OA19674A - Potassium-releasing material. - Google Patents

Potassium-releasing material. Download PDF

Info

Publication number
OA19674A
OA19674A OA1201900291 OA19674A OA 19674 A OA19674 A OA 19674A OA 1201900291 OA1201900291 OA 1201900291 OA 19674 A OA19674 A OA 19674A
Authority
OA
OAPI
Prior art keywords
hydrothermally modified
composition
modified material
phase
dried hydrothermally
Prior art date
Application number
OA1201900291
Inventor
Davide CICERI
Marcelo DE OLIVEIRA
Antoine Allanore
Dennis Chen
Thomas C. CLOSE
Original Assignee
Massachusetts Institute Of Technology
Advanced Potash Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Massachusetts Institute Of Technology, Advanced Potash Technologies Ltd filed Critical Massachusetts Institute Of Technology
Publication of OA19674A publication Critical patent/OA19674A/en

Links

Abstract

The present disclosure, in various embodiments, discloses hydrothermal methods, hydrothermally modified materials and dried hydrothermally modified materials. Certain dried hydrothermally modified materials can readily releases ionic species such as alkali metal ions (K+, Na+), silicate salts, and alkaline earth metal ions (Mg2+, Ca2+). Some dried hydrothermally modified materials can readily release aluminum ions and/or silicon, such as in the form of soluble silicates. Such processes and materials are useful, for example in economically preparing potassium releasing fertilizers.

Description

POTASSIUM-RELEASING MATERIAL
CROSS-REFERENCE TO RELATED APPLICATIONS
This application claims the benefit of priority to U.S. Provisional Application No. 62/447,657, filed on January 18, 2017 and U.S. Provisional Application No. 62/520,976, filed on June 16, 2017, the disclosures of which are hereby incorporated by reference in their entirety for ali purposes.
BACKGROUND
Minerais, including those releasing soluble potassium, silica, and other salts, are useful for a variety of purposes. For example, sources of soluble potassium (potash) are useful for sustaining productive agriculture, particularly in tropical régions, where large populations rely on soil with poor fertility.
BRIEF SUMMARY
Disclosed herein are materials that exhibit bénéficiai properties in a wide variety of industries and applications including, but not limited to, soil fertility, soil remediation, geopolymer materials, waterglass, colloïdal silica, and cernent manufacturing. In some embodiments, the materials of the présent disclosure are metal-ion releasing materials (including alkali metals such as potassium, alkaline earth metals such as calcium and magnésium, other metals such as aluminum, and additional éléments such as Silicon), which are in some cases (e.g., potassium, calcium, magnésium, and/or Silicon) suitable for use as e.g., fertilizers in tropical agriculture. In some instances, such materials can provide an alternative to known fertilizers, such as, for example, KC1.
Several process routes for preparing materials according to the présent disclosure hâve been developed. In some embodiments, the process routes consider soil science and/or économie principles to reduce and/or avoid unwanted excess of soluble (e.g., potassium) species, formation of waste or byproducts, and/or high processing and environmental cost, thereby overcoming one or more disadvantages that can be associated with certain known processes, such as certain process associated with KC1. In addition or altematively, the process routes can be of a modular nature, which can resuit in straightforward adaptation to any of the aforementioned applications.
When used as a potassium fertilizer, materials as disclosed herein can provide a number of advantageous properties such as: i) continuous and controlled potassium release to satisfy the needs of crops at different stages of growth, and avoiding both sudden saturation of the soil and excessive leaching; ii) high residual effect (e.g., by providing a réservoir of available potassium) which improves plant nutrition over multiple agronomie cycles; iii) the ability to buffer soil pH at optimal levels for a given crop and microbiome; iv) synergistic supplies of micronutrients (e.g., magnésium); vi) supporting and improving soil mechanical strength and porosity; vii) improved cation exchange capacity (CEC); viii) low salinity index; ix) enhancement of Water Holding Capacity (WHC) and carbon storage capacity; x) relatively low cost; xi) minimum hurdle for adoption by farmers; and/or xii) environmentally friendly manufacturing process implementable at industrial scale, and with local resources.
In some embodiments, the processes of the présent disclosure use feedstocks such as ultrapotassic syenite (see e.g., FIGS. 1 and 2 for other non-limiting examples of K-bearing ores), CaO (including hydrated and other forms of CaO) and water, which are abundant and/or affordable. Ultrapotassic syenites are generally available worldwide in bulk quantities, and can constitute a relatively readily available resource of comparatively inexpensive K2O. CaO can be obtained by roasting limestone in rotary kilns, and is a raw material of several industries (e.g., glass and cernent), many of which operate based on already optimized costs and logistics. Dolomite (CaMg(CO3)2) and other calciumcontaining material are also viable alternatives. In some embodiments, the présent disclosure provides the design and set-up of suitable hydrothermal reactors (e.g., autoclaves).
In some embodiments, the présent disclosure provides processes that are environmentally friendly because they can reduce (e.g., minimize) waste and/or byproduct formation, particularly compared to certain other processing technologies where the disposai of tailings and saline wastewater together with the use of Chemical additives such as alkylamine frother agents, resuit in a process that is less environmentally friendly. The materials disclosed herein can be, for example, applied directly to soils. In some cases, this means that the hydrothermally modified material derived from a feedstock minerai (e.g., K-feldspar) does not require séparation from the rest of the solid material. In certain embodiments, K-feldspar, hydrogamet and tobermorite are naturally occurring minerai phases whereas α-dicalcium silicate hydrate and non-stoichiometric calcium-silicate-hydrate are components of concrète, and are not envisaged to pose major environmental hazards. Because in some embodiments a portion of the initial (e.g. K-feldspar) feedstock material is converted to new minerai phases, process parameters such as reaction température (T) and reaction time (t) can be selected to minimize the environmental footprint of the process. Further, CO2 émissions due to transport can be reduced because the materials disclosed herein can be manufactured locally and from local resources.
The materials (e.g., hydrothermally modified or dried hydrothermally modified matériels) disclosed herein may hâve value in improving soil mechanics, e.g., by improving the soil pore space. For example, the water holding capacity of oxidic soils is often low due to the lack of mesopores that are responsible for storing water for long-term release. However, the volume occupied by the minerai 5 particles disclosed herein can be in a range which is suitable for improving the mesopore population and reduce infiltration rates. This can serve to reduce (e.g., prevent) the dispersion of soil colloids and/or to reduce (e.g., prevent) the dispersion of other fertilizers added to the soil. Furthermore, it has been shown that solidified pastes of fine hydrogamet and calcium silicate hydrates such as those composing at least a portion of the materials disclosed herein can hâve a flexural strength of 20 10 mPa, which is suitable for mitigating érosion and for promoting soil strength, without providing micro aggregates which are too large (>lmm) so as to provide undesirable infiltration rates. Conventional potassium salts (KC1 or K2SO4) generally do not provide such improvements to soil mechanics.
The processes described herein can be used to produce materials, such as dried hydrothermally 15 modified materials that hâve distinct, unexpected, and improved métal releasing properties (as described herein) compared to previously known materials.
The disclosure provides, in various embodiments, materials, including dried hydrothermally modified materials providing both an initial, relatively rapid release of potassium and a relatively extended release of potassium. In some embodiments, the initial release of potassium (e.g., as measured according to the one-minute potassium release test) can be larger than the extended release (e.g., as measured according to the 24-hour potassium release test). In general, it is believed that the extended release of potassium can be redistributed among several phases formed during hydrothermal processing, and thus potassium can be released at a slower rate over a more prolonged period of time compared to some known materials known. In various embodiments, the dried hydrothermally modified materials of the présent disclosure hâve the added benefit of releasing micronutrients such as, for example, Si, Ca, Na and Mg, which can be also useful to infertile soil. In addition, dried hydrothermally modified materials according to certain embodiments of the disclosure can hâve levels of alkalinity that may partially replace the need to add lime to the soil. As such, the mineralogy of the dried hydrothermally modified materials of the présent disclosure can be particularly suited to tropical soils.
In some embodiments, a method comprises: exposing a first composition to water and conditions selected from heat and pressure, thereby forming a combination that comprises water and a second composition (e.g., a hydrothermally modified material); and removing at least some of the water from the combination, thereby providing a third composition (e.g., a dried hydrothermally modified material), wherein: the first composition comprises a first alkali métal silicate; the third composition comprises a second alkali métal silicate; and according to the 24-hour potassium release test, an amount of potassium released from the third composition is at least about two about times greater than an amount of potassium released from the first composition.
In some embodiments, a method comprises: exposing a first composition to water and conditions selected from heat and pressure, thereby forming a combination comprising water and a second composition (e.g., a hydrothermally modified material); and removing at least some of the water from the combination, thereby providing a third composition (e.g., a dried hydrothermally modified material), wherein: the first composition comprises an alkali métal silicate in a first amount; the third composition comprises an alkali métal silicate in a second amount that is less than the first amount; and according to the 24-hour potassium release test, an amount of potassium released from the third composition is at least about two times greater than an amount of potassium released from the first composition.
In some embodiments, a method comprises: exposing a first composition to water and conditions selected from heat and pressure, thereby forming a combination comprising water and a second composition, the second composition (e.g., a hydrothermally modified material) comprising a Kfeldspar phase; and removing at least some of the water from the combination, thereby providing a third composition (e.g., a dried hydrothermally modified material), wherein: the third composition comprises the K-feldspar phase in an amount of at most about 65 wt. %; and at least one of the following holds: the third composition further comprises at least about 1 wt. % of a dicalcium silicate hydrate phase; the third composition further comprises at least about 1 wt. % of a tobermorite phase; and the third composition further comprises at least about 1 wt. % of a hydrogamet phase.
In certain embodiments, according to the 24-hour potassium release test, the amount of potassium released from the third composition is at least about three (e.g., at least about four, at least about fîve, at least about 10, at least about 25, at least about 50, at least about 100) times as much as the amount of potassium released from the first composition.
In some embodiments, a method comprises: exposing a first composition to water and conditions selected from heat and pressure, thereby forming a combination comprising water and a second composition (e.g., a hydrothermally modified material); removing at least some of the water from the combination, thereby providing a third composition (e.g., a dried hydrothermally modified material), wherein: the first composition comprises a first alkali métal silicate; the third composition comprises a second alkali métal silicate; and according to a 24-hour potassium release test, an amount of potassium released from the third composition is at least about 5,000 mg of potassium per kilogram of the third composition.
In some embodiments, a method comprises: exposing a first composition to conditions selected from heat and pressure, thereby forming a second composition (e.g., a hydrothermally modified material); removing at least some of the water from a combination that comprises: a) water; and b) the second composition, thereby providing a third composition (e.g., a dried hydrothermally modified material), wherein: the first composition comprises a first alkali métal silicate; the third composition comprises a second alkali métal silicate; and according to a 24-hour calcium test, an amount of calcium released from the third composition is at least about 15 mg of calcium per kilogram of the third composition.
Τη some embodiments, a method comprises: exposing a first composition to water and conditions selected from heat and pressure, thereby forming a combination comprising water and a second composition (e.g., a hydrothermally modified material); removing at least some of the water from the combination, thereby providing a third composition (e.g., a dried hydrothermally modified material), wherein: the first composition comprises a first alkali métal silicate; the third composition comprises a second alkali métal silicate; and according to a 24-hour aluminum test, an amount of aluminum released from the third composition is at most about 50 mg of aluminum per kilogram of the third composition.
In some embodiments, a method comprises: exposing a first composition to water and conditions selected from heat and pressure, thereby forming a combination comprising a second composition (e.g., a hydrothermally modified material); removing at least some of the water from the combination, thereby providing a third composition (e.g., a dried hydrothermally modified material), wherein: the first composition comprises a first alkali métal silicate; the third composition comprises a second alkali métal silicate; and according to a 24-hour aluminum test, an amount of aluminum released from the third composition is at most about 10 mg of aluminum per kilogram of the third composition.
In some embodiments, a method comprises: exposing a first composition to water and conditions selected from heat and pressure, thereby forming a combination comprising a second composition (e.g., a hydrothermally modified material); removing at least some of the water from the combination, thereby providing a third composition (e.g., a dried hydrothermally modified material), wherein: the first composition comprises a first alkali métal silicate; the third composition comprises a second alkali métal silicate; and according to a 24-hour Silicon test, an amount of Silicon released from the third composition is at least about 40 mg of Silicon per kilogram of the third composition.
In some embodiments, a method comprises: exposing a first composition to water and conditions selected from heat and pressure, thereby forming a combination comprising a second composition (e.g., a hydrothermally modified material); removing at least some of the water from the combination, thereby providing a third composition (e.g., a dried hydrothermally modified material), wherein: the first composition comprises a first alkali métal silicate; the third composition comprises a second alkali métal silicate; and according to a 24-hour sodium test, an amount of sodium released from the third composition is at least about 5 mg of sodium per kilogram of the third composition.
In some embodiments, a method comprises: exposing a first composition to water and conditions selected from heat and pressure, thereby forming a combination comprising a second composition (e.g., a hydrothermally modified material); removing at least some of the water from the combination, thereby providing a third composition (e.g., a dried hydrothermally modified material), wherein: the first composition comprises a first alkali métal silicate; the third composition comprises a second alkali métal silicate; and according to a 24-hour magnésium test, an amount of magnésium released from the third composition is at least about 5 mg of magnésium per kilogram of the third composition.
In some embodiments, a method comprises: exposing a first composition to water and conditions selected from heat and pressure, thereby forming a combination comprising water and a second composition (e.g., a hydrothermally modified material); removing at least some of the water from the combination, thereby providing a third composition (e.g., a dried hydrothermally modified material), wherein: the first composition comprises a first alkali métal silicate; the third composition comprises a second alkali métal silicate; and according to a one-minute potassium release test, an amount of potassium released from the third composition is at least about 5,000 mg of potassium per kilogram of the third composition.
In some embodiments, a method comprises: exposing a first composition to water and conditions selected from heat and pressure, thereby forming a combination comprising water and a second composition (e.g., a hydrothermally modified material); removing at least some of the water from the combination, thereby providing a third composition (e.g., a dried hydrothermally modified material), wherein: the first composition comprises a first alkali métal silicate; the third composition comprises a second alkali métal silicate; and the third composition has a relative potassium release of at least about five.
In some embodiments, the first alkali métal silicate comprises at least one member selected from Kfeldspar, kalsilite, phlogopite, muscovite, biotite, trachyte, rhyolite, micas, ultrapotassic syenite, leucite, nepheline, syenite, phonolite, fenite, ugandite, sanidine, aplite, and pegmatite and combinations thereof.
In some embodiments, the second alkali métal silicate comprises at least one member selected from K-feldspar, kalsilite, phlogopite, muscovite, biotite, trachyte, rhyolite, micas, ultrapotassic syenite, leucite, nepheline, syenite, phonolite, fenite, ugandite, sanidine, aplite, and pegmatite and combinations thereof.
In some embodiments, the third composition has a higher potassium content than the second composition.
In some embodiments, the third composition comprises: a K-feldspar phase; and a calcium silicate hydrate phase comprising at least one phase selected from a dicalcium silicate hydrate phase, tobermorite phase, and a hydrogamet phase, wherein: the third composition comprises the Kfeldspar phase in an amount of at most about 65 wt. %; and at least one of the following holds: the third composition comprises at least about 1 wt. % of the dicalcium silicate hydrate phase; the third composition comprises at least about 1 wt. % of the tobermorite phase; and the third composition comprises at least about 1 wt. % of the hydrogamet phase.
In some embodiments, an amount of aluminum released from the third composition is at most about 25 mg (e.g., at most about 10 mg) of aluminum per kilogram of the third composition.
In some embodiments, an amount of magnésium released from the third composition is at least about 100 mg of magnésium per kilogram of the third composition.
In some embodiments, removing water from the combination comprises drying the combination.
In some embodiments, removing water from the combination comprises flash drying the combination.
In some embodiments, removing water from the combination comprises drying under a vacuum the combination.
In some embodiments, exposing the combination occurs for a duration of at least about 5 minutes.
In some embodiments, removal of at least some of the water from the combination occurs for a duration of at least about 15 minutes (e.g., at least about 30 minutes, at least about one hour, at least about two hours, at least about three hours, at least about five hours, at least about 16 hours) and/or at most about 20 hours.
In some embodiments, removal of at least some of the water from the combination comprises heating the combination to at least about 50°C (e.g., at least about 100°C, at least about 150°C) and/or at most about 200°C.
In some embodiments, removal of at least some of the water from the combination comprises exposing the combination to an atmospheric pressure.
In some embodiments, removal of at least some of the water from the combination comprises exposing the combination to a pressure of at least about 5 atm (e.g., of at least about 30 atm, at least about 50 atm) and/or at most about 80 atm.
In certain embodiments, removal of at least some of the water from the combination occurs at a pressure of less than one atm (e.g., under vacuum).
In some embodiments, during removal of at least some of the water from the combination, the combination is exposed to a reactive atmosphère. The reactive atmosphère can comprise at least one member selected from air, oxygen, ammonia, carbon monoxide, and carbon dioxide.
In some embodiments, during removal of at least some of the water from the combination, the combination is exposed to an atmosphère comprising air.
In some embodiments, during removal of at least some of the water from the combination, the combination is exposed to an inert atmosphère. The inert atmosphère can comprise at least one member selected from argon and nitrogen.
In some embodiments, an alkali métal silicate comprises at least one member selected from Kfeldspar, kalsilite, phlogopite, muscovite, biotite, trachyte, rhyolite, micas, ultrapotassic syenite, leucite, nepheline, syenite, phonolite, fenite, ugandite, sanidine, aplite, pegmatite, and combinations thereof.
In some embodiments, the method further comprises milling a pre-combination that comprises: a) an alkali métal silicate; and b) at least one member selected from an alkali métal oxide, an alkaline métal hydroxide, an alkaline earth métal oxide, and an alkaline earth métal hydroxide, thereby providing the first composition.
In some embodiments, the conditions to which the first composition is exposed comprise a température of at least about 150°C (e.g., at least about 200°C, at least about 220°C, at least about 230°C) and/or at most about 300°C.
In some embodiments, the conditions to which the first composition is exposed comprise a pressure of at least about 5 atm (e.g., at least about 30 atm, at least about 50 atm) and/or at most about 80 atm. In certain embodiments, the conditions to which the first composition is exposed comprise a pressure of less than one atm (e.g., vacuum).
In some embodiments, the exposing the first composition occurs for a duration of at least about 5 minutes (e.g., at least about 5 minutes, at least about 10 minutes, at least about 15 minutes, at least about 20 minutes, at least about 30 minutes, at least about 1 hour, at least about 2 hours, at least about 5 hours, at least about 10 hours) and/or at most about 20 hours.
In some embodiments, the first composition comprises a calcium to Silicon ratio of at least about 0.075 (e.g., at least about 0.15, at least about 0.3) and/or at most of about 0.6.
In some embodiments, milling comprises bail milling or rod milling.
In some embodiments, the pre-combination comprises at least one member selected from potassium hydroxide, potassium oxide, potassium carbonate, calcium oxide, calcium hydroxide, calcium carbonate, sodium carbonate, magnésium carbonate, and combinations thereof.
In some embodiments, the third composition comprises a zeolite.
In some embodiments, the third composition is a fertilizer, such as, for example, a potassium fertilizer, a calcium fertilizer, a Silicon fertilizer, a sodium fertilizer, and/or a magnésium fertilizer. In some embodiments, the fertilizer comprises a multi-nutrient fertilizer.
In some embodiments, a method forrns a material useful in cernent chemistry.
In some embodiments, the third composition is useful in producing alkali solutions for at least one industry selected from the geopolymer industry, the waterglass industry, and the colloïdal silica industry.
In some embodiments, the third composition is useful in soil remediation.
In some embodiments, a method further comprises using the third composition as a fertilizer (e.g., a potassium fertilizer, a calcium fertilizer, a Silicon fertilizer, a sodium fertilizer, and/or a magnésium fertilizer).
In some embodiments, the third composition is a soil conditioner.
In some embodiments, a method further comprises using the second composition to produce an alkali solution for at least one industry selected from geopolymer industry, the waterglass industry and the colloïdal silica industry.
In some embodiments, a method further comprises using the second composition in soil remediation.
In some embodiments, a composition (e.g., a hydrothermally modified material or a dried hydrothermally modified material) comprises: a K-feldspar phase; and a calcium silicate hydrate phase comprising at least one phase selected from dicalcium silicate hydrate phase, tobermorite phase, and a hydrogamet phase, wherein: the composition comprises the K-feldspar phase in an amount of at most about 65 wt. %; and at least one of the following holds: the composition comprises at least about 1 wt. % of the dicaicium silicate hydrate phase; the composition comprises at least about 1 wt. % of the tobermorite phase; and the composition comprises at least about 1 wt. % of the hydrogamet phase.
In some embodiments, the composition comprises at most about 60 (e.g., at most about 55, at most about 50, at most about 45, at most about 40, at most about 34.9, at most about 32.3) wt. % of the Kfeldspar phase, and/or at least about 1 (at least about 5, at least about 10) wt. % of the K-feldspar phase.
In some embodiments, the composition comprises at least about 1 (e.g., at least about 2, at least about 3, at least about 5, at least about 10, at least about 15, at least about 20, at least about 25) wt. % of the calcium silicate hydrate phase, and/or at most about 30 (e.g., at most about 25, at most about 20, at most about 15) wt. % of the calcium silicate hydrate phase.
In some embodiments, the composition comprises from about 1 wt. % to about 30 wt. % of the calcium silicate hydrate phase.
In some embodiments, the composition comprises the dicaicium silicate hydrate phase in an amount of at least about 1 (at least about 5, at least about 10, at least about 15, at least about 20, at least about 25, at least about 30, at least about 25, at least about 40) wt. %, and/or at most about 38.6 (e.g., at most about 37.7, at most about 35, at most about 30) wt. %.
In some embodiments, the composition comprises the tobermorite phase in an amount of at least about 1 (e.g., at least about 2, at least about 3, at least about 4, at least about 5, at least about 6, at least about 7, at least about 8, at least about 9, at least about 10) wt. %, and/or at most about 10 (e.g., at most about 9, at most about 8) wt. %.
In some embodiments, the composition comprises the hydrogamet phase in an amount of at least about 1 (e.g., at least about 5, at least about 8, at least about 9, at least about 10, at least about 11, at least about 12, at least about 13) wt. %, and/or at most about 15 (e.g., at most about 13.2, at most about 12.7, at most about 12, at most about 11, at most about 10, at most about 9, at most about 8, at most about 5, at most about 1) wt. %.
In some embodiments, the hydrogamet phase comprises plazolite or hydrogrossular.
In some embodiments, the composition further comprises an amorphous phase.
In some embodiments, the composition comprises at most about 51.1 (e.g., at most about 50, at most about 49, at most about 48, at most about 47, at most about 46, at most about 45) wt. % of the amorphous phase, and/or at least about 18.2 wt. % of the amorphous phase.
In some embodiments, the amorphous phase comprises a zeolite.
In some embodiments, the amorphous phase comprises at least one member selected from silica and calcium silica hydrates.
In some embodiments, the composition further comprises a zeolite.
In some embodiments, the composition further comprises carbonates.
In some embodiments, a composition (e.g., a dried hydrothermally modified material) comprises a K-feldspar phase, wherein the composition has a potassium release of at least about 5,000 (e.g., at least about 6,502, at least at least about 6,763, at least about 7,500, at least about 10,000, at least about 10,377, at least about 11,648, at least about 15,000) mg of potassium per kilogram of the composition according to the 24-hour potassium release test, and/or at most about 15,000 mg of potassium per kilogram of the composition according to the 24-hour potassium release test.
In some embodiments, a composition (e.g., a dried hydrothermally modified material) comprises a K-feldspar phase, wherein the composition has a calcium release of at least about 15 (e.g., at least about 16, at least about 34, at least about 50, at least about 63, at least about 100, at least about 250, at least about 315, at least about 355, at least about 500) mg of calcium per kilogram of the composition according to the 24-hour calcium release test, and/or at most about 657 mg of calcium per kilogram of the composition according to the 24- hour calcium release test.
In some embodiments, a composition (e.g., a dried hydrothermally modified material) comprises a K-feldspar phase, wherein the composition has an aluminum release of at most 50 (e.g., at most about 41, at most about 40, at most about 28, at most about 25, at most about 10) mg of aluminum per kilogram of the composition according to the 24-hour aluminum release test.
In some embodiments, a composition (e.g., a dried hydrothermally modified material) comprises a K-feldspar phase, wherein the composition has a Silicon release of at least about 40 (e.g., at least about 100, at least about 500, at least about 1,000, at least about 1,388, at least about 1,500, at least about 1,652) mg of Silicon per kilogram of the composition according to the 24-hour Silicon release test, and/or at most about 1,700 mg of Silicon per kilogram of the composition according to the 24hour Silicon release test.
In some embodiments, a composition (e.g., a dried hydrothermally modified material) comprises a K-feldspar phase, wherein the composition has a sodium release of at least about 6.2 (e.g., at least about 6.4, at least about 10, at least about 15, at least about 20, at least about 30, at least about 40, at least about 50, at least about 60, at least about 70, at least about 80, at least about 90, at least about 100) mg of sodium per kilogram of the composition according to the 24-hour sodium release test, and/or at most about 100 mg of sodium per kilogram of the composition according to the 24-hour sodium release test.
In some embodiments, a composition (e.g., a dried hydrothermally modified material) comprises a K-feldspar phase, wherein the composition has a magnésium release of at least about 5 (e.g., at least about 7, at least about 10, at least about 20, at least about 30, at least about 40, at least about 50, at least about 75, at least about 100, at least about 500, at least about 1,000, at least about 2,000, at least about 5,000) mg of magnésium per kilogram of the composition according to the 24-hour magnésium release test.
In some embodiments, a composition (e.g., a dried hydrothermally modified material) comprises a K-feldspar phase, wherein the composition has a potassium release of at least about 5,000 (e.g., at least about 6,000, at least about 7,000, at least about 8,000, at least about 9,000, at least about 10,000, at least about 11,000) mg of potassium per kilogram of the composition according to the one-minute potassium release test.
In some embodiments, a composition (e.g., a dried hydrothermally modified material) comprises a K-feldspar phase, wherein the composition has a relative potassium release of at least about five (e.g., at least about six, at least about seven, at least about eight, at least about nine, at least about 10) and/or at most about 20.
In some embodiments, a composition further comprises a calcium silicate hydrate phase. The calcium silicate hydrate phase can comprise at least one phase selected from a dicalcium silicate hydrate phase, tobermorite phase, and a hydrogamet phase.
In some embodiments, a composition further comprises at least one member selected from potassium hydroxide, potassium oxide, potassium carbonate, calcium oxide, calcium hydroxide, calcium carbonate, sodium carbonate, magnésium carbonate, and combinations thereof.
In some embodiments, a composition further comprises panunzite, portlandite, albite, or combinations thereof.
In some embodiments, a composition (e.g., a dried hydrothermally modified material) comprises a K-feldspar phase, wherein: the composition comprises the K-feldspar phase in an amount of at most about 65 wt. %; the composition is derived from a starting composition comprising greater than about 65 wt. % K-feldspar; and, according to the 24 hour potassium release test, an amount of potassium released from the composition is at least about twice (e.g., at least about three times, at least about four times, at least about five times, at least about 10 times, at least about 25 times, at least about 50 times, at least about 100 times) as much as an amount of potassium released from the starting composition.
In some embodiments, a composition (e.g., a dried hydrothermally modified material) comprises an alkali métal silicate phase; and a calcium silicate hydrate phase comprising at least one phase selected from a dicalcium silicate hydrate phase, tobermorite phase, and a hydrogamet phase, wherein: the composition comprises the alkali métal silicate phase in an amount of at most about 65 wt. %; and at least one of the following holds: the composition comprises at least about 1 wt. % of the dicalcium silicate hydrate phase; the composition comprises at least about 1 wt. % of the tobermorite phase; and the composition comprises at least about 1 wt. % of the hydrogamet phase.
In some embodiments, a composition (e.g., a dried hydrothermally modified material) comprises an alkali métal silicate phase, wherein the composition has a potassium release of at least about 5,000 mg of potassium per kilogram of the composition according to the 24-hour potassium release test.
In some embodiments, a composition (e.g., a dried hydrothermally modified material) comprises an alkali métal silicate phase, wherein the composition has a calcium release of at least about 15 mg of calcium per kilogram of the composition according to the 24-hour calcium release test.
In some embodiments, a composition (e.g., a dried hydrothermally modified material) comprises an alkali métal silicate phase, wherein the composition has an aluminum release of at most about 10 mg of aluminum per kilogram of the composition according to the 24-hour aluminum release test.
In some embodiments, a composition (e.g., a dried hydrothermally modified material) comprises an alkali métal silicate phase, wherein the composition has a Silicon release of at least about 40 mg of Silicon per kilogram of the composition according to the 24-hour Silicon release test.
In some embodiments, a composition (e.g., a dried hydrothermally modified material) comprises an alkali métal silicate phase, wherein the composition has a sodium release of at least about 6.2 mg of sodium per kilogram of the composition according to the 24-hour sodium release test.
In some embodiments, a composition (e.g., a dried hydrothermally modified material) comprises an alkali métal silicate phase, wherein the composition has a magnésium release of at least about 5 mg of magnésium per kilogram of the composition according to the 24-hour magnésium release test.
In some embodiments, a composition (e.g., a dried hydrothermally modified material) comprises an alkali métal silicate phase, wherein the composition has a potassium release of at least about 5,000 mg of potassium per kilogram of the composition according to the one-minute potassium release test.
In some embodiments, a composition (e.g., a dried hydrothermally modified material) comprises an alkali métal silicate phase, wherein: the composition comprises the alkali métal silicate phase in an amount of at most about 65 wt. %; the composition is derived from a starting composition comprising greater than about 65 wt. % alkali métal silicate; and, according to the 24 hour potassium release test, an amount of potassium released from the composition is at least about twice as much as an amount of potassium released from the starting composition (e.g., a hydrothermally modified material).
In some embodiments, a composition (e.g., a dried hydrothermally modified material) comprises an alkali métal silicate phase, wherein the composition has a relative potassium release of at least about five.
In some embodiments, an alkali métal silicate comprises at least one member selected from Kfeldspar, kalsilite, phlogopite, muscovite, biotite, trachyte, rhyolite, micas, ultrapotassic syenite, leucite, nepheline, syenite, phonolite, fenite, ugandite, sanidine, aplite, and pegmatite, and combinations thereof.
In some embodiments, a composition further comprises a carbonaceous material. The carbonaceous material can comprise at least one material selected from KOH, NaOH, Mg(OH)2, Ca(OH)3, K2CO3, Na2CO3, MgCO3, and CaCO3.
In some embodiments, a composition has a multimodal particle size distribution comprising particles having a diameter of from about 1 micron to about 1000 microns.
In some embodiments, a composition comprises aggregated particles having a size of from about 100 microns to about 1000 microns.
In some embodiments, a composition comprises particles having and a spécifie surface area according to the BET method of from about 15.1 square meters per gram to about 46.9 square meters per gram.
In some embodiments, a composition has a particle size distribution of from about 0.01 micron to about 100 microns (e.g., from about 0.1 micron to about 100 microns).
In some embodiments, the composition is useful in cernent chemistry.
In some embodiments, the composition is useful in producing alkali solutions for at least one industry selected from the geopolymer industry, the waterglass industry and the colloïdal silica industry.
In some embodiments, the composition is useful in soil remediation.
In some embodiments, a fertilizer comprises a composition disclosed herein. The fertilizer can be, for example, a potassium fertilizer, a calcium fertilizer, a Silicon fertilizer, a sodium fertilizer, and/or a magnésium fertilizer. The fertilizer can be a multi-nutrient fertilizer.
In some embodiments, a soil conditioner comprises a composition disclosed herein.
BRIEF DESCRIPTION OF THE FIGURES
The drawings are primarily for illustrative purposes and are not intended to limit the scope of the inventive subject matter described herein.
FIG. 1 is a chart showing the amount of potassium présent in a variety of processed syenites. Processing of the material occurred at 200 °C for 5 h.
FIG. 2 is a table providing an overview of the naturally occurring potassium-bearing materials with current or potential applications in global agriculture.
FIG. 3 provides a flow chart showing an overview of the various non-limiting steps in a process that affords materials, including dried hydrothermally modified materials of the présent disclosure.
FIGS. 4A-C show variations in the post-processing and drying stages of various embodiments of the processes of the présent disclosure. FIG. 4A shows a modified drying stage that uses a reactive gas. FIG. 4B shows embodiments of a process where various solutions can be introduced at the hydrothermal stage in addition to post-processing. FIG. 4C shows alternative embodiments with progressive addition of alkaline earth solution at the hydrothermal stage in addition to postprocessing.
FIG. 4D is a schematic représentation of a hydrothermal reactor used in the préparation of dried hydrothermally modified material of Example 1.
FIG. 4E shows the mineralogical composition of (a) feed mixture calculated from data reported for ultrapotassic syenite MCA41 assuming 100 wt. % Ca(OH)2 as the Ca source and (b) dried hydrothermally modified material, where K2O was re-calculated to be 11.7 wt. %.
FIG. 5 shows the composition of dried hydrothermally modified materials under different processing atmosphères for the hydrothermal step and drying step. Data for Ar-Ar, Ar-Air, Air-Air, and CO2-CO2 are provided, where the first atmosphère listed was for the hydrothermal processing step and the second atmosphère listed was used in the drying step.
FIG. 6 provides a sériés of bar graphs demonstrating the effect of the processing atmosphère on elemental leaching from a dried hydrothermally modified material. The hydrothermal step was carried out at 200 °C for 5 h.
FIG. 7A is a schematic showing reaction pathways and implications for leaching mineralogy that resuit from drying hydrothermally modified materials under a carbon dioxide atmosphère.
FIGS. 7B-D show the leaching of potassium, calcium, and aluminum under either air, argon (Ar), carbon dioxide (CO2), or vacuum drying and for which data has been provided to show the different between drying with supematant phase versus drying after removing supematant phase.
FIG. 8 depicts a schematic représentation of the hydrothermal processing variables (atmosphère, time, and/or température) used to tune the mineralogy of the hydrothermally modified material.
FIGS. 9A-D show the effect of hydrothermal processing time and température in the hydrothermal step on mineralogy and leaching; (A) illustrâtes the effect of processing time (Z) and température (7) on minerai phases of the dried hydrothermally modified material according to XRD; (B) are bar graphs (units of g/Kg) showing that K-leaching from the dried hydrothermally modified material subjected to a ni trie acid leaching solution is independent of processing time and température when evaluated from 0.5-3 h at 200 °C, 220 °C, and 230 0 C; Al leaching is independent of processing time, but decreases by increasing température; and Na leaching increases over both time and processing température; (C) shows the change in phase weight fraction of alkali feldspar, tobermorite, and amorphous phases in the dried hydrothermally modified material as processing time increases; (D) shows a dependence of K-release and Ca-release when hydrothermal processing times > 5 h are used. This relationship is not observed when processing times from 0.5-3 h are employed (see FIG. 9B).
FIG. 10 is a graph of the relationship between the extent of K-feldspar (Kfs) transformation and the Ca/Si ratio in the feedstock.
FIG. 11A is a graph illustrating the effect of K-feldspar (Kfs) conversion on mineralogy of the dried hydrothermally modified material as the Ca/Si ratio in the feedstock increases from 0.075 to 0.9.
FIGS. 11B-D are bar graphs showing the elemental release of K+ (B and C), Ca2+ (C and D), Na+ (D), and AI3* (D) from dried hydrothermally modified material as the ratio of Ca/Si in the feedstock increases from 0.075 to 0.9 In graph (D), pH was monitored at each of the spécifie ratios.
FIG. 11E is a graph showing the pH at 24 h for dried hydrothermally modified material obtained at different processing times using a feedstock with a Ca/Si ratio of 0.3.
FIG. 11F depicts a sériés of graphs comparing the particle size distribution of the raw material mixture for forming a dried hydrothermally modified material at different Ca/Si ratios (0.3, 0.6, 0.15, and 0.075).
FIG. 12 shows the XRPD pattern of (a) a sample of a dried hydrothermally modified material and (b) a sample spiked with 50 wt. % of Si (NIST SRM 640) to détermine the amorphous component. Inorganic Crystal Structure Database (ICSD) numbers are as follow: orthoclase (#159347); microcline (#34790); plazolite (#31250); α-dicalcium silicate hydrate (#75277); 11 A tobermorite (#40048); albite (#16744); panunzite (#30951).
FIG. 13 is an overview of SEM micrographs of a dried hydrothermally modified material, where: (a) and (b) altered K-feldspar; round particles of hydrogamet are clearly visible; the white arrow points at a side of the feldspar surface where fine needles of calcium silicate phases are particularly évident as a moss-like coating (c) white arrows point at round agglomérâtes (presumably tobermorite); (d) close up of one of those formation shown in (c); round particles of hydrogamet are clearly visible. Images were obtained by dusting a pinch of powder on conductive paint (Carbon Conductive Adhesive 502, Electron Microscopy Sciences).
FIG. 14 is an overview of SEM micrographs of a dried hydrothermally modified material mounted in thin section, where: (a) and (b) show particles of altered K-feldspar with évident internai cracking, and rim of fine Ca minerais possibly nucleating at the edge of the grain; small round particles (hydrogamet) and elongated crystals (α-dicalcium silicate hydrate and tobermorite) are visible. Arrows in (b) point at elongated particles of tobermorite located outside the rim of calcium minerais; (c) and (d) show extremely heterogeneous clump-like formations. The clump is delimitated by a rim of small particles of Ca minerais that encapsulâtes altered K-feldspar, adicalcium silicate hydrate and tobermorite. A whitish background haze is observed within the clump which may be attributed to fine tobermorite crystals. In (d), arrows point at thick elongated crystals of α-dicalcium silicate hydrate. Such crystal are distinguishable from those of tobermorites shown in (b), which appear much thinner. In (e), high magnification detail of elongated and fibrous tobermorite crystals is shown. Some round particles of hydrogamet are also visible (f) cluster. Arrow point at the edge of the cluster to highlight its overall size and shape (g) high magnification detail of round hydrogamet crystals. The arrow points at an area where multiple crystals seem to intergrow together (h) Extrême case of relatively large mass of intergrown hydrogamet.
FIG. 15 shows électron probe micro-analyzer (ΕΡΜΑ) x-ray elemental maps of (a) altered Kfeldspar and (b) clump-like formations. Hotter colors correspond to higher concentrations of an element; colder colors correspond to lower concentrations.
FIG. 16 shows Electron Probe Micro-Analyzer (ΕΡΜΑ) X-Ray elemental maps with (a) (b) (c) particles of altered K-feldspar in three different size ranges, d<50pm, 50<d<100pm and d>100pm, respectively; (d) clump-like formation in the dried hydrothermally modified material; (e) large mass of hydrogamet; and (f) clump-like formation with the central particle of altered K-feldspar containing a distinct inclusion of albite.
FIG. 17 is a photograph illustrating the physical appearance of ultrapotassic syenite rock powder (left) and a dried hydrothermally modified material, HT-1 (right).
FIG. 18 is an électron microprobe view of zeolites that formed in a dried hydrothermally modified material.
FIG. 19 shows électron backscattering images obtained with the Electron Probe Micro-Analyzer of (a) an amorphous compound and (b) carbonaceous species.
FIG. 20 is a titration curve of a dried hydrothermally modified material (0.3067g) suspended in 25 mL of DI water, with standardized HNO3 0.1 M.
FIG. 21(a)-(c) shows an apparatus, concept and résulte for spot testing for carbonates carried out by dropping concentrated nitric acid onto a dried hydrothermally modified material; (a) is a schematic of the experimental apparatus, along with a Chemical équation that provides the basis for the carbonate test; (b) shows the results from a blank test; and (c) shows the resuit from a testing with the dried hydrothermally modified material.
FIG. 22 shows particle size distribution (PSD) based on both volume percentage (F%, main) and the number of particles percentage (N%, inset) for HT-1, a dried hydrothermally modified material.
FIG. 23 shows the adsorption and desorption isotherme (-196 °C) of N2 gas at the surface of the dried hydrothermally modified material.
FIG. 24 shows the elemental release from the rock powder (ultrapotassic syenite) and dried hydrothermally modified material. Leaching conditions: batch test under rotation, 24 h, ^://2/,=1:10. HNO3 at nominal initial pH=5 as the leaching solution. Ail values (ppm), refer to the mg of element analyzed in solution by ICP-MS per kg of solid material.
FIG. 25 shows différences in leaching ratios for bulk powder under standard conditions (pH 5 HNO3), acetate buffered conditions (acetate/HNO3, pH 5.3) and microfluidic conditions at pH 5 and pH 1;
FIG. 26 is a graph comparing the leaching of K+, Ca2+, Al3+, and Si under microfluidic conditions at different pH values for dried hydrothermally modified material prepared according to the parameters described in FIG. 34A.
FIG. 27 is a graph of the spontaneous variation of the pH of a solution of HNO3 at an initial nominal pH=5 contacted with either the rock powder (ultrapotassic syenite) or the dried hydrothermally modified material at a ms'.mi = 0.1 and room température.
FIG. 28 shows that the supematant water removed from hydrothermally modified material processed at 220 °C over 5 h is enriched in leachable potassium (K).
FIG. 29 is a graph of the température profile during the hydrothermal processing steps that lead to hydrothermally modified material.
FIG. 30 is a graph showing the particle size distributions (PSD) of a K-feldspar raw material milled for 1 min and then dry sieved using ASTM sieve no. 70 (212 pm), 100 (150 pm), 140 (106 pm), and 325 (45 pm) to obtain the four fractions of shown. Feed mixtures were prepared by mixing milled K-feldspar with the desired amount of CaO, rather than co-milling.
FIGS. 31A-B are graphs of the particle size distributions of dried hydrothermally modified materials prepared from each of the four feedstocks whose PSD values are shown in FIG. 30; (A) is a combined graph showing the particle size distributions of the four distinct dried hydrothermally modified materials; (B) shows separate graphs where each of the distinct dried hydrothermally modified materials (dotted fines) is overlaid with its corresponding feedstock mixture (solid fines) used in production.
FIGS. 31C-D show the leaching properties of potassium (C), sodium (D), aluminum (D), and calcium (D) from a dried hydrothermally modified material as a function of mean particle size.
FIG. 32 is a schematic diagram showing that soluble K+ can be removed from a dried hydrothermally modified material by washing with water. The resulting composition is the solid phase referred to as HT-X-rinsed, where X represents the drying atmosphère used.
FIG. 33A is a graph showing the particle size distributions of rinsed and unrinsed dried hydrothermally modified materials, which were dried under either argon or carbon dioxide conditions.
FIGS. 33B-F are scanning électron microscopy images comparing HT-Ar-rinsed with HT -CO2 rinsed. (B) HT-Ar-rinsed; (C) HT-Ar-rinsed (thin section); (D) HT-CO2-rinsed; (E) HT-CO2-rinscd (thin section); (F) HT-Ar-rinsed with features labeled. Carbonation is demonstrated to hâve a dramatic impact on the particle morphology of the dried hydrothermally modified material.
FIG. 33 G is a schematic illustration showing an alternative embodiment of the process of the présent disclosure in which a décalcification reaction pathway under flow conditions results in S1O2 and A12O3 from calcium-silicate-hydrate (C-S-H) and hydrogamet, respectively. Drying/postprocessing is carried out with CO2, which promotes décalcification of the hydrothermally modified material after hydrothermal processing.
FIG. 33H is a schematic illustration showing an alternative embodiment of the process of the présent disclosure, in which an alkaline solution is flowed through a packed bed of stationary minerai powder.
FIG. 34A is a schematic illustration of a représentative overall process according to the présent disclosure showing the feedstock mixture, processing parameters, and drying conditions used to préparé dried hydrothermally modified material.
FIGS. 34B-C show examples of a hydrothermal reactor (B) and a drying rig (C) used to préparé materials according to the présent disclosure, on a laboratory scale.
FIGS. 35A-D are scanning électron microscopy images showing the dissolution behavior of dried hydrothermally modified material under flow (microfluidic) conditions. Side by side comparisons from before and after leaching are provided.
FIG. 36 is a graph showing K-release from dried hydrothermally modified materials additionally refluxed at 90 °C for either 24 h or 96 h at ambient pressure.
FIGS. 37A-F show pH and concentration dépendent leaching and dissolution; (A) is a graph showing the K-release from each of the three leaching solutions (pH 5 HNO3, 33.33 mM CSNO3 in pH 5 HNO3, or pH 12.5 tétraméthylammonium hydroxide) for dried hydrothermally modified material, which was dried under argon (Ar); (B) is a graph showing the effect of buffered leaching conditions on elemental release. K, Na, Al, and Ca were each evaluated and compared to unbuffered control; (C) is a schematic diagram showing that soluble K+ can be removed from the dried hydrothermally modified material by washing with water. The resulting composition is the solid phase referred to as HT-X-rinsed, where X represents the drying atmosphère used. Leaching was carried out in one of three solutions - pH 5 HNO3, 33.33 mM CSNO3 in pH 5 HNO3, or pH 12.5 tétraméthylammonium hydroxide (not shown); (D) is a graph showing the change in K-release for dried hydrothermally modified materials prepared under different drying conditions (Ar or CO2) and either rinsed with water or left unrinsed. Experiments were conducted in pH 5 HNO3 solution; (E) is a graph showing the différence between the K-release of rinsed and unrinsed samples were dried with either Ar or CO2. The différence between rinsed and unrinsed samples gives the fraction of soluble/fast-release K in the dried hydrothermally modified material; (F) is a graph similar to the one in (D), except that the leaching is carried out in a pH 5 CSNO3/HNO3 (33.3 mM) solution for ΗΤ-Ar, HT-Ar-rinsed, and HT-CO2-rinsed. HT-CO2 (CSNO3) was dried under CO2 in the presence of CSNO3, and leaching was carried out in a pH 5 HNO3 solution.
FIG. 38 shows a detailed overview of the reaction pathways that can occur during hydrothermal processing of CaO and feldspar raw materials. A Chemical rationale is provided that explains the formation of the various identified minerai phases including the impact of certain conditions (e.g., Ca/Si ratio, Al/Si ratio) on product distribution.
DETAILED DESCRIPTION
Disclosed herein are various embodiments of hydrothermally modified materials, dried hydrothermally modified materials, and processes for making the same. In some embodiments, the properties of the materials described herein can be tuned by modification of a number of identified parameters (including, but not limited to processing time and température, drying conditions, Processing atmosphère, ratio of raw materials in the feedstock mixture, surface area of the raw materials, etc.) such that the properties of the hydrothermally modified materials or dried hydrothermally modified materials can be aligned with the requirements of a wide variety of industrial applications. Various concepts introduced above and discussed in greater detail below that are encompassed by the processes of the présent disclosure may be implemented in any of numerous ways, as the disclosed concepts are not limited to any particular manner of implémentation. Examples of spécifie implémentations and applications are provided primarily for illustrative purposes.
In various embodiments, the processes disclosed herein produce minimal or no waste or byproducts. This is a departure from certain conventional processing technologies that are intended to transform raw materials such as K-feldspar, as well as KC1 processing, where the disposai of tailings and saline wastewater together with the use of alkylamine as frother agents provide a process that is a less environmentally friendly process. In some embodiments, the hydrothermally modified materials and/or dried hydrothermally modified materials are suitable for direct application to soils. In such embodiments, in general, the modified fraction of the hydrothermally modified potassiumcontaining minerai (e.g., the hydrothermally modified portion of a K-feldspar raw material) is not separated from the rest of the solid material. In such embodiments, the hydrothermally modified material and/or a dried hydrothermally modified material can include some amount of unmodified K-feldspar, hydrogamet and tobermorite, which are naturally occurring minerai phases, as well as adicalcium silicate hydrate and non-stoichiometric calcium-silicate-hydrate, which are components of concrète, and do not pose significant environmental hazards. Furthermore, in certain embodiments of the présent disclosure, since only a portion of the initial feedstock material (e.g., K-feldspar) is converted into new minerai phases, process températures (T) and process times (t) are set so as to minimize the environmental footprint of the process. Finally, in certain embodiments, the processes disclosed herein can reduce (e.g., minimize) CO2 émissions as the hydrothermally modified materials and/or dried hydrothermally modified materials of the présent disclosure can be readily manufactured locally and from local resources.
A flow chart providing a non-limiting, general overview of a process according to the disclosure that ultimately affords a dried hydrothermally modified material is provided in FIG. 3. The feedstock mixture comprises one or more first raw materials (al) and one or more second raw materials (a2). The first raw materials (al) include materials such as alkaline earth metal-containing raw materials (i.e., CaO) and/or other related metal-containing materials, as described herein. The second raw materials (a2) include naturally sourced minerais such as alkali metal-bearing silicates (e.g., Kfeldspar) as described herein. The respective raw material components of the feedstock mixture can then be milled, comminuted, ground, pulverized etc. using any number of techniques known in the art, of which a non-limiting list is provided herein. The skilled artisan will recognize that the first and second raw materials (al, a2) may be milled individually or together, or some combination thereof. Upon completion of this step, the feedstock mixture can be transferred into a hydrothermal reactor, such as an autoclave or similar reaction vessel, where the hydrothermal processing step takes place. Without specifying any particular sequence of events, the materials in the hydrothermal reactor can be contacted with water (in liquid or vapor form, or some combination thereof) in step (b), and the resulting mixture may then be subjected to température, pressure, and/or atmospheric conditions as described herein, for a time sufficient to provide a hydrothermally modified material and a supematant aqueous phase as represented by step (c). The drying step (d) can be carried out using conventional means, such as commercially available dryers (or can be air-dried), and implemented according to any of the non-limiting methods as described herein. The hydrothermally modified material of step (c) can be dried together with at least a portion (or ail) of the supematant, or the supematant can be removed (partially or completely) from the hydrothermally modified material, such that each component is dried separately. In either case, a dried hydrothermally modified material is obtained from the overall process. While we refer to step (d) as a drying step, it is to be understood that this step does not require the complété removal of ail water. Also, it is to be understood that while a dried hydrothermally modified material will hâve been exposed to drying step (d), this does not require the dried hydrothermally modified material to hâve undergone the complété removal of ail of the water.
The process described above takes into considération (but is not necessarily constrained by) both soil science and économie principles to reduce (e.g., avoid) the production of an unwanted excess of soluble métal ion (e.g. potassium) species, as well as waste and/or byproducts.
Described in more detail below are various embodiments of the process depicted in FIG. 3. The process as disclosed herein can be carried out in batch, semi-batch, or continuous mode starting from the raw materials that comprise the feedstock mixture. In some embodiments of the présent disclosure, raw material (a2) can be selected from among the K-bearing ores found in FIG. 2. In other embodiments of the présent disclosure, the raw material (a2) is one or more alkali métal silicate materials selected from a non-limiting group of minerais including K-feldspar, kalsilite, phlogopite, muscovite, biotite, trachyte, rhyolite, micas, ultrapotassic syenite, leucite, nepheline, syenite, phonolite, fenite, ugandite, sanidine, aplite, pegmatite, and combinations thereof.
Any of the foregoing alkali metal-bearing minerais is suitable for combination with one or more raw materials (a2). In various embodiments of the présent disclosure, the one or more raw materials of (al) comprise calcium oxide, calcium hydroxide, or mixtures thereof. In other non-limiting embodiments, the one or more raw materials of (al) comprise lithium oxide, sodium oxide, potassium oxide, rubidium oxide, césium oxide, lithium hydroxide, sodium hydroxide, potassium hydroxide, rubidium hydroxide, césium hydroxide, or mixtures thereof. In still other embodiments, the one or more raw materials of (al) comprise magnésium oxide, calcium oxide, calcium carbonate, béryllium oxide, strontium oxide, radium oxide, magnésium hydroxide, calcium hydroxide, béryllium hydroxide, strontium hydroxide, radium hydroxide, or mixtures thereof. In some embodiments, the one or more compounds of (a2) comprise calcium hydroxide. In certain embodiments, the one or more compounds of (a2) comprise calcium oxide.
The step (a) of forming a mixture of particles of raw materials (al) and (a2) as described herein above can include co-grinding or separately comminuting (al) and (a2) using methods known in the art, such as crushing, milling, grinding, etc. of dry or slurried materials, for example using jawcrushers, gyratory crushers, cône crushers, bail mills, rod mills, etc. as described herein.
In various embodiments of the présent disclosure, the step (a) of forming a mixture is by milling (i.e., grinding, comminuting, pulverizing, etc.) the particles of (al) and (a2), either separately or together. In some embodiments, the unmilled particles of (al) and (a2) are first combined and then subsequently milled to form the desired feed mixture (joint milling). In other embodiments, each component, (al) and (a2) is separately milled prior to combination of the components. In some embodiments, only one of (al) or (a2) is separately milled prior to combination of the components, such that a milled component is combined with an unmilled component. In certain embodiments of the présent disclosure, the milling can be bail milling, fluid energy milling, wet milling, media milling, high pressure homogenization milling, cryogénie milling, rod milling, autogenous milling, semi-autonomous milling, buhrstone milling, vertical shaft impactor milling, tower milling, or any combination thereof. In some embodiments, the milling of the mixture of (al) and (a2) is formed by joint bail milling. In certain embodiments, the joint bail milling is of a mixture comprising an alkali métal silicate (i.e., K-feldspar) and an alkaline earth métal oxide or hydroxide (i.e., CaO and Ca(OH)2).
The step (a) of forming a mixture of the particles of (al) and (a2) as described herein above can include co-grinding or separately comminuting (al) and (a2) using methods known in the art, such as crushing, milling, grinding, etc. of dry or slurried materials, for example using jaw-crushers, gyratory crushers, cône crushers, bail mills, rod mills, etc. as described herein. Each component, (al) or (a2), as well as the resulting mixture can be sized as desired, via, for example, sieves, screens, and/or other known methods. In various embodiments, suitable mean particle sizes for (al), (a2), or the resulting mixture, independently range from about 10 pm to about 250 pm. In certain embodiments, the mean particle size of (al), (a2), or the mixture of (al) and (a2), is independently about 10 pm, about 20 pm, about 30 pm, about 40 pm, about 50 pm, about 60 pm, about 70 pm, about 80 pm, about 90 pm, about 100 pm, about 110 pm, about 120 pm, about 130 pm, about 140 pm, about 150 pm, about 160 pm, about 170 pm, about 180 pm, about 190 pm, about 200 pm, about 210 pm, about 220 pm, about 230 pm, about 240 pm, about 250 pm, about 260 pm, about 270 pm, about 280 pm, about 290 pm, about 330 pm, including ail ranges and values between any of these values. In certain embodiments, (al), (a2), or the resulting mixture, independently has a mean particle size of about 17 pm, about 85 pm, about 151 pm, or about 220 pm. If desired, the (al) and (a2) components can hâve similar particle sizes, or different particle sizes as described above. That is, the (al) component can hâve the same, larger, or smaller mean particle size compared to the (a2) component.
In various embodiments of the method described herein, the mixture (i.e., the feedstock) from step (a) is contacted with water in step (b). Contacting the feedstock of step (a) with water in step (b) can be carried out by any suitable method, such as adding water to the feedstock of step (a), or by adding the feedstock of step (a) to water, or by sequentially or simultaneously adding the water and feedstock of step (a) to a suitable vessel, such as a reactor vessel in which the combination of water and the feedstock of step (a) can be heated to a température, optionally under a pressure and/or suitable atmosphère as described herein to form a hydrothermally modified material. In any of these embodiments, water can be added as a liquid, a vapor (i.e., steam), or some combination thereof.
In certain embodiments, the contacting in step (b) of the method is carried out with a weight excess of water relative to the raw material (a2) (e.g., an alkali métal silicate as described herein). In some embodiments, the weight excess of water relative to raw material (a2) presented as a ratio is about 1:1, 2:1, about 3:1, about 4:1, about 5:1, about 6:1, about 7:1, about 8:1, about 9:1, about 10:1, about 11:1, about 12:1, about 13:1, about 14:1, about 15:1, 1 about 6:1, about 17:1, about 18:1, about 19:1, and about 20:1 ; where, for example a 4:1 ratio means that water is présent at 4-times the amount by weight of the raw material (a2) used. In some embodiments, the contacting in step (b) of the method is with a weight ratio of alkali métal silicate raw material (a2) to water of about 1:1, about 2:1, about 3:1, about 4:1, about 5:1, about 6:1, about 7:1, about 8:1, about 9:1, about 10:1, about 11:1, about 12:1, about 13:1, about 14:1, about 15:1, 1 about 6:1, about 17:1, about 18:1, about 19:1, and about 20:1 ; where, for example a 4:1 ratio means that the alkali métal silicate raw material is présent at 4times the amount by weight of the water used.
In some embodiments, the milled feedstock mixture that is contacted with water is introduced into an autoclave or other suitable container or reaction vessel known in the art in order to préparé the hydrothermally modified material formed in step (c). In other embodiments, reaction conditions such as atmosphère, time, température, and pressure can be modulated to tune the properties of the product. In certain embodiments, modification of these parameters can be used to adjust the relative amounts of the constituent phases, including but not limited to, amorphous phase, calcium silicate hydrate, hydrogamet, tobermorite, and K-feldspar. In some embodiments, these parameters can be adjusted to drive conversion of the alkali aluminosilicate (e.g., K-feldspar) specifically into other phases such as amorphous phase(s) and/or calcium silicate hydrate phase(s) (C-S-H; tobermorite). In certain embodiments, the leaching properties of the hydrothermally modified materials and/or dried hydrothermally modified materials provided herein are adjusted by tuning the aforementioned parameters.
In some embodiments, the pressure used in the hydrothermal processing step (c) ranges of from about 5-85 atm. In certain embodiments, the hydrothermal processing step (c) is carried out at pressures of about 5 atm, of about 10 atm, of about 15 atm, of about 20 atm, of about 25 atm, of about 30 atm, of about 35 atm, of about 40 atm, of about 45 atm, of about 50 atm, of about 55 atm, of about 60 atm, of about 65 atm, of about 70 atm, of about 75 atm, of about 80 atm, of about 85 atm, and any ranges of values between any of these values. In some embodiments, the hydrothermal Processing step (c) is carried out at température ranges of from about 120°C-300°C. In certain embodiments, the hydrothermal Processing step (c) is carried out at a température of about 120 °C, about 130 °C, about 140 °C, about 150 °C, about 160 °C, about 170 °C, about 180 °C, about 190 °C, about 200 °C, about 210 °C, about 220 °C, about 230 °C, about 240 °C, about 250 °C, about 260 °C, about 270 °C, about 280 °C, about 290 °C, about 300 °C, and ail ranges of values between any of these values. In some embodiments, the duration of step (c) of the method (i.e. the hydrothermal Processing step) ranges from about 0.1-20 hours. In certain embodiments, the duration of step (c) of the method is about 0.1 h, about 0.25 h, about 0.5 h, about 0.75 h, about 1 h, about 2 h, about 3 h, about 4 h, about 5 h, about 6 h, about 7 h, about 8 h, about 9 h, about 10 h, about 11 h, about 12 h, about 13 h, about 14 h, about 15 h, about 16 h, about 17 h, about 18 h, about 19 h, about 20 h, and ail ranges of values therebetween. In some embodiments, the hydrothermal processing step (c) is carried out at pressure ranges from about 5-85 atm, température ranges from about 120°C-300°C, for a duration ranging from about 0.1-20 hours. In general, the hydrothermal processing step (c) can be performed in any appropriate atmosphère, such as, for example, a reactive atmosphère or an inert atmosphère. In certain embodiments, the atmospheric composition of the hydrothermal processing step (c) include, but are not limited to, argon (Ar), nitrogen (N), air, carbon dioxide (CO2), or mixtures thereof.
The hydrothermally modified material formed in step (c), can include, e.g., an altered form of an alkali métal aluminosilicate relative the form of the alkali métal aluminosilicate in the raw material. The altered form of the alkali métal aluminosilicate can contain some amount of an alkali métal, alkaline earth métal, or other métal or ionic species exchanged from other materials (e.g., CaO, Ca(OH)2 etc. présent in the mixture heated in the presence of water optionally under pressure and/or modified atmosphère as described in various embodiments herein). Exemplary alkali métal aluminosilicates can include potassium aluminosilicates (e.g., K-feldspar, ultrapotassic syenite, or any of the other such materials disclosed herein).
In some embodiments, the method includes a drying step (d), where the hydrothermally modified material formed in step (c) and at least a portion of the supematant aqueous phase formed during hydrothermal processing (e.g., the water added in step (b) contacting the hydrothermally modified material) are dried together. In some embodiments, drying of step (d) is carried out at a température of from about 20 °C to about 300 °C (e.g., from about 30 °C to about 290 °C, from about 40 °C to about 280 °C, from about 50 °C to about 270 °C, from about 60 °C to about 260 °C, from about 70 °C to about 250 °C, from about 80 °C to about 240 °C, from about 90 °C to about 230 °C, from about 100 °C to about 220 °C, from about 110 °C to about 210 °C, from about 120 °C to about 200 °C, from about 130 °C to about 190 °C, from about 140 °C to about 180 °C, or from about 150 °C to about 170 °C). In some embodiments, the drying step is carried out at a température of from about 50 °C to about 160 °C (e.g., from about 60 °C to about 150 °C, from about 70 °C to about 140 °C, from about 80 °C to about 130 °C, from about 90 °C to about 120 °C, or from about 100 °C to about 110 °C). In some embodiments, the drying step is carried out at a température of at least about 20 °C (e.g., at least about 25 °C, at least about 30 °C, at least about 40 °C, at least about 50 °C, at least about 60 °C, at least about 70 °C, at least about 80 °C, at least about 90 °C, at least about 100 °C, at least about 110°C, at least about 120 °C, at least about 130 °C, at least about 140 °C, at least about 150 °C, at least about 160 °C, at least about 170 °C, at least about 180 °C, or at least about 190 °C), and/or at most about 300 °C (e.g., at most about 290 °C, at most about 280 °C, at most about 270 °C, at most about 260 °C, at most about 250 °C, at most about 240 °C, about 230 °C, at most about 220 °C, or at most about 210 °C). In some embodiments, drying is carried out under ambient températures, e.g., by allowing the supematant water to evaporate. In certain embodiments, drying step (d) is performed using flash drying. In some embodiments, the drying step (d) occurs for a duration of from about 1 minute (min) to about 24 hours (h) (e.g., from about 5 min to about 23 h, from about 10 min to about 22 h, from about 20 min to about 21 h, from about 30 min to about 20 h, from about 40 min to about 19 h, from about 50 min to about 18 h, from about 1 h to about 17 h, from about 2 h to about 16 h, from about 3 h to about 15 h, from about 4 h to about 14 h, from about 5 h to about 13 h, from about 6 h to about 12 h, from about 7 h to about 11 h, or from about 8 h to about 10 h). In some embodiments, the drying step occurs for a duration of from about 12 h to about 24 h (e.g., from about 13 h to about 23 h, from about 14 h to about 22 h, from about 15 h to about 21 h, from about 16 h to about 20 h, or from about 17 h to about 19 h). In some aspects, the drying step (d) is carried out for a duration of at least about 1 min (e.g., at least about 5 min, at least about 10 min, at least about 20 min, at least about 30 min, at least about 40 min, at least about 50 min, at least about 1 h, at least about 2 h, at least about 3 h, at least about 4 h, at least about 5 h, at least about 6 h, at least about 7 h, at least about 8 h, or at least about 9 h), and/or at most about 24 h (e.g., at most about 23 h, at most about 22 h, at most about 21 h, at most about 20 h, at most about 19 h, at most about 18 h, at most about 17 h, at most about 16 h, at most about 15 h, at most about 14 h, at most about 13 h, at most about 12 h, or at most about 11). In some embodiments, drying of step (d) is carried out at a pressure of from about 1 bar to about 30 bar (e.g., from about 2 bar to about 29 bar, from about 3 bar to about 28 bar, from about 4 bar to about 27 bar, from about 5 bar to about 26 bar, from about 6 bar to about 25 bar, from about 7 bar to about 24 bar, from about 8 bar to about 23 bar, from about 9 bar to about 22 bar, from about 10 bar to about 21 bar, from about 11 bar to about 20 bar, from about 12 bar to about 19 bar, from about 13 bar to about 18 bar, from about 14 bar to about 17 bar, or from about 15 bar to about 16 bar). In some embodiments, the drying step (d) is carried out at a pressure of at least about 1 bar (e.g., at least about 2 bar, at least about 3 bar, at least about 4 bar, at least about 5 bar, at least about 6 bar, at least about 7 bar, at least about 8 bar, at least about 9 bar, or at least about 10 bar), and/or at most about 30 bar (e.g., at most about 25 bar, at most about 20 bar, at most about 15 bar, at most about 14 bar, at most about 13 bar, at most about 12 bar, or at most about 11 bar). In some embodiments, the drying step (d) is carried out under ambient pressures (e.g., about 1 bar). In some embodiments, drying is carried out at two or more different températures (e.g., for a period of time at a particular température, then for another period of time at a different température), at two or more different pressures, and/or for two or more different time frames. It is to be understood that various combinations of the foregoing process parameters for drying step (d) can be used as appropriate.
In certain embodiments, hydrothermal processing step (c) and drying of step (d) are independently carried out under an inert atmosphère or a reactive atmosphère. As an example, in some embodiments, step (c) is carried out in an inert atmosphère, and step (d) is carried out in an inert atmosphère. As another example, in certain embodiments, step (c) is carried out in a reactive atmosphère, and step (d) is carried out in an inert atmosphère. As a further example, in some embodiments, step (c) is carried out in an inert atmosphère, and step (d) is carried out in a reactive atmosphère. As yet another example, in some embodiments, step (c) is carried out in a reactive atmosphère, and step (d) is carried out in a reactive atmosphère. In some embodiments, an inert atmosphère comprises Ar and/or N2. In certain embodiments, a reactive atmosphère comprises air, oxygen, carbon dioxide, carbon monoxide, and/or ammonia. In some embodiments, step (c) of the method is carried out under an inert atmosphère comprising Ar, or a reactive atmosphère comprising air or carbon dioxide. In certain embodiments, drying step (d) of the method is carried out under an inert atmosphère comprising Ar, or a reactive atmosphère comprising air or carbon dioxide. In some embodiments, step (c) and/or step (d) is carried out in air.
In some embodiments, a reactive atmosphère can comprise an inert gas such as Ar or N2, provided that other components of the atmosphère are reactive. For example, air is a mixture of N2, which is generally inert, and oxygen and traces of CO2, which are reactive. The term reactive atmosphère thus does not exclude gas compositions which include inert gases, provided at least one of the gases in the atmosphère are reactive. The percentage of reactive gas as described herein in a reactive atmosphère can be at least about 10%, and can be up to 100% (by volume), including about 10%, about 15%, about 20%, about 25%, about 30%, about 35%, about 40%, about 45%, about 50%, about 55%, about 60%, about 65%, about 70%, about 75%, about 80%, about 85%, about 90%, about 95%, or about 100% by volume, including ail ranges and subranges between any of these values. Any combination of reactive and inert gas described herein can be used.
The conditions used for drying the hydrothermally modified material formed in step (c) can impact the fondamental properties (e.g., mineralogy) of the dried hydrothermally modified material, such as, for example, elemental leaching properties and/or porosity of the dried hydrothermally modified material. In some embodiments, the step (d) drying the hydrothermally modified material of step (c) can include drying the hydrothermally modified material in the presence of the supematant (e.g., aqueous phase) présent during step (c), such that any species dissolved in the supematant could potentially be recovered as part of the dried hydrothermally modified material. In certain embodiments, at least a portion of the supematant can be separated from the hydrothermally modified material prior to the step (d) drying of the material, for example by decanting or filtering a portion (or essentially ail) of the water from the reactor in which the hydrothermally modified material from step (c) is prepared, then drying the resulting material. When the hydrothermally modified material from step (c) is dried without prior removal/decanting of the supematant, drying can be carried out via any suitable means, such as a flow of a desired gas, such that the gas flows over a slurry produced in step (c) (i.e., the mixture of the hydrothermally modified material suspended in the supematant). In certain embodiments, drying of the hydrothermally modified material from step (c) in the presence of the supematant can be carried out by any appropriate method known in the art, including, but not limited to bubbling a gas directly through the slurry. In some embodiments, drying step (d) includes adiabatic drying or non-adiabatic drying. With adiabatic dryers, solid materials can be exposed to heated gases via methods such as blowing gas across the surface (cross-circulation), blowing gas through solid beds (through-circulation), dropping solids slowly through a slow-moving gas stream (as in a rotary dryer), blowing gases through a bed of solids that fluidize the particles (i.e., fluidized-bed dryer), and by passing solids through a high-velocity hot gas stream (flash drying). Drying can occur via any appropriate mechanism of heat transfer including, but not limited to: direct (convection), indirect (conduction), radiant, or dielectric. In some embodiments, the hydrothermally modified materials prepared are,
e.g., oven dried to produce dried hydrothermally modified materials. In some embodiments, oven drying is carried out at about 90 °C for a duration of 18 h.
In various embodiments, the drying step (d) is performed either in the presence of supematant (water), or after at least a portion of the supematant has been separated as described above, uses air, argon, carbon dioxide, vacuum, or any combination thereof. In certain embodiments, drying step (d) is carried out with one or more reactive gases comprising ammonia, carbon dioxide, carbon monoxide, oxygen, air, or combinations thereof. In some embodiments, drying step (d) is carried out with one or more inert gases such as argon or nitrogen. In some embodiments, drying step (d) is performed with air. In certain embodiments, drying step (d) is carried out with Ar. In some embodiments, drying step (d) is carried out with carbon dioxide. In certain embodiments, drying step (d) is performed under vacuum. In some embodiments, the material is flash dried in drying step (d).
In various embodiments, the présent disclosure provides methods of preparing a hydrothermally modified material, and/or a dried hydrothermally modified material, which readily releases ions (e.g., alkali-metal ions such as K4). In a step (a), the methods can include forming a feed mixture (or feedstock) comprising particles of one or more raw materials (al) which may be in various embodiments one or more compounds selected from, for example, an alkali métal oxide, an alkali métal hydroxide, an alkaline earth métal oxide, and alkaline earth métal hydroxide, and combinations thereof, and raw material (a2) which may include one or more alkali métal silicate starting materials. In step (b), the mixture of step (a) can be contacted with water. In step (c), the feed mixture of step (b) can be subjected to a température and pressure for a time sufficient to form an hydrothermally modified material, in which the alkali métal silicate starting material (a2) is altered, for example by exchanging ions présent in the (al) component with ions présent in the starting (a2) component. The resulting hydrothermally modified material can comprise, e.g., (cl) an altered and/or unaltered form of the alkali métal silicate of (a2) comprising up to about 15 wt. % of the alkali métal and/or alkaline earth métal of the one or more compounds of (al), and (c2) one or more alkali métal and/or alkaline earth métal silicate phases substantially enriched with alkaline earth métal ions. In other various embodiments of the disclosure, the hydrothermally modified material comprises (cl) an altered and/or unaltered form of the alkali métal silicate of (a2) comprising up to about 1 wt. %, up to about 2 wt. %, up to about 3 wt. %, up to about 4 wt. %, up to about 5 wt. %, up to about 6 wt. %, up to about 7 wt. %, up to about 8 wt. %, up to about 9 wt. %, up to about 10 wt. %, up to about 11 wt. %, up to about 12 wt. %, up to about 13 wt. %, up to about wt. %, up to about 15 wt. % of the alkali métal and/or alkaline earth métal of the one or more compounds of (al), including ail ranges of values therebetween. In step (d), the hydrothermally modified material is dried to form a dried hydrothermally modified material which more readily releases ionic species such as, for example, alkali métal ions (K4 Na+, etc.) or other ionic species such as silicates, including silicate salts, Mg2+, Ca2+, etc.
In some embodiments, the présent disclosure provides a method of preparing a dried hydrothermally modified material which has improved release of alkali métal (or other) ions compared to the alkali métal silicate starting material(s) (e.g., comprising potassium aluminosilicates) from which it was prepared.
In various embodiments of the présent disclosure, a hydrothermally modified material, and/or a dried hydrothermally modified material, is an ion releasing material, such as, for example, an alkali métal ion releasing material (e.g., K4 ion releasing material and/or a Na+ ion releasing material). In certain embodiments, a dried hydrothermally modified material is an alkaline earth métal ion releasing material (e.g., a Ca2+ion releasing material and/or a Mg2+ ion releasing material). In some embodiments, a dried hydrothermally modified material is an aluminum ion (e.g., AI34) releasing material. In certain embodiments, a dried hydrothermally modified material releases Si, for example in the form of a silicate sait.
In various embodiments, as described above, the feedstock mixture comprises one or more compounds from (al) and one or more compounds from (a2). In some embodiments, the mixture comprises a calcium-bearing compound and a silicon-bearing compound. In various embodiments of the présent disclosure, the ratio of the calcium containing component (i.e. CaO, Ca(OH)2, CaCO3) to the Silicon bearing material (i.e., alkali aluminosilicates such as potassium aluminosilicates) can be used to modulate the mineralogy, leaching, buffering capacity, as well as other properties of the dried hydrothermally modified material.
Without wishing to be bound by theory, it is believed that in certain embodiments, increasing the Ca/Si ratio in the feedstock drives product formation towards the formation of dicalcium silicate hydrate and/or amorphous phase. In certain embodiments, increasing the Ca/Si ratio in the feedstock has the concurrent effect of diminishing the tobermorite phase. In some embodiments, the dicalcium silicate hydrate phase can be obtained at higher levels than the tobermorite phase by increasing the Ca/Si ratio in the feed mixture. In various embodiments, the Ca/Si ratio is about 0.025 to about 0.9. In certain embodiments, the Ca/Si ratio is about 0.025, about 0.05, about 0.075, about 0.1, about 0.125, about 0.150, about 0.175, about 0.2, about 0.225, about 0.250, about 0.275, about 0.3, about 0.325, about 0.350, about 0.375, about 0.4, about 0.425, about 0.450, about 0.475, about 0. 5, about 0.525, about 0.550, about 0.575, about 0.6, about 0.625, about 0.650, about 0.675, about 0.7, about 0.725, about 0.750, about 0.775, about 0.8, about 0.825, about 0.850, about 0.875, about 0.90, including ail ranges between any of these values.
In some disclosures, the dried hydrothermally modified material comprises about 15-65 wt. % of a K-feldspar phase, about 0-5 wt. % of a tobermorite phase, about 0-20 wt. % of a hydrogamet phase, about 5-30 wt. % of a dicalcium silicate hydrate phase, about 15-35 wt. % of an amorphous phase. In certain embodiments, the dried hydrothermally modified material comprises about 15 wt. % of a K-feldspar phase, about 18 wt. % of a hydrogamet phase, about 30 wt. % of a dicalcium silicate hydrate phase, and about 35 wt. % of an amorphous phase.
In various embodiments, the hydrothermally modified or dried hydrothermally modified material of the présent disclosure comprises about 45-65 wt. % of a K-feldspar phase, about 1-10 wt. % of a tobermorite phase, about 1-10 wt. % of a hydrogamet phase, about 1-10 wt. % of a dicalcium silicate hydrate phase, and about 20-40 wt. % of an amorphous phase.
In certain embodiments, the hydrothermally modified material or dried hydrothermally modified material comprises about 35 wt. %, about 36 wt. %, about 37 wt. %, about 38 wt. %, about 39 wt. %, about 40 wt. %, about 41 wt. %, about 42 wt. %, about 43 wt. %, about 44 wt. %, about 45 wt. % of a K-feldspar phase, about 46 wt. %, about 47 wt. %, about 48 wt. %, about 49 wt. %, about 50 wt. %, about 51 wt. %, about 52 wt. %, about 53 wt. %, about 54 wt. %, about 55 wt. %, about 56 wt.
%, about 57 wt. %, about 58 wt. %, about 59 wt. %, about 60 wt. %, about 61 wt. %, about 62 wt.
%, about 63 wt. %, about 64 wt. %, about 65 wt. %, about 66 wt. %, about 67 wt. %, about 68 wt.
%, about 69 wt. %, about 70 wt. %, about 71 wt. %, about 72 wt. %, about 73 wt. %, about 74 wt.
%, about 75 wt. % of a K-feldspar altered phase (i.e., altered compared to the K-feldspar phases présent in the feedstock), including ail ranges and values there between.
In other embodiments, the hydrothermally modified or dried hydrothermally modified material comprises about 1 wt. %, about 2 wt. %, about 3 wt. %, about 4 wt. %, about 5 wt. %, about 6 wt. %, about 7 wt. %, about 8 wt. %, about 9 wt. %, about 10 wt. %, about 11 wt. %, about 12 wt. %, about 13 wt. %, about 14 wt. %, about 15 wt. %, about 16 wt. %, about 17 wt. %, about 18 wt. %, about 19 wt. %, about 20 wt. % of a tobermorite phase, including ail ranges between any of these values.
In various other embodiments, the hydrothermally modified or dried hydrothermally modified material comprises about 1 wt. %, about 2 wt. %, about 3 wt. %, about 4 wt. %, about 5 wt. %, about 6 wt. %, about 7 wt. %, about 8 wt. %, about 9 wt. %, about 10 wt. %, 11 wt. %, about 12 wt. %, about 13 wt. %, about 14 wt. %, about 15 wt. %, about 16 wt. %, about 17 wt. %, about 18 wt. %, about 19 wt. %, about 20 wt. % of a hydrogamet phase, including ail ranges between any of these values.
In some embodiments, the hydrothermally modified or dried hydrothermally modified material comprises about 1 wt. %, about 2 wt. %, about 3 wt. %, about 4 wt. %, about 5 wt. %, about 6 wt. %, about 7 wt. %, about 8 wt. %, about 9 wt. %, about 10 wt. %, about 11 wt. %, about 12 wt. %, about 13 wt. %, about 14 wt. %, about 15 wt. %, about 16 wt. %, about 17 wt. %, about 18 wt. %, about 19 wt. %, about 20 wt. % of a dicalcium silicate hydrate phase, including ail ranges between any of these values.
In certain other embodiments, the hydrothermally modified or dried hydrothermally modified material comprises about 10 wt. %, about 12 wt. %, about 14 wt. %, about 16 wt. %, about 18 wt. %, about 20 wt. %, about 22 wt. %, about 24 wt. %, about 26 wt. %, about 28 wt. %, about 30 wt. %, about 32 wt. %, about 34 wt. %, about 36 wt. %, about 38 wt. %, about 40 wt. %, about 42 wt. %, about 44 wt. %, about 46 wt. %, about 48 wt. %, about 50 wt. % of an amorphous phase, including ail ranges between any of these values.
In some embodiments, the hydrothermally modified or dried hydrothermally modified material further comprises carbonaceous species. In certain embodiments, the hydrothermally modified or dried hydrothermally modified material comprises about 0-20 wt. % of a carbonaceous species. In some embodiments, the hydrothermally modified or dried hydrothermally modified material comprises about 0% wt. %, about 1% wt. %, about 2% wt. %, about 3 wt. %, about 4 wt. %, about 5 wt. %, about 6 wt. %, about 7 wt. %, about 8 wt. %, about 9 wt. %, about 10 wt. %, about 11 wt. %, about 12 wt. %, about 13 wt. %, about 14 wt. %, about 15 wt. %, about 16 wt. %, about 17 wt. %, about 18 wt. %, about 19 wt. %, or about 20 wt. % of carbonaceous species, including ail ranges and values between any of these values. The carbonaceous species can include, for example, K2CO3, Na2CO3, MgCO3, and/or CaCO3. In some embodiments, the hydrothermally modified or dried hydrothermally modified material further comprises potassium carbonates, calcium carbonates, sodium carbonates, and any combinations thereof. In various embodiments, the hydrothermally modified or dried hydrothermally modified material further comprises potassium carbonates, calcium carbonates, and combinations thereof. In some embodiments, the combinations of potassium carbonates and calcium carbonates thereof include bütschiilite and/or fairchildite. Without wishing to be bound by theory, it is believed that carbonates can contribute to the régulation of the pH properties of the material and can be used to capture atmospheric CO2. In varions embodiments, the carbonaceous species is a calcite phase. In some embodiments, the calcite phase is présent in about 0% wt. % (e.g., is présent in at most only a trace amount), about 1% wt. %, about 2% wt. %, about 3 wt. %, about 4 wt. %, about 5 wt. %, about 6 wt. %, about 7 wt. %, about 8 wt. %, about 9 wt. %, about 10 wt. %, about 11 wt. %, about 12 wt. %, about 13 wt. %, about 14 wt. %, about 15 wt. %, about 16 wt. %, about 17 wt. %, about 18 wt. %, about 19 wt. %, about 20 wt. %, including ail ranges between any of these values. In certain embodiments, the hydrothermally modified or dried hydrothermally modified material elevates the pH of an aqueous solution to a range from about 10 to about 12. This feature of the hydrothermally modified or dried hydrothermally modified materials can improve soil health and/or reduce levels of acidity which can be deleterious in agriculture. Thus, the hydrothermally modified or dried hydrothermally modified materials of the présent disclosure can replace or reduce the need for lime or other pH modifying soil conditioners.
Without wishing to be bound by theory, it is believed that, using a gas comprising CO2 during the drying step (d) can facilitate a décalcification reaction that occurs when calcium silicate hydrate (C-S-H) phases are exposed to CO2. In some embodiments, the décalcification that occurs under an atmosphère comprising CO2 results in the production of a calcite (i.e. the stable polymorph form of CaCCh) phase provided by décalcification of the calcium in the C-S-H phase. In certain embodiments, it is believed that the calcite phase is responsible for trapping potassium, resulting a dried hydrothermally modified material that exhibits a relatively (slow or continuous release of potassium. In some embodiments, the modified potassium-release is slower than the release of potassium compared to otherwise identical material not exposed to CO2 during drying, and extends over a longer period of time. In some embodiments, it is believed that the décalcification of C-S-H leads to the production of Silicon dioxide (SiO2). In certain embodiments, it is believed that décalcification of the C-S-H phase is accompanied by the décalcification of hydrogamet in the dried hydrothermally modified material, leading to the additional production of aluminum oxide (AI2O3).
The disclosed methods can be carried out in batch processes or under continuous conditions. In some embodiments, the alkali métal and/or alkaline earth métal silicate phase of (c2) comprises up to about 23 wt. % alkaline earth meta! ions. In certain embodiments, the alkali métal and/or alkaline earth métal silicate phase of (c2) comprises up to about 1 wt. %, up to about 2 wt. %, up to about 3 wt. %, up to about 4 wt. %, up to about 5 wt. %, up to about 6 wt. %, up to about 7 wt. %, up to about 8 wt. %, up to about 9 wt. %, up to about 10 wt. %, up to about 11 wt. %, up to about 12 wt. %, up to about 13 wt. %, up to about 14 wt. %, up to about 15 wt. %, up to about 16 wt. %, up to about 17 wt. %, up to about 18 wt. %, up to about 19 wt. %, up to about 20 wt. %, up to about 21 wt. %, up to about 22 wt. %, up to about 23%, of alkaline earth métal ions, including ail ranges between any of these values.
In some embodiments, the alkali métal and/or alkaline earth métal silicate phase of (c2) comprises an average of about 1 wt. %, about 2 wt. %, about 3 wt. %, about 4 wt. %, about 5 wt. % of alkaline earth métal ions, including ail ranges of values therebetween. In certain embodiments, the alkali métal and/or alkaline earth métal silicate phase of (c2) comprises an average of about 3 wt. % alkaline earth métal ions.
Many of the materials disclosed herein hâve been characterized by X-Ray Powder Diffraction (XRPD), Scanning Electron Microscopy (SEM), Electron Probe Micro-Analyzer (ΕΡΜΑ), Particle Size Distribution (PSD), Spécifie Surface Area (according to the BET method; BET-SSA), and batch leaching tests (as well as other techniques known to the skilled artisan) does in fact possess the above-mentioned désirable properties. An understanding of the mineralogy of the inventive materials has been gained from XRPD results (e.g., FIG. 4E) and imaging (e.g., FIGS. 14 and 15), such that the minerai phases composing the hydrothermally modified or dried hydrothermally modified material can be identified and quantified, as well as their degree of elemental inclusions with respect to stoichiometric Chemical formulae. It has been observed that the feldspar framework, as an exemplary alkali métal silicate starting material, undergoes structural and Chemical changes, a phenomenon termed alteration or altered herein.
From the characterization, it was found that the material exhibits complex mineralogy and Chemical properties. In some embodiments, the particle size distribution spans particles diameters from ~0.1 pm to -100 pm. In other embodiments, the constituent minerai phases are altered K-feldspar, hydrogamet, α-dicalcium silicate hydrate, 11 Â tobermorite, and amorphous calcium-aluminosilicate-hydrate compounds. In certain embodiments, the phases nucleated in situ exhibit non-stoichiometric content of Ca, Al and Si; other than hydrogamet, extensive degree of K-inclusion in ail minerai structures is observed. In certain embodiments, traces of carbonaceous species with variable levels of K and Ca are also constituents of the material. In various embodiments, altered K feldspar is Ca-substituted. In some embodiments, upon leaching, the availability of K, Si, Al and Ca in the dried hydrothermally modified material is enhanced with respect to the parent ultrapotassic syenite raw material, where the potassium released from the dried hydrothermally modified material after 24 h is shown to be two orders of magnitude higher than in the corresponding ultrapotassic syenite raw material.
In some embodiments of the présent disclosure, the hydrothermally modified or dried hydrothermally modified material provided by the methods described herein comprises a multimodal particle size distribution comprising particles ranging in diameter from about 5-1000 pm. In still another embodiment of the présent disclosure, the hydrothermally modified or dried hydrothermally modified material of the présent disclosure comprises aggregated particles ranging in size from about 100-1000 pm. In some embodiments, the spécifie surface area according to the BET method (BET-SSA) was 15.1 m2 g'1 for the dried hydrothermally modified material and 46.9 m2 g'1 for the feed mixture
In various embodiments, the disclosed hydrothermally modified or dried hydrothermally modified materials hâve mean particle size range from about 0.5 pm to about 250 pm. In certain embodiments, the mean particle size is about 0.5 pm, about 1 pm, about 1.5 pm, about 2 pm, about 2.5 pm, about 3 pm, about 3.5 pm, about 4 pm, about 4.5 pm, about 5 pm, about 5.5 pm, about 6 pm, about 6.5 pm, about 7 pm, about 7.5 pm, about 8 pm, about 8.5 pm, about 9 pm, about 9.5 pm, about 10 pm, about 20 pm, about 30 pm, about 40 pm, about 50 pm, about 60 pm, about 70 pm, about 80 pm, about 90 pm, about 100 pm, about 110 pm, about 120 pm, about 130 pm, about 140 pm, about 150 pm, about 160 pm, about 170 pm, about 180 pm, about 190 pm, about 200 pm, about 210 pm, about 220 pm, about 230 pm, about 240 pm, about 250 pm, about 260 pm, about 270 pm, about 280 pm, about 290 pm, about 330 pm, including ail ranges between any of these values.
It is herein recognized that the complex mineralogy, in addition to other newly understood features can be used to tune the leaching abilities of the dried hydrothermally modified material. In particular, leaching experiments (e.g., FIG. 24, FIG. 9B) hâve been used to assess the Chemical stability of the minerai phases upon contact with water. Chemical stability in this area is understood in relation to the ability to release plant nutrients, and needs to be contextualized in the agronomie context. With such an understanding, dried hydrothermally modified materials can be designed and prepared to meet an even wider variety of soil needs, with applications available in other industries as well.
As described in detail throughout this disclosure and in the Examples that follow, a prominent feature of the dried hydrothermally modified material is the availability of potassium (K4), as evidenced by leaching tests (see FIG. 24 for a représentative example).
Without wishing to be bound by theory, the evidence presented herein indicates that the mechanism for such an enhanced K availability is the Ca-mediated hydrothermal alteration of K-feldspar, i.e. the hydrolytic dissolution of K-feldspar Framework coupled with the inclusion of Ca2+ in place of K+. In some embodiments, a hydrothermally modified or dried hydrothermally modified material releases métal ions, such as, for example, K+.
As used herein, “the 24-hour potassium release test” is performed as follows. An amount of a material is exposed to 10-fold excess of 10‘5 M HNO3 for 24 hour. The amount of potassium ion released from the material during the 24 hour period is the potassium release of the material according to the 24-hour potassium release test. When comparing the amount of potassium release according to the 24-hour potassium release test, the amount of material tested for each of the different materials is the same.
In some embodiments, according to the 24-hour potassium release test, the amount of K+ released from the dried hydrothermally modified material is at least 2-fold higher than the amount of K+ released by the one or more alkali métal silicate starting materials of (a2). In various embodiments, according to the 24-hour potassium release test, the amount of K+ released from the dried hydrothermally modified material relative to the amount of K+ released by the one or more alkali métal silicate starting materials of (a2) was 2-fold higher, 3-fold higher, 4-fold higher, 5-fold higher, 6-fold higher, 7-fold higher, 8-fold higher, 9-fold higher, 10-fold higher, 15-fold higher, 20-fold higher, 25-foId higher, 30-fold higher, 35-fold higher, 40-fold higher, 45-foId higher, 50-fold higher, 55-fold higher, 60-fold higher, 65-fold higher, 70-fold higher, 75-fold higher, 80-fold higher, 85fold higher, 90-fold higher, 95-fold higher, 100-fold higher, 150-fold higher,. 200-fold higher, 250fold higher, 300-fold higher, 350-fold higher, 400-fold higher, 450-fold higher, or 500-fold higher, including ail values therebetween.
In some embodiments, the amount of K+ released from the dried hydrothermally modified material according to the 24-hour potassium release test ranges from about 5 to about 25 g K+/kg dried hydrothermally modified material. In certain embodiments, the amount of K+ released according to the 24-hour potassium release test is about 5 g K+/kg dried hydrothermally modified material, about 6 g K+/kg dried hydrothermally modified material, about 7 g K+/kg dried hydrothermally modified material, about 8 g K+/kg dried hydrothermally modified material, about 9 g K+/kg dried hydrothermally modified material, about 10 g K+/kg dried hydrothermally modified material, about 11 g K+/kg dried hydrothermally modified material, about 12 g K+/kg dried hydrothermally modified material, about 13 g K+/kg dried hydrothermally modified material, about 14 g K+/kg dried hydrothermally modified material, about 15 g K+/kg dried hydrothermally modified material, about 14 g K+/kg dried hydrothermally modified material, about 16 g K+/kg dried hydrothermally modified material, about 14 g K+/kg dried hydrothermally modified material, about 17 g K+/kg dried hydrothermally modified material, about 18 g K+/kg dried hydrothermally modified material, about 19 g K+/kg dried hydrothermally modified material, about 20 g K+/kg dried hydrothermally modified material, about 21 g K+/kg dried hydrothermally modified material, about 22 g K+/kg dried hydrothermally modified material, about 23 g K+/kg dried hydrothermally modified material, about 24 g K+/kg dried hydrothermally modified material, or about 25 g K+/kg dried hydrothermally modified material, including ail values and ranges therebetween.
In certain embodiments, K-release from a dried hydrothermally modified material is enhanced by utilizing a solution of pH 5 CSNO3/HNO3. In various embodiments, K-release from a dried hydrothermally modified material after 24 h exposure to a 10-fold excess of 10'5 M CSNO3/HNO3 is about 1.1-fold to about 2-fold higher than K-release of the same material in a pH 5 leaching solution of HNO3. In some embodiments, leaching is about 1.1-fold higher, about 1.2-fold higher, about 1.3fold higher, about 1.4-fold higher, about 1.5-fold higher, about 1.6-fold higher, about 1.7-fold higher, about 1.8-fold higher, about 1.9-fold higher, about 2-fold higher, including ail ranges and values therebetween. Without being bound by any particular theory, it is believed that components of the solid favor uptake of Cs+ and release of K+.
As used herein, “the one-minute potassium release test” is performed as follows. An amount of a material is exposed to 10-fold excess of 10'5 Μ HNO3 for one minute. The amount of potassium ion released from the material during the one minute period is the potassium release of the material according to the one-minute potassium release test. In some embodiments, according to the oneminute potassium release test, a dried hydrothermally modified material releases at least 5,000 mg (e.g., at least 6,000 mg, at least 7,000 mg, at least 8,000 mg, at least 9,000 mg, at least 10,000 mg, at least 11,000 mg) of potassium per kilogram of the dried hydrothermally modified material.
In some embodiments, a relatively large amount the potassium is initially released from a dried hydrothermally modified material, followed by a relatively small amount of potassium released over an extended period of time. This can be quantified, for example, by measuring the “relative potassium” release, which is defined as X/Y, where X is the amount of potassium released by a material according to the one-minute potassium release test, and Y is the amount of potassium released by the material according to the 24-hour potassium release test less the amount of potassium released by the material according to the one-minute potassium release test. In some embodiments, a dried hydrothermally modified material has a relative potassium release of from about five to about 20 (e.g., from about seven to about 15, from about nine to about 12). In certain embodiments, a dried hydrothermally modified material has a relative potassium release of at least about five (e.g., at least about six, at least about seven, at least about eight, at least about nine, at least about 10, at least about 11, at least about 12, at least about 13) and/or at most about 20 (e.g., at most about 19, at most about 18, at most about 17, at most about 16, at most about 15, at most about 14).
In some embodiments, the dried hydrothermally modified material is capable of releasing other éléments in addition to K. In various embodiments, the additional éléments capable of release from the material include Al, Si, Ca, Na. and Mg (e.g., in the form of soluble salts, which can contain the noted éléments in ionic form).
As used herein, “the 24-hour calcium release test” is performed as follows. An amount of a material is exposed to 10-fold excess of ΙΟ'5 Μ ΗΝΟ3 for 24 hour. The amount of calcium ion released from the material during the 24 hour period is the calcium release of the material according to the 24-hour calcium release test. When comparing the amount of calcium release according to the 24-hour calcium release test, the amount of material tested for each of the different materials is the same.
In certain embodiments of the présent disclosure, according to the 24-hour calcium release test, the amount of Ca2+ released from the hydrothermally modified or dried hydrothermally modified material ranges from about 0.01 to about 0.35 g Ca2+/kg dried hydrothermally modified material. In some embodiments, the amount of Ca2+ released according to the 24-hour calcium release test was about 0.01 g Ca2+/kg dried hydrothermally modified material, about 0.025 g Ca2+/kg dried hydrothermally modified material, about 0.05 g Ca2+/kg dried hydrothermally modified material, about 0.075 g Ca2+/kg dried hydrothermally modified material, about 0.1 g Ca2+/kg dried hydrothermally modified material, about 0.125 g Ca2+/kg dried hydrothermally modified material, about 0.15 g Ca2+/kg dried hydrothermally modified material, about 0.175 g Ca2+/kg dried hydrothermally modified material, about 0.2 g Ca2+/kg dried hydrothermally modified material, about 0.225 g Ca2+/kg dried hydrothermally modified material, about 0.25 g Ca2+/kg dried hydrothermally modified material, about 0.275 g Ca2+/kg dried hydrothermally modified material, about 0.3 g Ca2+/kg dried hydrothermally modified material, about 0.325 g Ca2+/kg dried hydrothermally modified material, about 0.35 g Ca2+/kg dried hydrothermally modified material, including ail values and ranges therebetween.
As used herein, “the 24-hour aluminum release test” is performed as follows. An amount of a material is exposed to 10-fold excess of 10f M HNO3 for 24 hour. The amount of aluminum ion released from the material during the 24 hour period is the aluminum release of the material according to the 24-hour aluminum release test. When comparing the amount of aluminum release according to the 24-hour aluminum release test, the amount of material tested for each of the different materials is the same.
In some embodiments of the présent disclosure, according to the 24-hour aluminum release test, the amount of Al3+ released from the hydrothermally modified or dried hydrothermally modified material ranges from about 0.02 to about 0.35 g Al3+/kg dried hydrothermally modified material. In some embodiments, the amount of Al3+ released according to the 24-hour aluminum release test was about 0.02 g Al3+/kg dried hydrothermally modified material, about 0.05 g Al3+/kg dried hydrothermally modified material, about 0.075 g Al3+/kg dried hydrothermally modified material, about 0.1 g Al3+/kg dried hydrothermally modified material, about 0.125 g Al3+/kg dried hydrothermally modified material, about 0.15 g Al3+/kg dried hydrothermally modified material, about 0.175 g Al3+/kg dried hydrothermally modified material, about 0.2 g Al3+/kg dried hydrothermally modified material, about 0.225 g Al3+/kg dried hydrothermally modified material, about 0.25 g Al3+/kg dried hydrothermally modified material, about 0.275 g Al3+/kg dried hydrothermally modified material, about 0.3 g Al3+/kg dried hydrothermally modified material, about 0.325 g Al3+/kg dried hydrothermally modified material, about 0.35 g Al3+/kg dried hydrothermally modified material, including ail values and ranges therebetween.
As used herein, “the 24-hour Silicon release test” is performed as follows. An amount of a material is exposed to 10-fold excess of 10'5 Μ HNO3 for 24 hour. The amount of Silicon released from the material during the 24 hour period is the Silicon release (e.g., in the form of soluble silicates, including orthosilicic acid and oligomeric or polymeric forms thereof) of the material according to the 24-hour Silicon release test. When comparing the amount of Silicon release according to the 24hour Silicon release test, the amount of material tested for each of the different materials is the same.
In some embodiments, according to the 24-hour Silicon release test, the amount of Silicon released from the hydrothermally modified or dried hydrothermally modified material ranges from about 0.1 to about 1.5 g silicon/kg dried hydrothermally modified material. In certain embodiments, the amount of Silicon released according to the 24-hour Silicon release test was about 0.1 g silicon/kg dried hydrothermally modified material, about 0.2 g silicon/kg dried hydrothermally modified material, about 0.3 g silicon/kg dried hydrothermally modified material, about 0.4 g silicon/kg dried hydrothermally modified material, about 0.5 g silicon/kg dried hydrothermally modified material, about 0.6 g silicon/kg dried hydrothermally modified material, about 0.7 g silicon/kg dried hydrothermally modified material, about 0.8 g silicon/kg dried hydrothermally modified material, about 0.9 g silicon/kg dried hydrothermally modified material, about 1 g silicon/kg dried hydrothermally modified material, about 1.1 g silicon/kg dried hydrothermally modified material, about 1.2 g silicon/kg dried hydrothermally modified material, about 1.3 g silicon/kg dried hydrothermally modified material, about 1.4 g silicon/kg dried hydrothermally modified material, about 1.5 g silicon/kg dried hydrothermally modified material, including ail values and ranges therebetween.
As used herein, “the 24-hour sodium release test” is performed as follows. An amount of a hydrothermally modified material or dried hydrothermally modified material is exposed to 10-fold excess of 10'5 M HNO3 for 24 hour. The amount of sodium released from the material during the 24 hour period is the sodium release of the material according to the 24-hour sodium release test. When comparing the amount of sodium release according to the 24-hour sodium release test, the amount of material tested for each of the different materials is the same.
In yet another embodiment of the présent disclosure, according to the 24-hour sodium release test, the amount of Na+ released from the hydrothermally modified or dried hydrothermally modified material ranges from about 0.01 to about 0.1 g Na+/kg dried hydrothermally modified material. In yet another, the amount of Na+ released according to the 24-hour sodium release test was about 0.01 g Na+/kg dried hydrothermally modified material, about 0.015 g Na+/kg dried hydrothermally modified material, about 0.02 g Na+/kg dried hydrothermally modified material, about 0.025 g Na+/kg dried hydrothermally modified material, about 0.03 g Na+/kg dried hydrothermally modified material, about 0.035 g Na+/kg dried hydrothermally modified material, about 0.04 g Na+/kg dried hydrothermally modified material, about 0.045 g Na+/kg dried hydrothermally modified material, about 0.05 g Na+/kg dried hydrothermally modified material, about 0.055 g Na+/kg dried hydrothermally modified material, about 0.06 g Na+/kg alkali métal ion-releasing material, about 0.065 g Na+/kg dried hydrothermally modified material, about 0.07 g Na+/kg dried hydrothermally modified material, about 0.075 g Na+/kg dried hydrothermally modified material, about 0.08 g Na+/kg dried hydrothermally modified material, about 0.085 g Na+/kg dried hydrothermally modified material, about 0.09 g Na+/kg dried hydrothermally modified material, about 0.095 g Na /kg dried hydrothermally modified material, about 0.1 g Na+/kg dried hydrothermally modified material, including ail values and ranges therebetween.
As used herein, “the 24-hour magnésium release test” is performed as follows. An amount of a hydrothermally modified material or a dried hydrothermally modified material is exposed to 10-fold excess of 10‘5 Μ HNO3 for 24 hour. The amount of magnésium ion released from the material during the 24 hour period is the magnésium release of the material according to the 24-hour magnésium release test. When comparing the amount of magnésium release according to the 24hour magnésium release test, the amount of material tested for each of the different materials is the same.
fn some embodiments of the présent disclosure, according to the 24-hour magnésium release test, the amount of magnésium released from the hydrothermally modified or dried hydrothermally modified material ranges from about 0.01 to about 0.1 g Mg2+/kg dried hydrothermally modified material. In some embodiments, the amount of Mg2+ released according to the 24-hour magnésium release test was about 0.01 g Mg2+/kg dried hydrothermally modified material, about 0.015 g Mg2+/kg dried hydrothermally modified material, about 0.02 g Mg2+/kg dried hydrothermally modified material, about 0.025 g Mg2+/kg dried hydrothermally modified material, about 0.03 g Mg2+/kg dried hydrothermally modified material, about 0.035 g Mg2+/kg dried hydrothermally modified material, about 0.04 g Mg2+/kg dried hydrothermally modified material, about 0.045 g Mg2+/kg dried hydrothermally modified material, about 0.05 g Mg2+/kg dried hydrothermally modified material, about 0.055 g Mg2+/kg dried hydrothermally modified material, about 0.06 g Mg2+/kg alkali métal ion-releasing material, about 0.065 g Mg2+/kg dried hydrothermally modified material, about 0.07 g Mg2+/kg dried hydrothermally modified material, about 0.075 g Mg2+/kg dried hydrothermally modified material, about 0.08 g Mg2+/kg dried hydrothermally modified material, about 0.085 g Mg2+/kg dried hydrothermally modified material, about 0.09 g Mg2+/kg dried hydrothermally modified material, about 0.095 g Mg2+/kg dried hydrothermally modified material, about 0.1 g Mg?+/kg dried hydrothermally modified material, including ail values and ranges therebetween.
Based on the foregoing, and without wishing to be bound by theory, it is believed that the mineralogy of the hydrothermally modified or dried hydrothermally modified material suits tropical soils. In various embodiments, altered K-feldspar as described herein is a potential nutrient réservoir and contributes positively to soil mechanics. It is believed that hydrogamet stabilizes effectively Al, whereas α-dicalcium silicate hydrate, 11 Â tobermorite and the amorphous calciumsilicate-hydrate are a source of K, Si, Ca, and alkalinity. With higher alkalinity, a substitute for liming can be available. Tobermorite can act as an ion exchanger especially if isomorphic inclusions such as those confirmed in this study occur (Table 1; ESI-EPMA). Furthermore, Al-substituted tobermorites can show a higher selectivity for Cs, and possibly other heavy metals, which may be particularly useful to remediate contaminated soils. The charge of such minerai phases is envisaged to further benefit soils. At lower pH, soil colloids are positively charged, holding anions such as nitrates and phosphates, whereas at higher pH négative charges hold the cations. The major minerai phases of the dried hydrothermally modified material are expected to hâve a négative surface charge, unless at extremely low pH. Feldspar itself has a négative surface charge above pH~2. Although such value is influenced by the ionic strength of the soil solution, the altered feldspar fraction alone may aid limiting losses of immediately available K , contributing to an active séquestration of Al3+ and Fe2+/3+ as well.
In some embodiments, the dried hydrothermally modified material as described herein possesses the capability to release a first portion of the element(s) (e.g., K, Ca, Mg, Na, Al, and/or Si) relatively quickly (e.g., is readily water soluble and dissolves within minutes or hours of contact with water), while one or more additional portions are released in a relatively delayed and/or continuous fashion over an extended period of time (e.g., is in a less soluble form and releases more slowly, over a period of days to weeks to months). Therefore, in some embodiments, the dried hydrothermally modified materials disclosed herein possess the désirable property of having both relatively fastrelease K and relatively slow-release K, as noted above.
In some embodiments, dried hydrothermally modified materials having predominantly relatively slow-release K can be prepared by rinsing dried material with inert-gas purged water. It is believed that such treatment removes the soluble K, leaving behind the potassium capable of delayed and continuous release. In certain embodiments, the rinsed materials release about 1% to about 20% of the potassium available in an unrinsed material. In some embodiments, the rinsed materials release about 1%, about 2%, about 3%, about 4%, about 5%, about 6%, about 7%, about 8%, about 9%, about 10%, about 11%, about 12%, about 13%, about 14%, about 15%, about 16%, about 17%, about 18%, about 19%, about 20% of the potassium available in an unrinsed material, including ail values and ranges therebetween.
In some embodiments, it is believed that the dried hydrothermally modified material possesses an immediately soluble carbonaceous or hydroxide component (e,g., potassium hydroxide) that can, for example, provide crops an immédiate source of chlorine-free K. However, it is believed that, in some embodiments, the relatively small relatively extended release portion of K released from the dried hydrothermally modified material is redistributed among several phases, and thus is likely to be available at a slower rate.
In various embodiments, the dried hydrothermally modified material is a fertilizer. In some embodiments, the fertilizer is a K fertilizer. In certain embodiments, the fertilizer is a Ca fertilizer. In some embodiments, the fertilizer is a Na+ fertilizer. In certain embodiments, the fertilizer is a Mg2+ fertilizer. In some embodiments, the fertilizer is a Silicon fertilizer. In certain embodiments, the fertilizer is a multi-nutrient fertilizer (e.g., by releasing one or more of the species noted in this paragraph).
It has also been shown in various embodiments of the présent disclosure that the cationic element available for release can be exchanged in one or more steps e.g., during drying in step (d) or during step (c). These ion-exchange characteristics can be useful in tailoring the métal ion-releasing material to particular applications including, but not limited to, soil remediation (Cs+ or Cd2+) and slow N-release fertilizers (NH4+). In some embodiments, dried hydrothermally modified materials that are slow release fertilizers can respond to plant signais (e.g., excrétion of exudates) resulting in the release of spécifie nutrients via minerai exchange. In various embodiments, the bénéficiai and surprising moderate métal ion release is in part due to the aforementioned ion-exchange properties of the dried hydrothermally modified material.
The tunable nature of the process described herein enables the formation of any number of distinct compositions with various ranges of the mineralogical phases described throughout the disclosure, via modification of reaction, processing, and drying conditions.
In various embodiments, the hydrothermally modified or dried hydrothermally modified materials comprise: altered potassium aluminosilicate (e.g., a potassium aluminosilicate in which at least about 5%, about 10%, about 15%, about 20%, about 25%, or about 30% of the potassium originally présent in the aluminosilicate lattice of the raw material is replaced with another cation such as Ca2+); calcium aluminosilicate; and calcium silicate hydrate; wherein the amount of available potassium in the hydrothermally modified or dried hydrothermally modified material is at least about 10% by weight of the total potassium content of the material, wherein available potassium is the amount of potassium dissolved when the material is subjected to leaching conditions comprising stirring 1 part by weight of the powdered material in 10 parts by weight of HNO3 having an initial pH of 5 for 24 hours. In some embodiments, the amount of available potassium is at least about 1%, at least about 2%, at least about 3%, at least about 4%, at least about 5%, at least about 6%, at least about 7%, at least about 8%, at least about 9%, at least about 10%, at least about 11%, at least about 12%, at least about 13%, at least about 14%, at least about 15%, at least about 16%, at least about 17%, at least about 18%, at least about 19%, or at least about 20% by weight of the total potassium content of the material. In certain embodiments, the hydrothermally modified or dried hydrothermally modified material comprises ultrapotassic syenite having at least about 1-10 wt. % of the potassium of the lattice replaced with calcium. In some embodiments, the hydrothermally modified or dried hydrothermally modified material comprises ultrapotassic syenite having at least about 1%, about 2%, about 3%, about 4%, about 5%, about 6%, about 7%, about 8%, about 9%, or about 10%, including ail ranges and values therebetween
In some embodiments, dried hydrothermally modified materials are provided that comprise about 45-65% by weight of an altered potassium-feldspar phase, about 1-10 wt. % of a tobermorite phase, about 1-10 wt. % of a hydrogamet phase, about 1-10 wt. % of a dicaicium silicate hydrate phase, and about 20-40 wt. % of an amorphous phase. In certain embodiments, the dried hydrothermally modified material comprises about 45 wt. % of a K-feldspar phase, about 46 wt. %, about 47 wt. %, about 48 wt. %, about 49 wt. %, about 50 wt. %, about 51 wt. %, about 52 wt. %, about 53 wt. %, about 54 wt. %, about 55 wt. %, about 56 wt. %, about 57 wt. %, about 58 wt. %, about 59 wt. %, about 60 wt. %, about 61 wt. %, about 62 wt. %, about 63 wt. %, about 64 wt. %, about 65 wt. %, including ail ranges and values therebetween. In other embodiments, the dried hydrothermally modified material comprises about 1 wt. % of a tobermorite phase, about 2 wt. %, about 3 wt. %, about 4 wt. %, about 5 wt. %, about 6 wt. %, about 7 wt. %, about 8 wt. %, about 9 wt. %, about 10 wt. %, including ail ranges and values therebetween. In certain embodiments, the dried hydrothermally modified material comprises about 1 wt. % of a hydrogamet phase, about 2 wt. %, about 3 wt. %, about 4 wt. %, about 5 wt. %, about 6 wt. %, about 7 wt. %, about 8 wt. %, about 9 wt. %, about 10 wt. %, including ail ranges and values therebetween. In some embodiments, the dried hydrothermally modified material comprises about 1 wt. % of a dicalcium silicate hydrate phase, about 2 wt. %, about 3 wt. %, about 4 wt. %, about 5 wt. %, about 6 wt. %, about 7 wt. %, about 8 wt. %, about 9 wt. %, about 10 wt. %, including ail ranges and values therebetween. In certain other embodiments, the dried hydrothermally modified material comprises about 20 wt. % of an amorphous phase, about 22 wt. %, about 24 wt. %, about 26 wt. %, about 28 wt. %, about 30 wt. %, about 32 wt. %, about 34 wt. %, about 36 wt. %, about 38 wt. %, about 40 wt. %, including ail ranges and values therebetween.
In some embodiments, the hydrothermally modified or dried hydrothermally modified materials disclosed herein further comprises one or more carbonates, e.g., K2CO3, Na2CÜ3, MgCO3, CaCO3; and combinations thereof. In some embodiments, the hydrothermally modified or dried hydrothermally modified materials further comprise potassium carbonates, calcium carbonates, sodium carbonates, and any combinations thereof. In certain embodiments, the hydrothermally modified or dried hydrothermally modified materials further comprise potassium carbonates, calcium carbonates, and combinations thereof. In some embodiments, the combinations of potassium carbonates and calcium carbonates thereof include bütschiilite and/or fairchildite.
In some embodiments, hydrothermally modified or dried hydrothermally modified materials are provided, wherein one or more of the following éléments are dissolved when the materials are subjected to said leaching conditions: at least about 1000 ppm Si; at least about 200 ppm Al; at least about 200 ppm Ca, about 5 ppm Na, and at least about 5 ppm Mg. In some embodiments, at least about 50 ppm Si, at least about 100 ppm Si, at least about 150 ppm Si, at least about 200 ppm Si, at least about 250 ppm Si, at least about 300 ppm Si, at least about 350 ppm Si, at least about 400 ppm Si, at least about 450 ppm Si, at least about 500 ppm Si, at least about 550 ppm Si, at least about 600 ppm Si, at least about 650 ppm Si, at least about 700 ppm Si, at least about 750 ppm Si, at least about 800 ppm Si, at least about 850 ppm Si, at least about 900 ppm Si, at least about 950 ppm Si, at least about 1000 ppm Si, at least about 1050 ppm Si, at least about 1100 ppm Si, at least about 1150 ppm Si, at least about 1200 ppm Si, at least about 1250 ppm Si, at least about 1300 ppm Si, at least about 1350 ppm Si, at least about 1400 ppm Si, at least about 1450 ppm Si, at least about 1500 ppm Si, at least about 1550 ppm Si, including ail values therebetween, is dissolved when the materials are subjected to said conditions. In various embodiments, at least about 10 ppm Al, at least about 20 ppm Al, at least about 30 ppm Al, at least about 40 ppm Al, at least about 50 ppm Al, at least about 60 ppm Al, at least about 70 ppm Al, at least about 80 ppm Al, at least about 90 ppm Al, at least about 100 ppm Al, at least about 110 ppm Al, at least about 120 ppm Al, at least about 130 ppm Al, at least about 140 ppm Al, at least about 150 ppm Al, at least about 160 ppm Al, at least about 170 ppm Al, at least about 180 ppm Al, at least about 190 ppm Al, at least about 200 ppm Al, at least about 210 ppm Al, at least about 220 ppm Al, at least about 230 ppm Al, at least about 240 ppm Al, at least about 250 ppm Al, at least about 260 ppm Al, at least about 270 ppm Al, at least about 280 ppm Al, at least about 290 ppm Al, or at least about 300 ppm Al, including ail values therebetween, is dissolved when the composition materials are subjected to said conditions. In certain embodiments, at least about 10 ppm Ca, at least about 20 ppm Ca, at least about 30 ppm Ca, at least about 40 ppm Ca, at least about 50 ppm Ca, at least about 60 ppm Ca, at least about 70 ppm Ca, at least about 80 ppm Ca, at least about 90 ppm Ca, at least about 100 ppm Ca, at least about 110 ppm Ca, at least about 120 ppm Ca, at least about 130 ppm Ca, at least about 140 ppm Ca, at least about 150 ppm Ca, at least about 160 ppm Ca, at least about 170 ppm Ca, at least about 180 ppm Ca, at least about 190 ppm Ca, at least about 200 ppm Ca, at least about 210 ppm Ca, at least about 220 ppm Ca, at least about 230 ppm Ca, at least about 240 ppm Ca, at least about 250 ppm Ca, at least about 260 ppm Ca, at least about 270 ppm Ca, at least about 280 ppm Ca, at least about 290 ppm Ca, at least about 300 ppm Ca, at least about 310 ppm Ca, at least about 320 ppm Ca, at least about 330 ppm Ca, at least about 340 ppm Ca, at least about 350 ppm Ca, at least about 360 ppm Ca, at least about 370 ppm Ca, at least about 380 ppm Ca, at least about 390 ppm Ca, or at least about 400 ppm Ca, including ail values therebetween, is dissolved when the materials are subjected to said conditions. In some embodiments, at least about 0.25 ppm Mg, at least about 0.5 ppm Mg, at least about 0.75 ppm Mg, at least about 1 ppm Mg, at least about 1.25 ppm Mg, at least about 1.5 ppm Mg, at least about 1.75 ppm Mg, at least about 2 ppm Mg, at least about 2.25 ppm Mg, at least about 2.50 ppm Mg, at least about 2.75 ppm Mg, at least about 3 ppm Mg, at least about 3.25 ppm Mg, at least about 3.5 ppm Mg, at least about 3.75 ppm Mg, at least about 4 ppm Mg, at least about 4.25 ppm Mg, at least about 4.50 ppm Mg, at least about 4.75 ppm Mg, at least about 5 ppm Mg, at least about 5.25 ppm Mg, at least about 5.50 ppm Mg, at least about 5.75 ppm Mg, at least about 6 ppm Mg, at least about 6.75 ppm Mg, at least about 7 ppm Mg, at least about 7.25 ppm Mg, at least about 7.5 ppm Mg, at least about 7.75 ppm Mg, or at least about 8 ppm Mg, including ail values therebetween, is dissolved when the materials are subjected to said conditions. In some other embodiments, at least about 0.25 ppm Na, at least about 0.5 ppm Na, at least about 0.75 ppm Na, at least about 1 ppm Na, at least about 1.25 ppm Na, at least about 1.5 ppm Na, at least about 1.75 ppm Na, at least about 2 ppm Na, at least about 2.25 ppm Na, at least about 2.50 ppm Na, at least about
2.75 ppm Na, at least about 3 ppm Na, at least about 3.25 ppm Na, at least about 3.5 ppm Na, at least about 3.75 ppm Na, at least about 4 ppm Na, at least about 4.25 ppm Na, at least about 4.50 ppm Na, at least about 4.75 ppm Na, at least about 5 ppm Na, at least about 5.25 ppm Na, at least about 5.50 ppm Na, at least about 5.75 ppm Na, at least about 6 ppm Na, at least about 6.75 ppm Na, at least about 7 ppm Na, at least about 7.25 ppm Na, at least about 7.5 ppm Na, at least about 7.75 ppm Na, or at least about 8 ppm Na, including ail values therebetween, is dissolved when the materials are subjected to said conditions.
In various embodiments, the hydrothermally modified or dried hydrothermally modified materials can be useful as (tropical) fertilizers for reasons that include, but are not limited to: i) continuous potassium release to satisfy the needs of crops at different stages of growth, and avoids both sudden saturation of the soil and excessive leaching; ii) high residual effect (e.g., by providing a réservoir of available potassium) which improves plant nutrition over multiple agronomie cycles; iii) the ability to buffer soil pH at optimal levels for a given crop and microbiome; iv) synergistic supplies of micronutrients (e.g., magnésium); vi) supporting and improving soil mechanical strength and porosity; vii) improved cation exchange capacity (CEC); viii) low salinity index; ix) enhancement of Water Holding Capacity (WHC) and carbon storage capacity; x) relatively low cost; xi) minimum hurdle for adoption by farmers; and/or xii) environmentally friendly manufacturing process implementable at industrial scale, and with local resources.
In various embodiments, the hydrothermally modified or dried hydrothermally modified materials may hâve value in improving the soil pore space. In oxidic soil, both macropores (>75 pm; cannot hold water that is lost by gravity) and micropores (5-30 pm; hold water too strongly due to capillary forces) exist, but there are no intermediate mesopores (30-75 pm), which are those able to store water for long-term release. Therefbre, water holding capacity is low. In some embodiments, the volume occupied by minerai particles is in a suitable range to improve mesopores population and reduce infiltration rates (e.g., FIG. 18). This would also reduce (e.g., prevent) dispersion of soil colloids and other fertilizers. In certain embodiments, it has been shown that solidified pastes of fine hydrogamet and calcium silicate hydrates such as those composing the dried hydrothermally modified material hâve good flexural strength of 20 mPa. This characteristic could mitigate érosion and promote soil strength, without resulting in too large micro aggregate (>lmm) that would yield undesired infiltration rates. It is highly unlikely that any potassium sait (KC1 or K2SO4) can be expected to offer similar improvement to soil mechanics.
While the characteristics of the dried hydrothermally modified material can make it a high quality tropical soil fertilizer, the ability to tune the properties by modification of various processing parameters enable the production of new materials to be used additionally or alternatively in soil remediation, waterglass applications, geopolymer applications, cernent applications, and colloïdal silica applications. Without being bound to any particular theory, the utility of these new materials can be better understood by any number of distinct mineralogical compositions, possibly obtained via the reaction pathways of FIG. 38. In some embodiments, the processing parameters can be tuned according to pathways illustrated by the alternative processes shown in FIGS. 33G and 33H. For instance, from the process encompassed by FIG. 33H, a variety of differentiated products can be obtained by passing an alkaline solution through a stationary minerai bed (e.g. K-feldspar), and further processing the resulting dissolution products in separate streams of varying composition.
The analysis of the dried hydrothermally modified material that follows provides new insights on the process described herein, filling a knowledge gap between materials science, processing technology and their application in agriculture. In general, the overall discussion is framed according to the overarching goal of engineering an environmentally friendly chemistry process scalable to industrial outputs that can truly benefit nutrient-poor and scarcely productive soils. It has been unexpectedly recognized that the composition (i.e., mineralogy) and leaching properties of the dried hydrothermally modified material as disclosed herein can be tuned through alterations of the processing conditions. The examples that follow offer support for this finding while emphasizing that the hydrothermally modified or dried hydrothermally modified materials disclosed herein are adaptable to a number of important applications.
Examples
A flow chart of a general processing route used to préparé dried hydrothermally modified materials is provided in FIG. 3. In the examples below, except where noted, dried hydrothermally modified materials were processed at 200 °C and dried under the specified conditions at 90 °C.
An additional “post-processing” block following the hydrothermal (heating in the presence of water) block, but before or concurrent with drying, and three additional components, which include 1) soluble alkaline solutions; 2) additives or sait solutions; and 3) reactive gases are incorporated in the overall process flow diagram. These modifications affect the 1) ion-exchange capacity; 2) sensitivity to décalcification; and 3) pH dépendent leaching and dissolution of the ultimate product. Process parameters such as the relative amount of CaO in the feed mixture and the surface area of the raw material influence these properties (e.g., as demonstrated from elemental release) of the dried hydrothermally modified material. The modifications represent methods that enhance the modularity of the dried hydrothermally modified material (FIGS. 4A-C). For example, the particle size réduction step (e.g., “milling”) can be carried out under wet or dry conditions. In the hydrothermal processing or drying steps, a solution of an alkaline earth ion (e.g., Ca2+) can be added progressively (e.g., to change the Ca2+/Si ratio in the hydrothermal processing), or sait or other nutrient solutions can be added.
Example 1: Synthesis and Characterization of the Dried Hydrothermally Modified Material (HT-1)
The ultrapotassic syenite used herein was obtained from the Triunfo batholith, located in Pemambuco State, Brazil. The K-feldspar content was 94.5 wt. %. The S1O2, AI2O3 and K2O content were 62.4 wt. %, 17.0 wt. % and 14.3 wt. %, respectively. Hand-sized field samples were comminuted in a jaw crusher, and sieved to obtain particles with size <2 mm. CaO (reagent grade, Alfa Aesar) was used as received. Due to storage, at the time of the experiments it was hydrated in Ca(OH)2. An XRPD scan showed that the actual composition at the time of the experiments was the following: CaO: 5.5 wt. %; Ca(OH)2: 93.7 wt. %; CaCO3: 0.8 wt. %. According to the manufacturer, the level of impurities in the material received is as follows: 0.005% Cl max; 0.05% NO3 max; 0.1% Fe max; 0.1% SO4 max; insoluble material: 1.5% max is acetic acid and ammonium hydroxide.
Joint Dry Milling
The feed mixture for hydrothermal processing was obtained by milling jointly in dry conditions 21.28 g of ultrapotassic syenite (<2 mm) and 3.72 g of Ca(OH)2, i.e. the hydrated form of the purchased CaO. The nominal Ca/Si molar ratio was 0.23, based on the assumption of both 100% Ca(OH)2 and 0 wt. % Ca in the ultrapotassic syenite. Milling was performed in a 50 mL alumina grinding jar pre-filled with Ar (Airgas, pre-purified grade 4.8). The jar was loaded with stainless-steel balls and evacuated. The bail mill (VQ-N high-energy vibrator bail mill, Across International) was run for 1 min. The milled powder (feed mixture) was subsequently transferred in a plastics container, and temporarily stored under Ar. Processing occurred within 20 min of milling operations.
Water (Ricca Chemical Company®, ACS reagent grade) was boiled and cooled down to room température in a stream of bubbling Ar. A stock amount was stored under Ar. Loading of the hydrothermal vessel could not avoid completely the contact of both the feed mixture and water with air.
Hydrothermal Processing and Isolation
A schematic of the hydrothermal reactor used in this study (Parker, EZE-Seal , 300 mL) is given in FIG. 4D. The reactor was loaded with 25 g of feed mixture and 100 mL of water. The reactor was sealed and the rotation of the impellor set at 400 rpm. The température set point of 200 °C was reached in ~40 min, and hold for 5 h. The internai pressure of the reactor was -14 atm (Table 1). An overall température profile for the hydrothermal process is given in FIG. 29. Subsequently, the reactor was cooled down with a water recirculating system, until the internai T reached -60 °C ( —15 min). The reactor was opened quickly, and the slurry (i.e., the mixture of the hydrothermally modified material suspended in the supernatant) transferred quantitatively in a glass beaker (SA -44 cm’2). The solid component settled at the bottom of the beaker, and the excess solution (supernatant) separated on top of it. The supernatant, enriched in leachable potassium (FIG. 28) was dried on top of the solid phase overnight (18 h) in a laboratory oven set at 90±5 °C. The dried hydrothermally modified material was ground homogeneously in an agate mortar to obtain a powder that was labeled as the HT-1 (FIG. 17). The mass of dried hydrothermally modified material was not measured. However, Loss of Ignition (LOI) experiments at 1000°C for 1 h (three replicates), showed a loss of 4.4±0.5 wt. %, most likely due to water and/or carbonaceous content. Accordingly, the re-calculated mass of dried hydrothermally modified material was 26.1 g. The long-term storage of the material occurred under Ar.
Table 1. Température (T) and pressure (P) variation during hydrothermal processing of the feed mixture.
/(h) T (°C) P (afin)
0.0 200 14.0
0.1 200 14.0
0.3 199 13.8
1.0 200 13.9
1.2 200 14.0
1.7 200 14.0
3.0 200 13.8
4.0 200 14.0
5.0 200 14.0
Détermination of the HT-1 Mineralogy
X-Ray Powder Diffraction (XRPD)
FIG. 4E describes the mineralogical composition of a feed mixture (a) and a dried hydrothermally modified material (b). The mineralogy of the dried hydrothermally modified material in Fig. 4E was determined by X-Ray Powder Diffraction (XRPD). The sample was micronized, loaded into a cup and put into a diffractometer (Panalytical X'Pert MPD) that used as X-Ray source the Clik0 radiation at 45 kV and 40 mA. Scans were run in the 2Θ range 6°-90°, with a step size of 0.0131° and a counting time of 250 s step'1. Once identified, minerai phases were quantified via Rietveld refinement. A few small peaks (1% of the overall diffraction patterns) could not be positively identified and were ignored. An additional 1.1 wt. % was attributed to panunzite, but this phase was not confirmed independently. The amorphous content was determined quantitatively by adding and thoroughly mixing to the sample an équivalent weight fraction of Si powder (NIST SRM 640). A second XRPD scan was run under the same conditions as the initial scan. A new Rietveld refinement was performed, permitting a comparison, adjusted for différences in scattering power, between the integrated intensity of the Si peaks and the integrated intensity of the known crystalline phases determined in the initial analysis. The différence between these values as a portion of the total was assumed to be due to the amorphous content of the sample. The final amount of each crystalline component is the resuit of the initial Rietveld refinement normalized to take into account the estimated amorphous content.
The diffraction pattern of the dried hydrothermally modified material is given in FIG. 12. XRPD analysis detected K-feldspar (KAlSi3O8) and new minerai phases formed in situ during hydrothermal processing and/or drying, namely hydrogamet (Ca3Al2(SiO4)3.A(OH)4A), a-dicalcium 54 silicate hydrate (Ca2SiO3(OH)2), 11 À tobermorite (Ca5Si6Oi6(OH)2-4H2O) and amorphous material(s). Some of such minerai phases hâve been observed previously in literature studies on CaO-A12O3-SiO2-H2O hydrothermal Systems (Table 2).
Table 2. OverView of hydrothermal reactivity of CaO-Al2O3-SiO2-H2O Systems.
Reagents molar ratios T solvent t stirring phases observed3 referenc e
A1/(SHA1) Ca/(Si-Al) «C h weight ratioA
Ca(OH)> 0.67 1.00 150 6 water - KOH 1:10 n'a Ca(OH);
SiO' sel hydrogrossular 46
Y-AFOj (amorphous) CaCOj
CaO 0.15 0.83 150 0-190 water - NaOH 1:10:1:5 X
SiO2 (amorphous) 11 A tobermorite 47
AhOj (amorphous)
CaO 0.57 0.86 100-180 15 water 1:6 Y hydrogrossular
coal ash 11 À tobermorite 43
Al(OH)j orAl:O3 (sol) CaCOj
CaO 0.10-0.13 6.50-1.00 175 0.5-24 water 2:1 N quartz
(meta)kaolinite Ca(OH)2
SiO-> (precipitated) C-S-H; a-C,SH 33
AkO3 11 A tobermorite
CaCO3
K-feldspar 0.25 0.22 190-220 20 water - NaOH 1:6 N altered K-feldspar
water = KOH hydrogrossular
water - Ca(OH)-> C-S-H: C-A-S-H: a-C.SH 30
tobermorite
CaCO3; K3CO3; K2Ca(CO3)2
Ca(OH). 0.24 0.17 200 5 water 1:4 Y altered K-feldspar
Ultrapotassic syenite hydrogrossular
C-A-S-H; a-C^SH This study
11 À tobermorite
unidentifïed carbonates
K-feldspar is the main minerai component of the ultrapotassic syenite used in the feed mixture. In the dried hydrothermally modified material, residual K-feldspar still detected by XRPD accounted for 66.5 wt. %, indicating a conversion of 17.4 wt. % of the original minerai. Herein, it is demonstrated that after hydrothermal processing the remaining portion of K-feldspar has undergone modifications, i.e. is altered. Hydrogamet was 6.5 wt. %, and based on molecular formula is possibly the only calcium aluminum silicate hydrate. It was determined as plazolite (x=1.47) in the Rietveld refinement (FIG. 12), but most likely it was a solid solution of phases with variable levels of hydroxyl ions replacement (0<x<3) as shown later with ΕΡΜΑ analysis. α-Dicalcium silicate hydrate and 11 A tobermorite are 3.3 wt. % and 3.2 wt. %, respectively, and based on molecular formula are calcium silicate hydrate phases. Lastly, an amorphous component corresponding to 18.2 wt. % was also detected in the dried hydrothermally modified material. Further to such main components, 1.2 wt. % of albite and 1.1 wt. % of panunzite were also detected by XRPD.
Détermination of the Structure and Chemical Composition of HT-1
The dried hydrothermally modified material mounted in thin sections (27 mm><46 mm, 30 pm thick, two-sided polish 0.5 pm diamond, borosilicate glass, acrylic resin; Spectrum Petrographics Inc.) was observed with a Scanning Electron Microscope (JEOL 6610 LV) operated in high vacuum mode (<10-3 Pa). The accelerating voltage was 10-20 kV, the spot size 45-60, and the working distance 910 mm. Before observation, sections were carbon coated (Quorum, EMS 150T ES). Over the long term, thin sections were stored under vacuum.
The Chemical composition of the dried hydrothermally modified material mounted in thin section was determined with an Electron Probe Micro-Analyzer (ΕΡΜΑ) (JEOL JXA-8200), using an accelerating voltage of 15 kV, beam current of 10 nA and beam diameter of 1 pm. The minerai phases were analyzed with counting times of 20-40 s. From counting statistics, 1σ standard déviations on concentration values were 0.3-1.0% for major éléments and 1.0-5.0% for minor éléments. Back-scattered électron (BSE) images and X-Ray elemental maps (4.5cmx2.7cm) were obtained using a voltage of 15 kV, a beam current of 1 nA and a resolution of 10 pm. The use of such settings as well as operations in stage-rastered mode with a stationary beam avoided signal loss and defocusing of X-Ray. Due to possible damage to the mounting epoxy of the thin sections, ΕΡΜΑ analysis were carried out after SEM imaging. The thin section was accommodated in a custom-made holder, which permitted to locate any particle and analyze it with multiple techniques.
Preliminary SEM observations of the dried hydrothermally modified material were made on the powder as such (FIG. 13). Subsequently, it was mounted in thin section, for detailed exploration of morphological features (SEM) and Chemical analysis (ΕΡΜΑ). Results (FIG. 14, FIG. 15, Table 3, ESLEPMA) confirm XRPD findings, although a high degree of heterogeneity was evidenced.
Table 3. Médian oxide and elemental (F and Cl) concentration per minerai phase in the dried hydrothermally modified material.
Minera! phase K;O AhO 3 SiO; Xa;O CaO MgO P;O; TiO. MnO FeO so3 F Cl Tota!
.Altered K-feldspar (<50um) 13.4 17.1 59.S 0.5 0.3 0.0 0.0 0.1 0.0 0.4 0.0 0.0 0.1 92.S
Altered K-feldspar (50um<x<l ΟΟμηι} 14.6 1S.4 64.3 0.6 0.1 0.0 0.0 0.1 0.0 0.4 0.0 0.0 0.0 9S.5
.Altered K-feldspar (>100μηι) 15.0 1S.3 64.1 0.6 0.1 0.0 0.0 0.1 0.0 0.5 0.0 0.0 0.0 98.6
Hvdro zro s sular 0.6 13.4 172 0.0 27.4 02 0.0 0.0 0.0 0.6 0.1 02 0.6 66.1
Dicalcium silicate hvdrate 1.1 1.0 12.S 0.2 20.0 0.1 0.0 0.0 0.0 0.1 0.0 0.0 0.7 40.5
11 A Tobermorite 1.2 2.9 16.4 02 17.1 0.1 0.0 0.0 0.0 0.3 0.0 0.0 0.7 412
Amorphous 6.7 9.9 30.2 0.3 6.1 0.0 0.0 0.0 0.0 0.2 0.0 0.1 0.8 59.9
Ail numbers are wt. %. Data are obtained by ΕΡΜΑ analysis on a large number of observations (ESI-EPMA). Balance to 100 wt. % is likely due to water content.
In the thin section, K-feldspar crystals could be clearly distinguished (FIGS. 14a-b, FIG. 15) and showed clear alterations with respect to the rock powder. Such alterations were evidenced by heterogeneous formations (FIG. 14a-d) and ΕΡΜΑ Chemical analysis (FIG. 16, Table 3, ESIEPMA). Chemical composition changed across feldspar size classes (<7<50pm; 50pm<t/<100pm;
<7>100pm), with the smaller crystals being richer in Ca and poorer in K, Si and Al (Table 3, ESIEPMA). Note that solid-state mechano-activation could replace Ca with both surface and framework K at the milling stage, and such possibility could not be ruled out completely, especially for the smallest grains (FIG. 16; ESI-EPMA). However, in the dried hydrothermally modified material, a distinct characteristic was that certain medium sized K-feldspar grains (50pm<t/<100pm) were unusually enriched in Ca (FIG. 16; ESI-EPMA), which was not the case for crystals with équivalent size in the feed mixture. This was an evidence of insertion of Ca atoms in the feldspar framework during hydrothermal processing. Note that such conclusions are not immediately évident from médian concentration values (Table 3), highlighting that high degree of compositional heterogeneity. K-feldspar crystals were often surrounded by hydrothermal phases such as hydrogamet, α-dicalcium silicate hydrate and 11 Â tobermorite (FIG. 14a-d). Cracking and fracturing were additional common features of K-feldspar and there was evidence of pitting (FIG. 14a-b).
Hydrogamet crystals had a predominantly spherical shape ~1 pm in diameter, although some crystals were ~5 pm in diameter (FIG. 14g). Hydrogamet was found either surrounding K-feldspar or scattered across the material. More rarely, it occurred as larger masses aggregates up to ~30 pm and with a colloïdal appearance (FIG. 14h; FIG. 16). It was difficult to distinguish 11 À tobermorite from α-dicalcium silicate hydrate based only on morphology and textural characteristics. Tobermorite occurred in two main forms: i) as numerous individual crystals, more developed, up to 20 pm long and 1 pm wide (FIG. 14b) or ii) as an aggregate within clump-like formations and clusters with each composing crystal again <1 pm (FIG. 14c-f). In both occurrences, tobermorite had a fibrous texture, appearing commonly as fine needles. The texture of α-dicalcium silicate hydrate was similar to the first type of tobermorite occurrence, but it was more developed and wellformed. Additionally, a distinction between the two minerais was that for tobermorite some point analysis showed a K-enrichment as high as 5.3 wt. %, and for α-dicalcium silicate hydrate the total oxide content tended to be lower (ESI-EPMA).
An additional morphological feature of the dried hydrothermally modified material was given by some large structures in the order of 2 mm. Such structures are referred to as clusters (FIG. 14f). They were often round, and richer in Ca- and K-substituted alumino silicate hydrates than the rest of the dried hydrothermally modified material. Occasionally, they exhibited outer rims enriched in adicalcium silicate hydrate and tobermorite. It is likely that such formations are due to the binding nature of calcium silicate hydrates. Indeed, C2S phases are often observed as agglomerated phenocryst in concrète. A rigorous quantitation of the density of the dried hydrothermally modified material was not performed. However, visual observations of the clusters (FIG. 14f) show a high fraction of empty space, and suggest low density for such formations. This may explain, at least partially, the macroscopie appearance of the dried hydrothermally modified material when compared with that of the rock powders (FIG. 17).
Electron microprobe analysis also reveals small amounts of zeolites that are présent in the dried hydrothermally modified material (FIG. 18). Formation was found to occur at ail hydrothermal processing times, but only at a température above 220 °C.
Lastly, various minerai phases could contribute to what is detected as amorphous by XRPD such as i) severely altered K-feldspar ii) crystalline, but very small particles iii) truly amorphous compounds, for example poorly crystallized non-stoichiometric calcium-silicate-hydrate (C-S-H). However, exploration of the sample with ΕΡΜΑ showed that the amorphous phase occurred in two main forms: i) as material originating from the raw K-feldspar, from which it maintained similar weight proportions of K, Al and Si, but that has been so severely altered that the total oxides content is much lower; such a material présents expressive Ca content ii) as completely anhedral forms, with no evidence of crystallinity or stoichiometric proportions of oxides attributable to known silicates, oxides, chlorides, carbonates or sulfides (ESI-EPMA). A detailed observation of thin sections revealed also the presence in the dried hydrothermally modified material of carbonaceous phases that are not detected by XRPD (FIG. 19b) and that are not attributable to impurities in the CaO reagent. This is likely due to concentrations below the détection limit. Such carbonates occurred subordinately and were mainly non-stoichiometric K-Ca-carbonates (Ca/K atomic ratio between 7 and 28; ESI-EPMA), in crystalline aggregates 5-10 pm in diameter (FIG. 19b). The crystals presented two main habits, tabulai- forms or prisms. Carbonates were confirmed independently by an acid-base titration (FIG. 20) as well as a qualitative carbonate spot test (FIG. 21).
HT-1 Particle Characteristics
Particle Size Distribution (PSD) of powder samples was determined with a laser-diffraction particle size analyzer (Beckman Coulter Inc., LS 13 320) equipped with a custom-made module for sample introduction. Samples were suspended in water during the analysis and were not sonicated.
Spécifie Surface Area according to Brunauer, Emmet and Teller (BET-SSA) was determined with a Micromeritics ASAP 2020 surface area and porosity analyzer. The gas used for adsorption was N2. Samples (~0.5 g) were degassed at 200 °C until a constant degassing rate of 10'5 mmHg min’1 was reached in the sample tube (12 h). SSA was determined on the adsorption branch of the isotherm with the multi-points method in the p/po range 0.08-0.35. However, the complété adsorption (up to plpo = 0.99) and desorption isotherms were recorded.
The Particle Size Distribution (PSD) of the feed mixture (Ca(OH)2 + ultrapotassic syenite) is compared with that of the dried hydrothermally modified material in FIG. 22. It is shown that after hydrothermal processing and drying particles are smaller. Based on volume, three main populations are observed at ~30 pm, ~10 pm and ~1 pm, respectively. Therefore, processing shifts the major population peak of one order of magnitude, from ~100 pm in the feed mixture to ~10 pm in the dried hydrothermally modified material. The same shift is observed based on number of particles, from ~1 pm in the feed mixture to ~0.1 pm in the dried hydrothermally modified material. These observations are consistent with the size of the particles observed with the SEM (FIG. 14). Overall, PSD can be used as a quick, efficient and inexpensive way to assess the efficiency of the process since the main size population in the rock powder and in the dried hydrothermally modified material shrink and grow, respectively, with the progressive conversion of K-feldspar.
The Spécifie Surface Area according to the BET method (BET-SSA) was 15.1 m2 g'1 for the dried hydrothermally modified material and 46.9 m2 g1 for the feed mixture, which was a particularly high value due to the fine fraction of Ca(OH)2. Such value is only partially relevant, because upon contact with water the feed mixture reacts immediately, changing its surface area over time. The BET-SSA due to the rock fraction in the feed mixture is not known, but can be reasonably considered ~1 m2 g'1 as reported by Ciceri et al. (D. Ciceri, M. de Oliveira, R. M. Stokes, T. Skorina and A. Allanore, Miner. Eng., 2017, 102, 42-57 incorporated herein by reference in its entirety for ail purposes). A comparison between surface areas of the dried hydrothermally modified material and the rock fraction is then consistent with a population of smaller particles in the processed material. The N2 adsorption isotherm of the dried hydrothermally modified material (Type III according to BET classification) does not show any appréciable hystérésis (FIG. 23).
Leaching Experiments and Inductively Coupled Plasma Mass Spectroscopy (ICP-MS)
Leaching experiments for both the ultrapotassic syenite and the dried hydrothermally modified material were run in batch mode, meaning that 0.3 g of solid material were contacted with 3 mL of leaching solution (ms'.m^OA), and rotated continuously for 24 h in a closed vial. Before starting the rotation, vials were pre-filled with Ar. Mass-transfer limitations are considered negligible under the given stirred conditions. HNO3 at initial pH=5 was used as the leaching solution, and mimicked an acidic soil solution. The stock leaching solution was prepared by appropriate dilution of standardized HNO3 0.1M (Alfa Aesar) in boiled water, followed by vigorous Ar bubbling for —15 min. At the end of the experiment, the suspension was filtered (Whatman 13 mm GD/X, 0.45 pm), and diluted 1:100 in standardized HNO3 0.1 M. Filtering occurred within 15 min of stopping the rotator. Each of the leaching experiments was repeated in three replicates. Error bars represent the scattering of experimental data over the three replicates (FIGS. 24 and 9B). Experiments were conducted at room température (20±3°C). The température of the leaching solution remained constant upon contact with the dried hydrothermally modified material as demonstrated by an independent test (not shown).
Inductively Coupled Plasma Mass Spectroscopy (ICP-MS) determined the concentration of K, Al, Si, Na, Ca, and Mg in the diluted leachate (ICP MS, Agilent Technologies 7700 Sériés). The instrument used an Octopole Reaction System (ORS) that was run in “He mode” (He=4.0 mL min-1) except for Ca, which was determined in “no-gas mode”. A solution at 1 ppm of In was used as the internai standard.
Results from leaching tests for both the ultrapotassic syenite and the dried hydrothermally modified material are reported in FIG. 24 (Leaching conditions: batch test under rotation, 24 h, ms'an^l'AO. HNO3 at nominal initial pH=5 as the leaching solution. Ail values (ppm), refer to the mg of element analyzed in solution by ICP-MS per kg of solid material. Note that the initial BET-SSA and PSD were different for the two materials: rock powder (initial pH=5, BET-SSA=17.3 m2 g-1, powder obtained from bail milling 1 min the fraction <2 mm described in the Reagents section); dried hydrothermally modified material (initial pH=5, BET-SSA=15.1 m2 g'1, PSD reported in FIG. 19). Since actual pH conditions, PSD and BET-SSA are different for the two solid materials, results are compared only for a qualitative visualization of the order of magnitude of the elemental availability. In the dried hydrothermally modified material, there are 14,065±744 ppmK available for dissolution which is équivalent to 14.5% of the total K content of the feed mixture. Therefore, at 24 h potassium is two orders of magnitude more available than in the original ultrapotassic syenite leached at the same initial pH. For Si, Al and Ca availability is l,520±132 ppmsi, 222±38 ppmAi, and 335±20 ppmca, respectively (FIG. 24), corresponding to 0.6%, 0.3% and 0.2% of the total content of Si, Al and Ca, in the feed mixture, respectively. Ca leaching was monitored in part because of its rôle a plant macronutrient and because of its ability to correct soil pH. The Ca in the varietal composition of the ultrapotassic syenite is taken into account in this calculation. Na and Mg were also monitored because they are a major component of varietal composition and important éléments for soil scientists. Na can lead to potential soil salinization and Mg is a plant micronutrient. In the dried hydrothermally modified material there are 6.5±0.3 ppmNa and 6±1 ppmMg available for dissolution, équivalent to 0.2% of both the total Na and Mg content in the feed mixture. The overall availability of Na is low and decreased in the dried hydrothermally modified material with respect to the ultrapotassic syenite.
That the fraction of available Si, Al, and Ca nutrients in the dried hydrothermally modified material was in absolute terms very little, is evidence of the Chemical stability of ail the calcium silicate phases under the given leaching conditions. Nevertheless, the absolute amount of nutrients available may be significant for plants. For reference, in the soil solution, Si concentrations are in the order of 0.09-23.4 mgsi L1, to be compared with the value of 152 mgsi L'1 in the leaching solution reported herein. Note also that in the leaching experiment the Si concentration corresponds to the solubility limit of amorphous S1O2 at very low pH. This is because the actual leaching solution was diluted in concentrated HNO3 before ICP-MS analysis. It is therefore possible that Si in the actual leaching vial is even higher than what has been measured.
Acid-base Titration of Dried Hydrothermally Modified Material
An acid-base titration of the dried hydrothermally modified material was carried out as follows:
(a) First, 0.3 g of dried hydrothermally modified material were suspended in 10 mL of DI water under agitation (b) Second, standardized 0.1 Μ HNO3 (Alfa Aesar) was added to the beaker. After each acid addition (2.5 mL), the system was let to stabilize for 15 min, before the reading was taken. Note that the pH did not stabilize due to surface reactivity of the dried hydrothermally modified material.
(c) Third, the titration curve is plotted as shown in FIG. 20, and équivalent points used for back calculations of the base content in the dried hydrothermally modified material.
Two distinct équivalent points are observed, at pH=10.0 (3.0 mL) and pH=5.8 (12.0 mL). The first équivalent point can be reasonably attributed to carbonates since the tabulated pKa2 value for H2CO3 is 10.33 (25°C). Différences between experimental and theoretical values may be explained by interférences caused by the surface reactivity of the other minerai phases such as K-feldspar, hydrogamet and tobermorite. The second équivalent point seems farther from the tabulated pKai value for H2CO3, which is 6.35 (25°C). Assuming the first équivalent point is indeed due to carbonates, this would correspond to 0.3 mmol of CO32·, équivalent to 4.3 wt. % of CO2 in the dried hydrothermally modified material. Such an amount was not detected by XRPD, but is in excellent agreement with LOI data (see section on Hydrothermal Processing above). Carbonates were anhedral crystals, but were not amorphous, so that XRPD does not detect them most likely because they are présent below the limit of détection. If ail of the carbonate determined with the titration at the fîrst équivalent point was K2CO3, then the expected K-leaching test would be 78,000 ppmK, well-above the experimental data (FIG. 19). Carbonates in the dried hydrothermally modified material are therefore an unidentified mixture, which is likely to comprise K2CO3, Na2CÛ3, MgCO3, CaCOs but possibly also other double carbonate species such as K2Ca(CO3)2 (bütschiilite and/or fairchildite). The second équivalent point does not match the content of carbonate detected at the first équivalent point. Assuming that the second équivalent point is due to the equilibrium HCO3’ + H+ H2CO3, then further to the 0.3 mmol of CO32' additional 0.6 mmol of bicarbonate species HCO3 - is présent in the dried hydrothermally modified material. Such an amount would correspond to an additional 8.6 wt. % of CO2 content in the dried hydrothermally modified material, for a total of 12.9 wt. % of CO2, which is unlikely to be undetected by XRPD. These data point to an effective presence of carbonates in the dried hydrothermally modified material. Such high pH values are important in materials used to improved soil quality and soil health, particularly where low pH soils are a problem.
Qualitative Spot Test for the Détermination of Carbonates
Concentrated nitric acid (15.6 M) is dropped on top of the material using the apparatus shown in FIG. 21(a)-(c). If carbonates are présent, they generate CO2, which is channeled into a second compartment of the apparatus and precipitated as BaCO3 from a solution of Ba(OH)2. Panel (b) provides the resuit from a blank test, where the material is ultrapotassic syenite (no BaCO3 is formed). Panel (c) provides the resuit from a test with the dried hydrothermally modified material. A whitish cloud of BaCOs is formed, confïrming the presence of carbonates.
Relationship Between Mineralogy Composition and Leaching
The major potassium alumino silicate (KAS) detected by XRPD in the dried hydrothermally modified material was K-feldspar (KAIS13O8) (FIG. 4E). XRPD showed that 14.0 g of K-feldspar were converted during hydrothermal processing (FIG 14). PSD analysis confirmed that the size population attributable to K-feldspar was reduced in the dried hydrothermally modified material with respect to the feed mixture (FIG. 22). However, such a minerai phase remains the main component of the dried hydrothermally modified material (66.5 wt. %), and therefore also the main K-bearing phase. This is a carefully engineered and intended feature of the material. A complété transformation of K-feldspar would be cost prohibitive, and would generate a large amount of soluble K immediately available in the soil solution, in opposition with the désirable attributes of the dried hydrothermally modified materials disclosed herein, i.e. engineering a fertilizer for tropical soils with a K-release rate that fits crop needs. However, note that what is detected by XRPD as K-feldspar, is in fact an altered minerai phase. Structural alteration was evidenced by the imaging study (FIG. 14a-d). Furthermore, the Na adsorption isotherm lacked hystérésis (FIG. 23), which can be explained considering that cracks, fractures or other porous structures do not generate a hysteretic behavior if they are in the order of micrometers (FIG. 14a-b), although their contribution to surface area is still captured by the BET-SSA value. Chemical alteration was evidenced by elemental maps (FIG. 15), point concentrations (Table 3, ESI-EPMA), as well as detailed exploration of the sample (FIG. 13, FIG. 16). Distortions in the unit cell of K-feldspar due to Ca insertion are a likely cause of the cracking effect mentioned above. Indeed, a feature of the dried hydrothermally modified material is that the smallest grains of altered K-feldspar particles showed a non-stoichiometric elemental content, highly déficient in K and enriched in Ca (FIG. 15, FIG. 16, ESI-EPMA). Regardless of size, no single grain of K-feldspar preserved its original composition, and calcium minerais were observed at the interface between K-feldspar grains and the hydrothermal solution. Without being bound by any particular theory, such phases may originate from the insertion of Ca in the feldspar or by re-precipitation from the solution due to local saturation. In the absence of an alkaline environment, much higher températures (600 °C) would be involved to observe a significant exchange between K in the feldspar and alkali ions from the hydrothermal solution. The data presented herein therefore provide evidence that high pH environments are necessary for successful transformation and an exchange of K ions for Ca ions. Assuming for both altered and unaltered K-feldspar the same dissolution rate, and an actual pH of leaching of 12 units (FIG. 27), then the amount of available K would be in the order of 10-200 ppmK, depending on actual surface area of altered K-feldspar. Such an amount is negligible when compared with the data reported in FIG. 24, and confirms that altered K-feldspar acts as a major nutrient réservoir for potential longterm release, but is not likely to be responsible for K short-term release. Conversely, mass balance calculations (e.g., based on the conversion shown in FIG. 4E) show that the fraction of K in the K-feldspar that was completely converted could provide ail the leaching-available K. Such a K is likely to be located in K-substituted phases other than altered K-feldspar, or in the soluble carbonate fraction (solubility of K2CO3 (25°C) is 1,110 g L1) not detected by XRPD, but evidenced by ΕΡΜΑ analysis (FIG. 15, ESI-EPMA).
The major calcium aluminum-silicate hydrate (C-A-S-H) phase detected by XRPD in the dried hydrothermally modified material was hydrogamet (CasALCSiO^-TOH)^; C3A2S3_%HY). Within the broader hydrogamet group, hydrogamet defines a class of minerais where the inclusion of 4OH' in place of a S1O44’ tetrahedron occurs, generating grossular (x=0), hibschite (x=0.2-1.5), katoite (x=l .5-3) and their solid solutions. In artificial Systems, hydrogamet is observed in concrète as the only calcium aluminum silicate hydrate, and is often detected as the hydration product of autoclaved materials (Table 2). It appeared as small octahedral-to-round crystals (1.5-4 pm). A comparison of micrographs of the dried hydrothermally modified material (FIG. 14) with PSD data (FIG. 22) reveals that in these experiments the hydrogamet phase was mainly in the form of small and round particles in the order of ~1 pm. ΕΡΜΑ analysis showed a content of ~30 wt. % of S1O2 (Table 3; ESI-EPMA), suggesting hibschite rather than katoite, and in agreement with a prevalence of round crystals (FIG. 14g). Note that the S1O2 content is also in relatively good agreement with the theoretical value of 22 wt. % in the plazolite phase used in the Rietveld refinement. Together with K-feldspar, hydrogamet is the key Al-bearing minerai. In the leaching test, the availability of Al from the dried hydrothermally modified material increased with respect to that of ultrapotassic syenite, although it remained comparable. However, note that the actual leaching pH of the rock powder is ~6 and that of the dried hydrothermally modified material is ~12 (FIG. 27). In this latter case, the availability of Al is therefore maximum, indicating that in soils buffered at acidic pH, Al should be almost completely unavailable. The level of K inclusion in the hydrogamet crystals was little (Table 3).
The calcium silicate hydrates (C-S-H) were a-dicalcium silicate hydrate (a-Ca2(SiO3OH)(OH); aC2SH), and 11 Â tobermorite (Ca5SÎ6Oi6(OH)2'4H2O; C5S16H5). Hydrothermal synthesis of adicalcium silicate hydrate has been reported previously. It usually appears as rectangular tablets, which form above —150 °C. The Ca/Si molar ratio of the feed mixture govems the formation of crystalline 0C2SH (Ca/Si=2) with respect to that of other poorly crystalline and non-stoichiometric calcium-silicate-hydrate (Ca/Si<1.75). Therefore, a-C2SH is likely to form in calcium-rich environments, at incipient reaction, whereas tobermorite would form later, as a phase evolving from metastable calcium-silicate-hydrates. Tobermorite has been observed in artificial CaO-SiO2-H2O Systems, in température ranges of ~80°C to ~150°C, initial bulk molar composition at Ca/Si=0.8-1.0 and processing times in the order of days. The higher the solubility of the Si source, the lower the crystallinity of the forming tobermorite. Tobermorite can exist as a metastable minerai above 200°C, although xonolite (CagSiéO^OHh; CéSéfL) becomes the phase thermodynamically favored. Al accelerates the transformation of calcium-silicate-hydrates into tobermorite, and prevents its conversion to xonolite. The inclusion of Al3+ in place of Si4+ involves introduction of interlayer ions to maintain electric neutrality, generally Na+, K+ or Ca2+, yielding tobermorites with high CEC of ~70 meq/100 g. Several crystal shapes hâve been reported for tobermorites, including platy, lath-like and fîbrous crystals. This latter type was confirmed in this study (FIG. 14b, FIG. 14e). However, K-substituted tobermorites (kalitobermorite) are extremely rare in nature. In the dried hydrothermally modified material tobermorite was 3 wt. % (FIG. 4E) and it contained both K and Al (Table 3 ESI-EPMA). Overall, the absolute amount of potassium in tobermorite was small, and in the leaching experiment it was likely masked by the immediately available K component. Lastly, in the dried hydrothermally modified material an additional C-A-S-H phase was observed, likely a poor-to-no crystallinity compound detected as amorphous by XRPD. Such an amorphous phase was shown to hâve an extremely variable composition (ESI-EPMA). While the content of K and Al was found to be high, its ion-releasing capacity has presently not been established.
Further to XRPD phases, it has been demonstrated that the dried hydrothermally modified material contains carbonaceous species as well (FIG. 19, ESI-EPMA). Carbonates are important, since they contribute to regulate the pH properties of the material and can be used to capture atmospheric CO2. In the présent work, there are only three possible sources of carbon: i) impurities in the raw material (0.8 wt. % of CaCOa in the Ca(OH)2 reagent, which is équivalent to 0.12 wt. % in the feed mixture; see Experimental section) ii) atmospheric CO2 in the hydrothermal reactor (negligible)' iii) atmospheric CO2 during the drying step (assumed to be 400 ppm throughout the duration of the drying step). It may be possible that carbonation of certain phases, for example KOH formed during drying of the supematant after processing, occurs ex situ, during production and mounting of the powder in thin section. However, it is more likely that it is indeed the drying step that régulâtes the formation of carbonates. Given the mineralogical complexity of the material, it is unlikely that K available in solution originates from a single phase, such as soluble carbonates. However, the amount of K2CO3 that would justify the experimental value of FIG. 24, is équivalent to 2.50 wt. % which is sufficiently low to be possibly undetected by XRPD. As demonstrated in ESI-EPMA carbonates formed during processing are actually complex species with a variable atomic ratio K/Ca, and with solubility values not immediately available in the literature. Overall, the leaching setup does not allow discriminating the origin of available K, although the data presented in this study suggest carbonaceous species as a likely responsible. Other nutrient réservoirs such as altered K-feldspar, tobermorite or the amorphous phases are presumed to release K at a slower and possibly a more controllable rate than a soluble ionic species.
Leaching data presented herein (FIG. 24) underscore the importance to link nutrient availability to minerai phases, in order to forecast the agricultural performance of the material. Such data show that except for Na and Mg the elemental availability from the dried hydrothermally modified material is higher than in the ultrapotassic syenite leached at the same initial pH. For Ca, the availability is not immediately comparable because in the raw material it was available from varietal minerais whereas in the dried hydrothermally modified material it was artificially introduced by addition of Ca(OH)2 to the system. A holistic overview of the dried hydrothermally modified material reveals that K-feldspar exhibited pozzolanic activity, which is a behavior unique to the [K2O-Al2O3-SiO2]Kfeidspai—CaO-H2O system. Since such a system is far from thermodynamic equilibrium, it can be driven to intentionally redistribute framework éléments into minerai phases that release bénéficiai nutrients to improve soil fertility.
The following examples (2-8) were carried out under microfluidic conditions according to the parameters and set-up highlighted in FIGS. 34A-C. Hydrothermal processing time (5 h, 16 h, or 24 h), drying conditions (Ar, air, CO2, and vacuum), and Ca/Si feed ratios (0.075, 0.15, 0.3, 0.45, 0.6, and 0.9) were carefully studied for their effect on mineralogy, leaching, pH, and other important properties (i.e., particle size distribution) of the dried hydrothermally modified material. As specifîed, the hydrothermally modified material was dried with or without supematant using the drying apparatus depicted in FIG. 34C.
Example 2: Dried Hydrothermally Modified Material Dissolution Under Flow (Microfluidic) Conditions
FIGS. 35A-D show the dissolution behavior of the dried hydrothermally modified material under microfluidic conditions. Dried hydrothermally modified material was evaluated before and after leaching. The scanning électron microscope (SEM) images show the calcium-aluminumsilicate-hydrate (CASH) phases dissolve under flow, while the K-feldspar phase does not. Without being bound by any particular theory, it is postulated that this is due to buffered pH rather than the flow itself.
Bulk vs. Flow Leaching of Hydrothermal Powders
FIG. 25 compares bulk leaching (pH 5 HNO3) to leaching using a microfluidic setup, for dried hydrothermally modified materials. At pH 5, the K/Al and K/Ca ratios under flow conditions are significantly diminished compare to the leaching that occurs from the bulk powder under the standard leaching solution. The microfluidic setup also enables the release of the key éléments (Al, Si, K, and Ca) to be examined in various sections and pH environments (FIG. 26). This data shows how the release of each element changes as a function of the leaching conditions and underlying mineralogy. In sum, it can be concluded that elemental release under bulk conditions differs from leaching under flow conditions.
Example 3: Effect of Processing and Drying Conditions on the Dried Hydrothermally Modified Material
K-release From Dried hydrothermally modified Material Under Different Drying Conditions
Leaching experiments were carried out as follows: 300 mg of hydrothermally modified material were suspended in 3 mL of pH 5 HNO3 solution (done in triplicate). Samples were then agitated at ambient température for 24 h. Leaching of minerais was determined by ICP-MS under acidic conditions (0.1 N HNO3). pH measurements were performed in triplicates in vials separate from the leaching samples, which were prepared under the same conditions as the aforementioned leaching experiment. The pH,_o was recorded within 3 minutes of when the liquid made contact with the material. The pHt=24 was recorded subséquent to the 24 h agitation. Except where noted, hydrothermally modified materials were processed at 200 °C and dried under the specified conditions at 110-120 °C.
A sériés of dried hydrothermally modified materials was produced using four distinct sets of atmospheric conditions (Ar-Ar, Ar-Air, Air-Air, and CO2-CO2) for reacting the feedstocks and subsequently drying the resulting products.
It is évident from FIG. 5 (and Table 4 below) that altering the processing and drying atmosphère markedly impacts the composition of the dried hydrothermally modified material produced. In particular, the amount of the amorphous phase, dicaicium silicate hydrate, hydrogamet, tobermorite, and K-feldspar vary under each set of conditions. Under an Ar-Ar atmosphère, K-feldspar (Kfs) exhibits the highest conversion to products with only 56% of Kfs remaining after process completion. That leaves nearly 29% of the composition identified as an amorphous phase. Both Ar67
Ar and Ar-Air also contain an 8-9% dicalcium silicate hydrate phase, a phase that is noticeably absent in the other two sets of conditions. CO2-CO2 results in the lowest conversion of Kfs and a dried hydrothermally modified material with substantially reduced amorphous content.
Table 4. Composition of Dried Hydrothermally Modified Materials Under Different Processing Atmosphères for the Hydrothermal Step and Drying Step
Atmosphère Ar-Ar Ar-Air Air-Air CO2-CO2
Kfs 56.1 68.2 66.5 68.1
Tobermorite 7.2
Hydrogamet 6.1 7.1 6.5
Dicalcium silicate hydrate 8.2 8.7
Calcite 23.8
Amorphous content 28.7 14 18.2 5.6
In addition, the hydrothermal processing and drying atmosphères alter the leaching properties of dried hydrothermally modified materials (FIG. 6). At 200 °C for 5 h, Air-Air conditions provides a higher level of release of potassium, aluminum, Silicon, and calcium. Only for sodium is the release diminished compared to the other options.
Further studies were conducted to isolate the effects of the drying conditions on leaching of potassium from two sets of dried hydrothermally modified materials. For the first set, the dried hydrothermally modified material was dried with the supematant separately using air, Ar, CO2, and vacuum. As shown in FIG. 7B, K-release is highest under Ar conditions and lowest when CO2 is utilized. Application of vacuum between 10' -10' Torr also provides substantial release of K from the dried hydrothermally modified material. Drying with air provides an intermediate value, clearly indicating that the small amount of CO2 naturally présent has little impact on leaching. In these experiments, K-release was found to be independent of drying température (<90 °C).
A similar trend was observed in solid samples dried after removal of the supematant (FIG 7B). Potassium leaching was again was lowest when CO2 was used to dry the dried hydrothermally modified material. The aggregate data highlight that solid samples are sensitive to carbonation, such that CO2/carbonate equilibria in the soil will likely be crucial to long-term operation of field samples.
FIG. 7A provides a rationale for the above-noted behavior. Without being bound by any particular theory, dissolution of CO2 into the drying solution can possibly lead to co-precipitation of potassium with CaCOj (presumably K-substituted CaCOa). Séquestration of potassium in a minerai phases ultimately reduces the extent of leaching possible.
Support for possible K-trapping is provided by a study of the hydrothermally modified material dried under air, Ar, or CO2 (Table 5). In contrast to the other atmosphère conditions, a significant calcite phase is precipitated (14% by wt.) when samples are dried with CO2. Since the lattice parameters in the dried hydrothermally modified material are greater than the reference (ionic radius of K+ > Ca2+) it is reasonable that the potassium is co-precipitated with CaCOs in a poorly soluble phase designated by K2XCa(i.X)CO3. In addition, the presence of a greater fraction of amorphous phase may indicate the occurrence of amorphous CaCOj.
Table 5. Mineralogy of Dried hydrothermally modified Materials Produced via Different Drying Conditions.
Phase weight fraction
Phase air Ar CO2
Alkali feldspar 0.57 0.64 0.51
Tobermorite 0.06 0.03 0.03
a-C2S 0.00 0.06 0.00
Hydrogrossular 0.12 0.09 0.08
Biotite+CO2** 0.07 0.07 0.00
Calcite 0.01 0.00 0.14
Amorphous 0.16 0.11 0.21*
♦Possible occurrence of amorphous CaCO3 **Mass of CO2 obtained from calcite in CO2-dried sample
In contrast to potassium, Ca-release increased substantially in hydrothermally modified materials dried without supematant (FIG. 7C). The highest amount of leaching occurred using vacuum to dry the material, although similar levels were obtained with argon. No measurable leaching of calcium occurred from material dried with CO2, possible due to the limited solubility of a CaCCb-bearing phase.
The leaching of aluminum was also determined for hydrothermally modified material dried under different atmosphères (FIG. 7D). Across ail the sets of conditions, leaching was highest for material dried with supematant, although the différence in magnitude was variable. Vacuum drying provided the most Al-release, followed by air, argon, and CO2.
Effect of Drying Conditions on Sample pH.
Whereas the hydrothermally modified samples dried together with supematant show no change in 5 pH at the 24 h time point when dried with air, Ar, CO2, or vacuum, changes in pH are observed with hydrothermally modified material samples dried after removal of the supematant by vacuum filtration. Interestingly, basicity tends to increase with air, Ar, and vacuum, but tends to decrease when the hydrothermally modified material is dried with CO2 (Table 6).
Table 6. pH of Samples Dried Under Different Conditions With and Without Supematant.
Samples dried w/ supematant air Ar CO2 Vacuum
Leaching pH_3 12.2 12.3 12.3 12.3
Leaching pH„24h 12.4 12.4 12.2 12.3
Samples dried w/o supematant air-solid Ar-solid CO2-solid Vacuumsolid
Leaching pH^ H3 U.6 113 11.5
Leaching pH_24h 123 10.8 12.1
These pH and potassium leaching results are consistent with the proposed calcium-silicate-hydrate (C-S-H) reaction shown in FIG. 7A (top reaction). Upon dissolution of Cai.67SiO2(OH)3.33O.43H2O phase, hydroxide ions are produced that effectively increase the pH level. At the same time, potassium is liberated from the C-S-H phase leading to the observed levels of leaching. In contrast, 15 in the presence of CO2, a C-S-H carbonation reaction occurs (FIG. 7A, bottom reaction).
Décalcification of the C-S-H phase provides a mechanism for potassium release, while also causing a tendency towards a réduction in basicity (pH 11.8 -> pH 10.8). Formation of xCaCO3 also explains why calcium leaching is minimized or does not occur when solid samples are dried with CO2 (FIG. 7C).
The leaching of other minerais is also impacted by pH. Aluminum-release, for example, tracks with pH in samples dried without supernatant. Ar with pH 12.3 provides for the highest release of Al, while CO2 with pH 10.8 releases the lowest amount of Al (FIG. 7D).
In summary, the solid phase appears to be quite sensitive to carbonation. Carbonation has multiple effects on the dried hydrothermally modified material. Leaching is possibly reduced through trapping of K in K2XCa(i.X)CO3 phases. Drying with CO2 also causes a decrease in alkalinity, possibly lowering the buffering capacity of the dried hydrothermally modified material. Under these conditions, calcium is released into solution through dissolution of minerais. When air, Ar, or vacuum is utilized for drying, the dried hydrothermally modified material has a pH buffering capacity. Compatibility with additives and composite materials is therefore be considered. However, the ability to tune pH as a function of drying atmosphère facilitâtes the use of these dried hydrothermally modified materials for soil remediation, or for the production of alkali solutions for several types of industries/applications, including but not limited to, geopolymer, waterglass, colloïdal silica, and KOH/K2CO3 solutions.
Example 4: Time and Température Dependence of the Dried Hydrothermally Modified Material
Both time (t) and température (T) are hydrothermal processing variables found to impact the composition of the dried hydrothermally modified material (FIG. 8). For instance, raising the température from 200 °C to 230 °C for durations of 0.5 h, 1.0 h, 1.5 h, 2.0 h, 2.5 h, and 3.0 h, not only improves conversion of K-feldspar, but also increases the amount of amorphous phase that is présent (FIG. 9A). Tobermorite, a calcium silicate that is K-substituted, was found to also increase as processing time increased. Hydrogamet, on the other hand, remains constant regardless of the changes to the variables. A minor component that is the sum of minor phases, i.e., albite, biotite, panunzite, is typically présent in less than 10%.
Minerai leaching was also evaluated as a function of time and température. Over times ranging from 0.5 h to 3.0 h and températures of 200 °C, 220 °C, and 230 °C, K-leaching holds relatively constant. Thus, it has been concluded that the magnitude of potassium leaching is independent of processing time and température (FIG. 9B). On the other hand, Al leaching is relatively constant for any processing time, but is found to decrease significantly as the processing température is elevated. While Si and Ca leaching are not easily resolvable over the given ranges, Na release tracks with both increased processing time and température (FIG. 9B).
The question of whether K-feldspar conversion in the dried hydrothermally modified material can be increased over longer processing times has also been addressed (Table 7). Processing times of 5 h, 16 h, and 24 h were tested the température was maintained at 200 °C. Of note, Kfs decreased by about 13.6% between 5 h and 16 h (FIG. 9C), showing that the conversion can indeed be pushed. The comparatively small 2.4% change observed over the final 8 hours (16 h to 24 h) may partially be accounted for by the increase of tobermorite over the same period (FIG. 9C). Tobermorite content remains essentially steady for the first 11 hours of process time, only to go from a 7% by wt. fraction to a 9.2% by wt. over the final 8 hours. Conceming the amorphous content, a substantial increase in this phase is readily apparent between 5 h and 16 h, hitting a plateau in the subséquent time until completion the 24 h time point. Based on the intended application of the dried hydrothermally modified material, minor fluctuations in mineralogy may be crucial and need to take into account composition. According to lattice parameters and Chemical compositions obtained from XRPD and WDS, respectively, the crystalline phases exist as solid solutions. Such alterations can be of conséquence in leaching. Such alterations can be of conséquence in leaching. For example, in 1g of dried hydrothermally modified material that typically releases 10 mg K/kg of material, there are 2.6 X 10 ’7 moles of K and 2.3 X 10'5 moles of tobermorite (based on 2.4 wt. % tobermorite). Only 1.1 mol% of the Silicon in tobermorite needs to be co-substituted with Al and K to account for the mass of K observed during leaching, reinforcing that small changes in phase redistribution can hâve a significant impact on dried hydrothermally modified material properties.
Table 7. Effect of Extending Process Times on the Composition of the Dried hydrothermally modified Material.
Phase 5 h 16 h 24 h
Alkali feldspar 0.631 0.552 0.528
Tobermorite 0.061 0.07 0.092
a-C2S 0 0 0
Hydrogrossular 0.127 0.112 0.114
Biotite 0.002 0 0
CaCO3 0.007 0 0
Amorphous 0.172 0.266 0.266
Strikingly, K-release does not coïncide with a decrease in Kfs weight fraction. In fact, prolonged hydrothermal processing time actually decreases K-leaching, possibly because K is being sequestered in one or more of the phases of the dried hydrothermally modified material (FIG. 9D) In contrast, Ca leaching is appreciably enhanced in dried hydrothermally modified material processed for 24 h at 200 °C compared to those processed for less amount of time (FIG. 9D). It tums out that the change in pH is proportional to Ca-release such that as the alkalinity decreases over time, Ca leaching substantially increases. Despite the changes in pH at each of the time points, the data supports the concept that the dried hydrothermally modified material possesses a useful buffering capacity as alkalinity in ail cases is not only maintained, but actually tends towards slightly elevated basicity as leaching proceeds over the 24 h period (Table 8).
Table 8. pH of the Leachate Measured for Dried hydrothermally modified Materials Processed at 200 °C for Various Times.
h 16 h24 h
Leaching pHf=0 12.2 11.611.2
Leaching pHf=24h 12.4 12.211.8
Example 5: The Effect of Ca/Si Feed Ratio on the Properties of the Dried hydrothermally modified Material
Effect of Ca/Si on Transformation of Kfs.
A sériés of experiments has demonstrated that the Ca/Si feed ratio impacts Kfs conversion [(Kfsinitiai - Kfsfmai) / Kfsinitiai], mineralogy, minerai release, particle size distribution (PSD), and buffering capacity. Consequently, modulation of this parameter can be beneficially utilized to align the properties of the dried hydrothermally modified material with a particular application.
To answer the question of whether a minimum CaO/Kfs can be identified that provides the desired dried hydrothermally modified material, studies were carried out with differing proportions of Ca/Si. From the initial data, it was clear that altering the Ca/Si feed ratio effects the weight fractions of various components in the dried hydrothermally modified material (Table 9). In particular as the Ca/Si ratio was increased, the Kfs remaining in the product composition became less and less. At the same time, both the hydrogamet and amorphous phases are présent in significantly higher weight fractions moving from Ca/Si = 0.075 to the maximum tested value where Ca/Si = 0.3. Tobermorite, in contrast, peaks at Ca/Si = 0.15, while decreasing slightly at Ca/Si = 0.3 (Table 9).
Table 9. Phase Weight Fractions of Various Components of the Dried hydrothermally modified Material at Different Ca/Si Feed Ratios.
Phase weight fraction
Phase Ca/Si = 0.075 Ca/Si = 0.15 Ca/Si = 0.3
Alkali Feldspar 0.86S 0.728 0.631
Tobermorite 0.024 0.075 0.061
Hyd rogrossular 0.028 0.062 0.127
Amorphous 0.08 0.129 0.172
*Biotite omitted for < darity
Graphical représentation of the extent of K-feldspar transformation as a function of Ca/Si in the feed mixture (“driving force”) highlights that there is a “sweet spot” that can be utilized (FIG. 10). While the extent of K-feldspar jumps dramatically for the first doubling of the Ca/Si feed ratio, a plateau is essentially reached upon increasing to Ca/Si = 0.30. Thus, the impact on the extent of transformation beyond the intermediate ratio shown in FIG. 10 appears to be minimal.
The Effect of Ca/Si on Mineralogy of the Dried hydrothermally modified Material
FIG. 1 IA shows that Kfs conversion tracks with the Ca/Si in the feed mixture for weight fractions from 0.075 to 0.9 (bar graph). In this study, phase weight fraction is normalized to Ca/Si=0.9, i.e., an artificial phase fraction corresponding to the différence between the CaO in the Ca/Si=0.9 and the lower Ca/Si sample was added to the XRD results for samples with Ca/Si<0.9. The analytical error of phase quantification by XRD for the dried hydrothermally modified material typically ranges from 5- 20% for a given phase. The computed conversion value for Ca/Si=0.075 was négative and considered non-physical. Thus, no value for the conversion of Kfs is reported for Ca/Si=0.075.
The amorphous, dicalcium silicate hydrate, and hydrogamet phases track with % Kfs conversion such that wt. % of each increases as the Ca/Si in the feed mixture increases from 0.075 to 0.9. In contrast, tobermorite remains quite steady, actually beginning a descent in wt. % at Ca/Si = 0.45. Therefore, from the data it appears that dicalcium silicate hydrate can be obtained over tobermorite by increasing the Ca/Si in the mixture. Overall, the alteration of K-feldspar to a substantial amorphous phase can also be promoted simply by increasing the Ca/Si in the feed mixture. The ability to drive the products towards the formation of dicalcium silicate hydrate and amorphous phases simply by modifying the Ca/Si ratio is expected to hâve bénéficiai impacts on cernent chemistry and be relevant to a variety of cernent applications in general.
Effect of Ca/Si on Minerai Release
Release of K can be modulated by varying the Ca/Si in the feed mixture. Increasing the Ca/Si leads to more K being released by the dried hydrothermally modified material, where the maximum value is achieved when Ca/Si = 0.45 (FIG. 1 IB). Thus, it has been found that K-release is proportional to Ca/Si.
Leaching for Ca is distinguished from K due to the lack of a linear trend, as well as the impact of changing pH. In fact, Ca-release levels are quite similar when Ca/Si is 0.15, 0.30, and 0.6 (FIG. 1 IC). This correlates with dried hydrothermally modified materials where the pH buffering capacity remains intact or mostly intact (Table 10). At the lowest feed ratio, the alkalinity drops to 11.0, and in this case the release of Ca is substantially higher (FIG. 1 IC). Based on the data, feed Ca/Si influences the alkalinity of the dried hydrothermally modified material (i.e., buffering capacity is diminished at low Ca/Si), which in tum can hâve an impact on the release of minerais such as Ca. Unexpectedly, a Ca leaching spike occurs when the Ca/Si feed mixture ratio = 0.45, such that the value is comparable to that observed at low Ca/Si feed mixtures (FIG. 1 ID). An even greater spike is observed when Ca/Si = 0.9, perhaps indicating unreacted Ca(OH)2 from the hydrothermal process.
Table 10. pH of the Leachate Measured for Dried hydrothermally modified Materials Prepared Using Different Ca/Si Feed ratios.
0.075 0.15 0.30.6
Leaching pH^c 10·92 12.212.3
Leaching pH=24h 1]0 115 12312
Release of sodium (Na) and aluminum (Al) can also be modulated by varying the Ca/Si in the feed mixture (FIG. 1 ID). Leaching of Al increases across the full range of Ca/Si values, appearing to possibly plateau at the maximum ratio tested (0.9). A similar observation applies to Na leaching, except that a slight réduction is noticed at 0.6, the highest Ca/Si feed mixture tested.
In summary, the Ca/Si ratio Controls the extend of the hydrothermal reaction, and needs optimization for desired process time (t), température (T), feed composition, and desired mineralogy in the dried hydrothermally modified material. Of note, a low Ca/Si depletes buffering capacity of the material, which in tum can impact minerai leaching. As previously discussed, the ability to tune pH as a function of drying atmosphère facilitâtes the use of these dried hydrothermally modified materials for soil remediation, or for the production of alkali solutions for several types of industries/applications, including but not limited to, geopolymer, waterglass, colloïdal silica, and KOH/K2CO3 solutions.
Effect of Ca/Si on Particle Size Distribution (PSD) for Dried Hydrothermally Modified Materials.
PSD was evaluated for each of the Ca/Si ratios utilized in the study with comparisons made between the raw mix and the dried hydrothermally modified material. The particle size analysis was conducted with water as the dispersive medium in the absence of ultrasonication. For the lower Ca/Si feed mixtures, the graph of effective diameter vs. differential volume shows little déviation between pre- and post-processed materials. Only at Ca/Si = 0.3 and 0.6 are significant changes observed (FIG. 11F). For raw mixtures with Ca/Si = 0.6, it’s possible that particle agglomération produces the shoulder <20 um. It was found that K-feldspar conversion was enhanced as the Ca/Si ratio increased. In addition, increased K-feldspar conversion is also reflected in the increase in the small particle population.
In summary, the Ca/Si ratio plays a signifîcant rôle in processing. The alkaline earth component in the feed mixture Controls the alkalinity/pH of the hydrothermal process, which in tum dictâtes the dissolution kinetics of the alkali framework aluminosilicate and potentially the progress of the overall reaction. The phase distribution is sensitive to the aqueous Ca/Si concentration e.g., Ca-rich media preferentially promûtes the growth of dicaicium silicate hydrate, a compound with a Ca-rich stoichiometry. Alkali cation uptake by newly formed calcium silicate phases dépends on the Ca/Si in the solution, e.g., low Ca/Si solutions increase the partitioning of the alkali framework into the solid phase as a part of calcium silicate phases. These observations show that the chemistry and phase distribution of the dried hydrothermally modified material can be tailored by controlling the alkaline earth/Si and/or the alkaline earth/alkali in the solution ofthe hydrothermal process.
Example 6: Understanding the Rôle of Raw-mix PSD in the Processing
Raw material containing K-feldspar (<2 mm) was milled (50 g/mn) for 1 min. The milled material was then dry sieved using ASTM Eli sieve no. 70 (212 pm), 100 (150 pm), 140 (106 pm), and 325 (45 pm) to obtain the four fractions shown in the PSD (FIG. 30).
The feed mixtures were then prepared by physically mixing said fractions with the desired amount of CaO rather than by co-milling. Dried hydrothermally modified materials were produced from the four fractions. The PSD of the dried hydrothermally modified materials were measured (FIG. 31 A) and overlaid with the PSD of the corresponding raw material (FIG. 3 IB) in order to note similarities and déviations. For the most part, there was strong resemblance of the materials before and after processing with only some minor différences noted when d=85 pm and d=17 pm. Consequently, the PSD of the dried hydrothermally modified material can be modulated by varying the PSD ofthe raw material.
The effect of raw-mix PSD on elemental leaching was examined. K-release was maximized for a mean particle size of 85 pm. The larger particle sizes of 151 pm and 220 pm afforded nearly équivalent amounts of K-release with the smallest particle size providing an intermediate value (FIG. 31C). For Na and Al, the highest elemental release occurred at the smallest mean particle size. Leaching tended to decrease as particle size increased. Calcium leaching was maximized when the raw-mix PSD was 220 pm, with no leaching detected at either 85 pm or 17 pm (FIG. 31D).
According to the data, the reactivity of the raw material can be modulated by varying the degree of milling of the raw material. Thus, the surface area of the raw material may be increased to promote the reactivity of the raw material. Because of the strong corrélation, the PSD of the raw material can be adjusted to obtain a desired PSD of the dried hydrothermally modified material.
Example 7: Sensitivity of the Dried Hydrothermally Modified Material to Décalcification
As shown in FIG. 7A, drying the dried hydrothermally modified material with CO2 leads to a décalcification reaction that éliminâtes the α-dicalcium silicate hydrate phase and replaces it with a calcite phase (Table 11). An amorphous phase is still présent and slightly increased. To arrive at the data in Table 1, phase weight fraction HT-air was normalized to HT-CO2, i.e., an artificial phase fraction was added to the quantification of HT-air phases corresponding to the amount of CO2 incorporated in HT-CO2 as determined from the weight fraction of CaCOs.
Table 11. XRD Phase Quantification Using CO2 or Air Drying Atmosphère.
Drying Atmosphère
Phase C02 Air
K-feldspar 50.2 51.9
Tobermorite 3.3 4.1
α-Dicalcium silicate hydrate 0 5.5
Hydrogamet 8.4 10.9
Albite 0.6 3.1
Panunzite 2.1 2.5
Biotite 0 0.3
Calcite 14.2 0
”C02 n/a 6.5
Amorphous Content 21.2 15.2
The following experimental set-up was implemented in order to further study the impact of CO2 drying on the structure and composition of the dried hydrothermally modified material:
1) Hydrothermal (HT) material is dried with the supematant blanketed under an atmosphère
X (Ar or CO2).
2) The dried HT material is rinsed with Ar-purged water to remove soluble K (FIG. 27; e.g., KOH or K2CO3).
3) After filtering to remove the water, the rinsed material (retentate) is vacuum dried in a 10 Schlenk flask (~10'2 Torr) for 24-36 h.
4) The dried rinsed material is subjected to leaching experiments.
Once the dried hydrothermally modified material was rinsed and dried (Ar or CO2), XRD was used to détermine the mineralogy of each of the phases (Table 12). Of note, the calcite phase of the rinsed material dried with CO2 increased from 14.2 to 18.2, while the amorphous content decreased 15 from 21.2 to 13.0. Other changes to the composition are also détectable.
Table 12. XRD Quantification of Rinsed Phases Using CO2 or Air Drying Atmosphère.
Drying Atmosphère
Phase C02 Ar
K-feldspar 55.5 52.0
Tobermorite 4.0 4.8
ci-Dicalcium silicate hydrate 0 5.1
Hydrogarnet 6.8 11.6
Albite 2.5 2.8
Panunzite 0 2.1
Biotite 0 0.3
Calcite 18.2 0
CO2 n/a 6.5
Amorphous Content 13.0 14.9
The large particle-size population is less in the rinsed than in the non-rinsed dried hydrothermally modified materials (FIG. 33A). An overlay of HT-CO2 and HT-CO2-rmsed indicates that the effective diameter of the particles remains the same.
Scanning électron microscope (SEM) images of HT-Ar-rinsed reveal that calcium aluminum silicate hydrate (C-A-S-H) sheets can be found shrouding K-feldspar. In addition, globular hydrogarnet phases are embedded in the C-A-S-H matrix (FIGS. 33B and 33C). The biotite phase is also identified.
SEM images of HT-CO2-rinsed provide further evidence that carbonation leads to compaction and décalcification of the C-A-S-H sheets. Decalcified hydrogarnet is also clearly pictured. Carbonation promûtes the growth of Ca-rich polyhedral particles providing another structurally distinct feature (FIGS 33D and 33E).
SEM micrograph of HT-Ar-rinsed is shown in FIG. 33F. Numbers in the image refer to features typical to a corresponding phase, which were assigned as foliows: 1) K-feldspar (microcline and orthoclase), 2) C-A-S-H (tobermorite, a-dicalcium silicate hydrate, and amorphous), 3) hydrogarnet, and 4) CaCO3/Ca(OH)2. Similar features were used to identify phases in HT-CO2rinsed.
Energy dispersive X-ray spectrometry (EDS) has been used to quantify the nominal atomic fraction of the éléments K, Ca, Al, and Si in each phase (Table 13). While there are no major discrepancies for three of the éléments, Ca-bearing phases exhibit lower Ca/(A1+Si) in CO2 dried samples than when dried under Ar. Thus, CO2 is able to “extract” Ca from the minerais during processing.
Consequently, the action of CO2 on the mineralogy of the material also demonstrates the feasibility of a “décalcification” process that leads to the formation of SiO2 and AI2O3 out of K-feldspar, as depicted in FIG. 33G. The transformation of K-feldspar into its constituent components serves to further highlight the utility of the disclosed methods in an array of industries and applications.
Table 13. Nominal Atomic Fraction of the Phases Identified by SEM and EDS.
Nominal Atomic Fraction
Hydrothermal Material K.' (M'+AI+Si) Ca / (M+AI+Si) Al / (M+AI+Si) SL (M+AI+Si)
HT-Ar-rinsed
K-feldspar 0.18(2) n/a 0.22(2) 0.6(1)
C-A-S-H 0.01(1) 0.47(4) 0.09(2) 0.43(3)
Hydrogamet n/a 0.54(3) 0.16(3) 0.30(2)
CaCOy'Ca(OH)2 n/a 0.97(1) n/a 0.3(2)
HT-CO2-rinsed
K-feldspar 0.22(3) n/a 0.17(3) 0.61(2)
C-A-S-H 0.05(4) 0.08(5) 0.14(3) 0.73(4)
Hydrogamet n/a 0.23(3) 0.26(4) 0.51(2)
CaCOÿ'Ca(OH)2 0.01(1) 0.96(1) 0.01(1) 0.01(1)
corresponds to K or Ca or the sum of K and Ca.
Example 8: pH and Concentration Dépendent Leaching and Dissolution
Comparing Leaching in CsNO3/HNO3 and Tétraméthylammonium Hydroxide
It is possible that the extent of leaching can be enhanced with effective exchange of a cation with 10 potassium in the relevant phases. Based on the proposai that cation-exchange occurs in the hydrated interlayers of tobermorite and/or amorphous C-A-S-H phases, there should be a limit to the size of the cation in which the supposed exchange sites can fit. Therefore, leaching was evaluated in multiple leaching solutions to gain an understanding as to the size of the cation capable of exchange and subséquent release of potassium (K). In particular, Cs+ and NMe4+ (TMA), with cationic radii of 15 1.67 Â and ~4.5 Â, respectively were compared. Using a leaching solution of CsNO3/HNO3 (pH 5), the amount of K released was significantly increased compared to pH 5 HNO3 (FIG. 37A). It was found that Cs+, based on its appropriate size, is highly effective in the cation exchange with K+. On the other hand, the large TMA cation from tétraméthylammonium hydroxide (TMAOH) is ineffective at ion exchange with sites containing K+. It is also clear from the results that hydroxide mediated framework dissolution is not the primary mechanism for K-release from the solid phase. Still, the dried hydrothermally modified material is shown to be stable under basic conditions ~ pH 12.
Mineral-release in Acetate Buffer
Buffered leaching conditions were compared with the standard HNO3 solution (pH 5). K-release in the presence of acetate buffer (pH 5.3) was only slightly increased, but slightly acidic buffer conditions substantially promote dissolution of Ca-bearing phases (FIG. 37B). As demonstrated in pH 5.3 buffered solutions, components of the dried hydrothermally modified material can be dissolved when the material is subjected to acidic pH levels. In addition, the material may serve as a useful source of soluble Al under acidic conditions (see FIGS. 37B and 26 for data).
Elemental Leaching in CsNO3 in Rinsed Dried Hydrothermally Modified Material
Similar to the conditions used in Example 7 (FIG. 32), dried hydrothermally modified material was rinsed with water to separate the K-release contribution of the solid phase from the soluble components. The key différence in this study was that a CSNO3/HNO3 leaching solution was utilized to understand if K-release from the solid phase could also be enhanced by effective cation exchange with Cs+ (FIG. 37C).
The K from the solid phase comprises a fraction of the total K available for release, therefore the rinsed materials dried with either Ar or CO2 exhibit less K-release than corresponding unrinsed samples in HNO3 leaching solution (FIG. 37D). This différence gives the fraction of soluble/fastrelease K in the dried hydrothermally modified material. In the case with CO2 drying, mass balance dictâtes the missing K in HT-CO2 is in the solid phase (i.e., K repartitioned by carbonation, see FIG. 37E).
In FIGS. 37D and 37F, a comparison is made between K leaching in dried hydrothermally modified material subsequently rinsed with water and then redried under different atmospheric conditions. Based on the data, it was found that components of the solid phase favor uptake of Cs and release of K. That is evidenced by the three materials (HT-Ar, HT-Ar-rinsed, and HT-CO2-rinsed) each subjected to leaching in CSNO3/HNO3 that ail show more K being released than when HNO3 solution alone is used (FIG. 37F vs. FIG. 37D). Additionally, drying under CO2 in the presence of CsNO3 is found to hâve the same effect as leaching in CSNO3, affording another approach to increase soluble K.
Example 9: Effect of Further Refluxing the Dried Hydrothermally Modified Material
Dried hydrothermally modified material was prepared as follows:
1) 25 g of feed mixture (Ca/Si=0.3) in 100 g of water.
2) Hydrothermal processing was carried out at 200 °C for 5 h.
3) The combined solids/supematant were dried under an air atmosphère at 100-110 °C for 18 h.
The dried hydrothermally modified material was then further refluxed at 90 °C to examine the effects of this treatment. With a 5 h processing time and using an air atmosphère, the complex mineralogy summarized in Table 14 was achieved. The primary components were Kfs (44.5% for orthoclase/microcline combined), an amorphous phase (26.7%), and tobermorite (17%). Tobermorite was présent in significantly greater quantity than in dried hydrothermally modified material prepared without additional refluxing.
Table 14. Mineralogy of Refluxed Material.
air-air-5h-96h_reflux_90°C
KAlSisOg (Orthoclase/Feldspar) 12.2
KAlSi3O8 (Microcline) 32.3
Ca5Si6Oi6(OH)2-4H2O (Tobermorite) 17
Ca2SiO3(OH)2 (α-Dicalcium silicate hydrate) 0
Ca3Al2(SiO4)3-x(OH)4x (Plazolite/Hydrogrossular) 7.3
NaAlSi3Os (Al bite) 2
(K,Na)AlSiO4 (Panunzite) 2.5
K(Mg,Fe)3(AlSi3Oio)(F,OH)2 (Biotite) 0
CaCO3 (Calcite) 0
Amorphous Content 26.7
KFS (w/o Panunzite) 44.5
KFS (w/ Panunzite) 47
Total 100
The refluxed dried hydrothermally modified material was also studied for its K-releasing properties (FIG. 36). Comparing the tested conditions, leaching was found to be greater when refluxing was carried out for 24 h. Extending the amount of time to 96 h significantly attenuated the ability of the material to release K. Trapping of K in one or more of the particular phases may explain the results obtained.
Ail references, articles, publications, patents, patent publications, and patent applications cited herein are incorporated by reference in their entireties for ail purposes. However, mention of any 5 reference, article, publication, patent, patent publication, and patent application cited herein is not, and should not be taken as acknowledgment or any form of suggestion that they constitute valid prior art or form part of the common general knowledge in any country in the world.

Claims (15)

1. A composition, comprising:
a K-feldspar phase; and a calcium silicate hydrate phase comprising at least one phase selected from the group consisting of a dicalcium silicate hydrate phase, a tobermorite phase, and a hydrogamet phase;
wherein:
the composition comprises the K-feldspar phase in an amount of at most about 65 wt.
%; and at least one of the following holds:
the composition comprises at least about 1 wt. % of the dicalcium silicate hydrate phase;
the composition comprises at least about 1 wt. % of the tobermorite phase; or the composition comprises at least about 1 wt. % of the hydrogarnet phase.
2. The composition of claim 1, wherein the composition comprises at least about 1 wt.
% of the K-feldspar phase.
3. The composition of claim 1, wherein the composition comprises from about 1 wt. % to about 30 wt. % of the calcium silicate hydrate phase.
4. The composition of claim 1, wherein the hydrogamet phase comprises plazolite or hydrogrossular.
5. The composition of claim 1, further comprising an amorphous phase.
6. The composition of claim 5, wherein the amorphous phase comprises a zeolite.
7. The composition of claim 5, wherein the amorphous phase comprises at least one member selected from the group consisting of silica and calcium silica hydrates.
8. The composition of claim 1, further comprising one or more carbonates.
9. The composition of claim 1, wherein the composition has a 24-hour release rate per kilogram of the composition of at least one of:
at least about 5,000 mg of potassium;
at least 15 mg of calcium;
at most 10 mg of aluminum;
at least 40 mg of Silicon;
at least 5 mg of sodium; or at least 5 mg of magnésium.
10. The composition of claim 1, further comprising a carbonaceous material.
11. The composition of claim 1, wherein the composition comprises aggregated particles having a size of from about 100 microns to about 1000 microns.
12. The composition of claim 1, wherein the composition comprises particles having and a spécifie surface area according to the BET method of from about 15.1 square meters per gram to about 46.9 square meters per gram.
13. The composition of claim 1, wherein the composition has a particle size distribution of from about 0.01 micron to about 1000 microns.
14. The composition of claim 1, wherein the composition is useful in soil remediation.
15. A fertilizer comprising the composition of claim 1.
OA1201900291 2017-01-18 2018-01-18 Potassium-releasing material. OA19674A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US62/447,657 2017-01-18
US62/520,976 2017-06-16

Publications (1)

Publication Number Publication Date
OA19674A true OA19674A (en) 2020-12-31

Family

ID=

Similar Documents

Publication Publication Date Title
US11691927B2 (en) Potassium-releasing material
Ciceri et al. Potassium fertilizer via hydrothermal alteration of K-feldspar ore
AU2017203549B2 (en) Alkali metal ion source with moderate rate of ion release and methods of forming
Koshy et al. Characterization of Na and Ca zeolites synthesized by various hydrothermal treatments of fly ash
OA19674A (en) Potassium-releasing material.
EA039758B1 (en) Potassium-releasing material
US20230055830A1 (en) Multi-phase material-containing compositions and related methods of preparation and use
OA20954A (en) Multi-phase material-containing compositions and related methods of preparation and use
Wang et al. Transformation of Coal Gangue to Sodalite and Faujasite Using Alkali-hydrothermal Method
TR2022012523T2 (en) Multiphase material containing compositions and associated methods of preparation and use.
OA17583A (en) Alkali metal ion source with moderate rate of ion relaease and methods of forming.