184(R) C185 185(R)
C186 186(R) C187 187(R) C188 188(R) C189 193(R)
C190 547(R) C191 195(R) C192 196(R) C193 197(R)
C194 198(R) C195 199(R) C196 200(R) C197 201 (R)
C198 202(R) C199 203 (R) C200 204(R) C201 205(R)
C202 206(R) C203 207(R) C204 208(R) C205 209(R)
182
C206 210(R) C207 211(R) C208 212(R) C209 213(R)
C210 214(R) C211 215(R) C212 216(R) C213 217(R)
C214 218(R) C215 219(R) C216 220(R) C217 221 (R)
C218 222(R) C219 223(R) C220 224(R) C221 225(R)
C222 226(R) C223 227(R) C224 228(R) C225 229(R)
C226 230(R) C227 231 (R) C228 232(R) C229 233(R)
C230 234(R) C231 235(R) C232 236(R) C233 237(R)
C234 238(R) C235 239(R) C236 240(R) C237 241 (R)
C238 242(R) C239 243(R) C240 244(R) C241 245(R)
C242 246(R) C243 247(R) C244 248(R) C245 249(R)
C246 250(R) C247 251 (R) C248 252(R) C249 253(R)
C250 254(R) C251 255(R) C252 256(R) C253 257(R)
C254 258(R) C255 259(R) C256 260(R) C257 261 (R)
C258 262(R) C259 263(R) C260 264(R) C261 265(R)
C262 266(R) C263 267(R) C264 268(R) C265 269(R)
C266 270(R) C267 271 (R) C268 272(R) C269 273(R)
C270 274(R) C271 275(R) C272 276(R) C273 277(R)
C274 278(R) C275 279(R) C276 280(R) C277 281 (R)
C278 282(R) C279 283(R) C280 284(R) C281 285(R)
C282 286(R) C283 287(R) C284 288(R) C285 289(R)
C286 290(R) C287 291 (R) C288 292(R) C289 293(R)
C290 294(R) C291 295(R) C292 296(R) C293 297(R)
C294 298(R) C295 299(R) C296 300(R) C297 301(R)
C298 302(R) C299 303(R) C300 304(R) C301 305(R)
C302 306(R) C303 307(R) C304 308(R) C305 309(R)
C306 310(R) C307 311(R) C308 312(R) C309 313(R)
C310 314(R) C311 315(R) C312 316(R) C313 317(R)
C314 318(R) C315 319(R) C316 320(R) C317 321 (R)
C318 322(R) C319 323(R) C320 324(R) C321 325(R)
C322 326(R) C323 327(R) C324 328(R) C325 329(R)
C326 330(R) C327 331 (R) C328 332(R) C329 333(R)
C330 334(R) C331 335(R) C332 336(R) C333 337(R)
C334 338(R) C335 339(R) C336 340(R) C337 341 (R)
C338 342(R) C339 343(R) C340 344(R) C341 345(R)
C342 346(R) C343 347(R) C344 348(R) C345 349(R)
C346 350(R) C347 351 (R) C348 352(R) C349 353(R)
C350 354(R) C351 355(R) C352 356(R) C353 357(R)
183
C354 358(R) C355 359(R) C356 360(R) C357 361(R)
C358 362(R) C359 363(R) C360 364(R) C361 365(R)
C362 366(R) C363 367(R) C364 368(R) C365 369(R)
C366 370(R) C367 371 (R) C368 372(R) C369 373(R)
C370 374(R) C371 375(R) C372 376(R) C373 377(R)
C374 378(R) C375 379(R) C376 380(R) C377 381 (R)
C378 382(R) C379 383(R) C380 384(R) C381 385(R)
C382 386(R) C383 387(R) C384 388(R) C385 389(R)
C386 390(R) C387 391(R) C388 392(R) C389 393(R)
C390 394(R) C391 395(R) C392 396(R) C393 397(R)
C394 398(R) C395 399(R) C396 400(R) C397 401 (R)
C398 402(R) C399 403(R) C400 404(R) C401 405(R)
C402 406(R) C403 407(R) C404 408(R) C405 409(R)
C406 410(R) C407 411(R) C408 412(R) C409 413(R)
C410 414(R) C411 415(R) C412 416(R) C413 417(R)
C414 418(R) C415 419(R) C416 420(R) C417 421 (R)
C418 422(R) C419 423(R) C420 424(R) C421 425(R)
C422 426(R) C423 427(R) C424 428(R) C425 429(R)
C426 430(R) C427 431 (R) C428 432(R) C429 438(R)
C430 439(R) C431 503(R) C432 441 (R) C433 442(R)
C434 443(R) C435 444(R) C436 445(R) C437 446(R)
C438 447(R) C439 448(R) C440 449(R) C441 450(R)
C442 451 (R) C443 452(R) C444 453(R) C445 454(R)
C446 455(R) C447 456(R) C448 457(R) C449 458(R)
C450 459(R) C451 460(R) C452 461 (R) C453 462(R)
C454 463(R) C455 464(R) C456 465(R) C457 466(R)
C458 467(R) C459 468(R) C460 469(R) C461 508(R)
C462 471 (R) C463 472(R) C464 473(R) C465 474(R)
C466 475(R) C467 476(R) C468 477(R) C469 478(R)
C470 533(R) C471 542(R) C472 481 (R) C473 482(R)
C474 483(R) C475 484(R) C476 543(R) C477 486(R)
C478 487(R) C479 488(R) C480 489(R) C481 490(R)
C482 491 (R) C483 492(R) C484 493(R) C485 692(R)
C486 495(R) C487 496(R) C488 497(R) C489 498(R)
C490 499(R) C491 500(R) C492 501 (R) C493 502(R)
C494 504(R) C495 505(R) C496 506(R) C497 507(R)
C498 509(R) C499 510(R) C500 511(R) C501 512(R)
184
C502 513(R) C503 514(R) C504 515(R) C505 516(R)
C506 517(R) C507 518(R) C508 519(R) C509 520(R)
C510 521 (R) C511 522(R) C512 523(R) C513 524(R)
C514 525(R) C515 526(R) C516 527(R) C517 528(R)
C518 529(R) C519 530(R) C520 531 (R) C521 532(R)
C522 534(R) C523 535(R) C524 536(R) C525 537(R)
C526 538(R) C527 539(R) C528 540(R) C529 541 (R)
C530 544(R) C531 545(R) C532 730(R) Cl 1(R)
C533 881 (R) C534 885(R) C535 919(R)
At the same time, it is found after several tests that the compounds and compositions of the présent invention hâve good selectivity to many gramineae grasses such as zoysia japonica, bermuda grass, tall fescue, bluegrass, ryegrass and seashore paspalum etc, and are able to control many important grass weeds and broad-leaved weeds. The compounds also show excellent selectivity and commercial value in the tests on sugarcane, soybean, cotton, oil sunflower, potato, orchards and vegetables in different herbicide application methods.

Claims (16)

1. A carboxylic acid derivative-substituted iminoaryl compound, represented by general formula I’:
Â/XN'Y'XYOH
Q Μ X3 η
O □ ’
Û2 Ç?4 t Q4 Ri'n^nV R8>| nV
Q-jii^'N'^Q3 R7 R? R7 θ5
Q represents R2 , R6 or R6 ;
Y represents halogen, haloalkyl or cyano;
Z represents halogen;
M represents CH or N;
X represents -CXiX2-(alkyl)n-, -alkyl-CXiX2-(alkyl)n- or -(CH2)r-;
Xi, X2 each independently represent H, halogen, cyano, amino, nitro, formyl, cyanoalkyl, hydroxyalkyl, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkylalkyl, alkoxy, alkylthio, alkylamino, haloalkoxy, haloalkylthio, alkyl carbonyl, alkoxy carbonyl, alkoxyalkyl, haloalkoxyalkyl, alkylaminoalkyl, aryl, heterocyclyl, arylalkyl or heterocyclic alkyl, wherein, the “alkyl”, “alkenyl” and “alkynyl” are each independently unsubstituted or substituted by halogen, the “cycloalkyl”, “cycloalkylalkyl”, “aryl”, “heterocyclyl”, “arylalkyl” and “heterocyclic alkyl” are each independently unsubstituted or substituted by at least one group selected from oxo, halogen, cyano, nitro, alkyl, alkenyl, alkynyl, cycloalkyl, haloalkyl, haloalkenyl, haloalkynyl, halocycloalkyl, alkyl-substituted cycloalkyl, -OR13, -SR13, -(CO)ORi3, -(SO2)Ri3> -N(Ri3)2 and -O-alkyl-(CO)ORi3, or two adjacent carbon atoms on the ring together with unsubstituted or halogen-substituted -OCH2CH2- or -OCH2O- form a fused ring; and Xb X2 are not hydrogen at the same time;
X3 represents O, S, NH or N-alkyl;
Qb Q2, Q.b Q4, Qs each independently represent O or S;
Ri, R2 each independently represent H, cyano, alkyl, alkenyl, alkynyl, formyl alkyl, cyanoalkyl, amino, aminoalkyl, amino carbonyl, amino carbonylalkyl, aminosulfonyl, cycloalkyl, cycloalkylalkyl, cycloalkenyl, cycloalkenyl alkyl, heterocyclyl, heterocyclic alkyl, aryl, arylalkyl,
186
R4R5N-(CO)-NR3-, a , R3-S(O)m-(alkyl)n-, R3-O-(alkyl)n-, R3-(CO)-(alkyl)n-, R3-O-(alkyl)n-(CO)-, R3-(CO)-O-(alkyl)n-, R3-S-(CO)-(alkyl)n-, R3-O-(CO)-alkyl- or R3-O-(CO)-O-alkyl-, wherein, the “alkyl”, “alkenyl” and “alkynyl” are each independently unsubstituted or substituted by halogen, the “amino”, “aminoalkyl”, “amino carbonyl”, “amino carbonylalkyl” and “aminosulfonyl” are each independently unsubstituted or substituted by one or two groups selected from -Ru, -ORii, -(CO)Rn, -(CO)ORh, -alkyl-(CO)ORn, -(SO2)Rn, -(SO2)ORn, -alkyl-(SO2)Rn, -(CO)N(R12)2 and -(SO2)N(R12)2, the “cycloalkyl”, “cycloalkylalkyl”, “cycloalkenyl”, “cycloalkenyl alkyl”, “heterocyclyl”, “heterocyclic alkyl”, “aryl” and “arylalkyl” are each independently unsubstituted or substituted by at least one group selected from oxo, halogen, cyano, nitro, alkyl, alkenyl, alkynyl, cycloalkyl, haloalkyl, haloalkenyl, haloalkynyl, halocycloalkyl, alkyl-substituted cycloalkyl, -ORi3, -SRi3, -(CO)ORi3, -(SO2)Ri3, -N(Rj3)2 and -O-alkyl-(CO)ORi3, or two adjacent carbon atoms on the ring together with unsubstituted or halogen-substituted -OCH2CH2- or -OCH2O- form a fused ring;
R6 represents alkyl, alkenyl, alkynyl or cyano, wherein, the “alkyl”, “alkenyl” and “alkynyl” are each independently unsubstituted or substituted by at least one group selected from halogen, alkoxy and alkoxy carbonyl;
R7, R7’, Rg, Rg’ each independently represent H, alkyl, halogen, haloalkyl, amino, hydroxyalkyl or alkoxy;
R3, R4, R5 each independently represent H, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkylalkyl, cycloalkenyl, cycloalkenylalkyl, heterocyclyl, heterocyclic alkyl, aryl or arylalkyl, wherein, the “alkyl”, “alkenyl” and “alkynyl” are each independently unsubstituted or substituted by halogen, the “cycloalkyl”, “cycloalkylalkyl”, “cycloalkenyl”, “cycloalkenylalkyl”, “heterocyclyl”, “heterocyclic alkyl”, “aryl” and “arylalkyl” are each independently unsubstituted or substituted by at least one group selected from oxo, halogen, cyano, nitro, alkyl, alkenyl, alkynyl, cycloalkyl, haloalkyl, haloalkenyl, haloalkynyl, halocycloalkyl, alkyl-substituted cycloalkyl, -ORi3, -SRi3, -(CO)ORi3, -(SO2)Ri3, -N(Ri3)2 and -O-alkyl-(CO)ORi3, or two
187 adjacent carbon atoms on the ring together with unsubstituted or halogen-substituted -OCH2CH2or -OCH2O- form a fused ring;
Ru independently represents alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkylalkyl, cycloalkenyl, cycloalkenylalkyl, phenyl, benzyl, wherein, the “alkyl”, “alkenyl” and “alkynyl” are each independently unsubstituted or substituted by halogen, the “phenyl” and “benzyl” are each independently unsubstituted or substituted by at least one group selected from halogen, cyano, nitro, alkyl, haloalkyl, alkoxy carbonyl, alkylthio, alkylsulfonyl, alkoxy and haloalkoxy;
R12 independently represents H, alkyl, alkenyl, alkynyl, alkoxy, alkylsulfonyl, cycloalkyl, cycloalkylalkyl, cycloalkenyl or cycloalkenylalkyl, or N(R]2)2 in -(CO)N(Ri2)2 or -(SO2)N(Ri2)2 each independently represents unsubstituted or substituted heterocyclyl with nitrogen atom at 1-position;
Rb independently represents H, alkyl, haloalkyl, phenyl or phenyl substituted by at least one group selected from halogen, cyano, nitro, alkyl, haloalkyl, alkoxy carbonyl, alkylthio, alkylsulfonyl, alkoxy and haloalkoxy;
r represents an integer of 2 or more; m represents 0, 1 or 2; n independently represents 0 or 1;
the dérivative means that the carboxylic acid functional group in the general formula is changed into any ester, acylhydrazide, imidate, thioimidate, amidine, amide, orthoester, acyl cyanide, acyl halide, thioester, thionoester, dithiolester, nitrile or any other carboxylic acid dérivative.
2. The carboxylic acid derivative-substituted iminoaryl compound according to claim 1, which is characterized in that the compound is represented by general formula I:
x4 wherein, W represents OX5, SX5 or N(Xs)2;
X3, X4 each independently represent O, S, NH or N-alkyl;
X5 represents H, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, heterocyclyl, aryl,
188 o X13'N-Xl4 ν$γΧΐ3 \-Νγχΐ3 ,χ^/ΟΧ ° Χ14 , Χΐ4 or ο , wherein, the “alkyl”, “alkenyl” and “alkynyl” are each independently unsubstituted or substituted by at least one group selected from halogen, cyano,
O O nitro, cycloalkyl, cycloalkenyl, heterocyclyl, aryl, * xn, 1 xn, X X11/O Xn, o
A x Λ·'*3 ΐΝγχ3 Ά χ” An t x!
Χυ 11 s o , X14 , Xi4 , X14 and Xi4 ,the“cycloalkyl”, “cycloalkenyl”, “heterocyclyl” and “aryl” are each independently unsubstituted or substituted by at least one group selected from oxo, halogen, cyano, nitro, alkyl, alkenyl, alkynyl, cycloalkyl, haloalkyl, haloalkenyl, haloalkynyl, halocycloalkyl, alkyl-substituted cycloalkyl, -OR13, -SR13, -(CO)ORi3, -(SO2)Ri3, -N(Ri3)2 and -O-alkyl-(CO)ORi3, or two adjacent carbon atoms on the ring together with unsubstituted or halogen-substituted -OCH2CH2- or -OCH2O- form a fused ring;
^N^X13 or N(Xs)2 represents X14 or unsubstituted or substituted heterocyclyl with nitrogen atom at 1-position;
Xi 1 independently represents H, alkyl, alkenyl, alkynyl, haloalkyl, haloalkenyl, haloalkynyl, cycloalkyl, cycloalkylalkyl, cycloalkenyl, cycloalkenyl alkyl, heterocyclyl, heterocyclic alkyl, aryl, arylalkyl or Q wherein, the “cycloalkyl”, “cycloalkylalkyl”, “cycloalkenyl”, “cycloalkenyl alkyl”, “heterocyclyl”, “heterocyclic alkyl”, “aryl” and “arylalkyl” are each independently unsubstituted or substituted by at least one group selected from oxo, halogen, cyano, nitro, alkyl, alkenyl, alkynyl, cycloalkyl, haloalkyl, haloalkenyl, haloalkynyl, halocycloalkyl, alkyl-substituted cycloalkyl, -OR13, -SR13, -(CO)ORi3, -(SO2)Ri3, -N(Ri3)2 and
-O-alkyl-(CO)ORi3, or two adjacent carbon atoms on the ring together with unsubstituted or halogen-substituted -OCH2CH2- or -OCH2O- form a fused ring;
Xi2 independently represents alkyl, alkenyl, alkynyl, haloalkyl, haloalkenyl, haloalkynyl, cycloalkyl, cycloalkylalkyl, cycloalkenyl, cycloalkenyl alkyl, heterocyclyl, heterocyclic alkyl, aryl or arylalkyl, wherein, the “cycloalkyl”, “cycloalkylalkyl”, “cycloalkenyl”, “cycloalkenyl alkyl”, “heterocyclyl”, “heterocyclic alkyl”, “aryl” and “arylalkyl” are each independently unsubstituted or substituted by at least one group selected from oxo, halogen, cyano, nitro, alkyl,
189 alkenyl, alkynyl, cycloalkyl, haloalkyl, haloalkenyl, haloalkynyl, halocycloalkyl, alkyl-substituted cycloalkyl, -OR13, -SR13, -(CO)ORb, -(SO2)Rb, -N(Rb)2 and -O-alkyl-(CO)ORi3, or two adjacent carbon atoms on the ring together with unsubstituted or halogen-substituted -OCH2CH2- or -OCH2O- form a fused ring;
X13, X14 each independently represent H, halogen, cyano, alkoxy, alkoxyalkyl, alkyl carbonyl, alkoxy carbonyl, alkylsulfonyl, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkylalkyl, cycloalkenyl, cycloalkenyl alkyl, aryl, arylalkyl, heterocyclyl or heterocyclic alkyl, or C, X13, X14, taken together, form unsubstituted or substituted cyclic structure, or N, X13, X14, taken together, form unsubstituted or substituted heterocyclyl with nitrogen atom at 1-position, wherein, the “alkyl”, “alkenyl” and “alkynyl” are each independently unsubstituted or substituted by halogen, the “cycloalkyl”, “cycloalkylalkyl”, “cycloalkenyl”, “cycloalkenyl alkyl”, “aryl”, “arylalkyl”, “heterocyclyl” and “heterocyclic alkyl” are each independently unsubstituted or substituted by at least one group selected from oxo, halogen, cyano, nitro, alkyl, alkenyl, alkynyl, cycloalkyl, haloalkyl, haloalkenyl, haloalkynyl, halocycloalkyl, alkyl-substituted cycloalkyl, -OR13, -SR13, -(CO)ORi3, -(SO2)Ri3, -N(Ri3)2 and -O-alkyl-(CO)OR]3, or two adjacent carbon atoms on the ring together with unsubstituted or halogen-substituted -OCH2CH2- or -OCH2Oform a fused ring.
3. The carboxylic acid derivative-substituted iminoaryl compound according to claim 1 or 2, which is characterized in that,
Y represents halogen, halo C1-C8 alkyl or cyano;
X represents -CXiX2-(C1-C8 alkyl)n-, -(C1-C8 alkyl)-CXiX2-(Cl-C8 alkyl)n- or -(CH2)r;
Xi, X2 each independently represent H, halogen, cyano, amino, nitro, formyl, cyano C1-C8 alkyl, hydroxy C1-C8 alkyl, C1-C8 alkyl, C2-C8 alkenyl, C2-C8 alkynyl, C3-C8 cycloalkyl, C3-C8 cycloalkyl C1-C8 alkyl, C1-C8 alkoxy, C1-C8 alkylthio, C1-C8 alkylamino, halo C1-C8 alkoxy, halo C1-C8 alkylthio, C1-C8 alkyl carbonyl, C1-C8 alkoxy carbonyl, C1-C8 alkoxy C1-C8 alkyl, halo C1-C8 alkoxy C1-C8 alkyl, C1-C8 alkylamino C1-C8 alkyl, aryl, heterocyclyl, aryl C1-C8 alkyl or heterocyclyl C1-C8 alkyl, wherein, the “C1-C8 alkyl”, “C2-C8 alkenyl” and “C2-C8 alkynyl” are each independently unsubstituted or substituted by halogen, the “C3-C8 cycloalkyl”, “C3-C8 cycloalkyl C1-C8 alkyl”, “aryl”, “heterocyclyl”, “aryl C1-C8 alkyl” and “heterocyclyl C1-C8 alkyl” are each independently unsubstituted or substituted by at least one group selected from oxo, halogen, cyano, nitro, C1-C8 alkyl, C2-C8 alkenyl, C2-C8 alkynyl,
190
C3-C8 cycloalkyl, halo C1-C8 alkyl, halo C2-C8 alkenyl, halo C2-C8 alkynyl, halo C3-C8 cycloalkyl, C1-C8 alkyl-substituted C3-C8 cycloalkyl, -OR13, -SR13, -(CO)ORi3, -(SOajRn, -N (R 13)2 and -O-(C1-C8 alkyl)-(CO)ORi3, or two adjacent carbon atoms on the ring together with unsubstituted or halogen-substituted -OCH2CH2- or -OCH2O- form a fused ring; and Xi, X2 are not hydrogen at the same time;
Ri, R2 each independently represent H, cyano, C1-C8 alkyl, C2-C8 alkenyl, C2-C8 alkynyl, formyl C1-C8 alkyl, cyano C1-C8 alkyl, amino, amino C1-C8 alkyl, amino carbonyl, amino carbonyl C1-C8 alkyl, aminosulfonyl, C3-C8 cycloalkyl, C3-C8 cycloalkyl C1-C8 alkyl, C3-C8 cycloalkenyl, C3-C8 cycloalkenyl C1-C8 alkyl, heterocyclyl, heterocyclyl C1-C8 alkyl, aryl, aryl
C1-C8 alkyl, R4R5N-(CO)-NR3-, Rs , R3-S(O)m-(Cl-C8 alkyl)n-, R3-O-(C1-C8 alkyl)n-, R3-(CO)-(C1-C8 alkyl)n-, R3-O-(C1-C8 alkyl)n-(CO)-, R3-(CO)-O-(C1-C8 alkyl)n-, R3-S-(CO)-(C1-C8 alkyl)n-, R3-O-(CO)-(C1-C8 alkyl)- or R3-O-(CO)-O-(C1-C8 alkyl)-, wherein, the “C1-C8 alkyl”, “C2-C8 alkenyl” and “C2-C8 alkynyl” are each independently unsubstituted or substituted by halogen, the “amino”, “amino C1-C8 alkyl”, “amino carbonyl”, “amino carbonyl C1-C8 alkyl” and “aminosulfonyl” are each independently unsubstituted or substituted by one or two groups selected from -Rn, -ORn, -(CO)Rn, -(CO)ORn, -(C1-C8 alkyl)-(CO)ORn, -(SO2)Rn, -(SO2)ORn, -(C1-C8 alkyl)-(SO2)Rn, -(CO)N(Ri2)2 and -(SO2)N(Ri2)2, the “C3-C8 cycloalkyl”, “C3-C8 cycloalkyl C1-C8 alkyl”, “C3-C8 cycloalkenyl”, “C3-C8 cycloalkenyl C1-C8 alkyl”, “heterocyclyl”, “heterocyclyl C1-C8 alkyl”, “aryl” and “aryl C1-C8 alkyl” are each independently unsubstituted or substituted by at least one group selected from oxo, halogen, cyano, nitro, C1-C8 alkyl, C2-C8 alkenyl, C2-G8 alkynyl, C3-C8 cycloalkyl, halo C1-C8 alkyl, halo C2-C8 alkenyl, halo C2-C8 alkynyl, halo C3-C8 cycloalkyl, C1-C8 alkyl-substituted C3-C8 cycloalkyl, -OR13, -SR13, -(CO)ORi3, -(SO2)Ri3, -N (R 13) 2 and -O-(C1-C8 alkyl)-(CO)ORi3, or two adjacent carbon atoms on the ring together with unsubstituted or halogen-substituted -OCH2CH2- or -OCH2O- form a fused ring;
R6 represents C1-C8 alkyl, C2-C8 alkenyl, C2-C8 alkynyl or cyano, wherein, the “C1-C8 alkyl”, “C2-C8 alkenyl” and “C2-C8 alkynyl” are each independently unsubstituted or
191 substituted by at least one group selected from halogen, C1-C8 alkoxy and C1-C8 alkoxy carbonyl;
R-7, R7’, R8, R8’ each independently represent H, C1-C8 alkyl, halogen, halo C1-C8 alkyl, amino, hydroxy C1-C8 alkyl or C1-C8 alkoxy;
R3, R4, R5 each independently represent H, C1-C8 alkyl, C2-C8 alkenyl, C2-C8 alkynyl, C3-C8 cycloalkyl, C3-C8 cycloalkyl C1-C8 alkyl, C3-C8 cycloalkenyl, C3-C8 cycloalkenyl C1-C8 alkyl, heterocyclyl, heterocyclyl C1-C8 alkyl, aryl or aryl C1-C8 alkyl, wherein, the “C1-C8 alkyl”, “C2-C8 alkenyl” and “C2-C8 alkynyl” are each independently unsubstituted or substituted by halogen, the “C3-C8 cycloalkyl”, “C3-C8 cycloalkyl C1-C8 alkyl”, “C3-C8 cycloalkenyl”, “C3-C8 cycloalkenyl C1-C8 alkyl”, “heterocyclyl”, “heterocyclyl C1-C8 alkyl”, “aryl” and “aryl C1-C8 alkyl” are each independently unsubstituted or substituted by at least one group selected from oxo, halogen, cyano, nitro, C1-C8 alkyl, C2-C8 alkenyl, C2-C8 alkynyl, C3-C8 cycloalkyl, halo C1-C8 alkyl, halo C2-C8 alkenyl, halo C2-C8 alkynyl, halo C3-C8 cycloalkyl, C1-C8 alkyl-substituted C3-C8 cycloalkyl, -OR13, -SR13, -(CO)ORi3, -(SO2)Ri3, -N(Ri3)2 and -O-(C1-C8 alkyl)-(CO)ORi3, or two adjacent carbon atoms on the ring together with unsubstituted or halogen-substituted -OCH2CH2- or -OCH2O- form a fused ring;
Ru independently represents C1-C8 alkyl, C2-C8 alkenyl, C2-C8 alkynyl, C3-C8 cycloalkyl, C3-C8 cycloalkyl C1-C8 alkyl, C3-C8 cycloalkenyl, C3-C8 cycloalkenyl C1-C8 alkyl, phenyl, benzyl, wherein, the “C1-C8 alkyl”, “C2-C8 alkenyl” and “C2-C8 alkynyl” are each independently unsubstituted or substituted by halogen, the “phenyl” and “benzyl” are each independently unsubstituted or substituted by at least one group selected from halogen, cyano, nitro, C1-C8 alkyl, halo C1-C8 alkyl, C1-C8 alkoxy carbonyl, C1-C8 alkylthio, C1-C8 alkylsulfonyl, C1-C8 alkoxy and halo C1-C8 alkoxy;
Ri2 independently represents H, C1-C8 alkyl, C2-C8 alkenyl, C2-C8 alkynyl, C1-C8 alkoxy, C1-C8 alkylsulfonyl, C3-C8 cycloalkyl, C3-C8 cycloalkyl C1-C8 alkyl, C3-C8 cycloalkenyl or C3-C8 cycloalkenyl C1-C8 alkyl, or N(Rj2)2 in -(CO)N(Ri2)2 or -(SO2)N(Ri2)2 independently represents heterocyclyl 'X , \—/, Or with nitrogen atom at 1-position that is unsubstituted or substituted by at least one group selected from oxo and C1-C8 alkyl;
R13 independently represents H, C1-C8 alkyl, halo C1-C8 alkyl, phenyl or phenyl substituted by at least one group selected from halogen, cyano, nitro, C1-C8 alkyl, halo C1-C8
192 alkyl, C1-C8 alkoxy carbonyl, C1-C8 alkylthio, C1-C8 alkylsulfonyl, C1-C8 alkoxy and halo C1-C8 alkoxy;
r represents 2, 3, 4, 5 or 6;
or, when the general formula is I, X3, X4 each independently represent O, S, NH or
N-(C1-C8)alkyl;
X5 represents H, C1-C8 alkyl, C2-C8 alkenyl, C2-C8 alkynyl, C3-C8 cycloalkyl, C3-C8
Xv 1^X17 cycloalkenyl, heterocyclyl, aryl, * xn, 1 xn, 7. xn, δ o ,
J--S- ,X12 xi [1
160X11,
X14
X14 ο
Αν'Χι3 ΑγΧ3
ΟΙ 1 I
Χΐ4 , Χΐ4 ΟΓ Χΐ3^Ν'Χΐ4
A,0Xn ο , wherein, the “C1-C8 alkyl”, “C2-C8 alkenyl” and “C2-C8 alkynyl” are each independently unsubstituted or substituted by at least one group selected from halogen, cyano, nitro, C3-C8 cycloalkyl, C3-C8 cycloalkenyl,
O vCkv vs'v A heterocyclyl, aryl, * Λιι, ί Y Λιι,
Cl· .O X11, /n'Xi3
Xl4 .
o
X13 X13 /Ό'ΝγΧ13
Xi4 , X14 and X14 , the “C3-C8 cycloalkyl”, “C3-C8 cycloalkenyl”, “heterocyclyl” and “aryl” are each independently unsubstituted or substituted by at least one group selected from oxo, halogen, cyano, nitro, C1-C8 alkyl, C2-C8 alkenyl, C2-C8 alkynyl, C3-C8 cycloalkyl, halo C1-C8 alkyl, halo C2-C8 alkenyl, halo C2-C8 alkynyl, halo C3-C8 cycloalkyl, C1-C8 alkyl-substituted C3-C8 cycloalkyl, -OR13, -SR13, -(CO)ORi3, -(SO2)Ri3, -N(Ri3)2 and -O-(C1-C8 alkyl)-(CO)ORi3, or two adjacent carbon atoms on the ring together with unsubstituted or halogen-substituted -OCH2CH2- or -OCH2O- form a fiised ring;
yN χ 13 Nor N(X5)2 represents X14 or heterocyclyl or 0 with nitrogen atom at 1-position that is unsubstituted or substituted by at least one group selected from oxo and C1-C8 alkyl;
X11 independently represents H, C1-C8 alkyl, C2-C8 alkenyl, C2-C8 alkynyl, halo C1-C8 alkyl, halo C2-C8 alkenyl, halo C2-C8 alkynyl, C3-C8 cycloalkyl, C3-C8 cycloalkyl C1-C8 alkyl, C3-C8 cycloalkenyl, C3-C8 cycloalkenyl C1-C8 alkyl, heterocyclyl, heterocyclyl C1-C8 alkyl, aryl, aryl C1-C8 alkyl or θ M wherein, the “C3-C8 cycloalkyl”, “C3-C8
193 cycloalkyl C1-C8 alkyl”, “C3-C8 cycloalkenyl”, “C3-C8 cycloalkenyl C1-C8 alkyl”, “heterocyclyl”, “heterocyclyl C1-C8 alkyl”, “aryl” and “aryl C1-C8 alkyl” are each independently unsubstituted or substituted by at least one group selected from oxo, halogen, cyano, nitro, C1-C8 alkyl, C2-C8 alkenyl, C2-C8 alkynyl, C3-C8 cycloalkyl, halo C1-C8 alkyl, halo C2-C8 alkenyl, halo C2-C8 alkynyl, halo C3-C8 cycloalkyl, C1-C8 alkyl-substituted C3-C8 cycloalkyl, -ORb, -SRb, -(CO)ORi3, -(SÜ2)Ri3» -N(Ri3)2 and -O-(C1-C8 alkyl)-(CO)ORi3, or two adjacent carbon atoms on the ring together with unsubstituted or halogen-substituted -OCH2CH2- or -OCH2O- form a fused ring;
X12 independently represents C1-C8 alkyl, C2-C8 alkenyl, C2-C8 alkynyl, halo C1-C8 alkyl, halo C2-C8 alkenyl, halo C2-C8 alkynyl, C3-C8 cycloalkyl, C3-C8 cycloalkyl C1-C8 alkyl, C3-C8 cycloalkenyl, C3-C8 cycloalkenyl C1-C8 alkyl, heterocyclyl, heterocyclyl C1-C8 alkyl, aryl or aryl C1-C8 alkyl, wherein, the “C3-C8 cycloalkyl”, “C3-C8 cycloalkyl C1-C8 alkyl”, “C3-C8 cycloalkenyl”, “C3-C8 cycloalkenyl C1-C8 alkyl”, “heterocyclyl”, “heterocyclyl C1-C8 alkyl”, “aryl” and “aryl C1-C8 alkyl” are each independently unsubstituted or substituted by at least one group selected from oxo, halogen, cyano, nitro, C1-C8 alkyl, C2-C8 alkenyl, C2-C8 alkynyl, C3-C8 cycloalkyl, halo C1-C8 alkyl, halo C2-C8 alkenyl, halo C2-C8 alkynyl, halo C3-C8 cycloalkyl, C1-C8 alkyl-substituted C3-C8 cycloalkyl, -OR13, -SR13, -(CO)ORi3, -(SO2)Ri3, -N(Ri3)2 and -O-(C1-C8 alkyl)-(CO)ORi3, or two adjacent carbon atoms on the ring together with unsubstituted or halogen-substituted -OCH2CH2- or -OCH2O- form a fused ring;
X13, X|4 each independently represent H, halogen, cyano, C1-C8 alkoxy, C1-C8 alkoxy C1-C8 alkyl, C1-C8 alkyl carbonyl, C1-C8 alkoxy carbonyl, C1-C8 alkylsulfonyl, C1-C8 alkyl, C2-C8 alkenyl, C2-C8 alkynyl, C3-C8 cycloalkyl, C3-C8 cycloalkylalkyl, C3-C8 cycloalkenyl, C3-C8 cycloalkenyl C1-C8 alkyl, aryl, aryl C1-C8 alkyl, heterocyclyl or heterocyclyl C1-C8 alkyl, or C, X13, X14, taken together, form 5~8 membered carbocyclyl or oxygen, sulfur or nitrogen-containing heterocyclyl, or N, X13, X14, taken together, form heterocyclyl with nitrogen atom at 1-position, wherein, the “C1-C8 alkyl”, “C2-C8 alkenyl” and “C2-C8 alkynyl” are each independently unsubstituted or substituted by halogen, the “C3-C8 cycloalkyl”, “C3-C8 cycloalkyl C1-C8 alkyl”, “C3-C8 cycloalkenyl”, “C3-C8 cycloalkenyl C1-C8 alkyl”, “aryl”, “aryl C1-C8 alkyl”, “heterocyclyl” and “heterocyclyl C1-C8 alkyl” are each independently unsubstituted or substituted by at least one group selected from oxo, halogen, cyano, nitro, C1-C8 alkyl, C2-C8 alkenyl, C2-C8 alkynyl, C3-C8 cycloalkyl, halo C1-C8 alkyl, halo C2-C8
194 alkenyl, halo C2-C8 alkynyl, halo C3-C8 cycloalkyl, C1-C8 alkyl-substituted C3-C8 cycloalkyl, -ORi3, -SR13, -(CO)ORi3, -(SO2)Ri3, -N(Ri3)2 and -O-(C1-C8 alkyl)-(CO)ORi3, or two adjacent carbon atoms on the ring together with unsubstituted or halogen-substituted -OCH2CH2- or -OCH2O- form a fused ring, the “5~8 membered carbocyclyl or oxygen, sulfur or nitrogen-containing heterocyclyl” is unsubstituted or substituted by 1-4 groups selected from C1-C8 alkyl, C1-C8 alkoxy carbonyl and benzyl, or together with aryl or heterocyclyl forms a fused ring, the “heterocyclyl with nitrogen atom at l-position”is unsubstituted or substituted by at least one group selected from oxo and C1-C8 alkyl.
4. The carboxylic acid derivative-substituted iminoaryl compound according to claim 2 or 3, which is characterized in that,
Y represents halogen, halo C1-C6 alkyl or cyano;
X represents -CXiX2-(C1-C6 alkyl)n-, -(C1-C6 alkyl)-CXiX2-(Cl-C6 alkyl)n- or -(CH2)r-;
Xi, X2 each independently represent H, halogen, cyano, amino, nitro, formyl, cyano C1-C6 alkyl, hydroxy C1-C6 alkyl, C1-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, C3-C6 cycloalkyl, C3-C6 cycloalkyl C1-C6 alkyl, C1-C6 alkoxy, C1-C6 alkylthio, C1-C6 alkylamino, halo C1-C6 alkoxy, halo C1-C6 alkylthio, C1-C6 alkyl carbonyl, C1-C6 alkoxy carbonyl, C1-C6 alkoxy C1-C6 alkyl, halo C1-C6 alkoxy C1-C6 alkyl, C1-C6 alkylamino C1-C6 alkyl, aryl, heterocyclyl, aryl C1-C6 alkyl or heterocyclyl C1-C6 alkyl, wherein, the “C1-C6 alkyl”, “C2-C6 alkenyl” and “C2-C6 alkynyl” are each independently unsubstituted or substituted by halogen, the “C3-C6 cycloalkyl”, “C3-C6 cycloalkyl C1-C6 alkyl”, “aryl”, “heterocyclyl”, “aryl C1-C6 alkyl” and “heterocyclyl C1-C6 alkyl” are each independently unsubstituted or substituted by 1,2 or 3 groups selected from oxo, halogen, cyano, nitro, C1-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, C3-C6 cycloalkyl, halo C1-C6 alkyl, halo C2-C6 alkenyl, halo C2-C6 alkynyl, halo C3-C6 cycloalkyl, C1-C6 alkyl-substituted C3-C6 cycloalkyl, -OR13, -SR13, -(CO)ORi3, -(SO2)Ri3, -N(RI3)2 and -O-(C1-C6 alkyl)-(CO)ORi3, or two adjacent carbon atoms on the ring together with unsubstituted or halogen-substituted -OCH2CH2- or -OCH2O- form a fused ring; and Xi, X2 are not hydrogen at the same time;
Ri, R2 each independently represent H, cyano, C1-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, formyl C1-C6 alkyl, cyano C1-C6 alkyl, amino, amino C1-C6 alkyl, amino carbonyl, amino carbonyl C1-C6 alkyl, aminosulfonyl, C3-C6 cycloalkyl, C3-C6 cycloalkyl C1-C6 alkyl, C3-C6 cycloalkenyl, C3-C6 cycloalkenyl C1-C6 alkyl, heterocyclyl, heterocyclyl C1-C6 alkyl, aryl, aryl
195
C1-C6 alkyl, R4R5N-(CO)-NR3-, *5 , R3-S(O)m-(Cl-C6 alkyl)n-, R3-O-(C1-C6 alkyl)n-,
R3-(CO)-(C1-C6 alkyl)n-, R3-O-(C1-C6 alkyl)n-(CO)-, R3-(CO)-O-(C1-C6 alkyl)n-, R3-S-(CO)-(C1-C6 alkyl)n-, R3-O-(CO)-(C1-C6 alkyl)- or R3-O-(CO)-O-(C1-C6 alkyl)-, wherein, the “C1-C6 alkyl”, “C2-C6 alkenyl” and “C2-C6 alkynyl” are each independently unsubstituted or substituted by halogen, the “amino”, “amino C1-C6 alkyl”, “amino carbonyl”, “amino carbonyl C1-C6 alkyl” and “aminosulfonyl” are each independently unsubstituted or substituted by one or two groups selected from -Rn, -ORn, -(CO)Rn, -(CO)ORn, -(C1-C6 alkyl)-(CO)ORn, -(SO2)Rn, -(SO2)ORn, -(C1-C6 alkyl)-(SO2)Rn, -(CO)N(Ri2)2 and -(SO2)N(Ri2)2, the “C3-C6 cycloalkyl”, “C3-C6 cycloalkyl C1-C6 alkyl”, “C3-C6 cycloalkenyl”, “C3-C6 cycloalkenyl C1-C6 alkyl”, “heterocyclyl”, “heterocyclyl C1-C6 alkyl”, “aryl” and “aryl C1-C6 alkyl” are each independently unsubstituted or substituted by 1, 2 or 3 groups selected from oxo, halogen, cyano, nitro, C1-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, C3-C6 cycloalkyl, halo C1-C6 alkyl, halo C2-C6 alkenyl, halo C2-C6 alkynyl, halo C3-C6 cycloalkyl, C1-C6 alkyl-substituted C3-C6 cycloalkyl, -ORj3, -SRi3, -(CO)ORi3, -(SO2)Ri3, -N(Ri3)2 and -O-(C1-C6 alkyl)-(CO)ORi3, or two adjacent carbon atoms on the ring together with unsubstituted or halogen-substituted -OCH2CH2- or -OCH2O- form a fused ring;
R6 represents C1-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl or cyano, wherein, the “C1-C6 alkyl”, “C2-C6 alkenyl” and “C2-C6 alkynyl” are each independently unsubstituted or substituted by 1,2 or 3 groups selected from halogen, C1-C6 alkoxy and C1-C6 alkoxy carbonyl;
R7, R7’, Rg, Rg’ each independently represent H, C1-C6 alkyl, halogen, halo C1-C6 alkyl, amino, hydroxy C1-C6 alkyl or C1-C6 alkoxy;
R3, R4, R5 each independently represent H, C1-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, C3-C6 cycloalkyl, C3-C6 cycloalkyl C1-C6 alkyl, C3-C6 cycloalkenyl, C3-C6 cycloalkenyl C1-C6 alkyl, heterocyclyl, heterocyclyl C1-C6 alkyl, aryl or aryl C1-C6 alkyl, wherein, the “C1-C6 alkyl”, “C2-C6 alkenyl” and “C2-C6 alkynyl” are each independently unsubstituted or substituted by halogen, the “C3-C6 cycloalkyl”, “C3-C6 cycloalkyl C1-C6 alkyl”, “C3-C6 cycloalkenyl”, “C3-C6 cycloalkenyl C1-C6 alkyl”, “heterocyclyl”, “heterocyclyl C1-C6 alkyl”,
196 “aryl” and “aryl C1-C6 alkyl” are each independently unsubstituted or substituted by 1, 2 or 3 groups selected from oxo, halogen, cyano, nitro, C1-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, C3-C6 cycloalkyl, halo C1-C6 alkyl, halo C2-C6 alkenyl, halo C2-C6 alkynyl, halo C3-C6 cycloalkyl, C1-C6 alkyl-substituted C3-C6 cycloalkyl, -OR13, -SR13, -(CO)ORi3, -(SC>2)Ri3, -N(Ri3)2 and -O-(C1-C6 alkyl)-(CO)ORi3, or two adjacent carbon atoms on the ring together with unsubstituted or halogen-substituted -OCH2CH2- or -OCH2O- form a fused ring;
Ru independently represents C1-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, C3-C6 cycloalkyl, C3-C6 cycloalkyl C1-C6 alkyl, C3-C6 cycloalkenyl, C3-C6 cycloalkenyl C1-C6 alkyl, phenyl, benzyl, wherein, the “C1-C6 alkyl”, “C2-C6 alkenyl” and “C2-C6 alkynyl” are each independently unsubstituted or substituted by halogen, the “phenyl” and “benzyl”are each independently unsubstituted or substituted by 1, 2 or 3 groups selected from halogen, cyano, nitro, C1-C6 alkyl, halo C1-C6 alkyl, C1-C6 alkoxy carbonyl, C1-C6 alkylthio, C1-C6 alkylsulfonyl, C1-C6 alkoxy and halo C1-C6 alkoxy;
R12 independently represents H, C1-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, C1-C6 alkoxy, C1-C6 alkylsulfonyl, C3-C6 cycloalkyl, C3-C6 cycloalkyl C1-C6 alkyl, C3-C6 cycloalkenyl or C3-C6 cycloalkenyl C1-C6 alkyl, or N/Rph in -(CO)N(Ri2)2 or -(SÜ2)N(Ri2)2 independently /'N'Y vNV ? N ) LÀ represents heterocyclyl X , '—/, or with nitrogen atom at 1-position that is unsubstituted or substituted by 1,2 or 3 groups selected from oxo and C1-C6 alkyl;
R13 independently represents H, C1-C6 alkyl, halo C1-C6 alkyl, phenyl or phenyl substituted by 1, 2 or 3 groups selected from halogen, cyano, nitro, C1-C6 alkyl, halo C1-C6 alkyl, C1-C6 alkoxy carbonyl, C1-C6 alkylthio, C1-C6 alkylsulfonyl, C1-C6 alkoxy and halo C1-C6 alkoxy;
or, when the general formula is I, X3, X4 each independently represent O, S, NH or
N-(C1-C6)alkyl;
X5 represents H, C1-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, C3-C6 cycloalkyl, C3-C6
O \Λο'Χΐ1 ?
o O X13N-X14
7nx” Zn-X” ’Y n-*” ïY» Άχ i i 4 O i I χΐ4 , χΐ4 , χΐ4 , χΐ4 or o , wherein, the “C1-C6 alkyl”, “C2-C6 alkenyl” and “C2-C6 alkynyl” are each independently unsubstituted or substituted by at
197 least one group selected from halogen, cyano, nitro, C3-C6 cycloalkyl, C3-C6 cycloalkenyl,
Ο Ο Ο η n ,χ13 u ! 1 t V°'x Vsx ΧΛχ '/cAx v\rXl1 Y Xl1 X heterocyclyl, aryl, * X11, < xn, a Xh, O X-n, \ o 5 q , x-u , o
\N<YXl3 A'Xl3 AyN<^Xl3
X14 , X14 and Xu , the “C3-C6 cycloalkyl”, “C3-C6 cycloalkenyl”, “heterocyclyl” and “aryl” are each independently unsubstituted or substituted by 1, 2 or 3 groups selected from oxo, halogen, cyano, nitro, C1-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, C3-C6 cycloalkyl, halo C1-C6 alkyl, halo C2-C6 alkenyl, halo C2-C6 alkynyl, halo C3-C6 cycloalkyl, C1-C6 alkyl-substituted C3-C6 cycloalkyl, -OR13, -SR13, -(CO)ORi3, -(SO2)Ri3, -N(Rb)2 and -O-(C1-C6 alkyl)-(CO)ORi3, or two adjacent carbon atoms on the ring together with unsubstituted or halogen-substituted -OCH2CH2- or -OCH2O- form a fused ring;
>-N^Xi3 /'nA /'N'Y i I A e N X il L n · or N(X5)2 represents X14 or heterocyclyl a , '—/, or with nitrogen atom at 1-position that is unsubstituted or substituted by 1, 2 or 3 groups selected from oxo and C1-C6 alkyl;
X11 independently represents H, C1-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, halo C1-C6 alkyl, halo C2-C6 alkenyl, halo C2-C6 alkynyl, C3-C6 cycloalkyl, C3-C6 cycloalkyl C1-C6 alkyl, C3-C6 cycloalkenyl, C3-C6 cycloalkenyl C1-C6 alkyl, heterocyclyl, heterocyclyl C1-C6 alkyl, aryl, aryl Cl-C6 alkyl or Q M /N'Xâ A wherein, the “C3-C6 cycloalkyl”, “C3-C6 cycloalkyl C1-C6 alkyl”, “C3-C6 cycloalkenyl”, “C3-C6 cycloalkenyl C1-C6 alkyl”, “heterocyclyl”, “heterocyclyl C1-C6 alkyl”, “aryl” and “aryl C1-C6 alkyl” are each independently unsubstituted or substituted by 1,2 or 3 groups selected from oxo, halogen, cyano, nitro, C1-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, C3-C6 cycloalkyl, halo C1-C6 alkyl, halo C2-C6 alkenyl, halo C2-C6 alkynyl, halo C3-C6 cycloalkyl, C1-C6 alkyl-substituted C3-C6 cycloalkyl, -OR13, -SR13, -(CO)ORi3, -(SO2)Ri3, -N(Ri3)2 and -O-(C1-C6 alkyl)-(CO)ORi3, or two adjacent carbon atoms on the ring together with unsubstituted or halogen-substituted -OCH2CH2- or -OCH2O- form a fused ring;
X12 independently represents C1-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, halo C1-C6 alkyl, halo C2-C6 alkenyl, halo C2-C6 alkynyl, C3-C6 cycloalkyl, C3-C6 cycloalkyl C1-C6 alkyl, C3-C6 cycloalkenyl, C3-C6 cycloalkenyl C1-C6 alkyl, heterocyclyl, heterocyclyl C1-C6 alkyl,
198 aryl or aryl C1-C6 alkyl, wherein, the “C3-C6 cycloalkyl”, “C3-C6 cycloalkyl C1-C6 alkyl”, “C3-C6 cycloalkenyl”, “C3-C6 cycloalkenyl C1-C6 alkyl”, “heterocyclyl”, “heterocyclyl C1-C6 alkyl”, “aryl” and “aryl C1-C6 alkyl” are each independently unsubstituted or substituted by 1,2 or 3 groups selected from oxo, halogen, cyano, nitro, C1-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, C3-C6 cycloalkyl, halo C1-C6 alkyl, halo C2-C6 alkenyl, halo C2-C6 alkynyl, halo C3-C6 cycloalkyl, C1-C6 alkyl-substituted C3-C6 cycloalkyl, -OR13, -SR13, -(CO)ORi3, -(SO2)Ri3, -N(Ri3)2 and -O-(C1-C6 alkyl)-(CO)ORi3, or two adjacent carbon atoms on the ring together with unsubstituted or halogen-substituted -OCH2CH2- or -OCH2O- form a fused ring;
X13, Xj4 each independently represent H, halogen, cyano, C1-C6 alkoxy, C1-C6 alkoxy C1-C6 alkyl, C1-C6 alkyl carbonyl, C1-C6 alkoxy carbonyl, C1-C6 alkylsulfonyl, C1-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, C3-C6 cycloalkyl, C3-C6 cycloalkylalkyl, C3-C6 cycloalkenyl, C3-C6 cycloalkenyl C1-C6 alkyl, aryl, aryl C1-C6 alkyl, heterocyclyl or heterocyclyl C1-C6 alkyl, or C, X13, X14, taken together, form 5~8 membered carbocyclyl or oxygen, sulfur or
I \ nitrogen-containing heterocyclyl, or N, X13, X14, taken together, form heterocyclyl A , /'NA \__/, A or with nitrogen atom at 1 -position, wherein, the “Cl-C6 alkyl”, “C2-C6 alkenyl” and “C2-C6 alkynyl” are each independently unsubstituted or substituted by halogen, the “C3-C6 cycloalkyl”, “C3-C6 cycloalkyl C1-C6 alkyl”, “C3-C6 cycloalkenyl”, “C3-C6 cycloalkenyl C1-C6 alkyl”, “aryl”, “aryl C1-C6 alkyl”, “heterocyclyl” and “heterocyclyl C1-C6 alkyl” are each independently unsubstituted or substituted by 1, 2 or 3 groups selected from oxo, halogen, cyano, nitro, C1-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, C3-C6 cycloalkyl, halo C1-C6 alkyl, halo C2-C6 alkenyl, halo C2-C6 alkynyl, halo C3-C6 cycloalkyl, C1-C6 alkyl-substituted C3-C6 cycloalkyl, -OR13, -SR13, -(CO)ORi3, -(SO2)Rb, -N(Ri3)2 and -O-(C1-C6 alkyl)-(CO)OR]3, or two adjacent carbon atoms on the ring together with unsubstituted or halogen-substituted -OCH2CH2- or -OCH2O- form a fused ring, the “5~8 membered carbocyclyl or oxygen, sulfur or nitrogen-containing heterocyclyl” is unsubstituted or substituted by 1,2 or 3 groups selected from C1-C6 alkyl, C1-C6 alkoxy carbonyl and benzyl, or /K /x /'NA vn A N 7 LJ together with aryl or heterocyclyl forms a fused ring, the “A , \—f, and /'nK
K-°” are unsubstituted or substituted by 1, 2 or 3 groups selected from oxo and C1-C6 alkyl.
199
5. The carboxylic acid derivative-substituted iminoaryl compound according to any of claims 1 to 4, which is characterized in that,
X represents -CXiX2-(C1-C3 alkyl)n-, -(C1-C3 alkyl)-CXiX2-(Cl-C3 alkyl)n- or -(CH2)r-;
Xi, X2 each independently represent H, halogen, cyano, amino, nitro, formyl, cyano C1-C3 alkyl, hydroxy C1-C3 alkyl, C1-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, C3-C6 cycloalkyl, C3-C6 cycloalkyl C1-C3 alkyl, C1-C6 alkoxy, C1-C6 alkylthio, C1-C6 alkylamino, halo C1-C6 alkoxy, halo C1-C6 alkylthio, C1-C6 alkyl carbonyl, C1-C6 alkoxy carbonyl, C1-C6 alkoxy C1-C3 alkyl, halo C1-C6 alkoxy C1-C3 alkyl, C1-C6 alkylamino C1-C3 alkyl, aryl, heterocyclyl, aryl C1-C3 alkyl or heterocyclyl C1-C3 alkyl, wherein, the “C1-C6 alkyl”, “C2-C6 alkenyl” and “C2-C6 alkynyl” are each independently unsubstituted or substituted by halogen, the “C3-C6 cycloalkyl”, “C3-C6 cycloalkyl C1-C3 alkyl”, “aryl”, “heterocyclyl”, “aryl C1-C3 alkyl” and “heterocyclyl C1-C3 alkyl” are each independently unsubstituted or substituted by 1, 2 or 3 groups selected from oxo, halogen, cyano, nitro, C1-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, C3-C6 cycloalkyl, halo C1-C6 alkyl, halo C2-C6 alkenyl, halo C2-C6 alkynyl, halo C3-C6 cycloalkyl, C1-C6 alkyl-substituted C3-C6 cycloalkyl, -OR13, -SR13, -(CO)ORi3, -(SO2)Ri3, -N(Ri3)2 and -O-(C1-C3 alkyl)-(CO)ORi3, or two adjacent carbon atoms on the ring together with unsubstituted or halogen-substituted -OCH2CH2- or -OCH2O- form a fused ring; and Xi, X2 are not hydrogen at the same time;
or, when the general formula is I, X5 represents H, C1-C6 alkyl, C2-C6 alkenyl, C2-C6
O sxCk «,A alkynyl, C3-C6 cycloalkyl, C3-C6 cycloalkenyl, heterocyclyl, aryl, τ X11, * xn, t- X11, o 0 9
J s A ,X12 .. ? S x ^'N'*3 'Y%'X13 d'N'X13 -VNYX13 o Xl2, O 0 , X11, VxrXl1 5 x14 } X14 , Xi4 , Xi4 or X13-N-X14
A^OXn o , wherein, the “C1-C6 alkyl”, “C2-C6 alkenyl” and “C2-C6 alkynyl” are each independently unsubstituted or substituted by 1, 2 or 3 groups selected from halogen, cyano,
O nitro, C3-C6 cycloalkyl, C3-C6 cycloalkenyl, heterocyclyl, aryl, * xn, V xn, Y- xn, o
fl A x K°Y°A. V” A'*3 ΑΝγ*·=
Zcr^Xn, VO' 11, ο , X14 , X14 , X14 and Xi4 ,the“C3-C6 cycloalkyl”, “C3-C6 cycloalkenyl”, “heterocyclyl” and “aryl” are each independently
200 unsubstituted or substituted by 1, 2 or 3 groups selected from oxo, halogen, cyano, nitro, C1-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, C3-C6 cycloalkyl, halo C1-C6 alkyl, halo C2-C6 alkenyl, halo C2-C6 alkynyl, halo C3-C6 cycloalkyl, C1-C6 alkyl-substituted C3-C6 cycloalkyl, -ORb, -SR13, -(CO)ORi3, -(SO2)Ri3, -N(R13)2 and -O-(C1-C3 alkyl)-(CO)ORi3, or two adjacent carbon atoms on the ring together with unsubstituted or halogen-substituted -OCH2CH2- or -OCH2Oform a fused ring;
vN^x13 N=\ /'nA ^A i I e N > il L n · or N(X5)2 represents X14 or heterocyclyl X , \—/, xz or with nitrogen atom at 1-position that is unsubstituted or substituted by 1, 2 or 3 groups selected from oxo and C1-C6 alkyl;
Xn independently represents H, C1-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, halo C1-C6 alkyl, halo C2-C6 alkenyl, halo C2-C6 alkynyl, C3-C6 cycloalkyl, C3-C6 cycloalkyl C1-C3 alkyl, C3-C6 cycloalkenyl, C3-C6 cycloalkenyl C1-C3 alkyl, heterocyclyl, heterocyclyl C1-C3 ? ΊΓΤ i alkyl, aryl, aryl C1-C3 alkyl or I , wherein, the “C3-C6 cycloalkyl”, “C3-C6 cycloalkyl C1-C3 alkyl”, “C3-C6 cycloalkenyl”, “C3-C6 cycloalkenyl C1-C3 alkyl”, “heterocyclyl”, “heterocyclyl C1-C3 alkyl”, “aryl” and “aryl C1-C3 alkyl” are each independently unsubstituted or substituted by 1, 2 or 3 groups selected from oxo, halogen, cyano, nitro, C1-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, C3-C6 cycloalkyl, halo C1-C6 alkyl, halo C2-C6 alkenyl, halo C2-C6 alkynyl, halo C3-C6 cycloalkyl, C1-C6 alkyl-substituted C3-C6 cycloalkyl, -OR13, -SR13, -(CO)ORi3, -(SO2)Ri3, -N(Ri3)2 and -O-(C1-C3 alkyl)-(CO)ORi3, or two adjacent carbon atoms on the ring together with unsubstituted or halogen-substituted -OCH2CH2- or -OCH2O- form a fused ring;
Xi2 independently represents C1-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, halo C1-C6 alkyl, halo C2-C6 alkenyl, halo C2-C6 alkynyl, C3-C6 cycloalkyl, C3-C6 cycloalkyl C1-C3 alkyl, C3-C6 cycloalkenyl, C3-C6 cycloalkenyl C1-C3 alkyl, heterocyclyl, heterocyclyl C1-C3 alkyl, aryl or aryl C1-C3 alkyl, wherein, the “C3-C6 cycloalkyl”, “C3-C6 cycloalkyl C1-C3 alkyl”, “C3-C6 cycloalkenyl”, “C3-C6 cycloalkenyl C1-C3 alkyl”, “heterocyclyl”, “heterocyclyl C1-C3 alkyl”, “aryl” and “aryl C1-C3 alkyl” are each independently unsubstituted or substituted by 1, 2 or 3 groups selected from oxo, halogen, cyano, nitro, C1-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, C3-C6 cycloalkyl, halo C1-C6 alkyl, halo C2-C6 alkenyl, halo C2-C6 alkynyl, halo
201
C3-C6 cycloalkyl, C1-C6 alkyl-substituted C3-C6 cycloalkyl, -ORb, -SR13, -(CO)ORi3, -(SO2)Ri3, -N(Ri3)2 and -O-(C1-C3 alkyl)-(CO)ORi3, or two adjacent carbon atoms on the ring together with unsubstituted or halogen-substituted -OCH2CH2- or -OCH2O- form a fused ring;
X13, X14 each independently represent H, halogen, cyano, C1-C6 alkoxy, C1-C6 alkoxy
Cl-C3 alkyl, C1-C6 alkyl carbonyl, C1-C6 alkoxy carbonyl, C1-C6 alkylsulfonyl, C1-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, C3-C6 cycloalkyl, C3-C6 cycloalkylalkyl, C3-C6 cycloalkenyl, C3-C6 cycloalkenyl C1-C3 alkyl, aryl, aryl C1-C3 alkyl, heterocyclyl or heterocyclyl C1-C3 alkyl, or C, X13, X14, taken together, form 5~8 membered saturated carbocyclyl, or
with nitrogen atom at 1-position, wherein, the “C1-C6 alkyl”, “C2-C6 alkenyl” and “C2-C6 alkynyl” are each independently unsubstituted or substituted by halogen, the “C3-C6 cycloalkyl”, “C3-C6 cycloalkyl C1-C3 alkyl”, “C3-C6 cycloalkenyl”, “C3-C6 cycloalkenyl C1-C3 alkyl”, “aryl”, “aryl C1-C3 alkyl”, “heterocyclyl” and “heterocyclyl C1-C3 alkyl” are each independently unsubstituted or substituted by 1, 2 or 3 groups selected from oxo, halogen, cyano, nitro, C1-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, C3-C6 cycloalkyl, halo C1-C6 alkyl, halo C2-C6 alkenyl, halo C2-C6 alkynyl, halo C3-C6 cycloalkyl, C1-C6 alkyl-substituted C3-C6 cycloalkyl, -OR13, -SR13, -(CO)ORi3, -(SO2)Ri3, -N(Ri3)2 and -O-(C1-C3 alkyl)-(CO)ORi3, or two adjacent carbon atoms on the ring together with unsubstituted or halogen-substituted
-OCH2CH2- or -OCH2O- form a fused ring, the “5~8 membered saturated carbocyclyl, or NH” is unsubstituted or substituted by 1, 2 or 3 groups selected from C1-C6 alkyl, C1-C6
N=\ I ' alkoxy carbonyl and benzyl, or together with phenyl or thienyl forms a fused ring, the “ \__Z, and are unsubstituted or substituted by 1,2 or 3 groups selected from oxo and C1-C6 alkyl;
optionally, Q represents
202
6. The carboxylic acid derivative-substituted iminoaryl compound according to any of daims 1 to 5, which is characterized in that, when the carbon atom connected to Xi and X2 in the
5 general formula is a chiral center, it is in R configuration, and based on the content of stereoisomers having R and S configurations at this position, it has a stereochemical purity of
60-100% (R).
7. The carboxylic acid derivative-substituted iminoaryl compound according to claim 1, which is characterized in that, it is any one selected from:
8. A method for preparing the carboxylic acid derivative-substituted iminoaryl compound according to any of daims 1 to 7, which comprises the following steps:
15 subjecting a compound represented by general formula II and a compound represented by general formula ΙΙΓ to an élimination reaction to obtain a compound represented by general formula F, with the Chemical reaction équation shown as follows:
203
□ □ ' □ ' or, subjecting a compound represented by general formula II and a compound represented by general formula III to an élimination reaction to obtain a compound represented by general formula I, with the Chemical reaction équation shown as follows:
JO J+ x^j/v-----Jl JL^N X W 'X3H Hal Π Q'X χ4X
5 □ □□ wherein, Hal represents halogen, other substituents Q, M, W, Y, Z, X, X3 and X4 are as defined in any of daims 1 to 7;
the reaction is carried out in the presence of a base and a solvent; optionallly, the base is at least one selected from inorganic bases and organic bases, and/or the solvent is at least one
10 selected from DMF, methanol, éthanol, acetonitrile, dichloroethane, DMSO, Dioxane, dichloromethane and ethyl acetate.
9. A herbicidal composition, which is characterized in that, the composition comprises (i) at least one of the carboxylic acid derivative-substituted iminoaryl compounds according to any of daims 1 to 7 in a herbicidally effective amount; or, the composition further comprises (ii) one or
15 more other herbicides in a herbicidally effective amount and/or safeners and/or (iii) a formulation auxiliary accepted in agricultural chemistry; optionallly, the other herbicide is one or more selected from the following compounds and acids, salts and esters thereof:
(1) HPPD inhibitor selected from: topramezone, isoxaflutole, tembotrione, tefuryltrione, shuangzuocaotong, huanbifucaotong, sanzuohuangcaotong, benzuofucaotong and
(2) PDS inhibitor selected from: flurtamone, diflufenican and picolinafen;
(3) DOXP inhibitor selected from : clomazone and bixlozone;
(4) ALS inhibitor selected from: tribenuron-methyl, thifensulfuron methyl, pyrazosulfuron-ethyl, thiencarbazone-methyl, halosulfuron methyl, rimsulfuron, 25 nicosulfuron and imazamox;
• *
(5) ACCase inhibitor selected from: clethodim, sethoxydim and quizalofop-P-methyl;
(6) PPO inhibitor selected from : oxyfluorfen, oxadiazon, oxadiargyl, sulfentrazone,
204 pyraclonil, flumioxazin, saflufenacil, carfentrazone-ethyl and trifludimoxazin;
(7) PSII inhibitor selected from: metribuzin, terbuthylazine, amicarbazone, chlorotoluron, isoproturon, bromacil, propanil, desmedipham, phenmedipham, bentazone and bromoxynil;
(8) inhibitor of microtubule assembly selected from : butral in and pendimethalin;
(9) VLCFA inhibitor selected from: butachlor, pretilachlor, mefenacet, s-metolachlor, flufenacet, pyroxasulfone and anilofos;
(10) lipid synthesis inhibitor (non-acetyl-CoA carboxylase) : prosulfocarb ;
nh2
JL A
ΕΝΟψ r-\
(11) Synthetic hormones selected from: Α/'ό , fluroxypyr, florpyrauxifen benzyl, halauxifen-methyl, triclopyr, clopyralid, picloram, aminopyralid, dicamba, 2-methyl-4-chlorophenoxyacetic acid and 2, 4-dichlorophenoxy acetic acid;
(12) EPSPS inhibitor: glyphosate;
(13) GS inhibitor selected from: glufosinate ammonium and glufosinate-P-ammonium;
(14) PSI inhibitor selected from: paraquat dichloride and diquat dibromide monohydrate;
(15) Cellulose synthesis inhibitorselectedfrom: triaziflam and indaziflam;
(16) other herbicides: cinmethylin.
10. The herbicidal composition according to claim 9, which is characterized in that, in item
FsC-f H /-Cl nA M / o An b (i), the composition comprises compound \ .
11. A method for controlling an undesirable plant, characterized in that it comprises applying at least one of the carboxylic acid derivative-substituted iminoaryl compounds according to any of daims 1 to 7 or the herbicidal composition according to claim 9 or 10 in a herbicidally effective amount on a plant or in its area or to soil or water to control the emergence or growth of undesirable plant.
12. Use of at least one of the carboxylic acid derivative-substituted iminoaryl compounds according to any of daims 1 to 7 or the herbicidal composition according to claim 9 or 10 for controlling a undesirable plant.
OA1202200177 2020-01-11 2020-12-11 Carboxylic acid derivative-substituted imino aryl compound, preparation method therefor, herbicidal composition and use thereof. OA21190A (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202010028477.6 2020-01-11
CN202010077193.6 2020-01-24
CN202010117877.4 2020-02-25
CN202010281666.4 2020-04-10

Publications (1)

Publication Number Publication Date
OA21190A true OA21190A (en) 2024-02-29

Family

ID=

Similar Documents

Publication Publication Date Title
EP4089078A1 (en) Carboxylic acid derivative-substituted imino aryl compound, preparation method therefor, herbicidal composition and use thereof
AU2016350960B2 (en) Pyrazolone compound or salt thereof, preparation method therefor, herbicide composition and use thereof
US4659363A (en) N-(2-nitrophenyl)-2-aminopyrimidine derivatives, the preparation and use thereof
CN107074781B (en) Pyrimidinone compounds
KR20220128639A (en) Conjugated-ring substituted aromatic compounds, methods for their preparation, herbicidal compositions and uses thereof
MX2010014027A (en) Substituted 1-(diazinyl) pyrazole-4-yl-acetic acids, method for the production thereof, and use thereof as herbicides and plant growth regulators.
HUT72912A (en) Pyridazinones and their use as fungicides and compositions containing them
US11472792B2 (en) Herbicidal mixtures
WO1996033994A1 (en) Amino-substituted derivatives, process for the preparation thereof, and herbicide
AU2019386018A1 (en) N-(1, 3, 4-oxadiazole-2-yl)aryl formamides or salt thereof, preparation method therefor, herbicidal composition and use thereof
AU2020378483A1 (en) Substituted-isoxazoline-containing aromatic compound, preparation method therefor, herbicidal composition and use thereof
CN102336744B (en) Substituted triazoline ether ketone class compound and application thereof as bactericide as well as insecticide and acaricide
AU2018430945A1 (en) Substituted pyrimidinyl formyl oxime derivative, preparation method therefor, herbicidal composition and use thereof
OA21190A (en) Carboxylic acid derivative-substituted imino aryl compound, preparation method therefor, herbicidal composition and use thereof.
JPH0625177A (en) Pyrazole derivative and herbicide
JPH06345740A (en) Substituted azine
US20230072860A1 (en) Isoxazoline oxime formate compound, preparation method therefor, herbicidal composition and use thereof
LU84914A1 (en) ALCOYLAMINO N-PHENYL PYRAZOLE AND N-PHENYL PYRAZOLE LACTAMES HERBICIDES
AU613222B2 (en) 5-substituted-2,4-diphenylpyrimidine derivatives, their production and use
AU2017388277A1 (en) Agricultural chemicals
CA1274242A (en) Substituted furazanes
US10172350B2 (en) Substituted 5-hydroxy-2-phenyl-3-heteroaryl pentanenitrile derivatives, method for the production thereof and use thereof as herbicides and/or plant growth regulators
US20220073466A1 (en) Pyridyloxy-carboxylate derivative and preparation method therefor, herbicidal composition, and use
CN112442026A (en) Mesoionic derivative and preparation method and application thereof
JPS6160666A (en) Substituted arylsulfonylguanidine and acid addition