OA19776A - Herbicidal Composition Comprising Flazasulfuron and an Inhibitor of Protoporphyrinogen Oxidase. - Google Patents

Herbicidal Composition Comprising Flazasulfuron and an Inhibitor of Protoporphyrinogen Oxidase. Download PDF

Info

Publication number
OA19776A
OA19776A OA1201300425 OA19776A OA 19776 A OA19776 A OA 19776A OA 1201300425 OA1201300425 OA 1201300425 OA 19776 A OA19776 A OA 19776A
Authority
OA
OAPI
Prior art keywords
compound
ethyl
flazasulfuron
herbicidal composition
methyl
Prior art date
Application number
OA1201300425
Inventor
Hiroyuki Okamoto
Takashi Terada
Ryu Yamada
Original Assignee
Ishihara Sangyo Kaisha, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishihara Sangyo Kaisha, Ltd. filed Critical Ishihara Sangyo Kaisha, Ltd.
Publication of OA19776A publication Critical patent/OA19776A/en

Links

Abstract

Many herbicidal compositions have been developed and are presently used. However, weeds to be controlled are various in types and their emergence extends over a long period. Accordingly, it is desired to develop a herbicidal composition which has a broad herbicidal spectrum, a high activity and a long-lasting effect. The present invention provides a herbicidal composition comprising (A) flazasulfuron or its salt and (B) at least one protoporphyrinogen oxidase inhibitor selected from the group consisting of a phenylpyrazole compound, a triazolinone compound, a N-phenylphthalimide compound, a pyrimidindione compound, an oxadiazole compound, an oxazolidinedione compound, a thiadiazole compound, pyraclonil, profluazol, flufenpyr-ethyl and their salts. According to the present invention, a herbicidal composition which has a broad herbicidal spectrum, a high activity and a long-lasting effect can be provided.

Description

BUREAU DU COURRIER!
TITLE OF INVENTION: HERBICIDAL COMPOSITION COMPRISING FLAZASULFRON AND AN INHIBITOR OF PROTOPORPHYRINOGEN OXIDASE
TECHNICAL FIELD
The présent invention relates to a herbicidal composition comprising flazasulfuron or its sait and a protoporphyrinogen oxidase inhibitor.
BACKGROUND ART
Various herbicidal compositions hâve been studied to control undesired plants (hereinafter sometimes referred to simply as “weeds”) in agriculturai fields and non-agricultural fields.
For example, Patent Document 1 discloses microgranules comprising a compound which inhibits protoporphyrinogen oxidase when absorbed from the stem and leaves, a photosynthesis inhibiting herbicide and an acetolactate synthase inhibiting herbicide, which are to be directly applied to plants to be controlled. Patent Documents 2 and 3 also disclose various herbicidal compositions, and as one example, a combination of a protoporphyrinogen oxidase inhibitor and an acetolactate synthase inhibiting herbicide is disclosed.
However, a herbicidal composition comprising flazasulfuron or its sait and a protoporphyrinogen oxidase inhibitor is not disclosed in any of Patent Documents 1 to 3.
PRIOR ART DOCUMENTS
PATENT DOCUMENTS
Patent Document 1 : JP-A-2005-68121
Patent Document 2: WO2003/024221
Patent Document 3: WO00/27203
DISCLOSURE OF INVENTION
TECHNICAL PROBLEM
Many herbicidal compositions hâve been developed and are presently used, but as weeds to be controlled are many in types and their emergence extends over a long period, it is desired to develop a herbicidal composition having a broader herbicidal spectrum, a high activity and a longlasting effect.
SOLUTION TO PROBLEM
It is possible to provide a herbicidal composition having a broader herbicidal spectrum, a high activity and a long-lasting effect, by use of flazasuifuron or its sait and a spécifie protoporphyrinogen oxidase inhibitor in combination.
That is, the présent invention provides a herbicidal composition comprising (A) flazasuifuron or its sait and (B) at least one protoporphyrinogen oxidase inhibitor selected from the group consisting of a phenylpyrazole compound, a triazolinone compound, a N-phenylphthalimide compound, a pyrimidindione compound, an oxadiazole compound, an oxazolidinedione compound, a thiadiazole compound, pyraclonil, profluazol, flufenpyr-ethyl and their salts. Further, the présent invention provides a method for controliing undesired plants or inhibiting their growth, which comprises applying a herbicidally effective amount of the above herbicidal composition. The présent invention further provides a method for controliing undesired plants or inhibiting their growth, which comprises applying herbicidally effective amounts of (A) and (B), to the undesired plants or to a place where they grow.
ADVANTAGEOUS EFFECTS OF INVENTION
The herbicidal composition of the présent invention comprising flazasuifuron or its sait and a spécifie protoporphyrinogen oxidase inhibitor as active ingrédients is capable of controliing a wide range of undesired plants in cropland or non-cropland, and it surprisingly présents a synergistic herbicidal effect i.e. a herbicidal effect higherthan the mere addition of the respective herbicidal effects of the active ingrédients, and it can be applied at a low dose as compared with a case where the respective active ingrédients are applied individually. Such a herbicidal composition of the présent invention has an enlarged herbicidal spectrum, and further its herbicidal effect will last over a long period of time.
When the herbicidal activity in a case where two active ingrédients are combined, is larger than the simple sum of the respective herbicidal activities of the two active ingrédients (the expected activity), it is called a synergistic effect. The activity expected by the combination of two active ingrédients can be calculated as follows (Colby S.R., “Weed”, vol. 15, p. 20-22,1967).
E = α + β - (a * β Ή00) where a: growth inhibition rate when treated with x (g/ha) of herbicide X, β: growth inhibition rate when treated with y (g/ha) of herbicide Y, ? E: growth inhibition rate expected when treated with x (g/ha) of herbicide X and y (g/ha) of herbicide Y.
. That is, when the actual growth inhibition rate (measured value) is larger than the growth inhibition rate by the above calculation (calculated value), the activity by the combination can be regarded as showing a synergistic effect. The herbicidal composition of the présent invention shows a synergistic effect when calculated by the above formula.
DESCRIPTION OF EMBODIMENTS
The herbicidal composition of the présent invention comprises, as active ingrédients, (A) 15 flazasulfuron or its sait (hereinafter sometimes referred to as “compound A”) and (B) at least one protoporphyrinogen oxidase inhibitor selected from the group consisting of a phenylpyrazole compound, a triazolinone compound, a N-phenylphthalimide compound, a pyrimidindione compound, an oxadiazole compound, an oxazolidinedione compound, a thiadiazole compound, pyraclonil, profluazol, flufenpyr-ethyl and their salts (hereinafter they will sometimes be referred to 20 as “compound B”).
In the compound A, flazasulfuron (common name) is 1-(4,6-dimethoxypyrimidm-2-yl)-3-(3trifluoromethyl-2-pyridylsulfonyl)urea.
The compound B will be described in detail below. The compound B is represented by common names.
The phenylpyrazole compound may, for example, be pyraflufen-ethyl or fluazolate. Among them, pyraflufen-ethyl is preferred.
The triazolinone compound may, for example, be azafenidin, bencarbazone, carfentrazone ethyl or sulfentrazone. Among them, azafenidin, carfentrazone-ethyl or sulfentrazone is preferred, and carfentrazone-ethyl or sulfentrazone is more preferred.
The N-phenylphthalimide compound may, for example, be cinidon-ethyl, flumiclorac-pentyl or flumioxazin. Among them, flumioxazin or flumiclorac-pentyl is preferred, and flumioxazm is more preferred.
The pyrimidindione compound may, for example, be benzfendizone, butafenacil, saflufenacil or ethyl [3-(2-chloro-4-fluoro-5-(3-methyl-2,6-dioxo-4-trifluoromethyl-3,6-dihydro-2H-pyrimidin-1ynphenoxy)pyridin-2-yloxy]acetate (test code: SYN-523). Among them, butafenacil or saflufenacil is preferred.
w The oxadiazole compound may, for example, be oxadiargyl or oxadiazon. Among them, oxadiargyl is preferred.
The oxazolidinedione compound may, for example, be pentoxazone.
The thiadiazole compound may, for example, be fluthiacet-methyl or thidiazimin. Among them, fluthiacet-methyl is preferred.
Other compounds included in the compound B may, for example, be pyracloml, profluazol and flufenpyr-ethyl. Among them, pyraclonil or flufenpyr-ethyl is preferred.
The compound B is preferably the phenylpyrazole compound, the triazolinone compound, the N-phenylphthalimide compound, the pyrimidindione compound or the oxadiazole compound, more preferably the phenylpyrazole compound, the triazolinone compound or the N-phenylphthalimide 20 compound, capable of achieving a high herbicidal effect when combined with the compound A.
More specifically, preferred is pyraflufen-ethyl, carfentrazone-ethyl, sulfentrazone, flumioxazin, saflufenacil, ethyl [3-(2-chloro-4-fluoro-5-(3-methyl-2,6-dioxo-4-trifluoromethyl-3,6-dihydro-2Hpyrimidin-1-yl)phenoxy)pyridin-2-yloxy]acetate (test code: SYN-523), oxadiargyl. fluthiacet-methyl, flufenpyr-ethyl, flumiclorac-pentyl, azafenidin, butafenacil, pentoxazone or pyraclonil, and more 25 preferred is pyraflufen-ethyl, carfentrazone-ethyl, sulfentrazone, flumioxazin, saflufenacil, oxadiargyl, fluthiacet-methyl, flufenpyr-ethyl, butafenacil, pentoxazone or pyraclonil.
The sait included in the compound A or the compound B may be any sait so long as it is agriculturally acceptable. Examples thereof include alkali métal salts such as a sodium sait and a potassium sait; alkaline earth métal salts such as a magnésium sait and a calcium sait; ammonium salts such as a monomethylammonium sait, a dimethylammonium sait and a triethylammonium sait; inorganic acid salts such as a hydrochloride, a perchlorate, a sulfate and a nitrate, and organic acid salts such as an acetate and a methanesulfonate.
The mixing ratio of the compound Ato the compound B cannot generally be defined, as it may vary depending upon various conditions such as the type of the formulation, the weather conditions, and the type and the growth stage of the undesired plants to be controlled, but it is preferably a mixing ratio to achieve the herbicidally effective amounts (synergistic herbicidally effective amount) with which the synergistic herbicidal effect is obtained, and for example, by the weight ratio, itis preferably from 100:1 to 1:100, more preferably from 50:1 to 1:64, particularly preferably from 20:1 to 1:32.
When pyraflufen-ethyl is used as the compound B, the mixing ratio of the compound A to the compound B is, for example, by the weight ratio, preferably from 20:1 to 1:8, more preferably from 20:1 to 1:3.2.
When carfentrazone-ethyl is used asthe compound B, the mixing ratio of the compound Ato the compound B is, for example, by the weight ratio, preferably from 40:1 to 1:40, more preferably from 20:1 to 1:18, particularly preferably from 5:1 to 1:18.
When sulfentrazone is used as the compound B, the mixing ratio of the compound Ato the compound B is, for example, by the weight ratio, preferably from 10:1 to 1:50, more preferably from 4:1 to 1:25, particularly preferably from 2:1 to 1:20.
When flumioxazin is used as the compound B, the mixing ratio of the compound Ato the compound B is, for example, by the weight ratio, preferably from 100:1 to 1:75, more preferably from 50:1 to 1:24, particularly preferably from 20:1 to 1:20.
When saflufenacil is used as the compound B, the mixing ratio of the compound Ato the compound B is, for example, by the weight ratio, preferably from 20:1 to 1:10, more preferably from 10:1 to 1:8.
When oxadiargyl is used as the compound B, the mixing ratio of the compound Ato the compound B is, for example, by the weight ratio, preferably from 2:1 to 1:100, more preferably from 1:1 to 1:32.
When fluthiacet-methyl is used as the compound B, the mixing ratio of the compound A to the compound B is, for example, by the weight ratio, preferably from 20:1 to 1:10, more preferably from 10:1 to 1:2.
When flufenpyr-ethyl is used as the compound B, the mixing ratio of the compound A to the compound B is, for example, by the weight ratio, preferably from 20:1 to 1:10, more preferably from Λ 10:1 to 1:2.
When butafenacil is used as the compound B, the mixing ratio of the compound A to the compound B is, for example, by the weight ratio, preferably from 20:1 to 1:25, more preferably from 5:1 to 1:8.
When pentoxazone is used as the compound B, the mixing ratio of the compound A to the compound B is, for example, by the weight ratio, preferably from 2:1 to 1:50, more preferably from 0.5:1 to 1:10.
When pyraclonil is used as the compound B, the mixing ratio of the compound A to the compound B is, for example, by the weight ratio, preferably from 2:1 to 1:50, more preferably from 0.5:1 to 1:10.
The doses of the compound A and the compound B cannot generally be defined, as they may vary depending upon various conditions such as the mixing ratio of the compound A to the compound B, the type of the formulation, the weather conditions, and the type and the growth stage of the undesired plants to be controlled. However, they are preferably doses to achieve the herbicidally effective amounts (synergistic herbicidally effective amount) with which the synergistic herbicidal effect is obtained, and for example, the dose of the compound A is preferably from 0.5 to 120 g/ha, more preferably from 1 to 110 g/ha, particularly preferably from 1 to 100 g/ha, and the dose of the compound B is preferably from 0.5 to 1,000 g/ha, more preferably from 1 to 900 g/ha, particularly preferably from 2 to 800 g/ha.
With respect to the doses of the compounds A and B when pyraflufen-ethyl is used as the compound B, for example, the dose of the compound A is preferably from 0.5 to 120 g/ha, more preferably from 1 to 110 g/ha, particularly preferably from 1 to 100 g/ha, and the dose of the compound B is preferably from 1 to 100 g/ha, more preferably from 1 to 90 g/ha, particularly preferably from 2 to 80 g/ha.
With respect to the doses of the compounds A and B when carfentrazone-ethyl is used as the compound B, for example, the dose of the compound A is preferably from 0.5 to 120 g/ha, more preferably from 0.5 to 110 g/ha, particularly preferably from 1 to 100 g/ha, and the dose of the compound B is preferably from 2.5 to 400 g/ha, more preferably from 10 to 250 g/ha, particularly preferably from 10 to 50 g/ha.
With respect to the doses of the compounds A and B when sulfentrazone is used as the compound B, for example, the dose of the compound A is preferably from 10 to 100 g/ha, more preferably from 20 to 100 g/ha, particularly preferably from 25 to 100 g/ha, and the dose of the compound B is preferably from 10 to 500 g/ha, more preferably from 25 to 500 g/ha.
With respect to the doses of the compounds A and B when flumioxazin is used as the compound B, for example, the dose of the compound A is preferably from 10 to 100 g/ha, more preferably from 25 to 100 g/ha, particularly preferably from 25 to 50 g/ha, and the dose of the compound B is preferably from 1 to 750 g/ha, more preferably from 2 to 600 g/ha, particularly preferably from 2.5 to 500 g/ha.
With respect to the doses of the compounds A and B when saflufenacil is used as the compound B, for example, the dose of the compound A is preferably from 10 to 100 g/ha, more preferably from 12.5 to 100 g/ha, and the dose of the compound B is preferably from 5 to 100 g/ha.
With respect to the doses of the compounds A and B when oxadiargyl is used as the compound B, for example, the dose of the compound A is preferably from 10 to 100 g/ha, more preferably from 12.5 to 100 g/ha, and the dose of the compound B is preferably from 50 to 1,000 g/ha, more preferably from 150 to 800 g/ha.
With respect to the doses of the compounds A and B when fluthiacet-methyl is used as the compound B, for example, the dose of the compound A is preferably from 10 to 100 g/ha, more preferably from 25 to 50 g/ha, and the dose of the compound B is preferably from 5 to 100 g/ha, more preferably from 5 to 50 g/ha.
With respect to the doses of the compounds A and B when flufenpyr-ethyl is used as the compound B, for example, the dose of the compound A is preferably from 10 to 100 g/ha, more preferably.from 25 to 50 g/ha, and the dose of the compound B is preferably from 5 to 100 g/ha, more preferably from 5 to 50 g/ha.
With respect to the doses of the compounds A and B when butafenacil is used as the compound B, for example, the dose of the compound A is preferably from 10 to 100 g/ha, more preferably from 12.5 to 50 g/ha, and the dose of the compound B is preferably from 5 to 250 g/ha, rriore preferably from 10 to 100 g/ha.
With respect to the doses of the compounds A and B when pentoxazone is used as the compound B, for example, the dose of the compound A is preferably from 10 to 100 g/ha, more preferably from 25 to 50 g/ha, and the dose of the compound B is preferably from 50 to 500 g/ha, more preferably from 100 to 250 g/ha.
With respect to the doses of the compounds A and B when pyraclonil is used as the compound B, for example, the dose of the compound A is preferably from 10 to 100 g/ha, more preferably from 25 to 50 g/ha, and the dose of the compound B is preferably from 50 to 500 g/ha, more preferably from 100 to 250 g/ha.
The herbicidal composition of the présent invention may be applied to undesired plants or may be applied to a place where they grow. Further, it may be applied at any time either before or after the emergence of the undesired plants. Further, the herbicidal composition of the présent invention may take various application forms such as soil application, foliar application, irrigation application, and submerged application, and it can be applied to agricultural fields such as upland fields, orchards and paddy fields, and non-cropland such as ridges of fields, fallow fields, play grounds, golf courses, vacant lands, forests, factory sites, railway sides and roadsides.
The herbicidal composition of the présent invention can contrai a broad range of undesired plants such as annual weeds and perennial.weeds. The undesired plants to be controlled by the herbicidal composition of the présent invention may, for example, be cyperaceae such as green kyllinga (Kyllinga brevifolia Rottb. var. leiolepis), or sedge (Cyperus spp.) [the sedge may, for example, be purple nutsedge (Cyperus rotundus L), smallflower umbrella sedge (Cyperus difformis L), yellow nutsedge (Cyperus esculentus L.) or amur cyperus (Cyperus microjria Steud.)];
qramineae such as barnyardgrass (Echinochloa crus-qalli L., Echinochloa oryzicola vasing.), japanese millet (Echinochloa utilis Ohwi et Yabuno), crabgrass (Diqitaria spp.) [the crabgrass may, fer example, be summerqrass (Diqitaria ciliaris (Retz.) Keel), large crabgrass (Diqitaria sanquinalis L.), violet crabgrass (Diqitaria violascens Link) or Diqitaria horizontalis Willd.l. green foxtail (Setaria viridis L.), giant foxtail (Setaria faberi Herrm.). goosegrass (Eleusine indica L.). johnsongrass (Sorqhum halepense (L.) Pers.), bermudaqrass (Cynodon dactylon (L.) Pers.), wild oat (Avena fatua L.), annual bluegrass (Poa annua L.), panic grass (Panicum spp.) [the panic grass may, for example, be guinea grass (Panicum maximum Jacq.). orfall panicum (Panicum dichotomiflorum (L.) Michx.)], signal grass (Brachiaria spp.) [the signal grass may, for example, be plantain signal grass (Brachiaria plantaqinea (LINK) Hitchc.), palisade signal grass (Brachiaria decumbens Stapf), or mauritius signal grass (Brachiaria mutica (Forssk.) Stapf)], paspalum (Paspalum spp.), itchgrass (Rottboellia cochinchinensis (LOUR.) W.D.CLAYTON); Southern sandbur (Cenchrus echinatus L.), or shattercane (Sorqhum bicolor (L.) Moench.); scrophulariaceae such as persian speedwell (Veronica persica Poir.), or corn speedwell (Veronica arvensis L.); compositae such as beggar ticks (Bidens spp.) [the beggar ticks may, for example, be hairy beggarticks (Bidens pilosa L.), devils berggarticks (Bidens frondosa L.), Bidens biternata (Lour.) Merr. et Sherff ), or beggarticks (Bidens subalternans DC.)], hairy fleabane (Conyza bonariensis (L.) Cronq.), horseweed (Eriqeron canadensis L.), dandelion (Taraxacum officinale Weber), or common cocklebur (Xanthium strumarium L.); lequminosae such as rattlepod or rattlebox (Crotalaria spp.) [the rattlepod or rattlebox may, for example, be sunn-hemp (Crotalaria juncea L.)], poison bean (Sesbania spp.) [the poison bean may, for example, be rostrate sesbania (Sesbania rostrata Bremek. & Oberm.) or sesbania pea (Sesbania cannabina (Retz.) Pers.)], white clover (Trifolium repens L.);
caryophyllaceae such as sticky chickweed (Cerastium qlomeratum Thuill.), or common chickweed (Stellaria media L.); euphorbiaceae such as garden spurge (Euphorbia hirta L.), threeseeded copperleaf (Acalypha australis L.), or fireplant (Euphorbia heterophylla L); plantaqinaceae such as asiatic plantain (Plantaqo asiatica L.): oxalidaceae such as creeping woodsorrel (Oxalis corniculata L.); apiaceae such as lawn pennywort (Hydrocotyle sibthorpioides Lam.); violaceae such as violet (Viola mandshurica W. Becker); iridaceae such as blue-eyedgrass (Sisyrinchium rosulatum Bicknell); qeraniaceae such as carolina géranium (Géranium carolinianum L.); labiatae such as purple deadnettle (Lamium purpureum L). or henbit (Lamium amplexicaule L.); malvaceae such as velvetleaf (Abutilon theophrasti MEDIC.). or prickly sida (Sida spinosa L): convolvulaceae such as ivy-leaved morningglory (Ipomoea hederacea (L.) Jacq.), common morningglory (Ipomoea purpurea ROTH), cypressvine morningglory (Ipomoea quamoclit L.), Ipomoea qrandifolia (DAMMERMANN) O'DONNELL, hairy merremia (Merremia aeqyptia (L.) URBAN), orfield Bindweed (Convolvulus arvensis L.); chenopodiaceae such as common lambsquarters (Chenopodium album L.): portulacaceae such as common purslane (Portulaca oleracea L.); amaranthaceae such as pigweed (Amaranthus spp.) [the pigweed may, for example, be prostrate pigweed (Amaranthus blitoides S. Wats.), livid amaranth (Amaranthus lividus L.), purple amaranth (Amaranthus blitum L.), smooth pigweed (Amaranthus hybridus L). Amaranthus patulus Bertol., powell amaranth (Amaranthus powellii S.Wats.). slender amaranth (Amaranthus viridis L), palmer amaranth (Amaranthus palmeri S.Wats.), redroot pigweed (Amaranthus retroflexus L.), tall waterhemp (Amaranthus tuberculatus (Moq.) Sauer.), common waterhemp (Amaranthus tamariscinus Nutt.), thorny amaranth (Amaranthus spinosus L.). ataco(Amaranthus quitensis Kunth.), or Amaranthus rudis Sauer]; solanaceae such as black nightshade (Solanum niqrum L.); polyqonaceeae such as spotted knotweed (Polyqonum lapathifolium L.), or green smartweed (Polyqonum scabrum MOENCH): cruciferae such as flexuous bittercress (Cardamine flexuosa WITH.); cucurbitaceae such as burcucumber (Sicyos anqulatus L): or commelinaceae such as common dayflower (Commelina communis L.): rosaceae such as mock strawberry (Duchesnea chrysantha (Zoll. et Mor. ) Miq.); molluginacea such as carpetweed (Mollugo verticillata L); or rubiaceae such as false cleavers (Galium spurium var. echinospermon (Wallr.) Hayek) or stickywilly (Galium aparine L.).
The herbicidal composition of the présent invention can control even weeds against which the compound A has no satisfactory controlling effects depending upon various conditions such as the weather conditions, and the growth stage of the weeds. For example, the compound A has no satisfactory controlling effects against some weeds included in solanaceae, scrophulariaceae and gramineae in some cases depending upon various conditions such as the weather conditions and the growth stage of the weeds, however, the herbicidal composition of the présent invention comprising the combination of the compounds A and B has excellent effect to control such weeds orto inhibit their growth.
Further, the herbicidal composition of the présent invention can contrai perennial grass weeds such as quackgrass (Agropyron repens (L.) P. Beauv.), Cholorado bluestem (Agropyran tsukushiense (Honda) Ohwi var. transiens (Hack.) Ohwi), redtop (Agrostis ajba L.), orchardgrass (Dactylis qlomerata L.), perennial ryegrass (Lolium perenne L), eulaliagrass (Miscanthus sinensis Anderss.), knntnrnss (Paspalum distichum L). bahiagrass (Paspalum notatum Flugge), johnsongrass (Sorahum halepense L), bermuda grass (Cynodon dactylo n (L.) Pers.), dallisgrass (Paspalum dilatatum Poir.), cogongrass (Imperata cylindrica (L.) Beauv.), japanese paspalum (Paspalum thunbergii Kunth) which are problematic as strong weeds in agriculture! fields such as orchards and non-cropland such as golf courses, railway sides and roadsides. Further, the herbicidal composition of the présent invention has a high herbicidal activity also against weeds in late leaf stage, such as weeds in 5-leaf stage to heading stage, and such is particularly remarkable for grass weeds. The herbicidal composition of the présent invention has favorable herbicidal effects against grass weeds and broad leaf weeds either by foliar application or soil application.
Further, as one of cultivation manners for crop plants, different crop plants may be cultivated in the same field by differentiating timing for their cultivation. For example, in the same field where corn was cultivated last year, sugarcane may be cultivated this year, and in such a case, the previous crop plant such as the corn may be an object to be controlled as an undesired plant. Further, along with spread of genetically modified crop plants or increase of cultivation fields, there may be a case where at the time of repeated cultivation, rotational cropping or change in cropping, the previous crop plant grown as weeds (volunteer crop plant) becomes an object to be controlled as an undesired plant. Even in such a situation, the herbicidal composition of the présent invention is capable of controlling the undesired plant to be controlled and thus is very useful in such a practical application.
Further, in practical application in which the rapid herbicidal efficacy and regrowth of the undesired plants afterthe herbicidal composition is applied are problematic, the herbicidal composition of the présent invention is useful in view of the rapid herbicidal efficacy and a high effect of suppressing regrowth of the undesired plants.
The herbicidal composition of the présent invention may further contain other herbicidal compounds in addition to the above-described active ingrédients so long as such will meet the object of the présent invention, and there may be a case where it is thereby possible to improve e.g. the range of undesired plants to be controlled, the timing for application of the herbicidal composition, the herbicidal activities, etc. to more désirable directions. Such other herbicidal compounds include, for example, the following compounds (common names including ones under application for approval by ISO, or test codes, here, “under application for approval by ISO” means common names before approval by ISO (International Organization for Standardization)), and one or more of them may suitably be selected for use. Even when not specifically mentioned here, in a case where such compounds hâve salts, alkyl esters, hydrates, different crystal forms, various structural isomers, etc., they are, of course, ail included.
I0 Further, in considération of the application site of the herbicidal composition or the type or growth state of the undesired plants, the herbicidal composition of the présent invention may be mixed with or may be used in combination with fungicides, antibiotics, plant hormones, insecticides, fertilizers, phytotoxicity-reducing agents, etc., whereby more excellent effects and activities may sometimes be obtained.
(1 ) Those which are believed to exhibit herbicidal effects by disturbing hormone activities of plants, such as a phenoxy type such as 2,4-D, 2,4-D-butotyl, 2,4-D-butyl, 2,4-D-dimethylammonium, 2,4-D-diolamine, 2,4-D-ethyl, 2,4-D-2-ethylhexyl, 2,4-D-isobutyl, 2,4-D-isoctyl, 2,4-D-isopropyl, 2,4D-isopropylammonium, 2,4-D-sodium, 2,4-D-isopropanolammonium, 2,4-D-trolamine, 2,4-DB, 2,4DB-butyl, 2,4-DB-dimethylammonium, 2,4-DB-isoctyl, 2,4-DB-potassium, 2,4-DB-sodium, dichlorprop, dichlorprop-butotyl, dichlorprop-dimethylammonium, dichlorprop-isoctyl, dichlorproppotassium, dichlorprop-P, dichlorprop-P-dimethylammonium, dichlorprop-P-potassium, dichlorpropP-sodium, MCPA, MCPA-butotyl, MCPA-dimethylammonium, MCPA-2-ethylhexyl, MCPA-potassium, MCPA-sodium, MCPA-thioethyl, MCPB, MCPB-ethyl, MCPB-sodium, mecoprop, mecoprop-butotyl, mecoprop-sodium, mecoprop-P, mecoprop-P-butotyl, mecoprop-P-dimethylammonium, mecoprop25 P-2-ethylhexyl, mecoprop-P-potassium, naproanilide or clomeprop; an aromatic carboxylic acid type such as 2,3,6-TBA, dicamba, dicamba-butotyl, dicamba-diglycolamine, dicambadimethylammonium, dicamba-diolamine, dicamba-isopropylammonium, dicamba-potassium, dicamba-sodium, dichlobenil, picloram, picloram-dimethylammonium, picloram-isoctyl, piclorampotassium, picloram-triisopropanolammonium, picloram-triisopropylammonium, picloram-trolamine, triclopyr, triclopyr-butotyl, triclopyr-triethylammonium, clopyralid, clopyralid-olamine, clopyralidpotassium, clopyralid-triisopropanolammonium or aminopyralid; and others such as naptalam, naptalam-sodium, benazolin, benazolin-ethyl, quinclorac, quinmerac, diflufenzopyr, diflufenzopyrsodium, fluroxypyr, fluroxypyr-2-butoxy-1-methylethyl, fluroxypyr-meptyl, chlorflurenol, chlorflurenolmethyl, aminocyclopyrachlor, aminocyclopyrachlor-methyl or aminocyclopyrachlor-potassium.
(2) Those which are believed to exhibit herbicidal effects by inhibiting photosynthesis of plants, such as a urea type such as chlorotoluron, diuron, fluometuron, linuron, isoproturon, metobenzuron, tebuthiuron, dimefuron, isouron, karbutilate, methabenzthiazuron, metoxuron, monolinuron, neburon, siduron, terbumeton, trietazine or metobromuron; a triazine type such as simazine, atrazine, atratone, simetryn, prometryn, dimethametryn, hexazinone, metribuzin, terbuthylazine, cyanazine, ametryn, cybutryne, triaziflam, indaziflam, terbutryn, propazine, metamitron or prometon; a uracil type such as bromacil, bromacyl-lithium, lenacil orterbacil; an anilide type such as propanil or cypromid; a carbamate type such as swep, desmedipham or phenmedipham; a hydroxybenzonitrile type such as bromoxynil, bromoxynil-octanoate, bromoxynilheptanoate, ioxynil, ioxynil-octanoate, ioxynil-potassium or ioxynil-sodium; and others such as pyridate, bentazone, bentazone-sodium, amicarbazone, methazole or pentanochlor.
(3) Quaternary ammonium sait type such as paraquat or diquat, which is believed to be converted to free radicals by itself to form active oxygen in the plant body and shows rapid herbicidal efficacy. .
(4) Those which are believed to exhibit herbicidal effects by inhibiting chlorophyll biosynthesis of plants and abnormally accumulating a photosensitizing peroxide substance in the plant body, such as a diphenylether type such as nitrofen, chiomethoxyfen, bifenox, acifluorfen, acifluorfensodium, fomesafen, fomesafen-sodium, oxyfluorfen, lactofen, aclonifen, ethoxyfen-ethyl (HC-252), fluoroglycofen-ethyl or fluoroglycofen; a cyclic imide type such as chlorphthalim; and others such as isopropazole orflupoxam.
(5) Those which are believed to exhibit herbicidal effects characterized by bleaching activities by inhibiting chromogenesis of plants such as carotenoids, such as a pyridazinone type such as norflurazon, chloridazon or metflurazon; a pyrazole type such as pyrazolynate, pyrazoxyfen, benzofenap, topramezone or pyrasulfotole; and others such as amitrole, fluridone, flurtamone, diflufenican, methoxyphenone, clomazone, sulcotrione, mesotrione, tembotrione, tefuryltrione (AVH-301), bicyclopyrone, isoxaflutole, difenzoquat, difenzoquat-metilsulfate, isoxachlortole, benzobicyclon, picolinafen, beflubutamid, a compound (SW-065, H-965) disclosed in the claim of WO2003/016286, a compound (KIH-3653, KUH-110) disclosed in the claim of WO2009/016841, a compound disclosed in the claim of WO2005/118530, a compound disclosed in the claim of WO2008/065907, or a compound disclosed in the claim of WO2009/142318.
(6) Those which exhibit strong herbicidal effects specifically to gramineous plants, such as an aîÿloxyphenoxypropionic acid type such as diclofop-methyl, diclofop, pyriphenop-sodium, fluazifopbutyl, fluazifop, fluazifop-P, fluazifop-P-butyl, haloxyfop-methyl, haloxyfop, haloxyfop-etotyl, haloxyfop-P, haloxyfop-P-methyl, quizalofop-ethyl, quizalofop-P, quizalofop-P-ethyl, quizalofop-Ptefuryl, cyhalofop-butyl, fenoxaprop-ethyl, fenoxaprop-P, fenoxaprop-P-ethyl, metamifop-propyl, metamifop, clodinafop-propargyl, clodinafop or propaquizafop; a cyclohexanedione type such as alloxydim-sodium, alloxydim, clethodim, sethoxydim, tralkoxydim, butroxydim, tepraloxydim, profoxydim or cycloxydim; and others such as flamprop-M-methyl, flamprop-M or flamprop-Misopropyl.
(7) Those which are believed to exhibit herbicidal effects by inhibiting an amino acid biosynthesis of plants, such as a sulfonylurea type such as chlorimuron-ethyl, chlorimuron, sulfometuron-methyl, sulfometuron, primisulfuron-methyl, primisulfuron, bensulfuron-methyl, bensulfuron, chlorsulfuron, metsulfuron-methyl, metsulfuron, cinosulfuron, pyrazosulfuron-ethyl, pyrazosulfuron, azimsulfuron, rimsulfuron, nicosulfuron, imazosulfuron, cyclosulfamuron, prosulfuron, flupyrsulfuron-methyl-sodium, flupyrsulfuron, triflusulfuron-methyl, triflusulfuron, halosulfuron-methyl, halosulfuron, thifensulfuron-methyl, thifensulfuron, ethoxysulfuron, oxasulfuron, ethametsulfuron, ethametsulfuron-methyl, iodosulfuron, iodosulfuron-methyl-sodium, sulfosulfuron, triasulfuron, tribenuron-methyl, tribenuron, tritosulfuron, foramsulfuron, trifloxysulfuron, trifloxysulfuron-sodium, mesosulfuron-methyl, mesosulfuron, orthosulfamuron, flucetosulfuron, amidosulfuron, propyrisulfuron (TH-547), metazosulfuron, iofensulfuron, or a compound disclosed in the claim of EP0645386; a triazolopyrimidinesulfonamide type such as flumetsulam, metosulam, diclosulam, cloransulam-methyl, florasulam, penoxsulam or pyroxsulam; an imidazolinone type such as imazapyr, imazapyr-isopropylammonium, imazethapyr, imazethapyr-ammonium, imazaquin, imazaquin-ammonium, imazamox, imazamox-ammonium, imazamethabenz, imazamethabenzmethyl or imazapic; a pyrimidinylsalicylic acid type such as pyrithiobac-sodium, bispyribac-sodium, pyriminobac-methyl, pyribenzoxim, pyriftalid or pyrimisulfan; a sulfonylaminocarbonyltriazolinone type such as flucarbazone, flucarbazone-sodium, propoxycarbazone-sodium, propoxycarbazone or thiencarbazone; and others such as glyphosate, glyphosate-sodium, glyphosate-potassium, glyphôsate-ammonium, glyphosate-diammonium, glyphosate-isopropylammonium, glyphosatetrimesium, glyphosate-sesquisodium, glufosinate, glufosinate-ammonium, glufosinate-P, g'ufosinate-P-ammonium, glufosinate-P-sodium, bilanafos, bilanafos-sodium, cinmethylin or triafamone.
(8) Those which are believed to exhibit herbicidal effects by inhibiting cell mitoses of plants, such as a dinitroaniline type such as trifluralin, oryzalin, nitralin, pendimethalin, ethalfluralin, benfluralin, prodiamine, butralin or dinitramine; an amide type such as bensulide, napropamide, propyzamide or pronamide; an organic phosphorus type such as amiprofos-methyl, butamifos, anilofos or piperophos; a phenyl carbamate type such as propham, chlorpropham, barban or carbetamide; a cumylamine type such as daimuron, cumyluron, bromobutide or methyldymron; and others such as asulam, asulam-sodium, dithiopyr, thiazopyr, chlorthal-dimethyl, chlorthal or diphenamid.
(9) Those which are believed to exhibit herbicidal effects by inhibiting protein biosynthesis or lipid biosynthesis of plants, such as a chloroacetamide type such as alachlor, metazachlor, butachlor, pretilachlor, metolachlor, S-metolachlor, thenylchlor, pethoxamid, acetochlor, propachlor, dimethenamid, dimethenamid-P, propisochlor or dimethachlor; a thiocarbamate type such as molinate, dimepiperate, pyributicarb, EPTC, butylate, vernolate, pebulate, cycloate, prosulfocarb, esprocarb, thiobencarb, diallate, tri-allate or orbencarb; and others such as etobenzanid, mefenacet, flufenacet, tridiphane, cafenstrole, fentrazamide, oxaziclomefone, indanofan, benfuresate, pyroxasulfone, fenoxasulfone, dalapon, dalapon-sodium, TCA-sodium or trichloroacetic acid.
(10) MSMA, DSMA, CMA, endothall, endothall-dipotassium, endothall-sodium, endothalimono(N,N-dimethylalkylammonium), ethofumesate, sodium chlorate, pelargonic acid (nonanoic acid), fosamine, fosamine-ammonium, pinoxaden, ipfencarbazone (HOK-201), aclolein, ammonium sulfamate, borax, chloroacetic acid, sodium chloroacete, cyanamide, methylarsonic acid, dimethylarsinic acid, sodium dimethylarsinate, dinoterb, dinoterb-ammonium, dinoterb-diolamine, dinoterb-acetate, DNOC, ferrous sulfate, flupropanate, flupropanate-sodium, isoxaben, mefluidide, mefluidide-diolamine, metam, metam-ammonium, metam-potassium, metam-sodium, methyl isothiocyanate, pentachlorophenol, sodium pentachlorophenoxide, pentachlorophenol laurate, quinoclamine, sulfuric acid, urea sulfate,methiozolin (MRC-01), etc.
(11) Those which are believed to exhibit herbicidal effects by being parasitic on plants, such as Xanthomonas campestris, Epicoccosirus nematosorus, Epicoccosirus nematosperus, /J· Exserohilum monoseras or Drechsrela monoceras.
The herbicidal composition of the présent invention may be prepared by mixing the compounds A and B, as active ingrédients, with various agriculture! additives in accordance with conventional formulation methods for agriculture! Chemicals, and applied in various formulations such as dusts, granules, water dispersible granules, wettable powders, tablets, pills, capsules (including a formulation packaged by a water soluble film), water-based suspensions, oil-based suspensions, microemulsions, suspoemulsions, water soluble powders, emulsifiable concentrâtes, soluble concentrâtes or pastes. It may be formed into any formulation which is commonly used in this field, so long as the object of the présent invention is thereby met.
The type of the formulation of the herbicidal composition of the présent invention is preferably a liquid formulation which can be applied as it is or a formulation to be applied after diluted with water, since by the formulation such that a solid formulation such as microgranules is applied as it is without being diluted with water, application to a wide area at once is difficult, and the application will take long. More specifically, water dispersible granules, wettable powders, water-based suspensions, oil-based suspensions, emulsifiable concentrâtes, soluble concentrâtes and the like are preferred.
At the time of the formulation, the compounds A and B may be mixed togetherforthe formulation, orthey may be separately formulated.
The additives to be used for the formulation include, for example, a solid carrier such as kaolinite, sericite, diatomaceous earth, slaked lime, calcium carbonate, talc, white carbon, kaoline, bentonite, clay, sodium carbonate, sodium bicarbonate, mirabilite, zeolite or starch; a solvent such as water, toluene, xylene, solvent naphtha, dioxane, dimethylsulfoxide, N,N-dimethylformamide, dimethylacetamide, N-methyl-2-pyrrolidone or an alcohol; an anionic surfactant such as a sait of fatty acid,.a benzoate, a polycarboxylate, a sait of alkylsulfuric acid ester, an alkyl sulfate, an alkylaryl sulfate, an alkyl diglycol ether sulfate, a sait of alcohol sulfuric acid ester, an alkyl sulfonate, an alkylaryl sulfonate, an aryl sulfonate, a lignin sulfonate, an alkyldiphenylether disulfonate, a polystyrène sulfonate, a sait of alkylphosphoric acid ester, an alkylaryl phosphate, a styrylaryl phosphate, a sait of polyoxyethylene alkyl ether sulfuric acid ester, a polyoxyethylene alkylaryl ether sulfate, a sait of polyoxyethylene alkylaryl ether sulfuric acid ester, a polyoxyethylene alkyl ether phosphate, a sait of polyoxyethylene alkylaryl phosphoric acid ester, a sait of polyoxyethylene aryl ether phosphoric acid ester, a naphthalene sulfonic acid condensed with formaldéhyde or a sait of alkylnaphthalene sulfonic acid condensed with formaldéhyde; a nonionic surfactant such as a sorbitan fatty acid ester, a glycerin fatty acid ester, a fatty acid polyglyceride, a fatty acid alcohol polyglycol ether, acetylene glycol, acetylene alcohol, an oxyalkylene block polymer, a polyoxyethylene alkyl ether, a polyoxyethylene alkylaryl ether, a polyoxyethylene styrylaryl ether, a polyoxyethylene glycol alkyl ether, polyethylene glycol, a polyoxyethylene fatty acid ester, a polyoxyethylene sorbitan fatty acid ester, a polyoxyethylene glycerin fatty acid ester, a polyoxyethylene hydrogenated castor oil or a polyoxypropylene fatty acid ester; and a vegetable oil or minerai oil such as olive oil, kapok oil, castor oil, palm oil, camellia oil, coconut oil, sesame oil, corn oil, rice bran oil, peanut oil, cottonseed oil, soybean oil, rapeseed oil, linseed oil, tung oil or liquid paraffins; transesterified vegetable oil such as methylated rapeseed oil or ethylated rapeseed oil. These additives may suitably be selected for use alone or in combination as a mixture of two or more of them, so long as the object of the présent invention is met. Further, additives other than the above-mentioned may be suitably selected for use among those known in this field. For example, various additives commonly used, such as a filler, a thickener, an anti-settling agent, an anti-freezing agent, a dispersion stabilizer, a safener, an anti-mold agent, a bubble agent, a disintegrator and a binder, may be used. The mix ratio by weight of the active ingrédient to such various additives in the herbicidal composition of the présent invention may be from 0.001:99.999 to 95:5, preferably from 0.005:99.995 to 90:10.
As a method of applying the herbicidal composition of the présent invention, a proper method can be employed among various methods depending upon various conditions such as the application site, the type of the formulation, and the type and the growth stage of the undesired plants to be controlled, and for example, the following methods may be mentioned.
1. The compound A and the compound B are formulated together, and the formulation is applied as it is.
2. The compound A and the compound B are formulated together, the formulation is diluted to a predetermined concentration with e.g. water, and as the case requires, a spreader (such as a surfactant, a vegetable oil or a minerai oil) is added for application.
3. The compound A and the compound B are separately formulated and applied as they are.
4. The compound A and the compound B are separately formulated, and they are diluted to a predetermined concentration with e.g. water, and as the case requires, a spreader (such as a surfactant, a vegetable oil or a minerai oil) is added for application.
5. The compound A and the compound B are separately formulated, and the formulations are mixed when diluted to a predetermined concentration with e.g. water, and as the case requires, a spreader (such as a surfactant, a vegetable oil or a minerai oil) is added for application.
Now, preferred embodiments of the présent invention will be described below. However, the présent invention is by no means restricted thereto.
(1 ) A herbicidal composition comprising (A) flazasulfuron or its sait and (B) at least one protoporphyrinogen oxidase inhibitor selected from the group consisting of a phenylpyrazole compound, a triazolinone compound, a N-phenylphthalimide compound, a pyrimidindione compound, an oxadiazole compound, an oxazolidinedione compound, a thiadiazole compound, pyraclonil, profluazol, flufenpyr-ethyl and their salts.
(2) The compound according to the above (1), wherein (B) is at least one member selected from the group consisting of a phenylpyrazole compound, a triazolinone compound, a Nphenylphthalimide compound, a pyrimidindione compound, an oxadiazole compound and their salts.
(3) The compound according to the above (2), wherein (B) is at least one member selected from the group consisting of a phenylpyrazole compound, a triazolinone compound, a N- phenylphthalimide compound, a pyrimidindione compound and their salts.
(4) The compound according to the above (3), wherein (B) is at least one member selected from the group consisting of a phenylpyrazole compound, a triazolinone compound, a Nphenylphthalimide compound and their salts.
(5) The composition according to the above (1), wherein (B) is at least one member selected from the group consisting of pyraflufen-ethyl, fluazolate, azafenidin, bencarbazone, carfentrazoneethyl, sulfentrazone, cinidon-ethyl, flumiclorac-pentyl, flumioxazin, benzfendizone, butafenacil, sàflufenacil, ethyl [3-(2-chloro-4-fluoro-5-(3-methyl-2,6-dioxo-4-trifluoromethyl-3,6-dihydro-2Hpyrimidin-1-yl)phenoxy)pyridin-2-yloxy]acetate (test code: SYN-523), oxadiargyl, oxadiazon, pentoxazone, fluthiacet-methyl, thidiazimin, pyraclonil, profluazol, flufenpyr-ethyl and their salts.
(6) The composition according to the above (1), wherein (B) is at least one member selected from the group consisting of pyraflufen-ethyl, carfentrazone-ethyl, sulfentrazone, flumioxazin, saflufenacil, oxadiargyl, fluthiacet-methyl, flufenpyr-ethyl, butafenacil, pentoxazone, pyraclonil and their salts.
(7) The composition according to the above (1), wherein (B) is at least one member selected from the group consisting of pyraflufen-ethyl and carfentrazone-ethyl.
(8) The composition according to the above (1 ), wherein (B) is pyraflufen-ethyl.
(9) The composition according to the above (1), wherein (B) is carfentrazone-ethyl.
(10) The composition according to any one of the above (1) to (9), which contains synergistic herbicidally effective amounts of (A) and (B).
(11) The composition according to any one of the above (1) to (10), wherein the mixing ratio of (A) to (B) is from 100:1 to 1:100 by the weight ratio.
(12) A method for controlling undesired plants or inhibiting their growth, which comprises applying a herbicidally effective amount of a herbicidal composition comprising (A) flazasulfuron or its sait and (B) at least one protoporphyrinogen oxidase inhibitor selected from the group consisting of a phenylpyrazole compound, a triazolinone compound, an oxadiazole compound, an oxazolidinedione compound, a N-phenylphthalimide compound, a thiadiazole compound, a pyrimidindione compound, pyraclonil, profluazol, flufenpyr-ethyl and their salts, to the undesired plants or to a place where they grow.
(13) A method for controlling undesired plants or inhibiting their growth, which comprises applying herbicidally effective amounts of (A) flazasulfuron or its sait and (B) at least one protoporphyrinogen oxidase inhibitor selected from the group consisting of a phenylpyrazole compound, a triazolinone compound, an oxadiazole compound, an oxazolidinedione compound, a N-phenylphthalimide compound, a thiadiazole compound, a pyrimidindione compound, pyraclonil, profluazol, flufenpyrethyl and their salts, to the undesired plants or to a place where they grow.
(14) The method according to the above (12) or (13), wherein (B) is at least one member selected from the group consisting of pyraflufen-ethyl and carfentrazone-ethyl.
(15) The method according to the above (12) or (13), wherein (B) is pyraflufen-ethyl.
(16) The method according to the above (12) or (13), wherein (B) is carfentrazone-ethyl.
(17) The method according to the above (12) or (13), wherein synergistic herbicidally effective amounts of (A) and (B) are applied.
(18) The method according to the above (12) or (13), wherein (A) is applied in an amount of from 0.5 to 120 g/ha, and (B) is applied in an amount of from 0.5 to 1,000 g/ha.
(19) The method according to the above (12) or (13), wherein (A) is applied in an amount of from 10 to 100 g/ha, and (B) is applied in an amount of from 1 to 1,000 g/ha.
(20) The method according to the above (15), wherein (A) is applied in an amount of from 10 to 100 g/ha, and (B) is applied in an amount of from 5 to 80 g/ha.
(21) The method according to the above (16), wherein (A) is applied in an amount of from 10 to 100 g/ha, and (B) is applied in an amount of from 2.5 to 400 g/ha.
EXAMPLES
The présent invention will be described in further detail with reference to Examples. However, it should be understood thatthe présent invention is by no means restricted thereto.
TEST EXAMPLE 1
Upland field soil was put into a 1/1,000,000 ha pot, and seeds of persian speedwell (Veronica persica Poir.) were sown. When persian speedwell reached from 7 to 8 leaf-stage, water dispersible granules containing flazasulfuron as an active ingrédient (tradename: SHIBAGEN DF, manufactured by Ishihara Sangyo Kaisha, Ltd.) and SC agent containing pyraflufen-ethyl as an active ingrédient (tradename: ECOPART FLOWABLE, manufactured by NIHON NOYAKU CO., LTD.) in predetermined amounts were diluted with water (corresponding to 1,000 L/ha) containing 0.05 vol% of an agricultural adjuvant (tradename: KUSARINO, manufactured by NIHON NOYAKU CO., LTD.) and applied for foliar treatment by a small sprayer.
On the 21 st day after the treatment, the State of growth of persian speedwell was visually 10 observed and evaluated in accordance with the following évaluation standard. The growth inhibition rate (%) (measured value) and the growth inhibition rate (%) (calculated value) calculated in accordance with the Colby’s formula are shown in Table 1.
Growth inhibition rate (%) = 0 (équivalent to the non-treated area) to 100 (complété kill)
TABLE 1
Active ingrédient Dose (g/ha) Growth inhibition rate (%) of persian speedwell
Measured value Calculated value
Flazasulfuron 25 10 -
Pyraflufen-ethyl 10 43 -
Flazasulfuron ' + Pyraflufen-ethyl 25+10 63 49
TEST EXAMPLE 2
Upland field soil was put into a 1/1,000,000 ha pot, and seeds of black nightshade (Solanum niqrum L.) were sown. When black nightshade reached from 3.2 to 3.5 leaf-stage, SHIBAGEN DF (tradename) and ECOPART FLOWABLE (tradename) in predetermined amounts were diluted with 20 water (corresponding to 1,000 L/ha) containing 0.05 vol% of KUSARINO (tradename) and applied for foliar treatment by a small sprayer.
On the 21 st day after the treatment, the state of growth of black nightshade was visually observed.'and the growth inhibition rate (%) obtained in the same manner as in Test Example 1 is shown in Table 2.
TABLE 2
Active ingrédient Dose (g/ha) Growth inhibition rate (%) of black nightshade
Measured value Calculated value
Flazasulfuron 50 74 -
Pyraflufen-ethyl 2.5 88 -
Flazasulfuron + Pyraflufen-ethyl 50+2.5 99 97
As shown in Table 2, in order to completely suppress growth of black nightshade with flazasulfuron alone, a dose of 50 g/ha or more is required. On the other hand, although not shown in the above Table, the growth inhibition rate of black nightshade was 100% (calculated value: 96%) when flazasulfuron (12.5 g/ha) and pyraflufen-ethyl (5 g/ha) were used in combination, and accordingly it was found that the total dose can be reduced to 17.5 g/ha by using the herbicidal composition of the présent invention.
TEST EXAMPLE 3
Upland field soil was put into a 1/1,000,000 ha pot, and seeds of sticky chickweed (Cerastium qlomeratum Thuill.) were sown. When sticky chickweed reached from 3.3 to 4.0 leaf-stage, SHIBAGEN DF (tradename) and ECOPART FLOWABLE (tradename) in predetermined amounts were diluted with water (corresponding to 1,000 L/ha) and applied for foliar treatment by a small sprayer.
On the 21 st day after the treatment, the state of growth of sticky chickweed was visually observed, and the growth inhibition rate (%) obtained in the same manner as in Test Example 1 is shown in Table 3.
TABLE 3
Active ingrédient Dose (g/ha) Growth inhibition rate (%) of sticky chickweed
Measured value Calculated value
Flazasulfuron 6.3 92 -
Pyraflufen-ethyl 10 58 -
Flazasulfuron - + Pyraflufen-ethyl 6.3+10 99 97
TEST EXAMPLE 4
Upland field soit was put into a 1/1,000,000 ha pot, and seeds of common lambsquarters (Chenopodium album L.) were sown. When common lambsquarters reached from 6 to 7 leafstage, SHIBAGEN DF (tradename) and water dispersible granules containing carfentrazone-ethyl as an active ingrédient (tradename: TASK DF, manufactured by Ishihara Sangyo Kaisha, Ltd.) in predetermined amounts were diluted with water (corresponding to 1,000 L/ha) and applied forfoliar 10 treatment by a small sprayer.
On the 21 st day after the treatment, the state of growth of common lambsquarters was visually observed, and the growth inhibition rate (%) obtained in the same manner as in Test Example 1 is shown in Table 4.
TABLE 4
Active ingrédient Dose (g/ha) Growth inhibition rate (%) of common lambsquarters
Measured value Calculated value
Flazasulfuron 1.6 3 -
Carfentrazone-ethyl 27.4 92 -
Flazasulfuron + Carfentrazone-ethyl 1.6+27.4 96 92
TEST EXAMPLE 5
Upland field soil was put into a 1/300,000 ha pot, and seeds of wild oat (Avena fatua L.) were spwn. One day later, SHIBAGEN DF (tradename), water dispersible granules containing saflufenacil as an active ingrédient (tradename: Treevix, manufactured by BASF) and a wettable powder containing oxadiargyl (manufactured by SIGMA-ALDRICH) as an active ingrédient prepared in accordance with a conventional préparation method, in predetermined amounts were diluted with water (corresponding to 300 L/ha) and applied for soil treatment by a small sprayer.
On the 13th day after the treatment, the state of growth of wild oat was visually observed, and the growth inhibition rate (%) obtained in the same manner as in Test Example 1 is shown in Table 5.
TABLE 5
Active ingrédient Dose (g/ha) Growth inhibition rate (%) of wild oat
Measured value Calculated value
Flazasulfuron 25 40 -
50 70 -
Saflufenacil 25 15 -
50 5 -
Oxadiargyl 50 5 -
800 20 -
Flazasulfuron + Saflufenacil 25+25 70 49
50+50 80 72
Flazasulfuron + Oxadiargyl 50+50 80 72
25+800 78 52
TEST EXAMPLE 6
Upland field soil was put into a 1/300,000 ha pot, and seeds of rostrate sesbania (Sesbania. rostrata Bremek. & Oberm.) were sown. One day later, SHIBAGEN DF (tradename), water dispersible granules containing flumioxazin as an active ingrédient (tradename: Chateau, 5 manufactured by Valent) and a wettable powder containing oxadiargyl (manufactured by SIGMAALDRICH) as an active ingrédient prepared in accordance with a conventional préparation method, in predetermined amounts were diluted with water (corresponding to 300 L/ha) and applied for soil treatment by a small sprayer.
On the 28th day after the treatment, the state of growth of rostrate sesbania was visually 10 observed, and the growth inhibition rate (%) obtained in the same manner as in Test Example 1 is shown in Table 6.
TABLE 6
Active ingrédient Dose (g/ha) = Growth inhibition rate (%) of rostrate sesbania
Measured value Calculated value
Flazasulfuron 12.5 25 -
Flumioxazin 250 70 -
Oxadiargyl 400 20 -
Flazasulfuron + Flumioxazin 12.5+250 95 78
Flazasulfuron + Oxadiargyl 12.5+400 65 40
TEST EXAMPLE 7
Upland field soil was put into a 1/300,000 ha pot, and seeds of sunn-hemp (Crotalaria juncea L.) were sown. One day later, SHIBAGEN DF (tradename), ECOPART FLOWABLE (tradename) and a wettable powder containing oxadiargyl (manufactured by SIGMA-ALDRICH) as an active ingrédient prepared in accordance with a conventional préparation method, in predetermined amounts were diluted with water (corresponding to 300 L/ha) and applied for soil treatment by a small sprayer.
On the 28th day after the treatment, the State of growth of sunn-hemp was visually observed, and the growth inhibition rate (%) obtained in the same manneras in Test Example 1 is shown in
Table 7.
TABLE 7
Active ingrédient Dose (g/ha) Growth inhibition rate (%) of sunn-hemp
Measured value Calculated value
Flazasulfuron 50 55 -
Pyraflufen-ethyl 10 20 -
50 45 -
Oxadiargyl 400 40 -
Flazasulfuron + Pyraflufen-ethyl 50+10 70 64
50+50 85 75
Flazasulfuron + Oxadiargyl 50+400 78 73
TEST EXAMPLE 8
Upland field soil was put into a 1/300,000 ha pot, and seeds of velvetleaf (Abutilon theophrasti Medic.) were sown. One day later, SHIBAGEN DF (tradename), water dispersible granules contaming sulfentrazone as an active ingrédient (tradename: Authority, manufactured by FMC Corporation) and Treevix (tradename) in predetermined amounts were diluted with water (corresponding to 300 L/ha) and applied for soil treatment by a small sprayer.
On the 28th day after the treatment, the state of growth of velvetleaf was visually observed, and the growth inhibition rate (%) obtained in the same manner as in Test Example 1 is shown in Table 8.
TABLE 8
Active ingrédient Dose (g/ha) Growth inhibition rate (%) of velvetleaf
Measured value Calculated value
Flazasulfuron 50 88 -
100 88 -
Sulfentrazone 25 20 -
Saflufenacil 5 0 -
10 65 -
Flazasulfuron + Sulfentrazone 50+25 100 90
Flazasulfuron ·+ Saflufenacil 50+5 100 88
100+10 100 96
TEST EXAMPLE 9
Upland field soil was put into a 1/300,000 ha pot, and seeds of black nightshade (Solanum nigrum L.) were sown. One day later, SHIBAGEN DF (tradename) and Chateau (tradename) in predetermined amounts were diluted with water (corresponding to 300 L/ha) and applied for soil treatment by a small sprayer.
On the 28th day after the treatment, the State of growth of black nightshade was visually observed, and the growth inhibition rate (%) obtained in the same manner as in Test Example 1 is shown in Table 9.
TABLE 9
Active ingrédient Dose (g/ha) Growth inhibition rate (%) of black nightshade
Measured value Calculated value
-Flazasulfuron 50 85 -
Flumioxazin 2.5 0 -
Flazasulfuron + Flumioxazin 50+2.5 90 85
TEST EXAMPLE 10
Upland field soil was put into a 1/1,000,000 ha pot, and seeds of bermudagrass (Cynodon dactylon (L.) Pers.) were sown. When bermudagrass reached from 2.2 to 2.5 leaf-stage, SHIBAGEN DF (tradename), TASK DF (tradename), Authority (tradename) and Chateau (tradename) in predetermined amounts were diluted with water (corresponding to 300 L/ha) containing 0.2 vol% of KUSARINO (tradename) and applied for foliar treatment by a small sprayer.
On the 28th day after the treatment, the State of growth of bermudagrass was visually observed, and the growth inhibition rate (%) obtained in the same manner as in Test Example 1 is shown in Table 10.
TABLE 10
Active ingrédient Dose (g/ha) Growth inhibition rate (%) of bermudagrass
' Measured value Calculated value
Flazasulfuron 50 75 -
100 75 -
Carfentrazone-ethyl 20 0 -
50 0 -
Sulfentrazone 50 30 -
Flumioxazin 5 20 -
Flazasulfuron + Carfentrazone-ethyl 50+50 85 75
100+20 88 75
... Flazasulfuron + Sulfentrazone 100+50 90 83
Flazasulfuron + Flumioxazin 100+5 88 80
TEST EXAMPLE 11
Upland field soit was put into a 1/1,000,000 ha pot, and seeds of bermudagrass (Cynodon dactylon (L.) Pers.) were sown. When bermudagrass reached from 3.8 to 4.3 leaf-stage, SHIBAGEN DF (tradename) and ECOPART FLOWABLE (tradename) in predetermined amounts were diluted with water (correspond!ng to 300 L/ha) containing 0.2 vol% of KUSARINO (tradename) and applied for foliar treatment by a small sprayer.
On the 28th day after the treatment, the state of growth of bermudagrass was visually observed, and the growth inhibition rate (%) obtained in the same manner as in Test Example 1 is shown in Table 11.
TABLE 11
Active ingrédient Dose (g/ha) Growth inhibition rate (%) of ' bermudagrass
Measured value Calculated value
Flazasulfuron 12.5 15 -
Pyraflufen-ethyl 40 0 -
Flazasulfuron + Pyraflufen-ethyl 12.5+40 60 15
TEST EXAMPLE 12
Upland field soil was put into a 1/1,000,000 ha pot, and seeds of persian speedwell (Veronica persica Poir.) were sown. When persian speedwell reached from 4.0 to 4.3 leaf-stage, SHIBAGEN DF (tradename), ECOPART FLOWABLE (tradename) and TASK DF (tradename) in pfedetermmed amounts were diluted with water (corresponding to 300 L/ha) containing 0.2 vol% of KUSARINO (tradename) and applied for foliar treatment by a small sprayer.
On the 28th day after the treatment, the State of growth of persian speedwell was visually observed, and the growth inhibition rate (%) obtained in the same manner as in Test Example 1 is shown in Table 12.
TABLE 12
Active ingrédient Dose (g/ha) Growth inhibition rate (%) of persian speedwell
Measured value Calculated value
Flazasulfuron 25 0 -
Pyraflufen-ethyl 80 80 -
Carfentrazone-ethyl 25 65 -
Flazasulfuron + Pyraflufen-ethyl 25+80 100 80
Flazasulfuron + Carfentrazone-ethyl 25+25 85 65
TEST EXAMPLE 13
Upland field soil was put into a 1/300,000 ha pot, and seeds of japanese millet (Echinochloa esculenta (A.Braun) H.Scholz.) were sown. One day later, SHIBAGEN DF (tradename), a SC agent containing pyraclonil as an active ingrédient (tradename: PYRACLON FLOWABLE, manufactured by Kyoyu Agri Ce., Ltd.) and a SC agent containing pentoxazone as an active ingrédient (tradename: WECHSER FLOWABLE, manufactured by MITSUI CHEMICALS AGRO, INC.) in predetermined amounts were diluted with water (corresponding to 300 L/ha) and applied 5 for soil treatment by a small sprayer.
On the 14th day after the treatment, the state of growth of japanese millet was visually observed, and the growth inhibition rate (%) obtained in the same manner as in Test Example 1 is shown in Table 13.
TABLE 13
Active ingrédient Dose (g/ha) Growth inhibition rate (%) of japanese millet
Measured value Calculated value
Flazasuifuron 50 80 -
Pyraclonil 100 30 -
Pentoxazone 100 0 -
Flazasuifuron + Pyraclonil 50+100 95 86
Flazasuifuron • + Pentoxazone 50+100 90 80
TEST EXAMPLE 14
Upland field soil was put into a 1/300,000 ha pot, and seeds of rostrate sesbania (Sesbania rostrata Bremek. & Oberm.) were sown. One day later, SHIBAGEN DF (tradename), Chateau (tradename), a wettable powder containing flufenpyr-ethyl (manufactured by Wako Pure Chemical Industries, Ltd.) as an active ingrédient prepared in accordance with a conventional préparation 15 method, and water dispersible granules containing fluthiacet-methyl as an active ingrédient (tradename: Cadet, manufactured by FMC Corporation) in predetermined amounts were diluted with water (corresponding to 300 L/ha) and applied for soil treatment by a small sprayer.
On the 14th day after the treatment, the State of growth of rostrate sesbania was visually observed, and the growth inhibition rate (%) obtained in the same manner as in Test Example 1 is shown in Table 14.
TABLE 14
Active ingrédient Z ’ . r Dose (g/ha) Growth inhibition rate (%) of rostrate sesbania
Measured value Calculated value
Flazasulfuron 50 50 -
Flumioxazin 200 75 -
Flufenpyr-ethyl 5 0 -
Fluthiacet-methyl 5 0 -
Flazasulfuron + Flumioxazin 50+200 99 88
. Flazasulfuron + Flufenpyr-ethyl 50+5 70 50
Flazasulfuron + Fluthiacet-methyl 50+5 100 50
TEST EXAMPLE 15
Upland field soil was put into a 1/300,000 ha pot, and seeds of sunn-hemp (Crotalaria juncea L.) were sown. One day later, SHIBAGEN DF (tradename), Authority (tradename), Chateau (tradename), a wettable powder containing flufenpyr-ethyl (manufactured by Wako Pure Chemical
Industries, Ltd.) as an active ingrédient prepared in accordance with a conventional préparation method, and Cadet (tradename) in predetermined amounts were diluted with water (corresponding to 300 L/ha) and applied for soil treatment by a small sprayer.
On the 28th day after the treatment, the state of growth of sunn-hemp was visually observed, and the growth inhibition rate (%) obtained in the same manner as in Test Example 1 is shown in Table 15.
TABLE 15
Active ingrédient Dose (g/ha) Growth inhibition rate (%) of sunn-hemp
Measured value Calculated value
Flazasulfuron 25 0 -
Sulfentrazone 500 30 ' -
Flumioxazin 100 0 -
Flufenpyr-ethyl 50 0 -
Fluthiacet-methyl 50 0 -
Flazasulfuron + Sulfentrazone 25+500 100 30
Flazasulfuron + Flumioxazin 25+100 70 0
Flazasulfuron ‘ + Flufenpyr-ethyl 25+50 90 0
Flazasulfuron + Fluthiacet-methyl 25+50 80 0
TEST EXAMPLE 16
Upland field soil was put into a 1/300,000 ha pot, and seeds of wild oat (Avena fatua L.) were sown. One day later, SHIBAGEN DF (tradename), Chateau (tradename), Treevix (tradename), PYRACLON FLOWABLE (tradename) and WECHSER FLOWABLE (tradename) in predetermined amounts were diluted with water (corresponding to 300 L/ha) and applied for soit treatment by a small sprayer.
On the 28th day after the treatment, the State of growth of wild oat was visually observed, and the growth inhibition rate (%) obtained in the same manner as in Test Example 1 is shown in 5 Table 16.
TABLE 16
> Active ingrédient Dose (g/ha) Growth inhibition rate (%) of wild oat
Measured value Calculated value
Flazasulfuron 12.5 20 -
25 75 -
Flumioxazin 250 90 -
Saflufenacil 50 0 -
Pyraclonil 250 40 -
Pentoxazone 250 0 -
Flazasulfuron + Flumioxazin 12.5+250 100 92
Flazasulfuron + Saflufenacil 12.5+50 70 20
Flazasulfuron + Pyraclonil 25+250 90 85
Flazasulfuron + Pentoxazone 25+250 80 75
TEST EXAMPLE 17
Upland field soil was put into a 1/300,000 ha pot, and seeds of wild oat (Avena fatua L.) were sown. One day later, SHIBAGEN DF (tradename) and Chateau (tradename) in predetermined amounts were diluted with water (corresponding to 300 L/ha) and applied for soil treatment by a small sprayer.
On the 14th day after the treatment, the state of growth of wild oat was visually observed, and the growth inhibition rate (%) obtained in the same manner as in Test Example 1 is shown in Table 17.
TABLE 17
Active ingrédient Dose (g/ha) Growth inhibition rate (%) of wild oat
Measured value Calculated value
Flazasulfuron 25 30 -
Flumioxazin 500 75 -
Flazasulfuron + Flumioxazin 25+500 90 83
TEST EXAMPLE 18
Upland field soil was put into a 1/300,000 ha pot, and seeds of corn (Zea mays L.) were sown. One day later, SHIBAGEN DF (tradename) and a wettable powder containing butafenacil (synthesized by Ishihara Sangyo Kaisha, Ltd.) as an active ingrédient prepared in accordance with a conventional préparation method, in predetermined amounts were diluted with water (corresponding to 300 L/ha) and applied for soil treatment by a small sprayer.
On the 14th day after the treatment, the State of growth of corn was visually observed, and the growth inhibition rate (%) obtained in the same manner as in Test Example 1 is shown in Table 18.
TABLE 18
Active ingrédient Dose (g/ha) Growth inhibition rate (%) of corn
Measured value Calculated value
Flazasulfuron 12.5 70 -
Butafenacil 100 20 -
Flazasulfuron + Butafenacil 12.5+100 83 76
TEST EXAMPLE 19
Upland field soil was put into a 1/300,000 ha pot, and seeds of ivy-leaved morningglory (Ipomoea hederacea Jacq.) were sown. One day later, SHIBAGEN DF (tradename) and a wettable powder containing butafenacil (synthesized by Ishihara Sangyo Kaisha, Ltd.) as an active ingrédient prepared in accordance with a conventional préparation method, in predetermined amounts were diluted with water (corresponding to 300 L/ha) and applied for soil treatment by a small sprayer.
On the 14th day after the treatment, the state of growth of ivy-leaved morningglory was visually observed, and the growth inhibition rate (%) obtained in the same manner as in Test Example 1 is shown in Table 19.
TABLE 19
Active ingrédient Dose (g/ha) Growth inhibition rate (%) of ivy-leaved morningglory
Measured value Calculated value
Flazasulfuron 50 60 -
Butafenacil 10 - 0 -
Flazasulfuron + Butafenacil 50+10 85 60
TEST EXAMPLE 20
Upland field soil was put into a 1/300,000 ha pot, and seeds of shattercane (Sorqhum bicolor (L.) Moench) were sown. One day later, SHIBAGEN DF (tradename) and Treevix (tradename) in 5 predetermined amounts were diluted with water (corresponding to 300 L/ha) and applied for soil treatment by a small sprayer.
On the 14th day after the treatment, the State of growth of shattercane was visually observed, and the growth inhibition rate (%) obtained in the same manneras in Test Example 1 is shown in Table 20.
TABLE 20
Active ingrédient Dose (g/ha) Growth inhibition rate (%) of shattercane
Measured value Calculated value
Flazasulfuron 12.5 0 -
Saflufenacil 100 20 -
Flazasulfuron + Saflufenacil 12.5+100 98 20
INDUSTRIALAPPLICABILITY
According to the présent invention, it is possible to provide a herbicidal composition which has a broad herbicidal spectrum and also has a high activity and a long-lasting effect.
The entire disclosure of Japanese Patent Application No. 2011 -087546 filed on April 11, 2011 including spécification, daims and summary is incorporated herein by reference in its entirety.

Claims (7)

1. A herbicidal composition comprising (A) flazasulfuron or its sait and (B) at least one protoporphyrinogen oxidase inhibitor selected from the group consisting of a phenylpyrazole compound, a triazolinone compound, a N-phenylphthalimide compound, a pyrimidindione compound, an oxadiazole compound, an oxazolidinedione compound, a thiadiazole compound, pyraclonil, profluazol, flufenpyr-ethyl and their salts.
2. , The herbicidal composition according to Claim 1, wherein the mixing ratio of (A) to (B) is from 100:1 to 1:100 by the weight ratio.
3. The herbicidal composition according to Claim 1, wherein (B) is at least one member selected from the group consisting of pyraflufen-ethyl, carfentrazone-ethyl, sulfentrazone, flumioxazin, saflufenacil, ethyl [3-(2-chloro-4-fluoro-5-(3-methyl-2,6-dioxo-4-trifluoromethyl-3,6dihydro-2H-pyrimidin-1-yl)phenoxy)pyridin-2-yloxy]acetate, oxadiargyl, fluthiacet-methyl, flufenpyrethyl, flumiclorac-pentyl, azafenidin, butafenacil, pentoxazone, pyraclonil and their salts.
4. The herbicidal composition according to Claim 1, wherein (B) is at least one member selected from the group consisting of pyraflufen-ethyl, carfentrazone-ethyl, sulfentrazone, flumioxazin, saflufenacil, oxadiargyl, fluthiacet-methyl, flufenpyr-ethyl, butafenacil, pentoxazone, pyraclonil and their salts.
5. A method for controlling undesired plants or inhibiting their growth, which comprises applying a herbicidally effective amount of a herbicidal composition comprising (A) flazasulfuron or its sait and (B) at least one protoporphyrinogen oxidase inhibitor selected from the group consisting of a phenylpyrazole compound, a triazolinone compound, a N-phenylphthalimide compound, a pyrimidindione compound, an oxadiazole compound, an oxazolidinedione compound, a thiadiazole compound, pyraclonil, profluazol, flufenpyr-ethyl and their salts, to the undesired plants orto a place where they grow.
6. A method for controlling undesired plants or inhibiting their growth, which comprises applying herbicidally effective amounts of (A) flazasulfuron or its sait and (B) at least one protoporphyrinogen oxidase inhibitor selected from the group consisting of a phenylpyrazole compound, a triazolinone compound, a N-phenylphthalimide compound, a pyrimidindione compound, an oxadiazole compound, an oxazolidinedione compound, a thiadiazole compound, pyraclonil, profluazol, flufenpyr-ethyl and their salts, to the undesired plants or to a place where they grow.
7. The method according to Claim 5 or 6, wherein (A) is applied in an amount of from 0.5 to 120 g/ha, and (B) is applied in an amount of from 0.5 to 1,000 g/ha.
5 8. The method according to Claim 5 or 6, wherein (B) is at least one member selected from the group consisting of pyraflufen-ethyl, carfentrazone-ethyl, sulfentrazone, flumioxazin, saflufenacil, ethyl [3-(2-chloro-4-fIuoro-5-(3-methyl-2,6-dioxo-4-trifluoromethyl-3,6-dihydro-2H-pyrimidin-1ÿi)phenoxy)pyridin-2-yloxy]acetate, oxadiargyl, fluthiacet-methyl, flufenpyr-ethyl, flumiclorac-pentyl, azafenidin, butafenacil, pentoxazone, pyraclonil and their salts.
10 9. The method according to Claim 5 or 6, wherein (B) is at least one member selected from the group consisting of pyraflufen-ethyl, carfentrazone-ethyl, sulfentrazone, flumioxazin, saflufenacil, oxadiargyl, fluthiacet-methyl, flufenpyr-ethyl, butafenacil, pentoxazone, pyraclonil and their salts.
OA1201300425 2011-04-11 2012-04-06 Herbicidal Composition Comprising Flazasulfuron and an Inhibitor of Protoporphyrinogen Oxidase. OA19776A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011-087546 2011-04-11

Publications (1)

Publication Number Publication Date
OA19776A true OA19776A (en) 2021-04-30

Family

ID=

Similar Documents

Publication Publication Date Title
US9743666B2 (en) Herbicidal composition comprising flazasulfuron and an inhibitor of protoporphyrinogen oxidase
US10092002B2 (en) Herbicidal composition comprising nicosulfuron or its salt and S -metolachlor or its salt
US20140228217A1 (en) Herbicidal composition
AU2012207829B2 (en) Herbicidal composition
US8921271B2 (en) Herbicidal composition comprising flazasulfuron and metribuzin
AU2011332638B2 (en) Herbicidal composition comprising flazasulfuron and nicosulfuron
AU2014337723B2 (en) Herbicide composition
US9993001B2 (en) Herbicidal composition
OA19776A (en) Herbicidal Composition Comprising Flazasulfuron and an Inhibitor of Protoporphyrinogen Oxidase.
NZ617467B2 (en) Herbicidal composition comprising flazasulfuron and an inhibitor of protoporphyrinogen oxidase