OA20178A - Purified capsular polysaccharides of streptococcus pneumoniae. - Google Patents

Purified capsular polysaccharides of streptococcus pneumoniae. Download PDF

Info

Publication number
OA20178A
OA20178A OA1202100094 OA20178A OA 20178 A OA20178 A OA 20178A OA 1202100094 OA1202100094 OA 1202100094 OA 20178 A OA20178 A OA 20178A
Authority
OA
OAPI
Prior art keywords
kda
polysaccharide
streptococcus pneumoniae
protein
serotype
Prior art date
Application number
OA1202100094
Inventor
Rajendar Burki
Vivek Babu KANDIMALLA
Rajan Sriraman
Ramesh Venkat Matur
Narender Dev MANTENA
Mahima DATLA
Veerapandu SANGAREDDY
Original Assignee
Biological E Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Biological E Limited filed Critical Biological E Limited
Publication of OA20178A publication Critical patent/OA20178A/en

Links

Abstract

The invention relates to capsular polysaccharides of Streptococcus pneumoniae. More specifically, the present invention relates to sized and purified capsular polysaccharides of Streptococcus pneumoniae serotypes 2,15A, 15C & 35B and process for their preparation.

Description

TITLE: PURIFIED CAPSULAR POLYSACCHARIDES OF STREPTOCOCCUS
PNEUMONIAE
CROSS-REFERENCE TO RELATED APPLICATION
This application claims the benefit of priority to Indian Patent Application numbers 201841031653 and 201841031654, filed on Sepiember 23, 2018, which are hereby incorporated by reference herein in their entirety.
FIELD OF INVENTION
The présent invention relates to purified capsular polysaccharides of Streptococcus pneumoniae. More specifically, the présent invention relates to purified and sized capsular polysaccharides of Streptococcus pneumoniae serotypes 2, 15A, 15C & 35B and process for their préparation.
BACKGROUND OF INVENTION
Streptococcus pneumoniae isa gram-positive bacterium which is a major causative agent in invasive infections in animais and humans, such as sepsis, meningitis, otitis media and lobar pneumonia. As part of the infective process, pneumococci readily bind to noninflamed human épithélial cells of the upper and lower respiratory tract by binding to eukaryotic carbohydrates in a lectin-like manner.
Pneumococcus is encapsulated with a chemically linked polysaccharide which confers serotype specificity. There are more than 90 known serotypes of pneumococci, and the capsule is the principle virulence déterminant for pneumococci, as the capsule not only protects the inner surface of the bacteria from complément but is itself poorly immunogenic. Anti-polysaccharide antibody level has been regarded as prédictive for the protection against invasive pneumococcal disease. As a vaccine, the pneumococcal polysaccharide coat can confer a reasonable degree of immunity to Streptococcus pneumoniae in individuals with developed or unimpaired immune Systems, but the capsular polysaccharide conjugated to a suitable carrier protein allows for an immune response in infants and elderly who are also at most risk for pneumococcal infections.
Pneumococcal vaccines include pneumococcal polysaccharide vaccine and pneumococcal conjugale vaccines. It is generally accepted that the protective efficacy of the commercialized pneumococcal polysaccharide vaccine is more or less related to the concentration of antibody-induced upon vaccination. Current vaccines include multivalent pneumococcal polysaccharide vaccines (comprises pneumococcal polysaccharides from two or more serotypes) and pneumococcal conjugale vaccines.
Pneumovax®23 is a multivalent pneumococcal polysaccharide vaccine and contains unconjugated capsular polysaccharides from 23 pneumococcal serotypes including serotypes 1,2, 3, 4, 5, 6B, 7F, 8, 9N, 9V, 10A, 11 A, 12F, 14, 15B, 17F, 18C, 19F,
19A, 20, 22F, 23F and 33F. Pneumovax®23, that has been licensed proved valuable in preventing pneumococcal disease in adults, particularly, the elderiy and those at high-risk.
However, infants and young children respond poorly to these unconjugated pneumococcal polysaccharide vaccines.
Prevnar®-7 is a pneumococcal polysaccharide-protein conjugale vaccine and includes the seven most frequently isolated polysaccharide serotypes (e.g., 4, 6B, 9V, 14, 180, 19F, and 23F conjugated to CRM197). Since the use of Prevnar®-7 began in the United States in 2000, there has been a significant réduction in invasive pneumococcal disease (IPD) in children. A 13-valent conjugate vaccine Prevenar-13®, containing thirteen serotypes 1, 3, 4, 5,6A, 6B, 7F, 9V, 14,18C, 19A, 19F and 23F conjugated to CRM197 was developed and approved due to the limitations in serotype coverage with Prevnar®-7 in certain régions of the world.
Synflorix® is a pneumococcal conjugate vaccine that includes ten polysaccharide serotypes 1, 4, 5, 6B, 7F, 9V, 14, 23F - conjugated to protein D (PD), serotype 18C conjugated to tetanus toxoid (TT) and serotype 19F conjugated to diphtheria toxoid (DT). Each of the serotype polysaccharides is coupled utilizing 1-cyano-4-dimethylaminopyridinium tetrafluoroborate (CDAP) under controlled pH.
US Patent No. 9,492,559B2 discloses an immunogenic composition comprising at least one glycoconjugate selected from the group consisting of a glycoconjugate from Streptococcus pneumoniae serotype 15B, a glycoconjugate from Streptococcus pneumoniae serotype 22F, a glycoconjugate from Streptococcus pneumoniae serotype 33F, a glycoconjugate from Streptococcus pneumoniae serotype 12F, a glycoconjugate from Streptococcus pneumoniae serotype 10A, a glycoconjugate from Streptococcus pneumoniae serotype 11A and a glycoconjugate from Streptococcus pneumoniae serotype 8. WO 2019/050813A1 discloses a purified capsular polysaccharide from Streptococcus pneumoniae serotype 16F, and polysaccharide protein conjugate thereof.
WO 2019/050814A1 discloses a purified capsular polysaccharide from Streptococcus pneumoniae serotypes 23A and 23B, and polysaccharide-protein conjugate thereof.
WO 2019/050815A1 discloses a purified capsular polysaccharide from
Streptococcus pneumoniae serotype 24F, and polysaccharide-protein conjugate thereof
WO 2019/050816A1 discloses a purified capsular polysaccharide from
Streptococcus pneumoniae serotype 31, and polysaccharide-protein conjugate thereof
Despite these vaccines, there is a need for the development of additional multivalent pneumococcal conjugate vaccines with polysaccharides which are purified and sized in a simple and efficient manner. Hence the inventors of the présent invention hâve purified and sized capsular polysaccharides of Streptococcus pneumoniae serotypes 2,
15A, 15C & 35B in simple and efficient manner.
Summary of Invention
The invention relates to a purified and sized capsular polysaccharide of Streptococcuspneumoniae serotype 2 having an average molecular weight between about 50 and 1000 kDa.
The invention also relates to a purified and sized capsular polysaccharide of Streptococcus pneumoniae serotype 15A having an average molecular weight between about 50 and 1000 kDa.
The invention also relates to a purified and sized capsular polysaccharide of Streptococcus pneumoniae serotype 15C having an average molecular weight between about 50 and 1000 kDa.
The invention also relates to a purified and sized capsular polysaccharide of Streptococcus pneumoniae serotype 35B having an average molecular weight between about 50 and 1000 kDa.
BRIEF DESCRIPTION OF THE DRAWINGS
Figure 1A: 400 MHz one dimensional (1D)iH NMR spectrum of the capsular polysaccharide of Serotype 2 in D2O at 50°C.
Figure 1B: One dimensional (1D) 1H NMR identity région used for identification of serotype 2.
Figure 2A: 400 MHz one dimensional (1D) iH NMR spectrum of the capsular polysaccharide of Serotype 15A in D2O at 50°C.
Figure 2B: One dimensional (1 D) 'Ή NMR identity région used for identification of serotype 15A.
Figure 3A: 400 MHz one dimensional (1D) iH NMR spectrum of the capsular polysaccharide of Serotype 15C in D2O at 50°C.
Figure 3B: One dimensional (1D) 1H NMR identity région to be used for identification of serotype 15C.
Figure 4A: 400 MHz one dimensional (1D) -iH NMR spectrum of the capsular polysaccharide of Serotype 35B in D2O at 50°C.
Figure 4B: One dimensional (1D) Ή NMR identity région to be used for serotype identification of 35B.
Figure 5A: SEC-HPLC chromatogram illustrating conjugation reaction kinetics of serotype 2-CRM197.
Figure 5B: SEC-HPLC chromatogram illustrating conjugation reaction kinetics of serotype
2-PsaA.
Figure 6A: SEC-HPLC chromatogram illustrating conjugation reaction kinetics of (A) serotype I5A-CRM197.
Figure 6B: SEC-HPLC chromatogram illustrating conjugation reaction kinetics of serotype 15A-PsaA.
Figure 7A: SEC-HPLC chromatogram illustrating conjugation reaction kinetics of (A) serotype 15C-CRM197.
Figure 7B: SEC-HPLC chromatogram illustrating conjugation reaction kinetics of serotype 15C-PsaA.
Figure 8A: SEC-HPLC chromatogram illustrating conjugation reaction kinetics of (A) serotype 35B-CRMi97.
Figure 8B: SEC-HPLC chromatogram illustrating conjugation reaction kinetics of serotype 35B-PsaA.
Figure 9: Sérum antibody titers in rabbits immunized with PCV formulation.
DEFINITIONS
Throughout this invention, the singular terms a, an, and the include plural referents unless the context clearly indicates otherwise. Similarly, unless the word or” is expressly limited to mean only a single item exclusive from the other items in reference to a list of two or more items, then the use of or in such a list is to be interpreted as including (a) any single item in the list, (b) ail of the items in the list, or (c) any combination of the items in the list. Additionally, the terms comprising and the like are used throughout this invention to mean including at least the recited feature(s) such that any greater number of the same feature(s) and/or one or more additional types of features are not precluded. Furthermore, various particular features, methods, or characteristics may be combined in any suitable manner in one or more embodiments.
This invention is not intended to be exhaustive or to limit the présent technology to the précisé forms disclosed herein. Although spécifie embodiments are disclosed herein for illustrative purposes, various équivalent modifications are possible without deviating from the présent technology, as those of ordinary skill in the relevant art will recognize. In some cases, well-known structures and functions hâve not been shown and/or described in detailto avoid unnecessarily obscuring the description ofthe embodimentsofthe présent technology. Although steps of methods may be presented herein in a particular order, in alternative embodiments the steps may hâve another suitable order. Similarly, certain embodiments of the présent technology disclosed in the context of particular embodiments may be combined or eliminated in other embodiments. Furthermore, while advantages associated with certain embodiments may hâve been disclosed in the context of those embodiments, other embodiments may also exhibit such advantages, and not ail embodiments need necessarily exhibit such advantages or other advantages disclosed herein to fait within the scope of the présent technology. Accordingly, this disclosure and associated technology may encompass other embodiments not expressly shown and/or described herein.
Unless defined otherwise, ail technical and scientific terms used herein hâve the same meaning as commonly understood by one of ordinary skill in the art to which the methods belong.
Where a range of values is provided, it is understood that each intervening value between the upper and lower limit of that range and any other stated or intervening value in that stated range, is encompassed within by the methods and compositions. The upper and lower limits of these smaller ranges may independently be included in the smaller ranges and are also encompassed within by the methods and compositions, subject to any specifically excluded limit in the stated range. Where the stated range includes one or both of the limits, ranges excluding either or both of those included limits are also included in the methods, compositions and combinations.
As used herein, the term “capsuiar polysaccharide” refers to a layer of polysaccharide external to but contiguous with the cell wall of Streptococcus pneumoniae serotypes 2, 15A, 15C and 35B.
As used herein, the term “carrier protein” refers to any protein to which the polysaccharide is coupled or attached or conjugated, typically for the purpose of enhancing or facilitating détection of t’ne antigen by the immune system. Examples of carrier proteins include, but are not limited to CRM197, PsaA and Tetanus toxoid.
The term “conjugate” or “conjugated” as used herein is used to mean that a Streptococcus pneumoniae capsuiar polysaccharide is covalently bonded to a carrier protein.
The term polysaccharide as used in this spécification refers to a complex carbohydrate composed of saccharide chains joined together by glycosidic bonds. The polysaccharide may contain at least 10, 20, 30, 40 or 50 or more saccharides.
The term “sized” or “sizing” as used herein refers to reducing the size of a native polysaccharide by various methods. The methods may include mechanical methods, such as homogenization. Reducing the size of a native polysaccharide or “sizing” provides various advantages which include: (1) imparting more homogenous as compared to the native polysaccharides (2) the ratio of polysaccharide to protein in the conjugate can be controlled (3) sized polysaccharides may provide greater stability to the composition. For the purposes of this invention, native capsular polysaccharides of Streptococcus pneumoniae serotype 2, 15A, 15C and 35B hâve been sized to an average molecular weight (Mw) between 50 and 1000 kDa.
The term Molecular weight or Molecular size or Average Molecular size or Average molecular weight of a polysaccharide as used herein refers to the weightaverage molecular weight (Mw) of the polysaccharide measured by MALLS (Multi-Angle Laser Light Scattering), DETAILED DESCRIPTION OF THE INVENTION
The présent invention relates to purified and sized capsular polysaccharides of Streptococcus pneumoniae serotypes 2, 15A, 15C and 35B and process for their préparation.
The polysaccharides according to the présent invention are prepared by cuitivating Streptococcus pneumoniae in an optimized nutrient within a fermenter and lysing the cells at the end of the fermentation by addition of sodium deoxycholate (DOC) or any conventional lysing agent. The harvested lysate broth is subjected to downstream purification to remove impurities like protein, nucleic acids, cell wall components etc.
After fermentation, the DOC cell lysate is centrifuged on a batch or continuous centrifuge and the cell débris is removed. The pH of the celi-free broth adjusted to acidic condition and the température is increased, followed by centrifugation. Post centrifugation, the supernatant is passed through depth filter, concentrated and diafiltered using Ultra Filter (UF) membrane. Additional impurities are removed from polysaccharide préparation (retentate) by adding detergent(s) and followed by centrifugation. Subsequently, the detergent treated supernatant is passed through charcoal filter or activated carbon column, followed by exposing the filtered polysaccharide to S1O2 particles and centrifugation. The supernatant is passed through depth filter and passing the depth filtrate through carbon filter followed by 0.22 to 0.6pm filter. The filtrate is concentrated and diafiltered on UF membrane and diafiltered with 0.5 to 2% NaCI solution or in water or buffer to obtain polysaccharides obtained in substantially pure form.
The purified polysaccharide is sized either by chemically at high pH or mechanically using high-pressure homogenizer. Sized polysaccharide préparation is concentrated to 5 to 25 mg/mL on UF membrane. The retentate is passed through 0.22pm filter and frozen below -20°C.
In one embodiment, the invention provides purified and sized capsular polysaccharides of Streptococcus pneumoniae serotypes 2, 15A, 15C and 35B having an average molecular weight (Mw) between 50 and 1000 kDa. Preferably, between 100-1000 kDa, 200-800 kDa, 250-600 kDa, or 300-400 kDa, 70-150 kDa, or 75-125 kDa.
In some embodiments, the purified capsular polysaccharides of Streptococcus pneumoniae serotype 2, 15A, 15C and 35B before conjugation hâve an average molecular weight of between 50 kDa and 1,000 kDa. In other such embodiments, the polysaccharide has an average molecular weight of between 50 kDa and 750 kDa; between 50 kDa and
500 kDa; between 100 kDa and 1,000 kDa; between 100 kDa and 750 kDa; between 100 kDa and 500 kDa.
The size of capsular polysaccharides of the présent invention is reduced after the purification procedures using various sizing techniques to a desired size. The inventors hâve found that purified capsular polysaccharides from serotypes 2, 15A, 15C and 35B 10 conjugated with carrier protein prepared according to the présent invention has high immunogenicity.
in an embodiment, the capsular polysaccharides of the invention comprise Streptococcus pneumoniae polysaccharide from serotype 2 having an average molecular weight of about 80kDa, WOkDa, 200kDa, 300kDa, 400kDa, 500kDa, 700kDa or WOOkDa. 15 In an embodiment, the capsular polysaccharides of the invention comprise
Streptococcus pneumoniae polysaccharide from serotype 15A having an average molecular weight of about 80kDa, 100kDa, 200kDa, 300kDa, 400kDa, 500kDa, 700kDa or WOOkDa.
In an embodiment, the capsular polysaccharides of the invention comprise 20 Streptococcus pneumoniae polysaccharide from serotype 15C having an average molecular weight of about 80kDa, WOkDa, 200kDa, 300kDa, 400kDa, 500kDa, 700kDa or WOOkDa.
In an embodiment, the capsular polysaccharides of the invention comprise Streptococcus pneumoniae polysaccharide from serotype 35 B having an average 25 molecular weight of about 80kDa, 100kDa, 200kDa, 300kDa, 400kDa, 500kDa, 700kDa or WOOkDa.
In a further aspect, the présent disclosure provides a sized Streptococcus pneumoniae serotype 15A capsular polysaccharide comprising glycerol content within a range of 5-18%, preferably 5 to 10%.
In a further aspect, the présent disclosure provides a sized Streptococcus pneumoniae serotype 15C capsular polysaccharide comprising glycerol content within a range of 5-18%, preferably 5 to 10%.
In a further aspect, the présent disclosure provides a sized Streptococcus 35 pneumoniae serotype 35B capsular polysaccharide comprising acetate content within a range of 2-10%, preferably 2 to 8%.
In a further aspect, the présent disclosure provides a sized Streptococcus pneumoniae serotype 15A having an average molecular weight between 50 to 1000 kDa and glyceroi content within a range of 5-18%.
In a further aspect, the présent disclosure provides a sized Streptococcus pneumoniae serotype 15C having an average molecular weight between 50 to 1000 kDa and glyceroi content within a range of 5-18%,
In a further aspect, the présent disclosure provides an isolated Streptococcus pneumoniae serotype 35B having an average molecular weight between 50 to 1000 kDa and acetate content within a range of 2-10%,
The presence of glyceroi phosphate side chains can be determined by measurement of glyceroi using high-performance anion-exchange chromatography with pulsed amperometric détection (HPAEC-PAD) after its release by treatment of the polysaccharide with hydrofluoric acid (HF).
In an embodiment, the présent invention provides a pneumococcal conjugale vaccine, wherein purified polysaccharide from Streptococcus pneumoniae serotype 2 having an average molecular weight between 50 and 1000 kDa conjugated to a carrier protein selected from PsaA, CRM197, PspA or tetanus toxoid (TT), wherein the composition comprises a (w/w) percent ratio of protein to polysaccharide (protein/PS) of about 0.5 to about 2.0, preferably, 0.7 to 1.2.
In an embodiment, the présent invention provides a pneumococcal conjugale vaccine, wherein the purified polysaccharide from Streptococcus pneumoniae serotype 15A having an average molecular weight between 50 and 1000 kDa conjugated to a carrier protein selected from PsaA, CRM^z, PspA or tetanus toxoid (TT), wherein the composition comprises a (w/w) percent ratio of protein to polysaccharide (protein/PS) of about 0.5 to about 2.0, preferably, 0.7 to 1.2.
in an embodiment, the présent invention provides a pneumococcal conjugale vaccine, wherein purified polysaccharide from Streptococcus pneumoniae serotype 15C having an average molecular weight between 50 and 1000 kDa conjugated to a camer protein selected from PsaA, CRM197, PspA or tetanus toxoid (TT), wherein the composition comprises having a (w/w) percenl ratio of protein to polysaccharide (protein/PS) of about 0.5 to about 2.0 protein/PS, preferably, 0.7 to 1.2.
In an embodiment, the présent invention provides a pneumococcal conjugale vaccine, wherein purified polysaccharide from Streptococcus pneumoniae serotype 35B having an average molecular weight between 50 and 1000 kDa conjugated to a carrier protein selected from PsaA, CRM197, PspA or tetanus toxoid (TT), wherein the composition comprises having a (w/w) percent ratio of protein to polysaccharide (protein/PS) of about 0.5 to about 2.0 protein/PS, preferably, 0.7 to 1.2.
In an embodiment, the présent invention provides an immunogenic composition comprising at least one glycoconjugate from Streptococcus pneumoniae serotype 2, at least one glycoconjugate from Streptococcus pneumoniae serotype 15A, at least one glycoconjugate from Streptococcus pneumoniae serotype 15C and at least one glycoconjugate from 35B.
In one aspect, the immunogenic composition of the présent invention further comprises glycoconjugates from Streptococcus pneumoniae serotypes 1,3,4, 5, 6A, 6B, 7F, 8, 9V, 10A, 11A, 14, 15B, 16F, 18C, 19A, 19F, 22F, 23A, 23B, 23F, 24F, 31, 33F, conjugated to carrier protein selected from PsaA, CRM197, PspA, tetanus toxoid (TT) or combination of CRM197 and PsaA or combination of CRM197 and Tetanus toxoid or combination of PsaA and Tetanus toxoid or combination of CRM197, PsaA and Tetanus toxoid.
In another aspect, the immunogenic composition is an 8, 9, 10, 11, 12, 13, 14, 15, 16, 17. 18, 19, 20, 22, 24, 25 or more valent pneumococcal conjugate composition.
In another aspect, the immunogenic composition is multivalent and comprises eight pneumococcal polysaccharide conjugales (eight valent), nine pneumococcal polysaccharide conjugales (9 valent), ten pneumococcal polysaccharide conjugales (10 valent), eleven pneumococcal polysaccharide conjugales (11 valent), twelve pneumococcal polysaccharide conjugates (12 valent), thirteen pneumococcal polysaccharide conjugates (13 valent), fourteen pneumococcal polysaccharide conjugates (14 valent), fifteen pneumococcal polysaccharide conjugates (15 valent), sixteen pneumococcal polysaccharide conjugates (16 valent), seventeen pneumococcal polysaccharide conjugates (17 valent), eighteen pneumococcal polysaccharide conjugates (18 valent), nineteen pneumococcal polysaccharide conjugates (19 valent), twenty pneumococcal polysaccharide conjugates (20 valent), twenty-one pneumococcal polysaccharide conjugates (21 valent), twenty-two pneumococcal polysaccharide conjugates (22 valent), twenty-three pneumococcal polysaccharide conjugates (23 valent), twenty-four pneumococcal polysaccharide conjugates (24 valent), twenty-five pneumococcal polysaccharide conjugates (25 valent), twenty-six pneumococcal polysaccharide conjugates (26 valent).
In yet another embodiment, the présent invention provides an immunogenic composition comprising purified capsular polysaccharides of Streptococcus pneumoniae serotypes 2,15A, 15C and 35B having an average molecular weight between about 50 and 1000 kDa conjugated to a carrier protein.
In one aspect of the invention, the immunogenic composition comprises
Streptococcus pneumoniae polysaccharides wherein the polysaccharide serotypes are sized by a factor up to x2, x3, x4, x5, x6, x7, x8, x9 or x10. The term sized by a factor up to x2 means that the saccharide is subjected to a process intended to reduce the size of the saccharide but to retain a size more than half the size of the native polysaccharide.
The polysaccharides which are not subjected to the process of sizing technique is referred to as native polysaccharide. A polysaccharide may become slightly reduced in size during normal purification procedures or by dégradation during conjugation, which may still be referred as native polysaccharide.
The capsular polysaccharides may be size reduced by various mechanical means known in the art such as high pressure techniques such as microfluidization, Emulsiflex™, high pressure homogenization, sonication or Gaulin homogenization.
High pressure homogenization achieves high shear rates by pumping the process stream through a flow path with suffîciently small dimensions. The shear rate is increased by using a larger applied homogenization pressure, and exposure time can be increased by recirculating the feed stream through the homogenizer.
In other embodiment, the présent invention provides a pneumococcal polysaccharide-protein conjugale vaccine composition comprising capsular polysaccharide from Streptococcus pneumoniae serotype 2 conjugated to carrier protein, wherein polysaccharide-protein conjugate has an average molecular weight ranging between 500 kDa to about 10000 kDa and has a (w/w) percent ratio of protein to polysaccharide (protein/PS) of about 0.5 to about 2.0, preferably, 0.7 to 1.2.
In other embodiment, the présent invention provides a pneumococcal polysaccharide-protein conjugate vaccine composition comprising capsular polysaccharide from Streptococcus pneumoniae serotype 15A conjugated to carrier protein, wherein polysaccharide-protein conjugate has an average molecular weight ranging between 500 kDa to about 10000 kDa and has a (w/w) percent ratio of protein to polysaccharide (protein/PS) of about 0.5 to about 2.0, preferably, 0.7 to 1.2.
In other embodiment, the présent invention provides a pneumococcal polysaccharide-protein conjugate vaccine composition comprising capsular polysaccharide from Streptococcus pneumoniae serotype 15C conjugated to carrier protein, wherein polysaccharide-protein conjugate has an average molecular weight ranging between 500 kDa to about 10000 kDa and has a (w/w) percent ratio of protein to polysaccharide (protein/PS) of about 0.5 to about 2.0, preferably, 0.7 to 1.2.
In other embodiment, the présent invention provides a pneumococcal polysaccharide-protein conjugate vaccine composition comprising capsular polysaccharide from Streptococcus pneumoniae serotype 35B conjugated to carrier protein, wherein polysacchande-protein conjugate has an average molecular weight ranging between 500 kDa to about 10000 kDa and has a (w/w) percent ratio of protein to polysaccharide (protein/PS) of about 0.5 to about 2.0, preferably, 0.7 to 1.2.
The polysaccharide protein conjugate of the présent invention has an average molecular weight ranging between 500 kDa to about 5000 kDa; 1,000 kDa to about 10,000 kDa; about 1,500 kDa to about 15,000 kDa; about 2,000 kDa to about 20,000 kDa; about 2,500 kDa to about 25,000 kDa; or about 3,000 kDa to about 30,000 kDa.
In another embodiment, the présent invention provides a pneumococcal conjugate vaccine composition comprising purified pneumococcal polysaccharides and carrier proteins, having a percent ratio of protein to polysaccharide (protein/PS) of about 0.5 to about 2.0, preferably, 0.7 to 1.2.
In a preferred embodiment, the présent invention provides a pneumococcal conjugate vaccine composition comprising purified polysaccharide from Streptococcus pneumoniae serotypes 2, 15A, 15C and 35B having an average molecular weight between 50 and 1000 kDa conjugated to a carrier protein selected from PsaA, CRM197, PspA, tetanus toxoid (TT), or combination of CRM197 and PsaA or combination of CRM197 and Tetanus toxoid or combination of PsaA and Tetanus toxoid or combination of CRM197, PsaA and Tetanus toxoid wherein the composition comprises a percent ratio of protein to polysaccharide (protein/PS) of about 0.5 to about 2.0, preferably, 0.7 to 1.2.
In another embodiment, the présent invention provides a pneumococcal conjugate vaccine composition comprising one or more purified capsular pneumococcal polysaccharide serotype each individually conjugated to a carrier protein, wherein each polysacchande-protein conjugate has an average molecular weight of about 1,500 kDa to about 15,000 kDa.
In other embodiments, the purified pneumococcal polysaccharides may be activated (e.g., chemically) prior to conjugation to one or more carrier proteins. Each activated pneumococcal polysaccharide may be each individually conjugated to a carrier protein forming a polysaccharide-protein conjugate (e.g., a glycoconjugate).
In some embodiments, the purified pneumococcal polysaccharides of the présent invention may be chemically activated and subsequently conjugated to carrier proteins according to known techniques, such as those described in U.S. Pat. Nos. 4,365,170, 4,673,574 and 4,902,506. For example, pneumococcal polysaccharides can be activated by oxidation of a terminal hydroxyl group to an aldéhyde with an oxidizing agent, such as periodate (e.g., sodium periodate, potassium periodate, or periodic acid) by random oxidative cleavage of one or more vicinal hydroxyl groups of the carbohydrates and formation of one or more reactive aldéhyde groups.
The purified pneumococcal polysaccharides of the présent invention may also be activated by CDAP (l-cyano-4-dimethylamino-pyridinium tetrafluoroborate) and subsequently conjugated to one or more carrier proteins such as PsaA, CRM197, PspA, or combination thereof. In other embodiments, pneumococcal polysaccharides activated with CDAP to form a cyanate ester may be directly conjugated to one or more carrier proteins or conjugated using a spacer (e.g., linker). The spacer may couple to an amino group on the carrier protein. In some embodiments. the spacer may be cystamine or cysteamine, which generates a thiolated polysaccharide that may be coupled to the carrier protein through a thioether linkage to a maleimide-activated carrier protein (e.g., using GMBS) or a haloacetylated carrier protein (e.g., using iodoacetimide, ethyl iodoacetimide HCl, SIAB, SIA, SBAP, and/or N-succinimidyl bromoacetate. In other embodiments, the cyanate ester is coupled using hexane diamine or adipic acid dihydrazide (ADH) and an amino-derivitized saccharide is conjugated to a carrier protein using carbodiimide (e.g. EDAC or EDC) chemistry via a carboxyl group on the protein carrier. Such conjugales are described in PCT Publication No. WO 93/15760, PCT Publication No. WO 95/08348, PCT Publication No. WO 96/29094, and Chu et al., 1983, Infect. Immunity 40:245-256.
Other suitable activations and/or coupling techniques for use with the poiysaccharide-protein conjugales and vaccine compositions of the présent invention include use of carbodiimides, hydrazides, active esters, norborane, p-nitrobenzoic acid, Nhydroxysuccinimide, S—NHS, EDC, TSTU, and other methods described in PCT Publication No. WO 98/42721. For example, conjugation may involve a carbonyl linker which may be formed by reaction of a free hydroxyl group of the saccharide with CDI (See Bethelletai., 1979, J. Biol. Chem. 254:2572-4; Hearn étal., 1981, J. Chromatogr. 218:50918) followed by coupling with a protein to form a carbamate linkage. In some embodiments, the anomeric terminus may be reduced to a primary hydroxyl group, optional protection/deprotection of the primary hydroxyl group, reaction of the primary hydroxyl group with CDI to form a CDI carbamate intermediate and coupling the CDI carbamate intermediate with an amino group on a protein.
For example, another suitable activation and/or coupling techniques for use with the polysaccharide-protein conjugales and vaccine compositions of the présent invention include the following method: sized pneumococcal polysaccharides (e.g., about 6 mL of sized polysaccharide at a concentration of about 10 mg/mL) and CDAP (e.g., about 100 mg/mL in acetonitrile (w/v)) can be mixed in a glass vial in a ratio of about 1 to about 1 (e.g., by stirring for about 1 minute). The pH of the polysaccharide solution may be adjusted as necessary (e.g., to about 9.25 with about 0.2M triethylamine and stirred for 3 min at room température). In addition, PsaA (e.g., about 4 mL of a solution having a concentration of about 15 mg/mL) may be added slowly to the activated pneumococcal polysaccharides (e.g., in a ratio of about 1 to about 1 (Ps: Carrier protein)). The pH of the reaction may be adjusted (e.g., to about 9.05 using 0.2M trimethylamine) and the reaction may be continued (e.g., by stirring for 5 hours at room température). The reaction mixture may be quenched (e.g., by addition of an excess concentration of glycine).
In some embodiments, the reaction mixture may be diafiltered using a membrane (e.g., a 100 KMWCO membrane) and may be purified by size-exclusion chromatography. The diafiltered and purified fractions may be analyzed using SEC-MALLS, and an anthrone method. The analyzed fractions containing conjugates may be pooled and stérile filtered (e.g., using 0.2 pm fïlters).
Following conjugation of pneumococcal polysaccharides to one or more carrier proteins, the polysaccharide-protein conjugates may be purified (e.g., enriched with respect to the amount of polysaccharide-protein conjugale) by a variety of techniques. These techniques include, but are not limited to concentration/diafiltration operations, precipitation/elution, column chromatography, and depth filtration. For example, after the conjugates are purified, the conjugates may be compounded to formulate the pneumococcal polysaccharide-protein conjugale compositions of the présent invention, which may be used as vaccines.
In one embodiment, the présent invention provides a 17 valent pneumococcal conjugale vaccine composition comprising polysaccharides from serotype of Streptococcus pneumoniae conjugated to a carrier protein, wherein the serotypes comprise 2, 15A, 15C & 35 B and additional serotypes 1, 3, 4, 5, 6A, 6B, 7F, 9V, 14, 18C, 19A, 19F, 23F.
In one embodiment, the présent invention provides a 17 valent pneumococcal conjugale vaccine composition comprising polysaccharides from serotype of Streptococcus pneumoniae conjugated to a carrier protein, wherein the serotypes comprise 2, 15A, 15C & 35B and additional serotypes 1, 3, 4, 5, 6A, 6B, 7F, 9V, 14, 18C, 19A, 19F, 23F, wherein the carrier protein is selected from PsaA, CRM197, PspA, tetanus toxoid (TT).
In one embodiment, the présent invention provides a 24 valent pneumococcal conjugale vaccine composition comprising polysaccharides from at least 3 pneumococcal serotype selected from 2, 15A, 15C & 35B and additional serotypes comprising of 1, 3, 4, 5, 6A, 6B, 7F, 8, 9V, 10A, 11A, 14, 18C, 19A, 19F, 20A, 20B, 22F, 23F, 24F, 33F wherein the 24 serotypes are conjugated to a carrier protein, wherein the carrier protein is selected from PsaA, CRM197, PspA, tetanus toxoid (TT) or combination of CRM197 and PsaA or combination of CRM197 and Tetanus toxoid or combination of PsaA and Tetanus toxoid or combination of CRM197, PsaA and Tetanus toxoid.
In one embodiment, the présent invention provides a 24 valent pneumococcal conjugate vaccine composition comprising polysaccharides from at least 2 pneumococcal serotype selected from 2, 15A, 15C & 35B and additional serotypes comprising of 1, 3, 4, 5, 6A, 6B, 7F, 8, 9V, 10A, 11 A, 12F, 14, 18C, 19A, 19F, 22F, 23A, 23B, 23F, 24F, 33F wherein the 24 serotypes are conjugated to a carrier protein selected from PsaA, CRM197, PspA, tetanus toxoid (TT) or combination of CRM197 and PsaA or combination of CRM197 and Tetanus toxoid or combination of PsaA and Tetanus toxoid or combination of CRM197, PsaA and Tetanus toxoid.
In one embodiment, the présent invention provides a multivalent pneumococcal conjugate vaccine composition comprising polysaccharides from at least 2 pneumococcal serotype selected from 2,15A, 15C & 35B and one or more additional serotypes selected from 1, 3, 4, 5, 6A, 6B, 7F, 8, 9V, 10A, 11A, 12F, 14, 18C, 19A, 19F, 20A, 20B, 22F, 23A, 23B, 23F, 24F, 33F wherein the serotypes are conjugated to a carrier protein, selected from PsaA, CRM197, PspA, tetanus toxoid (TT) or combination of CRM197 and PsaA or combination of CRM197 and Tetanus toxoid or combination of PsaA and Tetanus toxoid or combination of CRM197, PsaA and Tetanus toxoid.
In some embodiments, the présent invention provides a method for preparing a polysaccharide-protein conjugate of the pneumococcal vaccine composition described herein wherein the method further comprises formulating the polysaccharide-protein conjugate into the pneumococcal vaccine composition including an adjuvant, an excipient, and a buffer.
in some embodiments, the présent invention provides a method for preparing a polysaccharide-protein conjugate of the pneumococcal vaccine composition described herein wherein the adjuvant is aluminium phosphate.
In another embodiment, the vaccine or immunogenic composition of this invention is used for prophylaxie against an infection caused by Streptococcus pneumoniae strains.
In some embodiments, the présent invention provides a method of treating a subject in need thereof comprising, administering a pneumococcal vaccine composition described herein to the subject in need thereof.
în some embodiments, the subject has a disease mediated by Streptococcus pneumoniae, such as invasive pneumococcal disease (IPD). In one embodiment, the subject is a human, such as an infant (less than about 1 year of âge), a toddler (about 12 months to about 24 months of âge), a young child (about 2 years to about 5 years of âge), an older child (about 5 years to about 13 years of âge), an adolescent (about 13 years to about 18 years of âge), an adult (about 18 years to about 65 years of âge), or an elder (more than about 65 years of âge).
In some embodiments. the présent invention provides a method of inducing an immune response to a Streptococcus pneumoniae capsuiar polysaccharide conjugate comprising administering an immunologically effective amount of the pneumococcal conjugate vaccine composition described herein to a subject.
In one embodiment, method of inducing an immune response to a Streptococcus pneumoniae capsuiar polysaccharide conjugate, comprising administering the pneumococcal conjugate vaccine composition described herein to the subject systemically, subcutaneously, and/or mucousally.
In some embodiments, an amount of each conjugate in a dose of the vaccine compositions of the présent invention is an amount sufficient to induce an immunoprotective response, such as an immunoprotective response without significant, adverse effects. While the amount of each conjugate may vary depending upon the pneumococcal serotype, each dose of the vaccine compositions may comprise about 0.1 pg to about 50 pg of each pneumococcal polysaccharide, about 0.1 pg to about 10 pg, or about 1 pg to about 5 pg of each pneumococcal polysaccharide conjugated to each carrier protein comprising about 1.5 pg to about 5 pg of carrier protein.
In other embodiment, the présent invention provides a pneumococcal polysaccharide-protein conjugate vaccine composition comprising 0.1 pg to about 10 pg of capsuiar polysaccharide from Streptococcus pneumoniae serotype 2 conjugated to 1.5 pg to about 5 pg of carrier protein, wherein polysaccharide-protein conjugate has an average molecular weight ranging between 500 kDa to about 15000 kDa and has a (w/w) percent ratio of protein to polysaccharide (protein/PS) of about 0.5 to about 2.0, preferably, 0.7 to 1.2.
In other embodiment, the présent invention provides a pneumococcal polysaccharide-protein conjugate vaccine composition comprising 0.1 pg to about 10 pg of capsuiar polysaccharide from Streptococcus pneumoniae serotype 15A conjugated to 1.5 pg to about 5 pg of carrier protein, wherein polysaccharide-protein conjugate has an average molecular weight ranging between 500 kDa to about 15000 kDa and has a (w/w) percent ratio of protein to polysaccharide (protein/PS) of about 0.5 to about 2.0 , preferably, 0.7 to 1.2.
In other embodiment, the présent invention provides a pneumococcal polysaccharide-protein conjugate vaccine composition comprising 0.1 pg to about 10 pg of capsuiar polysaccharide from Streptococcus pneumoniae serotype 15C conjugated to 1.5 pg to about 5 pg of carrier protein, wherein polysaccharide-protein conjugate has an average molecular weight ranging between 500 kDa to about 15000 kDa and has a (w/w) percent ratio of protein to polysaccharide (protein/PS) of about 0.5 to about 2.0 , preferably,
0.7 to 1.2.
In other embodiment, the présent invention provides a pneumococcal polysaccharide-protein conjugate vaccine composition comprising 0.1 pg to about 10 pg of capsula,r polysaccharide from Streptococcus pneumoniae serotype 35B conjugated to 1.5 pg to about 5 pg of carrier protein, wherein polysaccharide-protein conjugate has an average molecular weight ranging between 500 kDa to about 15000 kDa and has a (w/w) percent ratio of protein to polysaccharide (protein/PS) of about 0.5 to about 2.0, preferably, 0.7 to 1.2.
In other embodiment, the présent invention provides a pneumococcal polysaccharide-protein conjugate vaccine composition comprising 0.5 pg to about 5 μα of capsular polysaccharide from Streptococcus pneumoniae serotype 2 conjugated to 1.5 pg to about 5 pg of CRM197 carrier protein, wherein polysaccharide-protein conjugate has an average molecular weight ranging between 500 kDa to about 15000 kDa and has a (w/w) percent ratio of protein to polysaccharide (protein/PS) of about 0.5 to about 2.0, preferably, 0.7 to 1.2.
In other embodiment, the présent invention provides a pneumococcal polysaccharide-protein conjugate vaccine composition comprising 0.5 pg to about 5 pg of capsular polysaccharide from Streptococcus pneumoniae serotype 15A conjugated to 1.5 pg to about 5 pg of CRM197 carrier protein, wherein polysaccharide-protein conjugate has an average molecular weight ranging between 500 kDa to about 15000 kDa and has a (w/w) percent ratio of protein to polysaccharide (protein/PS) of about 0.5 to about 2.0, preferably, 0.7 to 1.2.
In other embodiment, the présent invention provides a pneumococcal polysaccharide-protein conjugate vaccine composition comprising 0.5 pg to about 5 pg of capsular polysaccharide from Streptococcus pneumoniae serotype 15C conjugated to 1.5 pg to about 5 ug of CRM197 carrier protein, wherein polysaccharide-protein conjugate has an average molecular weight ranging between 500 kDa to about 15000 kDa and has a (w/w) percent ratio of protein to polysaccharide (protein/PS) of about 0.5 to about 2.0, preferably, 0.7 to 1.2.
In other embodiment, the présent invention provides a pneumococcal polysaccharide-protein conjugate vaccine composition comprising 0.5 pg to about 5 pg of capsular polysaccharide from Streptococcus pneumoniae serotype 2 conjugated to 1.5 pg to about 5 pg of PsaA carrier protein, wherein polysaccharide-protein conjugate has an average molecular weight ranging between 500 kDa to about 15000 kDa and has a (w/w) percent ratio of protein to polysaccharide (protein/PS) of about 0.5 to about 2.0, preferably,
0.7 to 1.2.
In other embodiment, the présent invention provides a pneumococcal poiysaccharide-protein conjugate vaccine composition comprising 0.5 pg to about 5 pg of capsular polysaccharide from Streptococcus pneumoniae serotype 15A conjugated to 1.5 pg to about 5 pg of PsaA carrier protein, wherein poiysaccharide-protein conjugate has an average molecular weight ranging between 500 kDa to about 15000 kDa and has a (w/w) percent ratio of protein to polysaccharide (protein/PS) of about 0,5 to about 2.0, preferably, 0.7 to 1.2.
In other embodiment, the présent invention provides a pneumococcal poiysaccharide-protein conjugate vaccine composition comprising 0.5 pg to about 5 pg of capsular polysaccharide from Streptococcus pneumoniae serotype 15C conjugated to 1.5 pg to about 5 pg of PsaA carrier protein, wherein poiysaccharide-protein conjugate has an average molecular weight ranging between 500 kDa to about 15000 kDa and has a (w/w) percent ratio of protein to polysaccharide (prateîn/PS) of about 0.5 to about 2.0, preferably, 0.7 to 1.2.
In other embodiment, the présent invention provides a pneumococcal poiysaccharide-protein conjugate vaccine composition comprising 0.5 pg to about 5 pg of capsular polysaccharide from Streptococcus pneumoniae serotype 35B conjugated to 1.5 pg to about 5 pg of PsaA carrier protein, wherein poiysaccharide-protein conjugate has an average molecular weight ranging between 500 kDa to about 15000 kDa and has a (w/w) percent ratio of protein to polysaccharide (protein/PS) of about 0.5 to about 2.0, preferably, 0.7 to 1.2.
In a preferred embodiment, the présent invention provides a multivalent conjugate vaccine composition comprising at least two polysaccharides from Streptococcus pneumoniae serotypes 2,15A, 15C and 35B having an average molecular weight between 50 and 1000 kDa conjugated to a carrier protein selected from PsaA, CRM197, PspA, tetanus toxoid (TT), wherein the composition comprises a percent ratio of protein to polysaccharide (protein/PS) of about 0.5 to about 2.0, preferably, 0.7 to 1.2 and additional polysaccharide protein conjugate from Streptococcus pneumoniae serotypes 1,3, 4, 5, 6A, 6B, 7F, 8, 9V, 10A, 11A, 14, 16F, 18C, 19A, 19F, 22F, 23A, 23B, 23F, 24F, 31, 33F, conjugated to a carrier protein selected from PsaA, CRM197, PspA, tetanus toxoid (TT) or combination of carrier proteins.
The pneumococcal poiysaccharide-protein conjugate vaccine compositions of the présent invention may be manufactured using known methods. For example, the pneumococcal poiysaccharide-protein conjugate vaccine compositions may be formulated with a pharmaceutically acceptable diluent or vehicle, e.g. water or a saline solution, in addition, the pneumococcal polysaccharide-protein conjugate vaccine compositions may further include one or more of the following: a buffer, a preservative or a stabilizer, poiysorbate, an adjuvant such as an aluminum compound, e.g. an aluminium hydroxide, an aluminium phosphate or an aluminium hydroxyphosphate, and/or a lyophilization excipient. Inclusion of any one of the above compounds in the pneumococcal polysaccharide-protein conjugate vaccine compositions of the présent invention may be selected as a function of the mode and route of administration to a subject in need thereof and may further be based on standard pharmaceutical practices.
The pneumococcal polysaccharide-protein conjugate vaccine compositions of the présent invention, when administered to a subject, induces the formation of antibodies capable of binding to serotypes 2, 15A, 15C and 35B of Streptococcus pneumoniae as measured by a standard ELISA assay. The ELISA was performed as per the WHO suggested protocol. Briefly, Maxisorp™ ELISA plates were coated with PnCPS of given serotype (1pg/50pL/well using PBS; stérile endotoxin free, with 0.02% sodium azide). Plates were placed in a box with moistened paper towels for humidification and incubated at 37°C ± 2°C for 5hrs, the plates were then stored at 5°C ± 3°C until use.
EXAMPLES
The following examples are provided to illustrate the invention and are merely for illustrative purpose only and should not be construed to limit the scope of the invention.
Example 1:
a. Préparation of pneumococcal capsular polysaccharide serotypes 2, 15A, 15Cand35B.
The cell banks of Streptococcus pneumoniae strains (for serotypes 2, 15A, 15C and 35B) was obtained from Centre for Disease Control and Prévention, USA.
Pre-seed préparation:
0.4pî of culture (Streptococcus pneumonia serotype 2) isolate was inoculated into 60 ml of complété Mueller Hinton (MH) media. The inoculated flask was incubated for 2 to 8 hours at 35±1°C, 5±0.5% CO2. Samples were collected and checked for optical density at 600 nm. Once the desired OD reaches to 0.8±0.2 samples were collected and checked for pH and gram staining.
Seed préparation:
Post confirming the purity by microscopy (Gram staining) of pre-seed culture, 40 ml of pre-seed culture was inoculated into one litre flask containing 760 mL of MH media. The inoculated seed was incubated for 3 to 11 hours at 35±1°C, 5+0.5% % CO2. Samples were collected and checked for optical density (OD) at 600 nm. Once the desired OD reaches to 4±2 sample were collected for gram staining, pH. Purity was confirmed by plating on Blood agar plate.
Fermentation/Culturing:
750 ml of the seed was inoculated into 15 litres of MH Medium and 30 to 50% of glucose was supplemented at the rate of 3 to 5 ml per minute until the OD at 600 nm reaches 6±2 at 35±1°C under 100 to 140 révolution per minute (RPM) at a pH of 7.1±0.3. Inactivation:
13% stock solution of sodium deoxycholate (DOC) was added to the fermenter broth for inactivation of the culture broth and incubated for 10±2 hrs.
Centrifugation:
DOC treated culture was harvested and centrifuged at 14000 relative centrifugai force (RCF) at 20°C. After centrifugation, the supematant was collected and processed for purification steps.
b. Purification of pneumococcal capsular polysaccharides serotype 2
Streptococcus pneumoniae serotype 2 DOC cell lysate was centrifuged on batch centrifuge and the cell débris was removed. Then the pH of the cell free broth was adjusted to 5.0, and incubated for 4 hours and centrifuged for 45 minutes at 14000g. Post centrifugation, the supematant was passed through depth filter. Then, the filtrate was concentrated to 4.2x and diafiltered (4-15 Dia volumes) using 30-300kDa UF membrane. Additional impurities were removed from polysaccharide préparation (retentate) by adding detergent (CTAB 1 %) and incubated for 30 to 90 minutes, at 6°C followed by centrifugation for 15-60 minutes at 9000 to 14500g. Subsequently, the CTAB treated supematant was passed through an activated carbon column (30-300g/L poly préparation). Carbon filtrated polysaccharide préparation was exposed to SiO2 (Silicon Dioxide) particles (3-10%, with sait) and incubated for 15-120 minutes at 2 to 40°C followed by, centrifugation for 15-60 min at 9000 to 14500g. The supematant was passed through 2 to 50pm depth filter and the depth filtrate was passed though carbon filterfollowed by 0.22 to 0.6pm filter. Then, the filtrate (0.22 to 0,6 pm) was concentrated and diafiltered on 30-300kDa UF membrane and diafiltered with 0.5 to 2% NaCI solution or without sait in water or buffer to obtain capsular polysaccharide serotype 2 in substantially pure form.
Purification of pneumococcal capsularpolysaccharides from serotypes 15A and 15C were prepared in a similarprocedure described above for Serotype 2.
c. Purification of pneumococcal capsular polysaccharides serotype 35B
Streptococcus pneumoniae serotype 35B, DOC cell lysate was centrifuged on batch centrifuge and the ce!! débris was removed. Then pH of the cell free broth was adjusted to 5.0, and incubated for 4 hours and centrifuged for 45 minutes at 14000g. Post centrifugation, the supematant was passed through depth filter. Then, the filtrate was concentrated to 7.5x and diafiltered (4-15 Dia volumes) using 30-300kDa UF membrane. Additional impurities were removed from polysaccharide préparation (retentate) by adding detergent (CTAB 1 %) and incubated for 30 to 90 minutes, at 6°C followed by centrifugation for 15-60 minutes at 9000 to 14500g. Subsequently, the CTAB treated supernatant was passed through an activated carbon column (30~300g/L poly préparation). Carbon fiîtrated polysaccharide préparation was exposed to SiO2 (Silicon Dioxide) particles (3-10%, with sait) and incubated for 15-120 minutes at 2 to 40°C followed by, centrifugation for 15-60 min at 9000 to 14500g. Supernatant was passed through 2 to 50pm depth filter and the depth filtrate was passed through carbon filter followed by 0.22 to 0.6pm filter. Then, the filtrate (0.22 to 0.6 pm) was concentrated and diafiltered on 30-300kDa UF membrane and diafiltered with 0.5 to 2% NaCI solution or without sait in water or buffer to obtain capsular polysaccharide serotype 35B in substantially pure form.
d. Sizing of the purified pneumococcal capsularpolysaccharide serotype 2
Purified pneumococcal capsular polysaccharide serotype 2 obtained above was sized mechanically using high-pressure homogenizer at 1000 bar, for 1 to 20 cycles. Sized polysaccharide préparation was concentrated again to 15 mg/mL on 30-kDa. Ultra-Filter (UF) membrane. The retentate was passed through 0.22pm filter and frozen below -20°C. Sizing of pneumococcal capsular polysaccharide from serotypes 35B was carried out using similar procedure described above for Serotype 2.
e. Sizing of the purified pneumococcal capsular polysaccharides serotype 15A.
Purified pneumococcal capsular polysaccharides serotype 15A was sized mechanically using high-pressure homogenizer at 1500 bar, for 1 to 20 cycles. Sized polysaccharide pneumococcal serotype 15A préparation was concentrated again to 15 mg/mL on 30-kDa Ultra-Filter (UF) membrane. The retentate was passed through 0.22pm filter and frozen below -20°C.
f. Sizing of the purified pneumococcal capsularpolysaccharides serotype 15C.
Purified pneumococcal capsular polysaccharides serotype 15C was sized mechanically using high-pressure homogenizer at 1200 bar, for 1 to 20 cycles. Sized polysaccharide pneumococcal serotype 15A préparation was concentrated again to 15 mg/mL on 30-kDa Ultra-Filter (UF) membrane. The retentate was passed through 0.22pm filter and frozen below -20°C.
NMR structure analyses of pneumococcal capsular polysaccharides serotype 2,15A and15C.
Confirmation of the polysaccharide identity for serotypes 2,15A and 15C was done by NMR analysis. The analysis was performed based on the published methodology by Abeygunawardana étal., Development and Validation of an NMR based Identity Assay for polysaccharides, Analytical Biochemistry, 279, 226-240 (2000). Based on the NMR data in
Figs 1-3, the anomeric région ofthe NMR spectra confirms the polysaccharide identity and the peaks are identified for the sugars containing in respective polysaccharide serotypes
2, 15Aand 150.
NMR structure analyses of pneumococcal capsular polysaccharides serotype 35B.
Confirmation of the polysaccharide identity for serotype 35B was done by NMR analysis. The analysis was performed based on the published methodology by Abeygunawardana et.al., Development and Validation of an NMR based Identity Assay for polysaccharides, Analytical Biochemistry, 279, 226-240 (2000). Based on the NMR data in Fig. 4. The 1H NMR spectra peak assignment of serotype 35B was done according to the published data by, L. M. Beynon., J. C. Richards., Μ. B. Perry., P. J. Kniskem, Characterization of the capsuiar antigen of Streptococcus pneumoniae serotype 35B, Canadian Journal of Chemistry, 73(1): 41-48 (1995).
The salient features of the purified and sized polysaccharides from pneumococcal serotypes 2, 15A, 15C and 35B prepared as described above, are mentioned in Table 1 below.
Table 1
Serotyp e Pre size Post size
Avg. Mot Wt. (kDa) Avg Mol Wt (kDa) % of protein impurity % of Nucleic acid impurity % of CWPS O- Acetyl (%) Hexo samin e {%) Glycerol Content (%)
2 545 261 <1 0.1 0.82 NA NA NA
15A 813 187 <1 0.09 1.88 <0.5 22.15 7.53
15C 649 202 <1 0.01 0.38 <0.5 13 8.12
35B 343 229 <1 0.12 0.71 5.47 13 N.A.
Example 2: Préparation of carrier proteins
a. Préparation of CRM197
CRM197 may be prepared by recombinant methods in accordance with the methods described in U.S. Pat. No. 5,614,382. Alternatively, CRM197 is prepared recombinantly in accordance with the methods known in the iiterature or according to the method disclosed in PCT publication WO 2016/079755, WO 2017/081700 and WO 2018/193475. CRM197 may be purified by ultrafiltration, ammonium sulphate précipitation, and ion-exchange chromatography, methods well known in the art.
b. Préparation of PsaA
The PsaA gene was PCR amplified from Streptococcus pneumoniae Serotype 4, without its hydrophobie leader peptide sequence. The gene sequence was verified and cloned into
Escherichia coli using a vector constructed in-house (pBE66) for higher expression.
Glycerol stock culture encoding the PsaA gene was revived on a 20 mL LB Media containing 1 mL of Glycerol Stock in a 150 mL conical flask. The culture was incubated for about 6 hrs at 37° C under 200 rpm to a final OD Soonm of 3.5 OD. The revived culture was transferred to 1 L seed culture in a 5 L conical flask. The culture was grown for about 10 hrs at 37° C under 200 rpm to a final OD 600nm of 3. The seed culture was transferred aseptically to a 20 L fermenter containing the following media components, HyPeptone 6 g/L, Yeast extract 12/L, di Potassium Hydrogen ortho phosphate 13.5 g/L , ammonium phosphate di basic 4 g/L, Citric acid 1.7 g/L, MgSO4.7H2O 1.2 g/L , Glucose 4 g/L , thamine HCL 10 mg/L along with 1 mL/L trace éléments (e.g., trace éléments for 100mL composition FeCh 2.7 g, ZnCI20.2g, CoCI2.6H2O 0.2g, Na2MoO4.2H2O 0.2 g, CuSO4 5H2O 0.1 g, Boric Acid 0.05 g, CaCI2 2H2O 0.1g, Conc., HCL 10mL.) The initial fermentation started with ODeœnm 0.2 OD. The pH was maintained at 7± 0.2 throughout the fermentation with 20% ortho-phosphoric acid and 12.5 % ammonium hydroxide. When the glucose level falls below 0.5 g/L the feed batch was initiated at a steady rate of 3 - 4 g/L/hr, the DO% was maintained > 20% throughout the fermentation with oxygen enrichment. Cells were grown in the fermentor and the cell pellet was harvested by centrifugation. The cells were lysed using cell-disruption device (Panda). The lysate was centrifuged at 10000g, the clarified supematant was subject to purification.
PsaA purification was performed similarly to the procedure described in Larentis étal, 2011 (Protein expression and Purification 78 (2011) 38). Purification was further optimized by using mixed mode cnrOmatography (Ceramic Hydroxyapatite Type-iï) after DEAE to achieve higher purity of PsaA.
Anion exchanqe chromatography: 30 mL of DEAE Sepharose (GE) resin was packed in XK16/20 column. The resin was washed with 5 column volumes of stérile distilled water followed by 10 column volumes of 20mM Tris, ImM EDTA, pH 8.0 (Equilibration buffer). 30 mL of supematant was diluted to 100 mL with équilibration buffer and loaded onto column and flow-through was collected. The column was washed with 5 volumes of équilibration buffer. PsaA was eluted with 12 volumes of linear gradient of (0-100%B). (Buffer A containing 20 mM Tris, 1 mM EDTA pH 8.0; Buffer B-20 mM Tris, 1 mM EDTA, 250 mM NaCI pH 8.0.) This was followed by washing the columns with 20 mM Tris, 1 mM EDTA, 1 M NaCI pH8.0.
Mixed mode Chromatography: 25 ml of Ceramic Hydroxyapatite Type I! (CHT-H) was packed in a column. The resin was washed with volumes of stérile distilled water followed by 10 volumes of 20 mM Tris pH 6,8. Elution fractions from DEAE resin that showed clear major visible band of approximately 37 KD good concentration of PsaA on SDS PAGE were pooled and loaded onto CHT-II resin. The flow-through was collected and the column was washed with 5 column volumes of équilibration buffer. Protein was eluted with 5 column volumes step gradients of (15%B, 20%B, 50%B and 100%B). Buffer A contains 20 mM
Tris pH 6.8, while the Buffer B contains 250 mM Phosphate buffer pH 6.8.
Ail the elution fractions showing a clean band at the expected size of PsaA were pooled, concentrated by 10 kDa MWCO cassette and diafiltered against 20mM Phosphate buffer pH 7.5. The purified protein was loaded on SDS-PAGE gel to assess purity.
Example 3: Conjugation of pneumococcal capsuiar polysaccharides serotype 2, 15A, 15Cand 35B.
a. Conjugation of pneumococcal capsuiar polysaccharides serotype 2 with CRM197
1000mg (200.OmL of 5.0mg/mL concentration) mechanically size reduced polysaccharide serotype 2 and 5.0mL of CDAP (100mg/mL in Acetonitrile (w/v)) was mixed in a glass bottle in the ratio of 1.0:0.5 (PS: CDAP) and stirred for 1 min. The pH of the polysaccharide solution was adjusted to 9.0 with 12.0mL of 0.2M triethylamine and stirred for 1 min at room température (RT). 1000mg of CRM (66.7mL of 15.0mg/mL concentration) was added slowly to the activated polysaccharide in a ratio of 1.0:1.0 (PnPs: CRM).
The pH of the reaction was adjusted to 9.0 with 2.8mL of 0.2M triethylamine and the reaction was continued under stirring for 3 - 5 hours at room température followed by quenching of the reaction by adding an excess concentration of glycine (100 mM). The conjugation kinetics (Figure 5A) of reactions were monitored using SEC- HPLC at each hour ofthe reaction.
The reaction mixture was diafiltered and concentrated using 100 kDa MWCO TFF membrane. The concentrate was purified by size-exclusion chromatography. The fractions were analyzed by SEC-MALLS, anthrone method and fractions containing conjugates were pooled and stérile filtered with 0.2pm filters, The average molecular weight of the conjugate obtained was 8168 kDa.
b. Conjugation of pneumococcal capsuiar polysaccharides serotype 2 with PsaA
WOOrng (200.0mL of 5.0mg/mL concentration) of mechanically size reduced polysaccharide serotype 2 and 5.0mL of CDAP (lOOmg/mL in Acetonitrile (w/v)) was mixed in a glass bottle in the ratio of 1.0:0.5 (PS: CDAP) and stirred for 1 Min. The pH of the polysaccharide solution was adjusted to 9.0 with 16.OmL of 0.2M triethylamine and stirred for 1 min at room température (RT). 800mg of PsaA (53.33mL of 15.0mg/mL concentration) was added slowly to the activated polysaccharide in a ratio of 1.0:0.8 (PnPs; PsaA).
The pH of the reaction was adjusted to 9.0 with 3.5mL of 0.2M triethylamine and the reaction was continued under stirring for 3 - 5 hours at room température followed by quenching of the reaction by adding an excess concentration of glycine (100 mM). The conjugation kinetics (Figure 5B) of reactions were monitored using SEC- HPLC at each hour of the reaction.
The reaction mixture was diafiltered and concentrated using 100 kDa MVVCO TFF membrane. The concentrate was purified by size-exclusion chromatography. The fractions were analyzed by SEC-MALLS, anthrone method and fractions containing conjugales were pooled and stérile filtered with 0.2pm filters. Tne average molecularweight ofthe conjugate obtained was 6295 kDa.
c. Conjugation of pneumococcal capsular polysaccharides serotype 15A with CRM 197
1000 mg (66.7mL of 15.0mg/mL concentration) mechanically size reduced polysaccharide serotype 15A and 10.0mL of CDAP (100mg/mL in Acetonitrile (w/v)) was mixed in a glass bottle in the ratio of 1.0:1.0 (PS: CDAP) and stirred for 1 min. The pH of the polysaccharide solution was adjusted to 9.0 with 18.0mL of 0.2M triethylamine and stirred for 1 min at room température (RT). 1000mg of CRM197 (53.3mL of 15.0mg/mL concentration) was added slowly to the activated polysaccharide in a ratio of 1.0:0.8 (PnPs: CRM).
The pH of the reaction was adjusted to 9.0 with 1.0mL of 0.2M triethylamine and the reaction was continued under stirring for 3-5 hours at room température followed by quenching of the reaction by adding an excess concentration of glycine (100 mM). The conjugation kinetics (Figure 6A) of reactions were monitored using SEC- HPLC at each hourofthe reaction.
The reaction mixture was diafiltered and concentrated using 100 kDa MWCO TFF membrane. The concentrate was purified by size-exclusion chromatography. The fractions were analyzed by SEC-MALLS, anthrone method and fractions containing conjugales were pooled and stérile filtered with 0.2pm filters. The average molecular weight ofthe conjugate obtained was 4272 kDa.
d. Conjugation of pneumococcal capsular polysaccharides serotype 15A with PsaA lOOOmg (71.4mL of 14.0mg/mL concentration) mechanically size reduced polysaccharide serotype 15A and 10.0mL of CDAP (100mg/mL in Acetonitrile (w/v)) was mixed in a glass bottle in the ratio of 1.0:1.0 (PS: CDAP) and stirred for 1 Min. The pH of the polysaccharide solution was adjusted to 9.0 with 20.5mL of 0.2M triethylamine and stirred for 1 min at room température (RT). 1000mg of PsaA (66.6mL of 15.0mg/mL concentration) was added slowly to the activated polysaccharide in a ratio of 1.0:1.0 (PnPs:
PsaA),
The pH of the reaction was adjusted to 9.0 with 0.9mL of 0.2M triethylamine and the reaction was continued under stirring for 3-5 hours at room température followed by quenching of the reaction by adding an excess concentration of glycine (100 mM). The conjugation kinetics (Figure 6B) of reactions were monitored using SEC- HPLC at each hour of the reaction.
The reaction mixture was diafiltered and concentrated using 100 kDa MWCO TFF membrane. The concentrate was purified by size-exclusion chromatography. The fractions were analyzed by SEC-MALLS, anthrone method and fractions containing conjugates were pooled and stérile filtered with 0.2 pm filters. The average molecular weight of the conjugate obtained was 9776 kDa.
e. Conjugation of pneumococcal capsular polysaccharides serotype 15C with
CRMfsï
1000mg (WO.OmL of 10.0mg/mL concentration) of mechanically size reduced polysaccharide serotype 15C and 15.0mL of CDAP (100mg/mL in Acetonitrile (w/v)) was mixed in a glass bottle in the ratio of 1.0:1.5 (PS: CDAP) and stirred for 1 Min. The pH of the polysaccharide solution was adjusted to 9.0 with 24.0mL of 0.2M triethylamine and stirred for 1 min at room température (RT). 1000mg of CRMi97 (66.6mL of 15.0mg/mL concentration) was added slowly to the activated polysaccharide in a ratio of 1.0:1.0 (PnPs:
CRM).
The pH of the reaction was adjusted to 9.0 with 2.8mL of 0.2M triethylamine and the reaction was continued under stirring for 3 - 5 hours at room température followed by quenching of the reaction by adding excess concentration of glycine (100 mM). The hour of the reaction.
The reaction mixture was diafiltered and concentrated using 100 kDa MWCO TFF membrane. The concentrate was purified by size-exclusion chromatography. The fractions were analyzed by SEC-MALLS, anthrone method and fractions containing conjugates were pooled and stérile filtered with 0.2pm fiiters. The average molecularweight ofthe conjugate obtained was 10490 kDa.
f. Conjugation of pneumococcal capsular polysaccharides serotype 15C with PsaA
1000 mg (100.0 mL of 10.0mg/mL concentration) of mechanically size reduced polysaccharide serotype 15C and 15.0mL of CDAP (100mg/mL in Acetonitrile (w/v)) was mixed in a glass bottle in the ratio of 1.0:1,5 (PS; CDAP) and stirred for 1 Min. The pH of the polysaccharide solution was adjusted to 9.0 with 24.0mL of 0.2M triethylamine and stirred for 1 min at room température (RT). lOOOrng of PsaA (66.6mL of 15.0mg/mL concentration) was added slowly to the activated polysaccharide in a ratio of 1.0:1.0 (PnPs:
PsaA).
The pH of the reaction was adjusted to 9.0 with 2.8 mL of 0.2 M triethylamine and the reaction was continued under stirring for 3 - 5 hours at room température followed by quenching of the reaction by adding an excess concentration of glycine (100 mM). The conjugation kinetics (Figure 7B) of reactions were monitored using SEC- HPLC at each hour of the reaction.
The reaction mixture was diafiltered and concentrated using 100 kDa MWCO TFF membrane. The concentrate was purified by size-exclusion chromatography. The fractions were analyzed by SEC-MALLS, anthrone method and fractions containing conjugales were pooled and stérile filtered with 0.2pm filters. The average molecular weight of the conjugate obtained was 8719 kDa.
g. Conjugation of pneumococcal capsular polysaccharides serotype 35B with CRMl97
1000 mg (100.0mL of 10.0mg/mL concentration) mechanically size reduced polysaccharide serotype 35B and 5.0mL of CDAP (100mg/mL in Acetonitriie (w/v)) was mixed in a glass bottle in the ratio of 1.0:0.5 (PS: CDAP) and stirred for 1 min. The pH of the polysaccharide solution was adjusted to 9.0 with 5.0mL of 0.2M triethylamine and stirred for 1 min at room température (RT). 1000mg of CRM197 (66.7mL of 15.0mg/mL concentration) was added slowly to the activated polysaccharide in a ratio of 1.0:1.0 (PnPs: CRM).
The pH of the reaction was adjusted to 9.0 with 1.6mL of 0.2M triethylamine and the reaction was continued under stirring for 3-5 hours at room température followed by quenching of the reaction by adding an excess concentration of glycine (100 mM). The conjugation kinetics (Figure 8A) of reactions were monitored using SEC- HPLC at each hourofthe reaction.
The reaction mixture was diafiltered and concentrated using 100 kDa MWCO TFF membrane. The concentrate was purified by size-exclusion chromatography. The fractions were analysed by SEC-MALLS, anthrone method and fractions containing conjugales were pooled and stérile filtered with 0.2pm filters. The average molecular weight of the conjugate obtained was 8572 kDa
h. Conjugation of pneumococcal capsular polysaccharides serotype 35B with PsaA
1000mg (142.8mL of 7.0mg/mL concentration) mechanically size reduced polysaccharide serotype 35B and 6.0mL of CDAP (100mg/mL in Acetonitrile (w/v)) was mixed in a glass bottle in the ratio of 1,0:0.6 (PS: CDAP) and stirred for 1 min. The pH of the polysaccharide solution was adjusted to 9.0 with 7.0mL of 0.2M triethylamine and stirred for 1 min at room température (RT). 1000mg of PsaA (66.6mL of 15.0mg/mL concentration) was added slowly to the activated polysaccharide in a ratio of 1.0:1.0 (PnPs: PsaA).
The pH of the reaction was adjusted to 9.0 with 2.2mL of 0.2M triethylamine and the reaction was continued under stimng for 3-5 hours at room température followed by quenching of the reaction by adding excess concentration of glycine (100 mM). The conjugation kinetics (Figure 8B) of reactions were monitored using SEC- HPLC at each hour of the reaction.
The reaction mixture was diafiltered and concentrated using 100 kDa MWCO TFF membrane. The concentrate was purified by size-exclusion chromatography. The fractions were analyzed by SEC-MALLS, anthrone method and fractions containing conjugates were pooled and stérile filtered with 0.2pm filters. The average molecularweight ofthe conjugale obtained was 6944 kDa.
EXAMPLE 4: Formulation of Pneumococcal Capsular Polysaccharide-protein conjugale vaccine
A multivalent conjugale vaccine was formulated as 0.5 mL dose containing 2.2 pg of each pneumococcal polysaccharide from serotypes 2, 15A, 15C, and 35B conjugated to ~ 8-10 pg of CRM197 protein prepared in example 3. Ail the conjugates were adsorbed on to aluminum phosphate gel équivalent to 0.5 mg Al3+ per dose of 0.5 mL. The 0.9% W/V saline was used as diluent and vehicle for the formulation and the final formulation pH was adjusted to pH 6 using 1N hydrochîoric acid. For effective adsorption post adjusting the pH, the formulation was mixed for2 hours under constant stirring. After 2 hours of blending, the formulated blend was aseptically filled at 0.58 mL fill volume per vial into the 3 mL stérile nonsiliconized vials,. closed with stérile 13 mm rubber stoppera and sealed with 13 mm stérile pink colored flip off aluminium seals, followed by optical inspection and labelling of filled vials. From the lot, some vials were randomly picked up and analyzed for the appearance, pH, Osmolality, total poly and protein content (pg/SHD), % Adsorption, aluminium content (mg/SHD).
EXAMPLE 5: Formulation of Pneumococcal Capsular Polysaccharide-protein conjugate vaccine
A multivalent conjugate vaccine was formulated as 0.5 mL dose containing 2.2 pg of each pneumococcal polysaccharide from serotypes 2, 15A, 15C, and 35B conjugated to - 8-10 ,ug of PsaA carrier protein prepared in example 3. Ail the conjugates were adsorbed on to aluminium. Ail the conjugates were adsorbed on to aluminium phosphate gel équivalent to 0.5 mg Al3+ per dose of 0.5 mL. The 0.9% W/V saline was used as diluent and vehicle for the formulation and the final formulation pH was adjusted to pH 6 using 1N hydrochloric acid. For effective absorption post abjusting the pH, the formulation was mixed for 2 hours under constant stirring. After 2 hours of blending, the formulateb blend was aseptically filleb at 0.58 mL fill volume per vial into the 3 mL stérile nonsiliconized vials, closed with stérile 13 mm rubber stoppers and sealed with 13 mm stérile pink coloreb flip off aluminium seals, followed by optical inspection and labelling of filled vials. From the lot, some vials were randomly picked up and analyzed for the appearance, pH, Osmolality, total poly and protein content (pg/SHD), % Absorption, aluminium content (mg/SHD).
EXAMPLE 5: Formulation of Pneumococcal Capsular Polysaccharide-protein conjugate vaccine
A 24 valent conjugateb vaccine was formulateb as 0.5 mL bose containing 2.2 pg of each pneumococcal polysaccharide from serotypes 1, 4, 5, 6B, 7F, 9V, 14, 18C, 19A, 19F, 22F, 23F and 33F except 4.4 pg of 6B conjugated to 25 to 40 pg CRM197 and 2.2 pg of each pneumococcal polysaccharide from serotypes 3, 6A, 8, 10A, 11 A, 12F, 15A, 23A, 23B, 24F and 35B were conjugated to 25 to 40 pg of PsaA. Ail the conjugates were adsorbed on to aluminum phosphate gel équivalent to 0.5 mg Al3+ per dose of 0.5 mL The 0.9% W/V saline was used as diluent and vehicle for the formulation and the final formulation pH was adjusted to pH 6 using 1N hydrochloric acid. For effective absorption post adjusting the pH, the formulation was mixed for 2 hours under constant stirring. After 2 hours of blending, the formulated blend was aseptically filled at 0.58 mL fill volume per vial into the 3 mL stérile non-siliconized vials, closed with stérile 13 mm rubber stoppers and sealed with 13 mm stérile pink colored flip off aluminum seals, followed by optical inspection and labelling of filled vials. From the lot, some vials randomly picked were sent for analyzing the appearance, pH, Osmolality, total poly and protein content (pg/SHD), %Absorption, aluminum content (mg/SHD).
EXAMPLE 6: Immunization of rabbits with 0.5 mL dose
A) Immunization and ELISA
Healthy rabbits 1.5 to 2 kg each were breb and reared in a contâined facility. Rabbits were immunized with a single 0.5 mL dose of multivalent PCV as described in Examples 4 and 5. Each group, consisting of 7 rabbits, were immunized with formulation on days 1,15 and 29. Blood samples were collected on days 0 (pre-immune), 15 (test bleed) and 36 (final bleed). Rabbit sera collected on day 0 (PD1) and Day 40 (PD3) were analyzed for serotype spécifie immune response using ELISA. The ELISA was performed as per the WHO suggesteb protocol. The ELISA was performed as per the WHO suggesteb protocol.
Briefly, Maxisorp™ ELISA plates were coated with PnCPS of given serotype. The ELISA was performed as per the WHO suggested protocol. Briefly, Maxisorp™ ELISA plates were coated with PnCPS of given serotype (1 pg/50pL/well using PBS; stérile endotoxin free, with 0.02% sodium azide). Plates were placed in a box with moistened paper towels for 5 humidification and incubated at 37°C'± 2°C for 5hrs, the plates were then stored at 5°C ± 3°C until use.
The test sera were pre-adsorbed to CWPS Mlti™ to eliminate background reactivity originating from cell-wall polysaccharide. To achieve this 2 pL of test and positive control sérum was diluted using 998pL pre-adsorption solution (1mL-1pL CWPS Multi™ in 999pL of 10% SuperBlock™ in PBST) to get final dilution of 1:500. The diluted samples were incubated at room température (25°C ± 5°C) for 1 hrwith continuous shaking. The unbound PnCPS were removed by flicking the plate and the free sites in the wells were blocked by adding 200pL of blocker (20% SuperBlock™ in PBS). The plates were incubated at room température (25°C ± 5°C) for 1 hr without shaking.
B) Test Samples and Controls Addition
50pL diluent (10% SuperBlock™ in PBST) was added to al! wells except A1 to A12. Following this 100pL/well preadsorbed test sera samples were added to A1 to A10, control sera samples were added to A11 and A12. Two-fold serial dilution of test samples was performed by transferring 50pL from 1st to 2nd and so on i.e. from A1-A10 to H1-H10.
Similarly, serial dilution of control samples (007SP) from A11 and 12 to E11 and E12 were performed. F11 and F12 to H11 and H12 without dilution were set up as blank. The plates were incubated at room température (25°C ± 5°C) for 2 hrs without shaking. Following the incubation step the contents were discarded and the plates were washed thrice with PBST ( -250pL/well) manually or with plate washer.
C) Primary Antibody Addition
50pL/well recombinant protein A/G peroxidase (diluted 1:20000 using 10% SuperBlock™ in PBST) was added to ail wells and the plates were incubated for 1hr at room température (25°C ± 5°C) without shaking. Following this, the plates were washed thrice with PBST (250pL/weli) manually or with plate washer.
D) Development and Reading
Chromogenic reaction was developed by adding 50pL/well TMB substrate and incubated for 15mins ai room température (25°C ± 5°C) without shaking. The reaction was stopped by adding 50pL/well 1.25M Sulphuric acid. The OD at 450nm was measured.
E) Titer Estimation
Antibody titer in the immunized animais was assigned as inverse of dilution factor. The highest dilution showing OD^onæ as twice the pre-immune titer (approximately 0.2) was reported as titer. The titer of sérum antibody to each serotype was plotted and compared with different treatment groups.
F) immune response in rabbits
Rabbits were immunized with the formulation described in Exampie 5. The study design consisted of two groups of 7 rabbits each. Animais were immunized with three doses of the formuiated vaccines.
Sérum from the immunized rabbits were collected at specified interval. Serotype spécifie IgG titer levels were estimated in an ELISA, which is adapted from a WHO recommended ELISA to assess sérum antibody titers in human sérum. Antibody titers were 10 estimated as - maximum dilution of the sérum that gave OD45onm value above the cut-off limit. The IgG titer value of pre-vaccinated animal was used to calculate Géométrie Mean Foid Rise (GMFR) in sérum IgG titer. Afteradministration ofthe 24 valent PCVformulation described above, the animais were found to hâve antibodies against each serotype of polysaccharide of the conjugate in the vaccine, and therefore, these vaccines are 15 immunogenic.
As shown in (Figure 9), the titre is estimated as maximum sérum dilution that produced ELISA OD45onm above the cut-off value (2 x OD4sonm observed in pre-immune sera; OD value of about 0.1). Géométrie Mean Fold Rise (GMFR) for each serotype was plotted. The sera obtained after 3 doses of immunization (Post dose 3) was used to assess 20 the immunogenicity. Solid black bars indicate pneumococcal polysaccharides conjugated to CRM197, while open while bars indicate pneumococcal polysaccharides conjugated to PsaA.
From the foregoing, itwili be appreciated that spécifie embodiments of the invention hâve been described herein for purposes of illustration, but that various modifications may 25 be made without deviating from the scope of the invention.

Claims (10)

  1. Claims:
    1. A purified and sized capsuiar polysaccharide of Streptococcus pneumoniae serotype 2, 15A, 15C or 35B having an average molecular weight (Mw) between 50 and 1000 kDa.
  2. 2. A purified capsular polysaccharide of Streptococcus pneumoniae serotype 2, 15A, 15C or 35B as claimed in claim 1, having an average molecular weight (Mw) between 50 kDa and 750 kDa; between 50 kDa and 500 kDa; between 100 kDa and 1,000 kDa; between 100 kDa and 750 kDa; or between 100 kDa and 500 kDa.
  3. 3. A purified capsular polysaccharide as claimed in claim 1, which is:
    i) of Streptococcus pneumoniae serotype 15A or 15C, having a glyceroî content within a range of 5-18%;
    ii) of Streptococcus pneumoniae serotype 15A, having a glyceroî content of 5 to 10%;
    iii) of Streptococcus pneumoniae serotype 15C, having a glyceroî content of 5 to 10%;
    iv) of Streptococcus pneumoniae serotype 35B, having an acetate content within a range of 2-10%, preferably 2-8%.
  4. 4. A method for preparing purified and sized capsular polysaccharides of Streptococcus pneumoniae serotypes, comprising the steps of:
    a. culturing Streptococcus pneumoniae serotype 2, 15A, 15C or 35B in a suitable culture medium;
    b. inaciivating the Streptococcuspneumoniae culture broih;
    c. subjecting the Streptococcus pneumoniae culture broth to centrifugation;
    d. purifying the capsular polysaccharide of Streptococcus pneumoniae from the culture broth; and e, subjecting the purified capsular polysaccharide of Streptococcus pneumoniae to high-pressure homogenization to obtain sized capsular polysaccharides having an average molecular weight (Mw) between 50 and 1000 kDa.
  5. 5. A pneumococcal conjugate vaccine comprising at least one purified and sized capsular polysaccharide from Streptococcus pneumoniae serotype 2, 15A, 15C or 35B having an average molecular weight between 50 and 1000 kDa conjugated to a carrier protein, wherein the composition comprises a (w/w) percent ratio of protein to polysaccharide (proiein/PS) of about 0.5 to about 2.0.
  6. 6. The conjugate vaccine as claimed in claim 5, wherein:
    i) the carrier protein is selected from PsaA, CRM197, PspA, tetanus toxoid (TT) or a combination thereof;
    ii) the polysaccharide is from serotype 2, has an average molecular weight between 50 and 1000 kDa and is conjugated to PsaA, CRM197, PspA or tetanus toxoid (TT), and the composition comprises a (w/w) percent ratio of protein to polysaccharide (protein/PS) of about 0.5 to about 2.0, preferably, 0.7 to 1.2;
    iii) the polysaccharide is from serotype 15A, has an average molecular weight between 50 and 1000 kDa and is conjugated to a carrier protein selected from PsaA, CRM197, PspA or tetanus toxoid (TT), and the composition comprises a (w/w) percent ratio of protein to polysaccharide (protein/PS) of about 0.5 to about 2.0, preferably, 0.7 to 1.2;
    iv) the polysaccharide is from serotype 15C, has an average molecular weight between 50 and 1000 kDa and is conjugated to a carrier protein selected from PsaA, CRM197, PspA or tetanus toxoid (TT), and the composition comprises a (w/w) percent ratio of protein to polysaccharide (protein/PS) of about 0.5 to about 2.0, preferably, 0.7 to 1.2;
    v) the polysaccharide is from serotype 35B, has an average molecular weight between 50 and 1000 kDa and is conjugated to a carrier protein selected from PsaA, CRM197, PspA or tetanus toxoid (TT), and the composition comprises a (w/w) percent ratio of protein to polysaccharide (protein/PS) of about 0.5 to about 2.0, preferably, 0.7 to 1.2; and/or vi) the conjugate has an average molecular weight ranging between 500 kDa to 5000 kDa; 1,000 kDa to 10,000 kDa; 1,500 kDa to 15,000 kDa; 2,000 kDa to 20,000 kDa; 2,500 kDa to 25,000 kDa; or 3,000 kDa to 30,000 kDa.
  7. 7. An immunogenic composition comprising at least one glycoconjugate from Streptococcus pneumoniae serotype 2,15A, 15C or 35B, wherein the polysaccharide in the glycoconjugate is a purified capsular polysaccharide as claimed in claim 1 ; and optionally further comprising glycoconjugates selected from Streptococcus pneumoniae serotypes 1, 3, 4, 5, 6A, 6B, 7F, 8, 9V, 10A, 11A, 14, 15B, 16F, 18C, 19A, 19F, 22F, 23A, 23B. 23F, 24F, 31, and 33F, conjugated to carrier protein selected from PsaA, CRM197, PspA, and tetanus toxoid (TT) or a combination of carrier proteins.
  8. 8. The composition as claimed in claim 7, wherein:
    i) the composition is a multivalent immunogenic composition and is a 8, 9, 10,11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 24, 25 or more valent pneumococcal conjugate composition;
    ii) the composition is a 24 valent pneumococcal conjugate composition comprising polysaccharides from at least 3 pneumococcal serotypes selected from 2,15A, 15C & 35B and additional serotypes comprising 1,3, 4, 5, 6A, 6B, 7F, 8, 9V, 10A, 11 A, 14, 18C, 19A, 19F, 20A, 20B, 22F, 23F, 24F, 33F, wherein the serotypes are conjugated to a carrier protein selected from PsaA, CRM197, PspA, and tetanus toxoid (TT);
    iii) the composition is a 24 valent pneumococcal conjugate comprising polysaccharides from at least 2 pneumococcal serotypes selected from 2,15A, 15C & 35B and additional serotypes comprising 1, 3, 4, 5, 6A, 6B, 7F, 8, 9V, 10A, 11 A, 12F, 14, 18C,
    19A, 19F, 22F, 23A, 23B, 23F, 24F, 33F, wherein the serotypes are conjugated to a carrier protein selected from PsaA, CRM197, PspA, and tetanus toxoid (TT);
    iv) the composition is a multivalent pneumococcal conjugate vaccine composition comprising polysaccharides from at least 2 pneumococcal serotypes selected from 2, 15A, 15C & 35B and one or more additional serotypes selected from 1, 3, 4, 5, 6A, 6B, 7F._ 8, 9V, 10A, 11A, 12F, 14, 18C, 19A, 19F, 20A, 20B, 22F, 23A, 23B, 23F, 24F, and 33F, wherein the serotypes are conjugated to a carrier protein selected from PsaA, CRM197, PspA, and tetanus toxoid (TT);
    v) the composition is a 17 valent pneumococcal conjugate vaccine composition comprising polysaccharides from serotypes of Streptococcus pneumoniae conjugated to a carrier protein, wherein the serotypes comprise 2,15A, 15C & 35B and additional serotypes 1, 3, 4, 5, 6A, 6B, 7F, 9V, 14, 18C, 19A, 19F, 23F, and wherein the carrier protein is selected from PsaA, CRM197, PspA, and tetanus toxoid (TT).
  9. 9. Purified capsular polysaccharides as claimed in claim 1, wherein the polysaccharide is useful for preparing of a vaccine or immunogenic composition.
  10. 10. Vaccine as claimed in either one of claims 5 or 6 or immunogenic composition as claimed in either one of claims 7 or 8, wherein the vaccine or immunogenic composition is useful for prophylaxis against Streptococcus pneumoniae infection.
OA1202100094 2018-09-23 2019-09-23 Purified capsular polysaccharides of streptococcus pneumoniae. OA20178A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
IN201841031654 2018-09-23
IN201841031653 2018-09-23

Publications (1)

Publication Number Publication Date
OA20178A true OA20178A (en) 2021-12-30

Family

ID=

Similar Documents

Publication Publication Date Title
JP7403576B2 (en) Multivalent pneumococcal vaccine composition comprising a polysaccharide-protein conjugate
AU2019341723B2 (en) Purified capsular polysaccharides of Streptococcus pneumoniae
KR101446238B1 (en) Protein Matrix Vaccines and Methods of Making and Administering Such Vaccines
JP6808658B2 (en) Multivalent pneumococcal conjugate vaccine
MX2012010384A (en) Immunogenic composition comprising s. pneumoniae polysaccharides conjugated to carrier proteins.
US20220143166A1 (en) Multivalent pneumococcal polysaccharide-protein conjugate vaccine
CN103083652B (en) A kind of meningococcal polysaccharides combined vaccine with Heterobifunctional reagents as cross structure and preparation method thereof
US20120231086A1 (en) Protein matrix vaccines of improved immunogenicity
KR20190121713A (en) Capsular saccharide of Streptococcus pneumoniae and the immunogenic conjugates thereof
WO2020157772A1 (en) Multivalent pneumococcal polysaccharide-protein conjugate vaccine compositions
WO2020152706A1 (en) Multivalent pneumococcal conjugate vaccine compositions
OA20178A (en) Purified capsular polysaccharides of streptococcus pneumoniae.
US20230101892A1 (en) Multivalent pneumococcal vaccine compositions comprising polysaccharide-protein conjugates
OA20315A (en) Multivalent pneumococcal polysaccharide-protein conjugate vaccine.
OA19223A (en) Multivalent pneumococcal vaccine compositions comprising polysaccharideprotein conjugates.
EA040051B1 (en) POLYVALENT PNEUMOCOCCAL VACCINE COMPOSITIONS CONTAINING POLYSACCHARIDE-PROTEIN CONJUGATES
CN114073761A (en) Oligosaccharide conjugate and application thereof as saccharide vaccine for preventing group V streptococcus B infection