OA21054A - Methods of processing culinary nuts and extraction products obtained by the same. - Google Patents

Methods of processing culinary nuts and extraction products obtained by the same. Download PDF

Info

Publication number
OA21054A
OA21054A OA1202200444 OA21054A OA 21054 A OA21054 A OA 21054A OA 1202200444 OA1202200444 OA 1202200444 OA 21054 A OA21054 A OA 21054A
Authority
OA
OAPI
Prior art keywords
culinary
nut
nuts
milk
phase
Prior art date
Application number
OA1202200444
Inventor
Tilo HÜHN
Roland Laux
Original Assignee
Re-Nut AG
Zürcher Hochschule Für Angewandte Wissenschaften
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Re-Nut AG, Zürcher Hochschule Für Angewandte Wissenschaften filed Critical Re-Nut AG
Publication of OA21054A publication Critical patent/OA21054A/en

Links

Abstract

Described are methods and/or techniques for the production of culinary nut extracts, which simultaneously result in extracts and non-dairy products with favorable organoleptic properties, tasty appearance and high yields of nutritionally useful components, and which may be performed in a simple, rapid and cost-effective manner. In addition, the described methods are capable of processing in-shell culinary nuts to make effective use of the high contents of bioactive materials present in shell material. Specifically, the invention relates to a method for processing culinary nuts, comprising the steps of: a) adding water to culinary nuts to form a suspension; b) wet grinding said suspension in one or more steps to an average particle size of less than 100 |jm; and c) separating the suspension into at least a solid phase comprising culinary nut solids and a liquid phase comprising culinary nut milk. Furthermore, a nut milk, edible nut-based products comprising the solid phase obtained by the aforementioned method or the nut milk, as well as nut oil extracts are disclosed.

Description

METHODS OF PROCESSING CULINARY NUTS AND EXTRACTION PRODUCTS OBTAINED BY THE SAME
FIELD OF INVENTION
[0001] This invention relates to methods and/or techniques for the production of extracts on the basis of culinary nuts, which enabie rapid, inexpensive, and improved extraction, as well as high yields of usable aromatic constituents and nutritionally bénéficiai components.
[0002] In certain embodiments, this invention relates to products obtained by making use of 10 said culinary nut extracts.
BACKGROUND OF THE INVENTION
[0003] In the recent years, there has been an increasing interest in the préparation of 15 vegetable-based alternatives to dairy products (e.g. dairy milk and cheese) to address digestive problems (particularly lactose intolérance) or other health related problems, promote vegan nutrition or to mitigate environmental problems associated with extensive livestock farming. Especially plant-based milk analogues, such as soy based milk, rice milk, oat milk and nut-based milk, for example, enjoy a growing popularity.
[0004] In WO 2013/078510 A1, a process for the préparation of a nut-based milk analogue composition is disclosed, which includes the addition of dry ingrédients to nuts or seeds as fat components in order match the nutritional profile of dairy milk.
[0005] GB 2 413 932 A discloses a method for making almond milk by diluting an almond paste prepared by mixing crushed or ground almond with raw cane sugar and a stabiliser.
[0006] AU 201720433 B2 proposes the préparation of nut butter, which may be mixed together with water in a specialized mixing device to provide emulsified nut milk.
[0007] WO 2017/163178 A1 discloses a production method for hazelnut beverages, including a step of grinding natural hazelnut kernels and water together in a bladed grinder.
[0008] CN 101280327 A describes a process of an enzymatic ultrasonic treatment of walnuts 30 for the préparation of walnut oil and extraction of proteins and peptides.
[0009] In EP 2 476 317 A1, a process of preparing almond drinks is disclosed, comprising subjecting almonds to a heat treatment, dry grinding and dispersion in an aqueous medium.
[0010] US 9,011,949 B2 discloses methods and compositions for the production of cheese replicas by enzymatic curdling of non-dairy milk, wherein the non-dairy milk is produced by coarsely decompounding nuts or plant seeds in a solution comprising water, followed by removal and discarding of insoluble solids to alleviate the grainy mouthfeel ofthe nut milk. On the other hand, US 2020/0015492 A1 and US 2016/0338389 A1 disclose methods of making ποη-dairy milk, which comprise decompounding a slurry comprising nuts and/or seeds, and fine-milling the decompounded slurry in a shear mill without subséquent séparation of the insoluble solids.
[0011] However, conventional methods of preparing nut-based extracts (including non-dairy milk) often hâve the problem that it is difficult to simultaneously achieve favorable organoleptic properties, tasty appearance and high yields of nutritionally favorable components without a large number of processing steps, elaborate equipment and high production costs. Accordingly, it remains désirable to provide a method which consistently overcomes these disadvantages.
[0012] Moreover, recent studies indicate that the Shell materials of numerous culinary nuts contain valuable dietary fibers and especiaîly high amounts of antioxidants, such as polyphenols and flavonoids, which play an important rôle in the absorption or neutralisation of free radicals. For exampie, high antioxidant activity has been reported for shell materials of peanuts (B. Adhikari et al., Journal ofthe Saudi Society of Agricultural Sciences 2019, 18,437442), Pecan nuts (A. C. Pinheiro do Prado et al., Grasas Y Aceites 2009, 60(4), 330-335) and hazelnuts (T. Esposito et aL, International Journal of Molecular Sciences 2017, 18, 392.). In conventional processing for food consomption, the shell and skin materials of nuts are often considered as undesired by-products and are discarded, which not only represents an économie problem for the producers but may also lead to a serious impact on the environment due to the combustion of residues.
[0013] Therefore, it would be désirable to provide a method which is capable of effectively processing in-shell culinary nutsto alleviate the aforementioned problems and simultaneously providing high yields ofthe bioactive materials present in the non-shelled nuts.
SUMMARY OF THE INVENTION
[0014] Thepresentinventionsolvesthisobjectwiththesubjectmatteroftheclaimsasdefined herein. The advantages ofthe present invention will be further expiained in detail in the section below and further advantages will become apparent to the skilled artisan upon considération of the invention disclosure.
[0015] Generally speaking, in one aspect the present invention provides a method for Processing cuiinary nuts, comprising the steps of: a) adding water to culinary nuts to form a suspension; b) wet grinding said suspension in one or more steps to an average particle size of less than 100 pm; and c) separating the suspension into at least a solid phase comprising culinary nut solids and a liquid phase comprising culinary nut milk. Advantageously, said method allows optimized extraction and yield of nutritionally bénéficiai components and 5 provides a route to a variety of novel usable extracts and products, while enabling fast and inexpensive processing, Advantageously, the method further allows processing of non-shelled culinary nuts as starting materials, so that elaborate séparation of shell and husk material in advance may be omitted, which further simplifies the process and improves the yield of nutritionally useful components present in the shell.
[0016] In further aspects, the present invention relates to a culinary nut milk prepared by the aforementioned method, a solid phase obtained by the aforementioned method, and to edible culinary nut-based products which comprise said solid phase and/or the aforementioned culinary nut milk.
[0017] In other aspects, the present invention relates to a method, wherein the above step c) 15 comprises separating the suspension into a solid phase comprising culinary nut solids, a water phase (heavy phase) comprising culinary nut milk, and a fat phase (light phase) comprising culinary nut oil, as well as a culinary nut oil extract obtained by said method.
BRÎEF DESCRIPTION OF THE DRAWÎNGS
[0018] FIG. 1 is a flow chart illustrating an exemplary method of processing culinary nuts to provide extracts such as milk, dried extracts, aromas and nut oils according to the present invention.
[0019] FIG. 2 schematically illustrâtes an exemplary method of preparing non-dairy yoghurt 25 from the culinary nut milk according to the present invention.
[0020] FIG. 3 illustrâtes an exemplary method of preparing non-dairy yoghurt from the culinary nut milk of the present invention.
[0021] FIG. 4 shows the attributes related to appearance, taste and mouthfeel evaluated for exemplary culinary nut-based drinks.
[0022] FIG. 5 shows the results of the orthonasa! sensory analysis evaluated for exemplary culinary nut-based drinks by consensus profïiing.
[0023] FIG. 6 shows the results ofthe retronasal sensory analysis evaluated by consensus profiling of exemplary culinary nut-based drinks.
DETAILED DESCRIPTION OF THE INVENTION
[0024] For a more complété understanding ofthe présent invention, reference is now made to the foilowing description ofthe illustrative embodiments thereof:
Method of Processing Culinary Nuts
[0025] In afirst embodiment, the present invention generally relates to a method for processing culinary nuts, comprising the steps of: a) adding water to culinary nuts to form a suspension;
b) wet grinding said suspension in one or more steps to an average particle size of less than
100 pm; and c) separating the suspension into at least a solid phase comprising culinary nut solids and a liquid phase comprising culinary nut milk.
[0026] An exemplary embodiment ofthe above-defined method is rllustrated in Fig. 1.
[0027] The term “culinary nut’’, as used herein, includes any tree nut, seed or legume, including any species of any genus of nuts, legumes, or seeds, and any mixtures thereof, while nuts, drupe seeds, nut-like gymnosperm seeds and nut-like angiosperm seeds are preferred. A single varietal or species may be used, or any conceivable mixtures of nuts, or mixtures of nuts and legumes, or combinations of tree nuts, seeds and legumes. As examples of nuts, almonds, pecans, walnuts, cashews, pistachios, peanuts, kola nuts, palm nuts, hazelnuts, filberts, Brazil nuts, macadamia nuts, chestnuts, and mixtures thereof may be mentioned, while suitable seeds may include oat, sesame seeds, pine nuts, sunflower seeds, pumpkin seeds, beans and/or rice for example. It is also within the scope of the present disclosure to use legumes (including, but not limited to soybeans, peanuts, navy beans, kidney beans, lima beans, string beans, pinto beans, chickpeas (garbanzo beans), lentils, peas, black-eyed peas, for example) particularly those falling into the définition of culinary nuts in ordinary parlance, such as peanuts, for example. In particularly preferred embodiments, the term “culinary nut comprises hazelnuts, almonds, walnuts, cashews, pistachios, pecans, macadamia nuts, peanuts, and combinations thereof. Before being subjected to step a), the culinary nuts may be preprocessed by stérilisation, blanching, shocking, washing and combinations thereof. In some countries, use the term “milk in conjunction with non-dairy beverages may be prohibited. In this respect, it is understood that the term “culinary nut milk”, as used herein, rs équivalent to a beverage or drink based on culinary nuts.
[0028] In general, different stages of maturity of the nuts, harvest times and thus water contents of the culinary nuts should be taken into account before subjecting them to the process ofthe invention.
[0029] During any drying process, the native, bioactive State of various molécules such as proteins, polysaccharides, polyphenols and vitamins tend to be destroyed. Accordingly, in order to extract these substances in a fresh State (i.e. before dénaturation), it is préférable that the culinary nuts are not pre-dried before being preparing the suspension in step a). The term 5 pre-drying, as used herein, primarily dénotés an active treatment (e.g., heatîng above room température) resulting in the réduction of water content. However, in further preferred embodiments, pre-drying may also encompass inactive steps, such as storage and/or préservation at ambient température or lower, during which plants lose their fresh and original aroma. The time between the harvest of the culinary nuts and the Processing should therefore 10 ideally be kept as short as possible.
[0030] In preferred embodiments, the culinary nuts (kernels with or without Shell, husk material, involucre and/or leaves) may be subjected to step a) in a green State to make use of the favourably high antioxidant content when compared to the rîpened culinary nut. In this context, “green State” dénotés a State before rîpeness, which may be determined by the skilled 15 artisan by methods known in the art (based on appearance, consistency, and/or water content, for example) in dependence ofthe individual type of culinary nut.
[0031] In preferred embodiments, the culinary nuts subjected to wet grinding in step b) may include or consist of non-shelled culinary nuts in order to optimize the yield of antioxidants in the résultant extracts. Surprisingly, it has been also found that Processing the culinary nut with 20 shell material (by using non-shelled nuts in step a), by séparation of the shell material, independent Processing and subséquent re-introduction of processed shell material, or by introduction of culinary nut shell material from a different batch, cultivar or culinary nut species) results in a culinary nut milk with improved stability and cloudiness when compared to émulsions obtained by Processing shelled nuts. In addition, it has been found that upon filling 25 or bottling, the thus produced culinary nut milk tends to undergo a favourable flavor development when being exposed to air (i.e. after opening). In some embodiments, the culinary nuts may also be processed together with husk material, involucre and/or leaves, e.g. to extract additional biologically active components. In these cases, the method of the présent invention preferably further comprises a step of washing the non-shelled culinary nuts before 30 step a), e.g. to remove residues of pesticides, fertilizers or other undesired foreign substances.
The washing step may be carried out in a batch or continuous process according to methods known in the art, The Processing of in-shell culinary nuts éliminâtes the need for specialized equipment and Processing steps required for shell and séparation. However, it does not onîy offer significant advantages over conventional methods in terms of Processing efficiency and energy expenditure, but also makes idéal use of the bénéficiai bio-active components (e.g. antioxidants) found in the skin and the shell of the culinary nuts.
[0032] In an alternatively preferred embodiment, shell material may be separated from the culinary nuts subjected before step b), preferably before step a), and the shell material may be separately and independently processed and subsequently recombined with the suspension before step c) or with at least one of the liquid phase or the solid phase after step c). This embodiment reduces wear of milling equipment during the wet grinding operations in step b), while still enabling effective use of shell material (e.g. as a cloud stabîlizing agent, or as filler material due to typically high contents of lignin and cellulose) and its extracted components (i.e. bioactive agents). The indépendant processing of shell material may include, but is not limited to, grinding (wet or dry grinding), pressing, extraction (e.g. solvent extraction, supercritical fluid extraction, pressurized liquid extraction, ultrasound extraction, enzymeassisted extraction, microwave-assisted extraction, and microwave- and ultrasonic soundassisted extraction, for example) and combinations thereof. Preferably, the shell material is at least ground in one or more steps before being reintroduced. It is understood that the processed shell material to be recombined with the suspension before step c) or with at least one ofthe liquid phase orthe solid phase after step c) includes any ofthe ground shell material, its extracts, or a combination thereof. As is illustrated in Fig. 1, the processed shell material may be reintroduced to the suspension before the phase séparation. Alternatively, or in combination, the processed shell material may be introduced to any of the liquid phase, the water phase, the oil phase and/or the solid phase at any step after phase séparation, which includes the addition to the nut milk, nut aroma, nut oil and/or solid nut extracts (not explicitly shown in Fig. 1).
[0033] It will be understood that shell material from a different batch, cultivar and/or a different culinary nut species may be introduced in addition or in alternative to the aforementioned preferred embodiment to make use ofthe nutritionally bénéficient components and to improve stability and cloudiness of the resulting émulsion. Accordingly, in another preferred embodiment, the method comprises the addition of culinary nut shell material (which may originale from a different batch, cultivar and/or a different culinary nut species) to the suspension at any time before step c) or to at least one of the liquid phase or the solid phase after step c). The culinary nut shell material may be suitabiy pre-processed according to the aforementioned independent processing steps prior to the addition to the suspension, liquid phase or solid phase. In preferred embodiments, the independently pre-processed culinary nut shell material has been wet- or dry-ground to an average particle size of less than 100 pm, preferably less than 90 pm, even more preferably 80 pm or less, such as from 0.5 to 50 pm or from 1 to 20 pm, in one or multiple steps before being added to the suspension at any time before step c) or to at least one of the liquid phase or the solid phase after step c). In general, the content of culinary nut shell material based on the content of total solids subjected to step a) or b), or the amount of (optionally pre-processed) culinary nut shell material added to at least one of the liquid phase or the solid phase after step c) is not particularly limited. In preferred embodiments, the content of culinary nut shell material based on the content of total solids subjected to step a) or b) or added to the solid phase after step c) amounts to at least 0,1 wt.-%, further preferably at least 0.5 wt.-% and especially preferably at least 1 wt.-% based on the total weight of solids. The upper limit is not specifically limited and may be suitably selected depending on the nut species, but will typically amount to 60 wt.-% or less, further preferably to 50 wt.-% or less, especially preferably to 45 wi-% or less. In case of addition to the liquid phase after step c), culinary nut shell material is preferably added in an amount of 0.01 wt.-% to 10 wt.-% relative to the total weight ofthe liquid phase.
[0034] In step a), water is added to form a suspension. While not being particularly limited, the weight ratio of water to the culinary nuts in the formed suspension is preferably between 1:1 to 15:1, more preferably 2:1 to 12:1, especially preferably between 2.5:1 to 10:1, which may advantageously affect the processability in the further steps (e.g. facilitated pumping, grinding and/or easier phase séparation). For the préparation of a non-dairy milk, the amount of water may be further fine-tuned in dependence of the fat content of the starting material and the desired fat content in the resulting milk.
[0035] While it may be preferred to use water (e.g. tap water) in step a), alternative waterconîaining liquids may also be used as a source of water in order to introduce additional flavors, which may favorably interact with the primary and secondary flavors of the culinary nuts at subséquent stages of the processing methods. Such liquids may include liquids having water contents of from 60 to about 95 % by weight, such as fruit juices, fruit juice concentrâtes, or milk, for example. In case such water-containing liquids are used, it is generally préférable that the water content in the formed suspension falls into the above-defmed ratios. In general, it is preferred that the added water or water-containing liquid has a température of 40°C or less, more preferably 30°C or less, and particularly preferably 25°C or less. However, for spécifie purposes, higher températures may be employed as desired. For instance, in order to effect enzyme deactivation, water or water-containing liquids having températures of up to 95°C, typically up to 90°C may be desirably used.
[0036] When improved extraction yields of lipophilie substances are targeted and/or the introduction of flavors is desired, further extraction agents may be added in addition to water, Such extraction agents may include one or more organic solvents, which may be preferably selected from the group of Ci-Ce alcohols, C2-C8 ketones, C3-C7 esters, C2-C8 ethers, C4-C10 lactates, halogenated Ci-Cs hydrocarbons and Ci-C8 alkanes, more preferably from Ci-Cs alcohols, CtCs alkanes, Cs-Ca ethers, further preferably from the group of methanol, éthanol, isopropanol, acetone, methyl acétates, ethyl acétates, diethylether, methyl t-butyl ether and hexane, and especially preferably from éthanol, hexane and methyl t-butyl ether. In a particularly preferred embodiment, the organic solvent is éthanol. While not being limited thereto, further examples of additional extraction agents may comprise animal oil (e.g. fish oil), liquid dairy product, vegetable oil (e.g., olive, soybean, rapeseed, canola, sunflower, safflower, peanut, cottonseed, coconut, palm, avocado and rice bran oil) and combinations thereof, which may be infused with further flavors (e.g. cocoa, vanilla, curcuma, Chili, cardamom, pepper or the like). When mixed with the water or water-containing liquid, it is preferred that said additional extraction agent is comprised at less than 90% by volume relative to the volume of water or water-containing liquid, preferably less than 70% by volume, The température of the extraction agent is not particularly limited and may be suitably adjusted by the skilled artisan. [0037] In embodiments, it may be préférable to modify the pH value of the water or watercontaining liquid, for example by addition of one or more acids (e.g. acetic acid, citric acid, or the like) or buffers, preferably during or after step (1). Typically, said pH modulation may involve addition of buffer solution, base or acid in order to fine-tune the subséquent extraction profile,
[0038] In addition, carbohydrates may be added to the water or water-containing liquid, which may promote the efficient séparation of the oil phase in the subséquent steps. While not being limited thereto, examples of suitable carbohydrates are mentioned in US 2018/0079991 A1.
Forming the aqueous suspension in step a), i.e. before step b) has the advantage that solid material is softened prior to grinding and the cooling effect of water further minimizes the mechanical burden on milling equipment. In addition, no drying step is required before wet grinding, which may be especially advantageous in view of the relatively low energy expenditure. The methods and devices used for wet grinding in step b) are not particularly limited as long as significant frictional heat production or high mechanical forces are avoided in orderto preserve the heat-sensitive components ofthe culinary nuts. For this purpose, step b) preferably comprises: (b1) one or more coarse grinding step(s) to an average partiels size of 500 pm or less, and (b2) a subséquent fine grinding step to an average particle size of less than 100 pm, preferably less than 90 pm, even more preferably 80 pm or less, such as from 0.5 to 50 pm or from 1 to 20 pm. Reducing the particles to the above size ranges range substantially increases the exposed surface area ofthe particle material for optimized wetting, which enables improved extraction results (such as improved extraction of fats or lipids, aromatic substances, and/or polyphenols). The particle size réduction may be accomplished by using dise mills (e.g. perforated dise mill), colloid mills (e.g. toothed colloid mills), bail mills or corundum stone mills, for example. In a particularly preferred embodiment, the one or more coarse grinding step(s) (b1) are performed with a perforated dise mill, and the fine grinding step (b2) is performed by use of a toothed colloid mill and/or a bail mill. In general, the average particle size may be measured as volume moment mean (D[4,3]), and typically defined by ail particle sizes contributing according to their volume fraction in the collective, so that the average particle size in the interval is weighted with the corresponding volume portion and ail these weighted values are averaged arithmetically. The particle sizes and their distribution may be suitably determîned by methods known in the art (including sieving, filtering or by laser photometry, for example).
[0039] In preferred embodiments, the method of the present invention comprises a step of subjecting the suspension to a macération and/or fermentation step, preferably before or directly after step c), further preferably during or after wet-grinding in step b). Advantageously, such processes may be performed to reduce excessive contents of undesirable components of the culinary nuts, such as phytic acid, for example. Macération enables the aqueous extraction agentto additionally wetthe solid material through enlargement ofthe surface area. In a preferred embodiment, macération may be performed enzymatically.
[0040] In addition, it has been found that macération plays an important rôle in improving the yield of nutritionally bénéficiai components (especially aroma compounds). For this purpose, the culinary nut material (kernels with or without shell, husk material, involucre and/or leaves) may be left to macerate in an aqueous medium, either in an non-ground State before step b) or in a ground State after step b). If desired, the aqueous macération medium may be pHmodulated by addition of acid, base or buffers to a desired pH. The duration of the macération process is not particularly limited, but a duration of from 1 to 20 hours is preferred, and a duration of 2 to 12 hours is especially préférable. The processing of macerated culinary nuts generally results in improved aromatic yield. In further preferred embodiments, macération in an aqueous medium is combined with a subséquent extraction according to steps a) and c), wherein one or more organic solvent(s) according to the above description is(are) added to the aqueous extraction medium. In this respect, it has been surprisingly found that the yield improvement is remarkably higher upon macerating the culinary nut material, separating the macerated culinary nut material from the macération medium and subjecting the same to extraction (i.e. în steps a) to c)), when compared to direct extraction with organic solvent, despite of the use of the same substrate material and the removal of the macération medium.
[0041] Fermentation may be performed by using microbial starter cultures, including indigenous and non-indigenous bacterial and yeast species known in the art, optionally in combination with enzymatic treatment, while the end point of fermentation may be monitored by Chemical measurement of pH, which enables favorable control over the fermentation 5 process when compared to natural, spontaneous fermentation. In addition or alternatively, the fermentation process may be controlled by monitoring température, pressure, gas development (e.g. CO2) and/or the density.
[0042] It will be understood that the wording fermentation”, as used herein, may encompass spontaneous or controlled (non-spontaneous) fermentation processes. For example, an 10 incubation step in an incubation medium may be implemented to simulate microbial (i.e. yeast and bacterial) fermentation. Although not being particularly limited as long as the concentration of incubation medium is sufficiently high to prevent spontaneous fermentation by endogenous microbes, the concentration of éthanol in the incubation medium may be from 1 to 20 vol.-%, preferably between 1 and 12 vo!.-%. In an especially preferred embodiment from the viewpoint 15 of germination inhibition efficiency and processing costs, the concentration of éthanol in the incubation medium is at least 2 vol.-% and less than 7 vol.-%. The incubation medium may further comprise enzymes known in the art for controlled enzyme-catalyzed reactions in order to facilitate formation of aroma precursors, such as hydrophilîc oligopeptides and hydrophobie free amino acids, for example. If applied, the incubation may be carried out in a single step or 20 in multiple incubation steps, wherein different incubation conditions and/or incubation media are employed. As will be known to the skilled artisan, the incubation conditions, such as pH or température, may be varied within one single incubation step. The incubation step may further encompass one or more mechanical and/or physical treatment steps commonly known in the art before or during the incubation. Although not being limited thereto, such a mechanical 25 treatment may comprise stirring, mixing and agitating, and combinations thereof, while said physical treatment may comprise an infrared treatment and/or a vacuum treatment, for example.
[0043] In step c), the finely ground suspension is subjected to one or more séparation and/or processing steps comprising at least the séparation into a solid phase comprising culinary nut 30 solids and a liquid phase comprising culinary nut milk. It has been surprisingly found that when the suspension is finely wet ground according to step b), the following séparation of the solid phase does not negatively impact the aromatic richness of the culinary nut milk. In addition, since sédimentation of solid particles is avoided, the appearance and mouthfeel ofthe culinary nui milk may be substantially improved. Accordingly, compared to methods known in the art 35 which do not employ séparation of solids from the liquid phase, the method of the present invention provides a solid phase which may be advantageously used for a number of products and extracts (examples of which will be mentioned below) without compromising the rich aroma ofthe culinary nut milk. In fact, the resulting culinary nut milk exhibits tmproved appearance and organoleptic properties.
[0044] Preferably, devices employing centrifugal forces may be utilized to achieve mechanical particle séparations, such as decanters or nozzle separators, while decanters are particularly preferred.
[0045] For some applications, it may be preferred that step c) comprises a three-phase séparation, wherein the suspension is separated into a solid phase comprising culinary nut solids, a water phase (heavy phase) comprising culinary nut milk, and a fat phase (light phase) comprising culinary nut oil. For example, such a process is désirable if gentle extraction of nut oils (without the necessity of carbohydrate addition or pressing steps) is desired and/or if it is desired to minimize the fat content in the culinary nut milk without compromising the flavor richness (as would be the case by dilution, for example). Although a three-phase séparation may be achieved by subséquent steps, for instance, by de-oiling the liquid phase obtained in step c) to produce culinary nut milk, it is preferred to conduct three-phase séparation in a single step, e.g. by a three-phase decanter.
[0046] A three-phase séparation further offers the possibility of removing undesirable lipophilie components via the oil phase. Examples of such undesirable components include, but are not limited to lipophilie allergens or toxic substances. For instance, cashew nut shelis include cashew shell oil (also known as cashew nutsheli liquid (CNSL)), which is undesirable in food préparation as it exhibits strongly allergenic properties and causes eye irritation, skin rashes, and burning sensations upon contact with human skin. Séparation of cashew shell oil through the oil phase provides a pathway to edible cashew fruit extracts, while the shell oil itself may be further processed to provide a raw material in the préparation of drugs, antioxidants, fungicides, and biomaterials, for example.
[0047] Multiple phase séparation and recombination steps may be employed to achieve an improved séparation between the liquid phase(s) and the solid phase. The thus obtained purified phases may be re-fed to the respective phases obtained after the first séparation stage.
[0048] For example, the water and oil phases obtained in the three-phase séparation may be further purified, e.g, by performing a second three-phase séparation step, in order to further improve the recovery and yield of extracts. The solid phase may filtered or centrifuged to separate remaîning water, which may be recombined with the water phase from the initial decanting step or at a later processing stage of said phases. Also, the water phase may be subjected to further purification steps, e.g. by filtration using vacuum rotation filters m order to remove fine particles.
[0049] In a preferred embodiment, steps a) to c) are carried out continuously in a time frame of less than 100 minutes, preferably less than 60 minutes, more preferably less than 20 minutes, which represents a remarkable improvement over conventional techniques.
[0050] Although a heat treatment may be incorporated at several stages of the processing method, it is preferred that each ofthe processing steps a)to c) are performed at températures in the range of 0°C to 65°C in order to preserve high contents of heat-sensitive materials. For instance, for the préparation of nut oils with especiaîly high contents of nutritionally bénéficiai bioactive materials (such as heat-sensitive polyphenols, flavonoids or vitamins), it is however, preferred that the culinary nuts are not roasted before step a) and that the suspension température during step c) does not exceed 40°C, and is preferably less than 35°C, more preferably less than 30°C, and especiaîly preferably 25°C or less, such as 20°C or less.
[0051] In a preferred embodiment, the method may also comprise a step of subjecting the suspension during or after step b) to a heat treatment at a température of 60°C or less (e.g. at a température of 40 to 60°C) in order to further enhance the extraction efficiency in the subséquent steps.
[0052] A heatîng step may also be implemented to introduce roast flavors. For example, the culinary nuts may be roasted before mixing with water in step a), which may advantageousiy also be performed with culinary nuts in shell. While not being limited thereto, typîcal roasting températures will be generally in the range of more than 65°C and 200 °C or less, preferably between 70 and 160°C, such as from 80 to 150°C.
[0053] If it is desired to introduce roast flavors into the solid phase comprising culinary nut solids obtaîned after step c) without effect on the liquid phase, the solid phase after step c) may be roasted alone, preferably during a drying procedure. In a preferred embodiment, sait (e.g., sodium chloride) may be added in order to enhance the solubility of proteinogenic substances as precursors for the Maillard reactions.
[0054] For example, (wet) solid phase obtaîned after phase séparation in step c) may be optionally treated with a heatabie roll grinder to reduce particle size and begin pre-drying. The solid phase may be subjected to a drying step and an optional subséquent roasting step to obtain (roasted) culinary nut powder and culinary nut aroma. Also, sugar, sugar solution and/or fruit juices or the like may optionally be added to separated solids before drying to improve flavor development during the drying/roasting process. It will be understood that the obtaîned culinary nut aroma may be collected and used independently (as aroma extract) or directly reintroduced into the other extracts, including the liquid/water phase comprising culinary nut milk for a more intense faste.
[0055] The method of carrying out the drying/roasting is not particularly limited and may e.g. be accomplîshed in a drum dryer. In a preferred embodiment, however, the drying/roasting 5 step is carried out in a mixing device comprising a cylindrical, tubular body arranged with its axis horizontal and closed at its opposite ends by end plates, and having a coaxial heating or cooling jacket through which, for example, diathermie oil or another fluid is întended to flow to keep the internai wall of the body at a predetermined température. The tubular body has an inlet and outlet openings for the solid phase. The outlet opening communicates, by means of 10 a duct, with a device for separating the aroma phase from the dried product. The device further comprises a bladed rotor is supported for rotation in the tubular body, its blades being arranged as a hélix and oriented for centrifuging the solid phase being processed and simultaneously transporting it towards the outlet opening. Using this mixing device advantageously allows the drying/roasting step and the séparation of the roasted flavors and other aromatics to be carried 15 out continuously up to the préparation of the culinary nut powder. The température in the optîonal roasting step is not particularly limited and may be suitabiy selected by the skilled artisan in dependence of the selected culinary nuts and the desired flavors and/or antioxidant activîty in the final product, for example. Typically, the roasting step is followed by a cooling step, which may be carried out by air cooling or by addition of cold liquid (e, g, water), for 20 example. If roasting is performed before a macération or fermentation step, the cooling step may be preferably carried out with the use of a cold liquid which is adapted to adjust the pH, enzymatic and/or microbial content to conditions optimized for macération or fermentation, respectively, which advantageously reduces the number of necessary process steps.
[0056] The above-described methods enable simple, rapid and inexpensive préparation of 25 culinary nut extracts, which make idéal use of the naturally present, nutritionally bénéficiai components.
Processing of Culinary Nut Extracts and Related Products 30
[0057] The culinary nut extracts obtained by the above-described methods may be directly employed as food products (as food additives, nutritionel suppléments or beverages, for example). In addition, culinary nut oil extracts may also be used in cosmetic products (e.g. in lotions), health-care products (including natural health-care products), and combinations ofthe 35 latter (topical préparations, etc.).
[0058] Specifically, a second embodiment of the présent invention relates to a culinary nut milk produced by optionally homogenising and subsequently pasteurising or sterilising the liquid phase (in case of a two-phase séparation) or the water phase (in case of a three phase séparation) obtained by the method according to the first embodiment.
[0059] For the préparation of culinary nut milk, the liquid phase or water phase (in case of a three-phase séparation) may be optionally homogenised and subsequently pasteurised or sterilised to provide a ready-to-serve culinary nut milk with favorable appearance and high contents of preserved natural flavors, vitamins and antioxidants.
[0060] During homogénisation, the dimension ofthe fat droplets is reduced, which increases the perception of creaminess and the product stability by decreasing the rate of fat agglomération. Homogénisation may be brought about by methods known in the art, and typically includes forcing the heated pasteurized mass through an orifice under high pressure, typically between 120 and 2100 bar. Ultra high pressure (U H P) homogénisation with pressures of between 1400 and 2100 bar is préférable as it enables the provision of émulsions with a large number of very small fat droplets (diameters of less than 0.5 pm) and requîtes lower fat content to achieve the sensory and stability properties compared a product homogenized at lower pressures.
[0061] A pasteurisation or stérilisation step may be carried out according to methods known in the art to prevent microorganism spoilage/propagation, e.g. by application of heat, irradiation, Chemical stérilisation, and micro-, ultra- or nanofiltration, for example. The pasteurisation process may be carried out in batch or continuous operation, e.g. by the use of HTST (high température short time) heat exchangers.
[0062] A third embodiment of the présent invention relates to edible culinary nut-based products comprising the solid phase or the culinary nut milk according to the second embodiment or obtained by the method according to the first embodiment described above.
[0063] For instance, the (optionally dried) solid phase may be used as a culinary nut extract for further processing into numerous food products (includîng, but not limited to candy, protein bars, confectionery applications, bakery applications, instant powders, for use in cereals, as spread or ice creams) or pressed into shapes with different texture (includîng a recomposition of the culinary nut shape, for example). Moreover, the solid phase may be processed into a (gluten-free) flour for bakery applications (sweet or salty pastry and bread baking). Further Processing steps may include, but are not limited to, pasteurisation, stérilisation, extrusion, instantisation, orthe like.
[0064] Using seeds (e.g. rice or beans) or legumes (e.g. soybeans) as startîng materials offers the possibility to employ the (optionally dried) solid phase as a base material for méat replacement products (including tofu or similar products), which may be processed and/or flavored according to methods and recipes known in the art.
[0065] For certain applications, such as the préparation of culinary nut-based ice creams, the wet solid phase may be processed without drying. For example, the wet solid phase may be directly added to a mixture comprising a natural or artificial sweetener, and subjected to pasteurisation, homogénisation and freezing to obtain a culinary nut-based frozen dessert. To this mixture, one or more dairy milk products (comprising milk fat, milk solids non-fat (MSNF) and/or yoghurt), vegetable milk products (including the culinary nut milk obtained from the liquid phase according to the present invention), egg products (e.g. egg yolk) emulsifiers and stabilizers may also be optionally added in suitable amounts to préparé a variety of nut-flavored hard frozen ice cream products, low-fat ice cream products, light ice cream products, softfrozen ice cream products, sherbets, sorbets, and frozen yoghurts.
[0066] Examples of the third embodiment also include various non-dairy products, such as non-dairy instant milk powders, non-dairy yoghurts or non-dairy cheese, produced by further Processing of the culinary nut milk according to the second embodiment of the present invention.
[0067] An instant non-dairy milk powder may be obtained by instantising the culinary nut milk by methods known in the art, examples of which include, but are not limited to agglomération techniques such as steam agglomération, fluidized bed agglomération, freeze drying agglomération, thermal agglomération or spray drying, for exampie.
[0068] An exemplary method forthe préparation of non-dairy yoghurt is illustrated in Fig. 2 and may include the steps of: mixing of a sweetener (e.g. sugar) and stabilizer in water; adding the above-described culinary nut milk to the mixture; pasteurising the mixture including the culinary nut milk atelevated températures; adding a suitable bacterial culture to the pasteurized mixture at inoculating température (e.g., in a range of 42 to 44°C); controlling the fermentation process by adjusting the température conditions (e.g. to a range of 42 to 45°C), monitoring the pH of the mixture and cooling the mixture when a target pH (e.g. in the range of from 4.2 to 4.7) has been reached to stop fermentation. The thus obtained yoghurt may then be optionally further cooled (e.g. to températures of 3 to 7 °C), flavored and filled. Additives such as fruits, thickeners, colorants, natural and/or artificial flavors, herbs, spices, preservatives, tricalcium phosphate, live active cultures, and proteins (e.g. plant-based), or the like, may be added to the mixture at different stages of the process or preferably to the yoghurt.
[0069] Fig. 3 schematically illustrâtes an exemplary method for producing a non-dairy cheese. The process generally starts with mixing of one or more bacterial cultures and a coagulating agent with culinary nut milk and gentle agitation of the mixture (preferably at a température of to 20°C). The then initiated fermentation process is controlled by adjusting the température conditions (e.g. to a range of 42 to 45°C), monitoring the pH of the mixture and cooling the mixture (e.g., to about 20 to 25°C) when a target pH (e.g. in the range of from 4.2 to 4.7) has been reached to stop fermentation. The thus produced coagulum can be pasteurized and cooled (e.g., to about 20 to 25°C), if necessary, and may be optionally repopulated with one or more cultures. The resulting curd can be subjected to mechanical processing steps known in the art, including pressing, dripping methods (e.g., by placing the curd into a draining bag), mixing, chopping, or the like, in order to achieve the desired viscosity, density and smoothness. During this process, water and additives, such as lactic acid, sait, pepper, stabilizer, for example, may be added. Subsequently, the cheese may be aged to the desired ripeness according to methods known in the art. As with the préparation of the non-dairy yoghurt, suitable bacterial cultures may be appropriately selected by the skilled artisan.
[0070] A fourth embodiment ofthe present invention relates to a culinary nut oil extract, which is obtained from the oil phase during the optional three-phase séparation in step c) described in conjonction with the first embodiment. The oil phase may be optionally further purified and concentrated to provide a culinary nut oil with high contents of nutritionally bénéficiai lipophilie components. Alternatively, the nut oil extract may be used for non-food applications, such as the préparation cosmetic products, health-care products, drugs, antioxidants, and microbicides, for example.
[0071] It will be appreciated that the methods of the present invention may employ any of the preferred features specified above with respect to the description of the first to fourth embodiments, and that the preferred features may be combined in any combination, except for combinations where at least some ofthe features are mutually exclusive.
EXAMPLES
[0072] Three types of hazelnut milk hâve been prepared according to the method of the present invention, by mixing hazelnuts with demineraiized and stérile filtrated water in a weight ratio of 1:3 (i.e. 25 kg hazelnuts and 75 kg water), coarse-grinding the aqueous suspension in a perforated dise mil! (FrymaKoruma ML 150) and fine-grinding the coarse slurry with atoothed colloid mill (FrymaKoruma MZ 130; milling gap 0.1 mm). Upon fine grinding, the suspension was subjected to a phase séparation with a decanter centrifuge (GEA Westfalia), The water phase obtained from phase séparation was subjected to stérilisation at 120°C for 55 seconds using a tubuiar heat exchanger. In each case, the total extraction time from the mixing step a) to the préparation of the sterilized hazelnut milk was approximately 10 minutes or less. The
solid phase obtained in the phase séparation step has been dried at 65°C at a reduced pressure of 30 mbar for approximately 8 hours. In Example 1, washed whole hazelnuts (i.e. in shell) hâve been used as starting material, resulting in 43 kg of hazelnut milk. Example 2 has been performed by use of washed non-blanched hazelnut kernels, while blanched hazelnut 5 kernels hâve been used as starting material in Example 3. In both Examples 2 and 3, the process yielded 74 kg of hazelnut milk.
[0073] The taste of the hazelnut milk obtained in Examples 1 and 3 was evaluated and an aromatically rich and pleasant taste was attributed to each of the samples.
[0074] The starting materials and the obtained nut milk and dried solid extracts hâve been 10 analyzed with respect to the dry matter content, fat content and pH. The results of the analysis are shown in Table 1 below.
[0075] TABLE 1
Dry matter content [%] Fat content [%] Fat content per dry matter [%) PH
Example 1 Whole hazelnuts 90.70 32.72 36.07 -
Hazelnut milk 5.00 2.63 52.60 6.52
Dried solids 98.65 39.10 39.64 -
Example 2 Hazelnut kernels (non-blanched) 94.70 54.85 57.92 -
Hazelnut milk 19.40 6.08 31.34 6.48
Dried solids 98.85 45.04 45.56 -
Example 3 Hazelnut kernels (blanched) 94.85 54.85 57.83 -
Hazelnut milk 25.26 7.27 28.78 6.51
Dried solids 98.26 39.02 39.71 -
[0076] The above analysis indicates that, after two phase séparation, the majority of the fat 15 content remains in the solid phase, while the extraction efficiency is similar in ail examples.
The fat content of the milk obtained in Example 1 indicates that in case of whole hazelnuts, a nut to water ratio of 1:3 is suitable to achieve fat contents similar to conventional dairy milk.
[0077] In view of the above, it is shown that the present invention provides a simple and particularly rapid and cost-efficient process for the préparation of culinary nut extracts.
[0078] In a further sériés of experiments, chemical compositions of the plant-based milk products produced by the method ofthe present invention werestudied in orderto gain insights of nutritive and sensorial aspects ofthe new hazelnut-milk products and to provide a basis for further product optimization.
[0079] The test samples hâve been prepared according to a method ofthe present invention, by mixing hazelnuts with demineralîzed and stérile filtrated water in a weight ratio of about 1:5 (i.e. approximately 25 kg raw materia! and 124 l water), coarse-grinding the aqueous suspension in a perforated dise mill, fine-grinding the coarse slurry with a toothed colloid mill, and subjecting the finely ground suspension to a phase séparation with a decanter centrifuge. Upon testing, the hazelnut drink obtained from phase séparation was subjected to stérilisation at 100°C for 15 seconds using a tubular heat exchanger, and to packaging. In each case, the total extraction time from the mixing step a) to the préparation of the steritized hazelnut milk was approximately 10 minutes or less. As raw materials, in-shell hazelnuts (Examples 4 and 5), unroasted hazelnuts with skin (Examples 6 and 7) and roasted hazelnuts without skin (Examples 8 and 9) were used. Hazelnut raw materials from the same orîgin but different harvesting years hâve been used in Examples 4, 6 and 8, and Examples 5, 7, and 9, respectively.
[0080] The final products (hazelnut milk) and the side-streams (solids after decanter) as well as the different raw materials used for production ofthe prototypes were investigated for main constituents such as protein, fat, carbohydrates, starch and insoluble dietary fibers. Furthermore, selected minor constituents such as vitamins and aroma-active compounds, as well as the polyphenol content and the antioxidative potential hâve been analyzed.
[0081] For the analysis of the main constituents the following méthodologies were applied: [0082] The fat content was determined after direct extraction with the Soxhlett method, as described in Matissek et al., Lebensmittelanalytik, 5th Edition, 2014, Springer Spektrum Verlag, Berlin-Heidelberg.
[0083] The total protein content was determined according to ISO 5983-2.
[0084] The contents of the saccharides glucose (glu), fructose (fru), and saccharose (suc) hâve been determined by means of enzymatic assays using Enzytec™ Liquid Sucrose / DGlucose/ D-Fructose.
[0085] The starch content was determined by means of an enzymatic assay using an UVmethod for the détermination of native starch and partially hydrolized starch.
[0086] The détermination of insoluble dietary fibers was performed according the method of Robertson et al., J. Anim. Sci. Suppl. 1977, 45(1), 254.
[0087] Détermination of selected aroma-active compounds in hazel-nut milk samples: Selected hazelnut aroma compounds 2-ethyl-2-methylbutyrat, hexanal, filberton, nonanal, acetic acid, 2-ethylhexanol, linalool, acetophenone & benzothiazole in the hazelnut-milk samples produced from different hazelnuts raw materials (with/without Shell, with/without skm, unroasted/roasted) based on the SPME-method as described by Pastorelli et al., Food Additives & Contaminants 2006, 23(11), 1236-1241. For the sample préparation the nuts were frozen at -20°C and then ground by means of a basic analytical iab mill to 1 part of nut powder 4 part of water were added and dispersed with a Polytron homogenizer for 1 minute. 5 g milk were weighted in 20 ml HS-vials. For calibration of the selected analytes, internai standards (amyî acetate and methyl pelargonate) were added from an ethanolic stock solution to water to a final concentration of 10 mg/l each. The sample was vortexed and analyzed by SPMEGC-MS under the following conditions:
[0088] Fiber: Phase: 85 pm Carboxen/PDMS (Supelco #57295-U); Incubation: 10 min, at40 °C; Extraction: 10 min.
[0089] GC-MS:
System: Thermo Trace GC with TSQ 8000 Evo Mass Spectrometer, TriPlus RSH Autosampler (Thermo Scientific) and Xcalibur System software;
Columns: Analyt. column DB-FFAP 30 m x 0.25 mm, 0.25 pm film (Agilent #122-3232) Restriction: TSP 0.5 m x 0.15 mm, DPTMDS-deact. (BGB #TSP-150375-D-10)
Carrier gas: Hélium 6.0 (PanGas)
GC parameters: Injector: PTV with SPME-Liner (BGB #LS2200-5); Injector Temp.: 280 °C Split flow: 10 ml/min; splitless: 0.5 min.; Column flow: 2 ml/min constant; Oven program: 40 °C with 7 K/min at 155 C, then with 50 K/min at 250 “C, 9 minutes constant.
MS parameters: Source température: 220°C; émission current: 50 pA; Détection: MS SIM (Dwell Time > 30 ms); Quantitation: External 4 - level calibration with 2 internai standards via area counts.
[0090] Vitamin B3 (Niacin) and Vitamin E (α-Tocopherol) were determîned in the raw materials and the final products via HPLC.
[0091] The antioxidative capacity and total polyphenol content hâve been determîned in ail samples. The total polyphenol content has been determîned by the photometric assay using the Folin Ciocalteu Reagens as sum parameter as described Pedan et aL, Molécules 2018, 23(1931). The antioxidative capacity of the raw materials and the products has been determîned as sum parameter by the DPPH-assay as described by Brand-Williams et al., Use of free radical method to evaluate antioxidant activity, Lebensmîttel-Wissenschaft und Technologie, 1995.
[0092] Table 2 shows the results ofthe main constituent analysis of the raw materials used for the production ofthe hazelnut milk aswell asthe products, hazelnut milk andthe obtained side products are summarized and presented in % ofthe total weight ofthe analyzed products. Ail
measurements were done at least in duplicates (n > 2) with a déviation from the mean value < +/- 5 %.
[0093] Overall, the analyzed hazelnut milk samples showed similar composition concerning the main constituents. Only for the hazelnut milk samples produced from in-shell hazelnuts, 5 slightly lower contents of proteins and saccharides were observed in comparison to the hazelnut milk samples produced of unroasted nuts with skin and roasted nuts without skin.
[0094] TABLE 2
Type Material Protein [% m/m] Fat [% m/m] Saccharides starch insoluble dietary fi bers (g/ioo g]
g le [% m/m] fru [% m/m] suc [% m/m]
Example 4 harvest A /in Shell raw material 9.41 - 0.031 0.190 1.79 1.31 g/100 g 49.7
ground suspension 1.75 - 0.004 0.039 0.417 - -
solids after séparation 7.95 16.6 0.002 0.035 0.283 -
milk after séparation 1.28 <1 <0.001 0032 0.427 1.08 g/l 0.34
packaged milk 0.9 5.53 <0.001 0.026 0.394 -
Example 5 harvest B /in Shell raw material 8.75 0.076 0.189 1.98 1.26 g/100 g 51 9
ground suspension 1.67 0.017 0.044 0.303 - -
solids after séparation 9.18 154 0.045 0.080 0.095 - -
milk after séparation 1.01 <1 0.015 0.053 0.374 1.06 g/l 0.09
packaged milk 0.98 0.97 <0.001 0.039 0.368 -
Example 6 harvest A /unroasted with skin raw material 2.61 66.0 0.513 0.64S 4.45 5.89 g/100 g 7.3
ground suspension 3 21 13.0 0.499 0.378 0.948 - -
solids after séparation 4.91 53.4 0.234 0.323 0.452 - -
milk after séparation 3.05 <1 0.037 0.099 0.636 0.96 g/l 0.10
Example 7 harvest B /unroasted with skin raw material 4 41 63.2 1.23 1.15 2.83 5.94 g/wog 8.1
ground suspension 3.23 12.7 0.210 0.147 0.687 - -
solids after séparation 5.38 53.6 0.137 0.215 0.278 - -
milk after séparation 2.23 <1 0.009 0.026 0.653 0.82 g/l 0.06
Ex ample 6 harvest A /roasted without skin raw material 12.67 66.3 0.097 0.313 3.29 4.29 8.0
ground suspension 2.92 13.1 0.053 0.057 0.622 -
solids after séparation 4.86 55.0 0.037 0.207 0.109 - -
miik after séparation 3.06 <1 0.003 0.011 0.730 1 00 g/l 0.28
Ex ample 9 harvest B /roasted without skin raw material 5 39 64.7 0.043 0.264 3.14 4.32 12.7
ground suspension 2.75 11.0 0.030 0.035 0.523 -
solids after séparation 5.37 53.5 0.076 0.191 0.231 -
miik after séparation 3.50 13.0 0.004 0.009 0.598 1.07 g/l 0.23
[0095] For aroma analysis, selected aroma-active compounds were analyzed by means of solid phase micro extraction gas chromatography mass spectrometry (SPME-GC-MS) in different hazelnut mîlk samples. The results are summarized in Table 3.
[0096] TABLE 3
aroma compound Example 4 Example 5 Example 6 Example 7 Example 8 Example 9
[mg/l]
ethyl-2-methyl butyrate - - - 0 009 0.013
hexanal - - - 0.070 0.050
filbertone 0.033 0.016 0 081 0.045 0.046 0.048
nonanal 0.079 0.128 - 0.114 0.413 0.525
acetic acid 119 20.0 175 16.7 235 131
2-ethylhexanol 6.00 2.71 5.93 2.50 20.2 16.2
linaool 0 040 0.045 0.057 0.47 0.128 0.206
acetophenone 0.294 0.120 0.351 0.104 6.70 4.12
benzothiazole 0.104 0.040 0.170 0.046 1.03 0.649
4-cresol - - - - 0.649 0.290
[0097] Forthe aroma-active compounds, higher contents ofthe compounds nonanal, linalool, 10 2-ethylhexanol and acetophenone could be observed in the hazelnut-milk produced out of roasted hazelnuts, indicating a higher aroma intensity ofthe sample as it is known for hazelnuts after roasting.
[0098] Important vitamins of hazelnuts, i.e. niacin (Vitamin B3) and α-tocopherol (Vitamin E), were measured by HPLC in the used raw materials as well as in the final products. The results 15 are summarized in Table 4 (as mean values n > 2, standard déviation S ±10%).
[0099] TABLE 4
Vitamin 83 Vitamin E Sum
Example 4 raw mate ri al 7.12 mg/kg 177 mg/kg
hazelnut mîlk 0.51 mg/l 28.7 % 2760 pg/l 6.2 % 35 %
Example 5 . raw ma te ri al 6 12 mg/kg 109 mg/kg
hazelnut milk 0.50 mg/l 32.7 % 4130 pg/l 15.2 % 48 %
Example 6 raw mate ri al 15.8 mg/kg 278 mg/kg
hazelnut milk 0.14 mg/l 3.5 % 5510 pg/l 7.9 % 11 %
Example 7 raw material 14.9 mg/kg 297 mg/kg
hazelnut milk 0.26 mg/i 7.0 % 5500 pg/l 7.4 % 14 %
Example 8 raw material 15.5 mg/kg 376 mg/kg
hazelnut milk 0.41 mg/l 10.6 % 4590 pg/l 4.9 % 15 %
Example 9 raw material 12.1 mg/kg 347 mg/kg
hazelnut milk 0.39 mg/l 12.9 % 4140 pg/l 4.8 % 18 %
[00100] The hîghest transfer rates could be observed for niacin, followed by atocopheroi from the in-shell hazelnuts into the hazelnut-milk product. Although the concentrations of both vitamins were lower in comparison to the other raw materials, a 5 relatîvely high percentage of these compounds could be transferred into the final products (hazelnut-milk produced of in-shel! nuts). Especiatly for Niacin the highest concentrations are monitored in hazelnut milk produced of non-shelled nuts.
[00101] The results of the antioxidative capacity and the total polyphenol content measurements are listed in Table 5 (as mean values n=3, standard déviation < ±10%).
[00102] TABLE 5
total polyphenol content (TPC) antiox-value
[mg ECA/100 g] [mg ECA/100 g]
raw material Example 4 54.2 789
Example 5 82.0 1200
Example 6 65.6 676
Example 7 137 1910
Example 8 9.1 110
Example 9 13.4 101
ground suspension Example 4 14.8 129
Example 5 10.9 134
Example 6 19 4 77.1
Example 7 25.5 117
Example 8 15.7 56.1
Example 9 28.7 62 2
solids after séparation Example 4 34.2 543
Example 5 43.5 678
Example 6 46.7 690
Example 7 58.1 891
Example 8 15.3 135
Example 9 15.0 97.0
Example 4 15.3 138
hazelnut milk after séparation Example 5 14.8 277
Example 6 94.9 94.9
Example 7 20.8 131
Example 8 15.2 76.4
Example 9 14.8 80.8
packaged hazelnut milk Example 4 17.4 145
Example 5 20.8 163
[00103] High différences of total polyphenol contents (TPC) were observed for different harvesting years, It could be observed that the roasting procedure significantly reduced the TPC value. For the antioxidative capacity (antiox-value), the values determined for the raw 5 materials showed the same trend as the TPC. A slight TPC increase was observed in the final product after the decanter séparation in comparison to the hazelnuts ground in water (ground suspension) before decanter séparation. The hazelnut milks produced of hazelnuts with shells showed especially favourable antîox-values. Furthermore, relatively high antiox-vaiues could be observed for the solids after decanter, especially for the unroasted material.
[00104] In summary, the évaluation of Examples 4 to 9 shows that similar contents of the main constituents protein, fat, saccharides and polysaccharides (starch and insoluble dietary fibers) hâve been measured in ail the resulting products produced out of the different raw materials (in-shell hazelnuts, unroasted hazelnuts with skin, roasted hazelnuts without skin). In contrast to this, higher amounts of vitamins (Vit. B3, Vît. E) could be observed in the 15 unroasted raw materials (with shell, unroasted with skin) as well as higher values for the TPC and the antioxidant content. Thereby, higher antîox-values are detected for the hazelnut milk produced out of in-shell hazelnuts. Regarding the aroma-active odorants, higher contents of the measured aroma-active compounds are measured in the hazelnut-milk produced based on roasted nuts. Furthermore, it is shown that the hazelnut milk produced out of in-shell 20 hazelnuts exhibits bénéficiai nutritive properties (antioxidative capacity, content of vitamins) and can be also regarded as more sustainable, due to the fact that the shell is fully used in the production ofthe plant-based milk alternative. In terms of vitamin and total polyphenol content, the hazelnut milk produced from unroasted hazelnuts with skin likewise shows bénéficiai nutritive aspects.
[00105] In another series of experiments, ten samples of culinary nut drinks hâve been produced and subjected to sensory analysis based on consensus profiling, in order to analyse the influence of different raw materials and processes on the final product. In Examples 10 to 15, hazelnuts were exlusively used as raw materials. In Examples 16 and 17, vanilla and coffee were added to the hazelnuts prior to extraction, respectively, while in Examples 18 and 19,
unroasted but shelled peanuts and aimonds were used as soie raw materials. The samples were processed according to the method of the present invention, with the différences being shown in the foîlowing Table 6.
[00106] TABLE 6
Sample Raw materials Shelled/Peeled Roasted Extraction température Solids:Water weight ratio
Example 10 hazelnut yes no 50-60°C 1:4
Example 11 hazelnut yes yes 50-60°C 1:4
Example 12 hazelnut no yes 50-60’C 1:4
Example 13 hazelnut no yes 50-60’C 1:3
Example 14 hazelnut no no 50-60°C 1:4
Example 15 hazelnut no no room température 1:5
Example 16 hazelnut + vanilla yes no 50-60’C 1:4
Example 17 hazelnut + coffee yes no 50-60°C 1:4
Example 18 peanut yes no 50-60°C 1:4
Example 19 almond yes no 50-60°C 1:4
[00107] The resulting nut-based drinks were evaluated by a panel of five trained experts by consensus profiling, individually assessing a number of attributes on a 6 point-scale starting with «not détectable» (0) to «very intense» (5). The sensory évaluation included appearance, 10 general taste and mouthfeel, orthonasal odour and retronasal odour, the results of which are shown in Figures 4, 5 and 6, respectively, wherein for Example 12 the average of three sample évaluations (i.e. two répétitions), and for Examples 13 and 15 the average of two sample évaluations (i.e. one répétition each) are given.
[00108] Figure 4 shows the results of attributes related to appearance (brown colour), 15 taste (bitterness) and mouthfeel (viscosity, pièces). The attribute “brown colour spreads from “not détectable” in Example 11 to intense in Examples 17. Especiaîly the «roasted inshell» samples are darker brown in colour than the samples where shelled nuts were processed. Hazelnut drinks produced with roasted non-shelled hazelnut kernels tended to exhibit a slightly hiher bitterness in comparison to the other samples. Among the pure hazelnut drinks, Example 20 12 exhibited a medium astringency, while the other samples showed a rather weak expression in this attribute. In terms of mouthfeel, viscosity was shown to be inversely proportional to the dilution degree.
[00109] The ortho- and retronasal évaluation results shown in Figures 5 and 6 demonstrate that variations of the processing method and the selected raw materials enable 5 a fine-tuning of desired attributes,
[00110] In general, it is emphasized that the trials were carried out with pure raw material (unroasted, roasted nuts with and without Shell) and no additives (such as sugar, sweetener, or flavourings) except from natural additives such as coffee beans and vanilla pod were added to the mixtures during the processing. Againstthis background, the profiles ofthe samples can 10 be considered as advantageously harmonious.
[00111] Once given the above disclosure, many other features, modifications, and improvements will become apparent to the skilled artisan.

Claims (17)

1. A method for processrng culinary nuis, comprising the steps of:
a) adding water to culinary nuts to form a suspension;
b) wet grinding said suspension in one or more steps to an average particle size of less than 100 pm; and
c) separating the suspension into at least a solid phase comprising culinary nut solids and a liquid phase comprising culinary nut milk;
wherein the culinary nuts subjected to wet grinding include non-shelled culinary nuts, and/or wherein the method further comprises the addition of culinary nut shell material to the suspension in steps a) or b), or to at least one of the solid phase or liquid phase after step c).
2. The method according to claim 1, wherein the culinary nuts subjected to wet grinding include nuts, drupe seeds and nut-like angiosperm seeds.
3. The method according to claim 1 or claim 2, wherein the culinary nuts subjected to wet grinding are selected from hazelnuts, almonds, walnuts, cashews, pistachios, pecans, macadamia nuts, peanuts, and combinations thereof
4. The method according to any one of claims 1 to 3, wherein the method further comprises a step of washing the non-shelled culinary nuts before step a).
5. The method according to any one of claims 1 to 4, wherein the culinary nut Shell material is obtained by séparation of shell material from the culinary nuts before step b).
6. The method according to any one of claims 1 to 5, wherein the culinary nut shell material has been processed by at least a grinding step prior to the addition to the suspension, the solid phase or the liquid phase.
7. The method according to any one of claims 1 to 6, wherein step b) îs performed by use of a toothed colloid mill and/or a bail mill.
8. The method according to any one of claims 1 to 7, wherein the culinary nuts are nonroasted before being subjected to step a) and each of the processing steps a) to c) are performed at températures in the range of 0°C to 65°C.
9. The method according to any one of claims 1 to 7, further comprising a step of roasting the culinary nuts before step a) or the solid phase comprising culinary nut soiids after step c), .
10. The method according to any one of claims 1 to 9, further comprising a step of subjecting the suspension to a macération or fermentation step before step c).
11. The method according to any one of claims 1 to 10, wherein steps a) to c) are carried out continuously in a time frame of less than 100 minutes.
12. The method according to any one of claims 1 to 11, wherein step c) comprises separating the suspension into a solid phase comprising culinary nut solids, a water phase (heavy phase) comprising culinary nut milk, and a fat phase (light phase) comprising culinary nut oil.
13. The method according to claim 8, further comprising a step of sterilising the liquid phase, or the method according to claim 12, further comprising a step of pasteurising or sterilising the water phase, to provide culinary nut milk.
14. Culinary nut milk prepared by the method according to claim 13.
15. Solid phase obtained by a method according to any one of claims 1 to 12.
16. Edible culinary nut-based products comprising the solid phase according to claim 15 or the culinary nut milk according to claim 14.
17. Culinary nut oil extract obtained by a method according to claim 12.
OA1202200444 2020-04-27 2021-04-27 Methods of processing culinary nuts and extraction products obtained by the same. OA21054A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP20171571.1 2020-04-27
EP20208604.7 2020-11-19

Publications (1)

Publication Number Publication Date
OA21054A true OA21054A (en) 2023-10-09

Family

ID=

Similar Documents

Publication Publication Date Title
JP6655177B2 (en) Cacao product from unfermented cocoa beans and method for producing the same
CA3056340A1 (en) Non-dairy confectionery product
US20220039417A1 (en) Vegan food composition and method of making thereof
WO2008017039A2 (en) A food composition containing a coagulated protein and a process for making the same
AU2009222596B2 (en) Food comprising alkalized cocoa shells and method therefor
US20230157336A1 (en) Methods of processing culinary nuts and extraction products obtained by the same
KR102340028B1 (en) Coffee cherry processing method and extraction product obtained thereby
RU2333657C2 (en) Method of vegetable milk production from grain and/or legumes seeds and nuts
KR101865538B1 (en) Method for Preparing Bean Curd Icecream
EP3903601A1 (en) Methods of processing culinary nuts and extraction products obtained by the same
US20110151098A1 (en) Food Comprising Alkalized Cocoa Shells And Method Therefor
OA21054A (en) Methods of processing culinary nuts and extraction products obtained by the same.
Baburao et al. Process standardization for preparation of green chickpea (Cicer arietinum L.) Burfi
Pandey et al. Plant-based milk substitutes: A novel non-dairy source
KR100496902B1 (en) Ice cream with fermented soybeans, mung beans and preparation method thereof
WO2023152323A1 (en) Methods of preparation of food compositions using nut shell material or drupe endocarp and related products
KR20150059878A (en) Manufacturing Method of Soymilk Used by Soybean Sprout
WO2021053638A1 (en) Semi-finished powdery food product based on vegetable food and a process for production thereof
PL238912B1 (en) Method of beverage dearomatization during the production process
KARAHAN et al. VEGAN MILKS AND ITS PRODUCTION
JPS6178355A (en) Production of embryo bud milk of grain
WO2008053767A1 (en) PROCESS FOR PRODUCING γ-AMINOBUTYRIC ACID-CONTAINING COMPOSITION AND FOOD COMPRISING THE γ-AMINOBUTYRIC ACID-CONTAINING COMPOSITION