OA19499A - Chimeric antigen and T cell receptors and methods of use. - Google Patents

Chimeric antigen and T cell receptors and methods of use. Download PDF

Info

Publication number
OA19499A
OA19499A OA1201800373 OA19499A OA 19499 A OA19499 A OA 19499A OA 1201800373 OA1201800373 OA 1201800373 OA 19499 A OA19499 A OA 19499A
Authority
OA
OAPI
Prior art keywords
cell
seq
polynucleotide
amino acid
antigen
Prior art date
Application number
OA1201800373
Inventor
Jed Wiltzius
Original Assignee
Kite Pharma, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kite Pharma, Inc. filed Critical Kite Pharma, Inc.
Publication of OA19499A publication Critical patent/OA19499A/en

Links

Abstract

The invention provides a chimeric antigen receptor (CAR) or a T cell receptor (TCR) comprising extracellular domain disclosed herein. Some aspects of the invention relate to a polynucleotide encoding a chimeric antigen receptor (CAR) or a T cell receptor (TCR) comprising the extracellular domain disclosed herein. Other aspects of the invention relate to cells comprising the CAR or the TCR and their use in a T cell therapy.

Description

CHIMERIC ANTIGEN AND T CELL RECEPTORS AND METHODS OF USE
CROSS REFERENCE TO RELATED APPLICATIONS
[0001] This application claims the benefît of U.S. Provisional Patent Application No. 62/317,258, filed April 1, 2016, which is hereby incorporated by reference in its entirety.
SEQUENCE LISTING
[0002] The instant application contains a Sequence Listing which has been submitted electronically in ASCII format and is hereby incorporated by reference in its entirety. Said ASCII copy, created on March 30, 2017, is named K-1031_02_SL.txt and is 414,963 bytes in size.
BACKGROUND OF THE INVENTION
[0003] Human cancers are by their nature comprised of normal cells that hâve undergone a genetic or epigenetic conversion to become abnormal cancer cells. In doing so, cancer cells begin to express proteins and other antigens that are distinct from those expressed by normal cells. These aberrant tumor antigens can be used by the body's innate immune system to specifically target and kill cancer cells. However, cancer cells employ various mechanisms to prevent immune cells, such as T and B lymphocytes, from successfully targeting cancer cells.
[0004] Current thérapies T cell thérapies rely on enriched or modified human T cells to target and kill cancer cells in a patient. To increase the ability of T cells to target and kill a particular cancer cell, methods hâve been developed to engineer T cells to express constructs which direct T cells to a particular target cancer cell. Chimeric antigen receptors (CARs) and engineered T cell receptors (TCRs), which comprise binding domains capable of interacting with a particular tumor antigen, allow T cells to target and kill cancer cells that express the particular tumor antigen.
[0005] A need exists for improved CARs and TCRs for targeting and killing cancer cells.
SUMMARY OF THE INVENTION
[0006] The présent invention addresses this need by providing compositions and methods comprising genetically engineered immune cells that express antigen receptors (CARs) or T cell receptors (TCRs) which specifically target and kill cancer cells.
[0007] A CAR may comprise, for example, (i) an antigen-specific component (“antigen binding molécule”), (ii) one or more costimulatory domains (which includes a hinge domain), and (iii) one or more activating domains. Each domain may be heterogeneous, that is, comprised of sequences derived from different protein chains. CAR-expressing immune cells (such as T cells) may be used in various thérapies, including cancer thérapies.
[0008] As described in more detail below, including the Examples section, CARs comprising a costimulatory domain which includes a truncated hinge domain (“THD”) provides unexpectedly superior properties when compared to a CAR comprising a costimulatory domain which includes a complété hinge domain (“CHD”). Polynucleotides encoding such CARs can be transduced into T cells and the CARs are expressed in T cells, e.g., a patient’s own T cells. When the transduced T cells are transplanted back to a patient, the CARS direct the T cells to recognize and bind an epitope présent on the surface of cancer cells, thus, allowing binding of cancer cells rather than non-cancerous cells. This binding leads to activation of cytolytic mechanisms in the T cell that specifically kill the bound cancer cells. Prior to the présent invention, it was unknown that a CARs comprising a THD is superior to a CAR comprising a CHD. Thus, the présent invention satisfies an unmet need that exists for novel and improved thérapies for treating cancer.
[0009] An aspect of the présent invention is an isolated polynucleotide encoding a chimeric antigen receptor (CAR) or a T cell receptor (TCR), which comprises (i) an antigen binding molécule, (ii) a costimulatory domain, and (iii) an activating domain. The costimulatory domain may comprise an extracellular domain, a transmembrane domain, and an intracellular domain, wherein the extracellular domain comprises a truncated hinge domain consisting essentially of or consisting of (i) an amino acid sequence at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or about 100% identical to amino acids 123 to 152 of SEQ ID NO: 1 and, optionally, (ii) one to six amino acids.
[0010] In some embodiments, the one to six amino acids are heterologous amino acids.
[0011] In some embodiments, the truncated hinge domain consists essentially of or consists of an amino acid sequence at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or about 100% identical to amino acids 123 to 152 ofSEQ ID NO: 1.
[0012] In some embodiments, the amino acid sequence is encoded by a nucléotide sequence at least about 60%, at least about 70%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or about 100% identical to SEQ ID NO: 2.
[0013] In some embodiments, the transmembrane domain is a transmembrane domain of 4-1BB/CD137, an alpha chain of a T cell receptor, a beta chain of a T cell receptor, CD3 epsilon, CD4, CD5, CD8 alpha, CD9, CD16, CD19, CD22, CD33, CD37, CD45, CD64, CD80, CD86, CD134, CD137, CD154, or a zêta chain of a T cell receptor, or any combination thereof [0014] In some embodiments, the transmembrane domain comprises an amino acid sequence at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or about 100% identical to SEQ ID NO: 5.
[0015] In some embodiments, the transmembrane domain is encoded by a nucléotide sequence at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or about 100% identical to SEQ ID NO: 4.
[0016] In some embodiments, the intracellular domain comprises a signaling région of 4-1BB/CD137, activating NK cell receptors, B7-H3, BAFFR, BLAME (SLAMF8), BTLA, CD100 (SEMA4D), CD103, CD160 (BY55), CD18, CD19, CD19a, CD2, CD247, CD27, CD276 (B7-H3), CD29, CD3 delta, CD3 epsilon, CD3 gamma, CD30, CD4, CD40, CD49a, CD49D, CD49f, CD69, CD7, CD84, CD8alpha, CD8beta, CD96 (Tactile), CD1 la, CD11b, CD1 le, CD1 Id, CDS, CEACAM1, CRT AM, cytokine receptors, DAP-10, DNAM1 (CD226), Fc gamma receptor, GADS, GITR, HVEM (LIGHTR), IA4, ICAM-1, ICAM-1, Ig alpha (CD79a), IL2R beta, IL2R gamma, IL7R alpha, Immunoglobulin-like proteins, inducible T cell costimulator (ICOS), integrins, ITGA4, ITGA4, ITGA6, ITGAD, ITGAE, ITGAL, ITGAM, ITGAX, ITGB2, ITGB7, ITGB1, KIRDS2, LAT, LFA-1, LFA-1, a ligand that specifically binds with CD83, LIGHT, LIGHT (tumor necrosis factor superfamily member 14; TNFSF14), LTBR, Ly9 (CD229), lymphocyte function-associated antigen-1 (LFA-1 (CD1 la/CD18), MHC class I molécule, NKG2C, NKG2D, NKp30, NKp44, NKp46, NKp80 (KLRF1), OX-40, 3
PAG/Cbp, programmée! death-1 (PD-1), PSGL1, SELPLG (CD162), signaling lymphocytic activation molécules (SLAM proteins), SLAM (SLAMF1 ; CD150; IPO-3), SLAMF4 (CD244; 2B4), SLAMF6 (NTB-A; Lyl08), SLAMF7, SLP-76, TNF receptor proteins, TNFR2, a Toll ligand receptor, TRANCE/RANKL, VL Al, or VLA-6, or a combination thereof.
[0017] In some embodiments, the intracellular domain comprises a 4-1BB/CD137 signaling région.
[0018] In some embodiments, the intracellular domain comprises an amino acid sequence at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or about 100% identical to SEQ ID NO: 7.
[0019] In some embodiments, the intracellular domain comprises an amino acid sequence encoded by a nucléotide sequence at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or about 100% identical to SEQ ID NO: 6.
[0020] In some embodiments, the antigen binding molécule comprises a heavy chain variable région (VH) and a light chain variable région (VL), wherein the VH comprises 3 complementarity determining régions (CDRs) and the VL comprises 3 CDRs.
[0021] In some embodiments, the antigen binding molécule specifically binds an antigen selected from the group consisting of 5T4, alphafetoprotein, B cell maturation antigen (BCMA), CA-125, carcinoembryonic antigen, CD19, CD20, CD22, CD23, CD30 , CD33, CD56, CD123, CD138, c-Met, CSPG4, C-type lectin-like molécule 1 (CLL-1), EGFRvIII, épithélial tumor antigen, ERBB2, FLT3, folate binding protein, GD2, GD3, HER1-HER2 in combination, HER2-HER3 in combination, HER2/Neu, HERV-K, HIV-l envelope glycoprotein gp41, HIV-l envelope glycoprotein gpl20, IL-llRalpha, kappa chain, lambda chain, melanoma-associated antigen, mesothelin, MUC-1, mutated p53, mutated ras, prostatespecific antigen, ROR1, or VEGFR2, or a combination thereof.
[0022] In some embodiments, the antigen binding molécule specifically binds BCMA, CLL-1, orFLT3.
[0023] In some embodiments, the activation domain comprises an amino acid sequence at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or about 100% identical to SEQ ED NO: 9 or SEQIDNO: 251.
[0024] In some embodiments, the activation domain is encoded by a nucléotide sequence at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or about 100% identical to SEQ ID NO: 8.
[0025] In some embodiments, the CAR or TCR fùrther comprises a leader peptide.
[0026] In some embodiments, the leader peptide comprises an amino acid sequence at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or about 100% identical to SEQ ID NO: 11.
[0027] In some embodiments, the leader peptide is encoded by a nucléotide sequence at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or about 100% identical to SEQIDNO: 10.
[0028] Another aspect of the présent invention is a vector comprising the polynucleotide of an above aspect or embodiment.
[0029] In some embodiments, the vector is an adénoviral vector, an adenovirusassociated vector, a DNA vector, a lentiviral vector, a plasmid, a retroviral vector, or an RNA vector, or any combination thereof.
[0030] Yet another aspect of the présent invention is a polypeptide encoded by the polynucleotide of an above aspect or embodiment or the vector of an above aspect or embodiment.
[0031] In another aspect, the présent invention is a cell comprising the polynucleotide of an above aspect or embodiment, the vector of an above aspect or embodiment, or the polypeptide of an above aspect or embodiment, or any combination thereof.
[0032] In some embodiments, the cell is a T cell.
[0033] In some embodiments, the T cell is an allogeneic T cell, an autologous T cell, an engineered autologous T cell (eACT™), or a tumor-infiltrating lymphocyte (TIL).
[0034] In some embodiments, the T cell is a CD4+ T cell.
[0035] In some embodiments, the T cell is a CD8+ T cell.
[0036] In some embodiments, the T cell is an in vitro cell.
[0037] In some embodiments, the T cell is an autologous T cell.
[0038] An aspect of the présent invention is a composition comprising the polynucleotide of an above aspect or embodiment, comprising the vector of an above aspect or embodiment, comprising the polypeptide of an above aspect or embodiment, or comprising the cell of an above aspect or embodiment.
[0039] In some embodiments, the composition is formulated to be delivered to a subject, optionally, comprising at least one pharmaceutically-acceptable excipient.
[0040] Another aspect of the présent invention is a method of making a cell expressing a CAR or TCR comprising transducing a cell with the polynucleotide of an above aspect or embodiment under suitable conditions.
[0041] In some embodiments, the method further comprises isolating the cell.
[0042] Yet another aspect of the présent invention is a method of inducing an immunity against a tumor comprising administering to a subject an effective amount of a cell comprising the polynucleotide of an above aspect or embodiment, comprising the vector of an above aspect or embodiment, or the polypeptide of an above aspect or embodiment, or any combination thereof.
[0043] In another aspect, the présent invention is a method of treating a cancer in a subject in need thereof comprising administering to the subject the polynucleotide of an above aspect or embodiment, the vector of an above aspect or embodiment, the polypeptide of an above aspect or embodiment, the cell of an above aspect or embodiment, or the composition of an above aspect or embodiment.
[0044] In some embodiments, the cancer is a hématologie cancer.
[0045] In some embodiments, the cancer is of the white blood cells.
[0046] In some embodiments, the cancer is of the plasma cells.
[0047] In some embodiments, the cancer is leukemia, lymphoma, or myeloma.
[0048] In some embodiments, the cancer is acute lymphoblastic leukemia (ALL) (including non T cell ALL), acute myeloid leukemia, B cell prolymphocytic leukemia, B-cell acute lymphoid leukemia (“BALL”), blastic plasmacytoid dendritic cell neoplasm, Burkitt's lymphoma, chronic lymphocytic leukemia (CLL), chronic myelogenous leukemia (CML), chronic myeloid leukemia, chronic or acute leukemia, diffuse large B cell lymphoma (DLBCL), follicular lymphoma (FL), hairy cell leukemia, Hodgkin's Disease, malignant lymphoproliférative conditions, MALT lymphoma, mantle cell lymphoma, Marginal zone lymphoma, monoclonal gammapathy of undetermined significance (MGUS), multiple myeloma, myelodysplasia and myelodysplastic syndrome, non-Hodgkin's lymphoma (NHL), plasma cell proliférative disorder (including asymptomatic myeloma (smoldering multiple myeloma or indolent myeloma), plasmablastic lymphoma, plasmacytoid dendritic cell 6 neoplasm, plasmacytomas (including plasma cell dyscrasia; solitary myeloma; solitary plasmacytoma; extramedullary plasmacytoma; and multiple plasmacytoma), POEMS syndrome (also known as Crow-Fukase syndrome; Takatsuki disease; and PEP syndrome), primary médiastinal large B cell lymphoma (PMBC), small cell- or a large cell-follicular lymphoma, splenic marginal zone lymphoma (SMZL), systemic amyloid light chain amyloidosis, T-cell acute lymphoid leukemia (“TALL”), T-cell lymphoma, transformed follicular lymphoma, or Waldenstrom macroglobulinemia, or a combination thereof.
[0049] Generally, the présent invention relates to Engineered Autologous Cell Therapy, abbreviated as “eACT™,” also known as adoptive cell transfer. eACT™, is a process by which a patient's own T cells are collected and subsequently genetically engineered to recognize and target one or more antigens expressed on the cell surface of one or more spécifie cancer cells. T cells may be engineered to express, for example, a CAR or TCR. CAR positive (CAR+) T cells are engineered to express a CAR. CARs may comprise, e.g., an extracellular single chain variable fragment (scFv) with specificity for a particular tumor antigen, which is directly or indirectly linked to an intracellular signaling part comprising at least one costimulatory domain, which is directly or indirectly linked to at least one activating domain; the components may be arranged in any order. The costimulatory domain may be derived from a costimulatory protein known in the art, e.g., SEQ ID NO: 1, and the activating domain may be derived from, e.g., any form of CD3-zeta. In some embodiments, the CAR is designed to hâve two, three, four, or more costimulatory domains. In some embodiments, a CAR is engineered such that the costimulatory domain is expressed as a separate polypeptide chain. Examples of CAR T cell thérapies and constructs are described in U.S. Patent Publication Nos. 2013/0287748, 2014/0227237, 2014/0099309, and 2014/0050708; International Patent Publications Nos. WO2012033885, WO2012079000, WO2014127261, WO2014186469, WO2015080981, WO2015142675, WO2016044745, and WO2016090369; and Sadelain étal, CancerDiscovery, 3: 388-398 (2013), each ofwhich is incorporatedby reference in its entirety.
[0050] Any aspect or embodiment described herein may be combined with any other aspect or embodiment as disclosed herein. While the présent invention has been described in conjunction with the detailed description thereof, the foregoing description is intended to illustrate and not limit the scope of the présent invention, which is defined by the scope of the appended claims. Other aspects, advantages, and modifications are within the scope of the following claims.
[0051] The patent and scientific literature referred to herein establishes the knowledge that is available to those with skill in the art. Ail United States patents and published or unpublished United States patent applications cited herein are incorporated by reference. Ail published foreign patents and patent applications cited herein are hereby incorporated by reference. Ail other published references, dictionaries, documents, manuscripts and scientific literature cited herein are hereby incorporated by reference.
[0052] Other features and advantages of the invention will be apparent from the Drawings and the following Detailed Description, including the Examples, and the daims.
BRIEF DESCRIPTION OF THE FIGURES
[0053] The above and further features will be more clearly appreciated from the following detailed description when taken in conjunction with the accompanying drawings. The drawings however are for illustration purposes only; not for limitation.
[0054] FIG. 1A shows a costimulatory protein having the amino acid sequence of SEQ ID NO: 1. The costimulatory protein’s hinge domain (solid underline), transmembrane domain (dotted underline), and signaling domain (dashed underline) are labeled. A novel truncated hinge domain (“THD”) is bolded. FIGs. IB and IC provide ribbon diagrams of the extracellular domain of the costimulatory protein having the amino acid sequence of SEQ IDNO: 1. FIG. IB shows an example of a région within the amino acid sequence of SEQ ID NO: 1 used to dérivé one embodiment of a hinge région in the context of CAR, i.e., a région containing amino acids 114 to 152 of SEQ ID NO: 1 (herein referred to as a complété hinge domain or “CHD”; it is marked in black and dark grey). FIG. IC shows the THD which contain amino acids 123 to 152 of SEQ ID NO: 1 (marked in black). In FIG. IB, the portion of the hinge région that is excluded from FIG. IC is marked dark grey and circled.
[0055] FIGs. 2A-2H show CLUTSTAL W (2.83) multiple sequence alignments of eight example binding molécules disclosed herein. FIG. 2A shows a sequence alignment of example anti-CLL-1 binding molécules comprising a VH domain. CDRs and framework régions FRs are shown, as determined by Chothia numbering (FIG. 2A). FIG. 2B is a table providing the SEQ ID NO for each VH and CDR illustrated in FIG. 2A. FIG. 2C shows a sequence alignment of example anti-CLL-1 binding molécules comprising a VL domain. CDRs and FRs are shown, as determined by Chothia numbering (FIG. 2C). FIG. 2D is a table providing the SEQ ID NO for each VH and CDR sequence illustrated in FIG. 2C. FIG. 2E shows a sequence alignment of example anti-BCMA binding molécules comprising a VH domain. Complementarity determining régions (CDRs) and framework régions (FRs) are shown, as determined by Chothia numbering (FIG. 2E). FIG. 2F is a table providing the SEQ ID NO for each VH and CDR illustrated in FIG. 2E. FIG. 2G shows a sequence alignment of example anti-BCMA binding molécules comprising a VL domain. CDRs and FRs are shown, as determined by Chothia numbering (FIG. 2G). FIG. 2H is a table providing the SEQ ID NO for each VH and CDR sequence illustrated in FIG. 2G. [0056] FIG. 3 depicts CAR expression in primary human T cells electroporated with mRNA encoding for various CARs. Data obtained from CAR having a complété hinge domain (“CHD”) is shown and data obtained from CAR having a truncated hinge domain (“THD”) is shown.
[0057] FIGs. 4A-4X show IFNy, IL-2, and TNFa production by electroporated antiFLT3 CAR T cells following 16 hours of co-culture with the indicated target cell lines. FIGs. 4A-4B, 4G-4H, 4M-4N, and 4S-4T show IFNy production following co-culture with Namalwa, EoL-1, HL60, and MV4;11 target cells, respectively. FIGs. 4C-4D, 41-4J, 4O-4P, and 4U-4V show IL-2 production following co-culture with Namalwa, EoL-1, HL60, and MV4;11 target cells, respectively. FIGs. 4E-4F, 4K-4L, 4Q-4R, and 4W-4X show TNFa production following co-culture with Namalwa, EoL-1, HL60, and MV4;11 target cells, respectively.
[0058] FIGs. 5A-5H show cytolytic activity of electroporated anti-FLT3 CAR T cells against Namalwa (FIGs. 5A-5B), EoLl (FIGs. 5C-5D), HL60 (FIGs. 5E-5F), and MV4;11 (FIGs. 5G-5H) target cell lines following 16 hours of co-culture.
[0059] FIGs. 6A-6B depict CAR expression in lentivirus transduced primary human T cells from two healthy donors.
[0060] FIGs. 7A-7F show IFNy (FIGs. 7A-7B), TNFa (FIGs. 7C-7D), and IL-2 (FIGs. 7E-7F) production by lentivirus transduced CAR T cells from two healthy donors following 16 hours of co-culture with the indicated target cell lines.
[0061] FIGs. 8A-8D show the average cytolytic activity over time from two healthy donors expressing the anti-FLT3 CAR constructs co-cultured with Namalwa (FIG. 8A), EoLl (FIG. 8B), MV4;11 (FIG. 8C), and HL60 (FIG. 8D) target cell lines for 16, 40, 64, 88, or 112 hours.
[0062] FIGs. 9A-9B depict prolifération of CFSE-labeled lentivirus transduced CAR T cells from two healthy donors following 5 days of co-culture with CD3-CD28 beads or the indicated target cell lines.
[0063] FIGs. 10A-10D depict CAR expression in lentivirus transduced primary human T cells used for in vivo studies. FIGs. 10E-10F show graphical représentations of measured bioluminescence imaging of labeled acute myeloid leukemia (AML) cells following intravenous injection of either control (mock) or anti-FLT3 CAR T cells (10E3-CHD, 10E3THD, or 8B5-THD) in a xenogeneic model, performed in duplicate. FIG. 10G provides the p-values for the respective data points in FIG. 10E. FIGs. 10H-10K show survival curves of mice injected with mock or 10E3-CHD (FIG. 10H), mock or 10E3-THD (FIG. 101), mock or 8B5-THD (FIG. 10J), or 10E3-THD or 8B5-THD (FIG. 10K) CAR T cells.
[0064] FIGs. 11 A-l IB shows CLL-1 CAR expression determined by protein L 6 hours post mRNA electroporation.
[0065] FIGs. 12A-12C show the results from a cytokine release assay from different CLL-1 CAR-T cell constructs 24 hours after mRNA electroporation. IL-2 (FIG. 12A), IFNy (FIG. 12B), and TNFa (FIG. 12C) production levels are shown for Controls (target alone, mock, GFP, and CD 19 CAR T cells) and anti-CLL-1 CAR T cells (24C1_HL-THD, 24C1HL CHD, 24C8HL-CHD, and 24C8 HL THD) co-cultured with Namalwa, MV4;11, U937, HL60, and EoL-1 cells, as indicated.
[0066] FIGs. 13A-13E show cytolytic activity of different CLL-1 CAR-T cell constructs 24 hours after mRNA electroporation. T cells electroporated with control constructs (mock, GFP, and CD 19 CAR) or anti-CLL-1 CAR constructs (24C8 HL-CHD and 24C8 HL THD) were co-cultured with Namalwa (FIG. 13A), MV;411 (FIG. 13B), EoL-1 (FIG. 13C), HL-60 (FIG. 13D), and U937 target cells, and the percent of spécifie lysis of each target cell line was determined.
[0067] FIGs. 14A-14C show the results from a cytokine release assay from different transduced anti-CLL-1 CAR T cells 16 hours after co-culture with different cell lines. IFNy (FIG. 14A), IL-2 (FIG. 14B), and TNFa (FIG. 14C) production levels are shown for Controls (target alone and mock) and transduced anti-CLL-1 CAR T cells (10E3 THD and 24C1LHTHD) co-cultured with Namalwa, HL-60, or MV4;11 target cells, as indicated. [0068] FIGs. 15A-15C show cytolytic activity from anti-CLL-1 CAR T cells (C124C1LHTHD) 16 hours and 40 hours after co-culture with Namalwa (FIG. 15A), MV4;11 (FIG. 15B), or HL-60 (FIG. 15C) target cells.
[0069] FIGs 16A-16F shows IFNy, TNFa, and IL-2 production by lentivirus transduced CAR T cells from two healthy donors following 16 hours of co-cultured with EoL-1 (Black), NCI-H929 (light grey), or MM1S (grey) target cell lines. FIGs. 16A and 16B show the IFNy (pg/ml; y-axis) production in lentivirus transduced CAR T cells from a first donor (FIG. 6A) and a second donor (FIG. 16B). FIGs. 16C and 16D show the TNFa (pg/ml; y-axis) production in lentivirus transduced CAR T cells from a first donor (FIG. 16C) and a second donor (FIG. 16D). FIGs. 16E and 16F show the IL-2 production (pg/ml; y-axis) in lentivirus transduced CAR T cells from a first donor (FIG. 16E) and a second donor (FIG. 16F).
[0070] FIGs. 17A-17F show the average cytolytic activity (as a percentage of viable target cells remaining; y-axis) over time from two healthy donors expressing the indicated CARs co-cultured with EoLl (FIGs. 17A and 17B), NCI-H929 (FIGs. 17C and 17D), or MM1S (FIGs. 17E and 17F) target cells for 16 hours, 40 hours, 64 hours, 88 hours, or 112 hours. FIGs. 17A and 17B show the average cytolytic activity of transduced CAR T cells from a first donor (FIG. 17A) and a second donor (FIG. 17B) co-cultured with EoLl target cells for 16 hours, 40 hours, 64 hours, 88 hours, or 112 hours. FIGs. 17C and 17D show the average cytolytic activity of transduced CAR T cells from a first donor (FIG. 17C) and a second donor (FIG. 17D) co-cultured with NCI-H929 target cells for 16 hours, 40 hours, 64 hours, 88 hours, or 112 hours. FIGs. 17E and 17F show the average cytolytic activity of transduced CAR T cells from a first donor (FIG. 17E) and a second donor (FIG. 17F) cocultured with MM1S target cells for 16 hours, 40 hours, 64 hours, 88 hours, or 112 hours. [0071] FIGs. 18A and 18B show prolifération of CFSE-labeled lentivirus transduced CAR T cells from a first healthy donor (FIG. 18A) and a second healthy donor (FIG. 18B) following 6 days of co-culture with CD3-CD28 beads (top row), EoL-1 (second row), NCIH929 (third row), or MM1S (bottom row) target cell lines. [0072] FIG 19A and FIG. 19B are graphs showing thermostability of chimeric antigen receptors (CARs) of the présent invention. FIG. 19A: In a phosphate-buffered saline (PBS) solution, a CAR comprising an extracellular domain with a truncated hinge domain (“THD”) has a higher melting température relative to a CAR comprising an extracellular domain with a complété hinge domain (“CHD”). FIG. 19B: In the presence of 50 mM NaCl, a CAR comprising an extracellular domain with a THD has a higher melting température relative to a CAR comprising an extracellular domain with a CHD.
DETAILED DESCRIPTION OF THE INVENTION
[0073] The présent invention relates to novel polypeptides comprising a novel truncated hinge domain (“THD”) and polynucleotides encoding the same. Some aspects of the invention relate to a polynucleotide encoding a chimeric antigen receptor (CAR) or a T cell receptor (TCR) comprising the THD disclosed herein. The présent invention also provides vectors (e.g., viral vectors) comprising such polynucleotides and compositions comprising such vectors. The présent invention further provides polynucleotides encoding such CARs or TCRs and compositions comprising such polynucleotides. The présent invention additionally provides engineered cells (e.g., T cells) comprising such polynucleotides and/or transduced with such viral vectors and compositions comprising such engineered cells. The présent invention provides compositions (e.g., pharmaceutical compositions) including a plurality of engineered T cells. The présent invention provides methods for manufacturing such engineered T cells and compositions and uses (e.g., in treating a melanoma) of such engineered T cells and compositions. And, the présent invention provides a method of inducing an immunity against a tumor comprising administering to a subject an effective amount of a cell comprising a polynucleotide, a vector, or a polypeptide of the présent invention. Other aspects of the invention relate to cells comprising the CAR or the TCR and their use in a T cell therapy, e.g., an autologous cell therapy (eACT™), for the treatment of a patient suffering from a cancer.
DEFINITIONS
[0074] In order for the présent invention to be more readily understood, certain terms are first defïned below. Additional définitions for the foilowing terms and other tenus are set forth throughout the Spécification.
[0075] As used in this Spécification and the appended claims, the singular forms “a,” “an” and “the” include plural referents unless the context clearly dictâtes otherwise.
[0076] Unless specifically stated or obvious from context, as used herein, the term “or” is understood to be inclusive and covers both “or” and “and”.
[0077] The term “and/or” where used herein is to be taken as spécifie disciosure of each of the two specified features or components with or without the other. Thus, the term “and/or” as used in a phrase such as “A and/or B” herein is intended to include A and B; A or B; A (alone); and B (alone). Likewise, the term “and/or’’ as used in a phrase such as “A, B, and/or
C” is intended to encompass each of the following aspects: A, B, and C; A, B, or C; A or C; A or B; B or C; A and C; A and B; B and C; A (alone); B (alone); and C (alone).
[0078] The terms “e.g.” and “i.e” as used herein, are used merely by way of example, without limitation intended, and should not be construed as referring only those items explicitly enumerated in the spécification.
[0079] The terms “or more”, “at least”, “more than”, and the like, e.g., “at least one” are understood to include but not be limited to at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39,
40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64,
65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89,
90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110,
111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149 or 150, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 2000, 3000, 4000, 5000 or more than the stated value. Also included is any greater number or fraction in between.
[0080] Conversely, the term “no more than” includes each value less than the stated value. For example, “no more than 100 nucléotides” includes 100, 99, 98, 97, 96, 95, 94, 93, 92, 91, 90, 89, 88, 87, 86, 85, 84, 83, 82, 81, 80, 79, 78, 77, 76, 75, 74, 73, 72, 71, 70, 69, 68,
67, 66, 65, 64, 63, 62, 61, 60, 59, 58, 57, 56, 55, 54, 53, 52, 51, 50, 49, 48, 47, 46, 45, 44,43,
42, 41, 40, 39, 38, 37, 36, 35, 34, 33, 32, 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19,18,
17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, and 0 nucléotides. Also included isany lesser number or fraction in between.
[0081] The terms “plurality”, “at least two”, “two or more”, “at least second”, and the like, are understood to include but not limited to at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,14,
15, 16, 17, 18, 19 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38,39,
40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,64,
65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88,89,
90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149 or 150, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 2000, 3000, 4000, 5000 or more. Also included is any greater number or fraction in between.
[0082] Throughout the spécification the word “comprising,” or variations such as “comprises” or “comprising,” will be understood to imply the inclusion of a stated element, integer or step, or group of éléments, integers or steps, but not the exclusion of any other element, integer or step, or group of éléments, integers or steps. It is understood that wherever aspects are described herein with the language “comprising,” otherwise analogous aspects described in ternis of “consisting of’ and/or “consisting essentially of’ are also provided.
[0083] Unless specifically stated or évident from context, as used herein, the term “about” refers to a value or composition that is within an acceptable error range for the particular value or composition as determined by one of ordinary skill in the art, which will dépend in part on howthe value or composition is measured or determined, i.e., the limitations of the measurement System. For example, “about” or “comprising essentially of’ can mean within one or more than one standard déviation per the practice in the art. “About” or “comprising essentially of’ can mean a range of up to 10% (i.e., ±10%). Thus, “about” can be understood to be within 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, 1%, 0.5%, 0.1%, 0.05%, 0.01%, or 0.001% greater or less than the stated value. For example, about 5 mg can include any amount between 4.5 mg and 5.5 mg. Furthermore, particularly with respect to biological Systems or processes, the ternis can mean up to an order of magnitude or up to 5-fold of a value. When particular values or compositions are provided in the instant disclosure, unless otherwise stated, the meaning of “about” or “comprising essentially of’ should be assumed to be within an acceptable error range for that particular value or composition.
[0084] As described herein, any concentration range, percentage range, ratio range or integer range is to be understood to be inclusive of the value of any integer within the recited range and, when appropriate, fractions thereof (such as one-tenth and one-hundredth of an integer), unless otherwise indicated.
[0085] Units, préfixés, and symbols used herein are provided using their Système International de Unîtes (SI) accepted form. Numeric ranges are inclusive of the numbers defining the range.
[0086] Unless defined otherwise, ail technical and scientific terms used herein hâve the same meaning as commonly understood by one of ordinary skill in the art to which this disclosure is related. For example, Juo, “The Concise Dictionary of Biomedicine and Molecular Biology”, 2nd ed., (2001), CRC Press; “The Dictionary of Cell & Molecular Biology”, 5th ed., (2013), Academie Press; and “The Oxford Dictionary Of Biochemistry And
Molecular Biology”, Cammack et al. eds., 2nd ed, (2006), Oxford University Press, provide those of skill in the art with a general dictionary for many of the terms used in this disclosure.
[0087] “Administering” refers to the physical introduction of an agent to a subject, using any of the various methods and delivery Systems known to those skilled in the art. Exemplary routes of administration for the formulations disclosed herein include intravenous, intramuscular, subcutaneous, intraperitoneal, spinal or other parentéral routes of administration, for example by injection or infusion. The phrase “parentéral administration” as used herein means modes of administration other than enterai and topical administration, usually by injection, and includes, without limitation, intravenous, intramuscular, intraarterial, intrathecal, intralymphatic, intralesional, intracapsular, intraorbital, intracardiac, intradermal, intraperitoneal, transtracheal, subcutaneous, subcuticular, intraarticular, subcapsular, subarachnoid, intraspinal, épidural and intrastemal injection and infusion, as well as in vivo electroporation. In some embodiments, the formulation is administered via a non-parenteral route, e.g., orally. Other non-parenteral routes include a topical, epidermal or mucosal route of administration, for example, intranasally, vaginally, rectally, sublingually or topically. Administering can also be performed, for example, once, a plurality of times, and/or over one or more extended periods.
[0088] The term “antibody” (Ab) includes, without limitation, a glycoprotein immunoglobulin which binds specifically to an antigen. In general, and antibody can comprise at least two heavy (H) chains and two light (L) chains interconnected by disulfide bonds, or an antigen-binding molécule thereof Each H chain comprises a heavy chain variable région (abbreviated herein as VH) and a heavy chain constant région. The heavy chain constant région comprises three constant domains, CH1, CH2 and CH3. Each light chain comprises a light chain variable région (abbreviated herein as VL) and a light chain constant région. The light chain constant région is comprises one constant domain, CL. The VH and VL régions can be further subdivided into régions of hypervariability, termed complementarity determining régions (CDRs), interspersed with régions that are more conserved, termed framework régions (FR). Each VH and VL comprises three CDRs and four FRs, arranged from amino-terminus to carboxy-terminus in the foilowing order: FRI, CDR1, FR2, CDR2, FR3, CDR3, and FR4. The variable régions of the heavy and light chains contain a binding domain that interacts with an antigen. The constant régions of the Abs may médiate the binding of the immunoglobulin to host tissues or factors, including various cells of the immune System (e.g., effector cells) and the first component (Clq) of the classical complément System.
[0089] Antibodies can include, for example, monoclonal antibodies, recombinantly produced antibodies, monospecific antibodies, multispecific antibodies (including bispecific antibodies), human antibodies, engineered antibodies, humanized antibodies, chimeric antibodies, immunoglobulins, synthetic antibodies, tetrameric antibodies comprising two heavy chain and two light chain molécules, an antibody light chain monomer, an antibody heavy chain monomer, an antibody light chain dimer, an antibody heavy chain dimer, an antibody light chain- antibody heavy chain pair, intrabodies, antibody fusions (sometimes referred to herein as “antibody conjugates”), heteroconjugate antibodies, single domain antibodies, monovalent antibodies, single chain antibodies or single-chain Fvs (scFv), camelized antibodies, affybodies, Fab fragments, F(ab’)2 fragments, disulfide-linked Fvs (sdFv), anti-idiotypic (anti-Id) antibodies (including, e.g., anti-anti-Id antibodies), minibodies, domain antibodies, synthetic antibodies (sometimes referred to herein as “antibody mimetics”), and antigen-binding fragments of any of the above. In certain embodiments, antibodies described herein refer to polyclonal antibody populations.
[0090] An immunoglobulin may dérivé from any of the commonly known isotypes, including but not limited to IgA, secretory IgA, IgG, IgE and IgM. IgG subclasses are also well known to those in the art and include but are not limited to human IgGl, IgG2, IgG3 and IgG4. “Isotype” refers to the Ab class or subclass (e.g., IgM or IgGl) that is encoded by the heavy chain constant région genes. The term “antibody” includes, by way of example, both naturally occurring and non-naturally occurring Abs; monoclonal and polyclonal Abs; chimeric and humanized Abs; human or nonhuman Abs; wholly synthetic Abs; and single chain Abs. A nonhuman Ab may be humanized by recombinant methods to reduce its immunogenicity in man. Where not expressly stated, and unless the context indicates otherwise, the term “antibody” also includes an antigen-binding fragment or an antigen-binding portion of any of the aforementioned immunoglobulins, and includes a monovalent and a divalent fragment or portion, and a single chain Ab.
[0091] An “antigen binding molécule,” “antigen binding portion,” or “antibody fragment” refers to any molécule that comprises the antigen binding parts (e.g., CDRs) of the antibody from which the molécule is derived. An antigen binding molécule can include the antigenic complementarity determining régions (CDRs). Examples of antibody fragments include, but are not limited to, Fab, Fab', F(ab')2, and Fv fragments, dAb, linear antibodies, 16 scFv antibodies, and multispecific antibodies formed from antigen binding molécules. Peptibodies (i.e., Fc fùsion molécules comprising peptide binding domains) are another example of suitable antigen binding molécules. In some embodiments, the antigen binding molécule binds to an antigen on a tumor cell. In some embodiments, the antigen binding molécule binds to an antigen on a cell involved in a hyperproliferative disease or to a viral or bacterial antigen. In certain embodiments, the antigen binding molécule binds to BCMA, CLL1, or FLT3. In further embodiments, the antigen binding molécule is an antibody fragment that specifically binds to the antigen, including one or more of the complementarity determining régions (CDRs) thereof. In further embodiments, the antigen binding molécule is a single chain variable fragment (scFv). In some embodiments, the antigen binding molécule comprises or consists of avimers.
[0092] As used herein, the term “variable région” or “variable domain” is used interchangeably and are common in the art. The variable région typically refers to a portion of an antibody, generally, a portion of a light or heavy chain, typically about the amino-terminal 110 to 120 amino acids in the mature heavy chain and about 90 to 115 amino acids in the mature light chain, which differ extensively in sequence among antibodies and are used in the binding and specificity of a particular antibody for its particular antigen. The variability in sequence is concentrated in those régions called complementarity determining régions (CDRs) while the more highly conserved régions in the variable domain are called framework régions (FR). Without wishing to be bound by any particular mechanism or theory, it is believed that the CDRs of the light and heavy chains are primarily responsible for the interaction and specificity of the antibody with antigen. In certain embodiments, the variable région is a human variable région. In certain embodiments, the variable région comprises rodent or murine CDRs and human framework régions (FRs). In particular embodiments, the variable région is a primate (e.g., non-human primate) variable région. In certain embodiments, the variable région comprises rodent or murine CDRs and primate (e.g., non-human primate) framework régions (FRs).
[0093] The ternis “VL” and “VL domain” are used interchangeably to refer to the light chain variable région of an antibody or an antigen-binding molécule thereof.
[0094] The terrns “VH” and “VH domain” are used interchangeably to refer to the heavy chain variable région of an antibody or an antigen-binding molécule thereof.
[0095] A number of définitions of the CDRs are commonly in use: Kabat numbering, Chothia numbering, AbM numbering, or contact numbering. The AbM définition is a 17 compromise between the two used by Oxford Molecular’ s AbM antibody modelling software. The contact définition is based on an analysis of the available complex crystal structures.
[0096] Table 1. CDR Numbering
Loop Kabat AbM Chothia Contact
L1 L24-L34 L24-L34 L24-L34 L30-L36
L2 L50-L56 L50-L56 L50-L56 L46-L55
L3 L89-L97 L89-L97 L89-L97 L89-L96
HI H31-H35B (Kabat Numbering) H26-H35B H26-H32..34 H30-H35B
HI H31-H35 (Chothia Numbering) H26--H35 H26-H32 H30-H35
H2 H50-H65 H50-H58 H52-H56 H47-H58
H3 H95-H102 H95-H102 H95-H102 H93-H101
[0097] The term “Kabat numbering” and like terms are recognized in the art and refer to a System of numbering amino acid residues in the heavy and light chain variable régions of an antibody, or an antigen-binding molécule thereof In certain aspects, the CDRs of an antibody can be determined according to the Kabat numbering System (see, e.g., Kabat EA & Wu TT (1971) Ann NY Acad Sci 190: 382-391 and Kabat EA et al., (1991) Sequences of 10 Proteins of Immunological Interest, Fifth Edition, U.S. Department of Health and Human Services, NIH Publication No. 91-3242). Using the Kabat numbering System, CDRs within an antibody heavy chain molécule are typically présent at amino acid positions 31 to 35, which optionally can include one or two additional amino acids, following 35 (referred to in the Kabat numbering scheme as 35 A and 35B) (CDR1), amino acid positions 50 to 65 (CDR2), and amino acid positions 95 to 102 (CDR3). Using the Kabat numbering System, CDRs within an antibody light chain molécule are typically présent at amino acid positions 24 to 34 (CDR1), amino acid positions 50 to 56 (CDR2), and amino acid positions 89 to 97 (CDR3). In a spécifie embodiment, the CDRs of the antibodies described herein hâve been determined according to the Kabat numbering scheme.
[0098] In certain aspects, the CDRs of an antibody can be determined according to the Chothia numbering scheme, which refers to the location of immunoglobulin structural loops (see, e.g., Chothia C & Lesk AM, (1987), J Mol Biol 196: 901-917; Al-Lazikani B étal., (1997) J Mol Biol 273: 927-948; Chothia C et al., (1992) J Mol Biol 227: 799-817; Tramontano A et al., (1990) J Mol Biol 215(1): 175-82; and U.S. Patent No. 7,709,226). Typically, when using the Kabat numbering convention, the Chothia CDR-H1 loop is présent at heavy chain amino acids 26 to 32, 33, or 34, the Chothia CDR-H2 loop is présent at heavy chain amino acids 52 to 56, and the Chothia CDR-H3 loop is présent at heavy chain amino acids 95 to 102, while the Chothia CDR-L1 loop is présent at light chain amino acids 24 to 34, the Chothia CDR-L2 loop is présent at light chain amino acids 50 to 56, and the Chothia CDR-L3 loop is présent at light chain amino acids 89 to 97. The end of the Chothia CDR-HI loop when numbered using the Kabat numbering convention varies between H32 and H34 depending on the length of the loop (this is because the Kabat numbering scheme places the insertions at H35A and H35B; if neither 35A nor 35B is présent, the loop ends at 32; if only 35A is présent, the loop ends at 33; if both 35A and 35B are présent, the loop ends at 34). In a spécifie embodiment, the CDRs of the antibodies described herein hâve been determined according to the Chothia numbering scheme.
[0099] As used herein, the terms “constant région” and “constant domain” are interchangeable and hâve a meaning common in the art. The constant région is an antibody portion, e.g., a carboxyl terminal portion of a light and/or heavy chain which is not directly involved in binding of an antibody to antigen but which can exhibit various effector functions, such as interaction with the Fc receptor. The constant région of an immunoglobulin molécule generally has a more conserved amino acid sequence relative to an immunoglobulin variable domain.
[0100] As used herein, the term “heavy chain” when used in reference to an antibody can refer to any distinct type, e.g., alpha (a), delta (δ), epsilon (ε), gamma (γ) and mu (μ), based on the amino acid sequence of the constant domain, which give rise to IgA, IgD, IgE, IgG and IgM classes of antibodies, respectively, including subclasses of IgG, e.g., IgGi, IgG2, IgGs and IgG4.
[0101] As used herein, the term “light chain” when used in reference to an antibody can refer to any distinct type, e.g., kappa (κ) or lambda (λ) based on the amino acid sequence 19 of the constant domains. Light chain amino acid sequences are well known in the art. In spécifie embodiments, the light chain is a human light chain.
[0102] “Binding affinity” generally refers to the strength of the sum total of noncovalent interactions between a single binding site of a molécule (e.g., an antibody) and its binding partner (e.g., an antigen). Unless indicated otherwise, as used herein, “binding affinity” refers to intrinsic binding affinity which reflects a 1:1 interaction between members of a binding pair (e.g., antibody and antigen). The affinity of a molécule X for its partner Y can generally be represented by the dissociation constant (Kd). Affinity can be measured and/or expressed in a number of ways known in the art, including, but not Iimited to, equilibrium dissociation constant (Kd), and equilibrium association constant (Ka). The Kd is calculated from the quotient of k0fï/k0n, whereas Ka is calculated from the quotient of kon/koff. kon refers to the association rate constant of, e.g., an antibody to an antigen, and koff refers to the dissociation of, e.g, an antibody to an antigen. The kon and koff can be determined by techniques known to one of ordinary skill in the art, such as BIACORE® or KinExA.
[0103] As used herein, a “conservative amino acid substitution” is one in which the amino acid residue is replaced with an amino acid residue having a similar side chain. Families of amino acid residues having side chains hâve been defined in the art. These families include amino acids with basic side chains (e.g., lysine, arginine, histidine), acidic side chains (e.g., aspartic acid, glutamic acid), uncharged polar side chains (e.g., glycine, asparagine, glutamine, serine, threonine, tyrosine, cysteine, tryptophan), nonpolar side chains (e.g., alanine, valine, leucine, isoleucine, proline, phenylalanine, méthionine), beta-branched side chains (e.g., threonine, valine, isoleucine) and aromatic side chains (e.g., tyrosine, phenylalanine, tryptophan, histidine). In certain embodiments, one or more amino acid residues within a CDR(s) or within a framework region(s) of an antibody or antigen-binding molécule thereof can be replaced with an amino acid residue with a similar side chain.
[0104] As, used herein, the term “heterologous” means from any source other than naturally occurring sequences. For example, a heterologous sequence included as a part of a costirhulatory protein having the amino acid sequence ofSEQ ID NO: 1, e.g., the corresponding human costimulatory protein, is amino acids that do not naturally occur as, i.e., do not align with, the wild type human costimulatory protein. For example, a heterologous nucléotide sequence refers to a nucléotide sequence other than that of the wild type human costimulatory protein-encoding sequence.
[0105] As used herein, an “epitope” is a term in the art and refers to a localized région of an antigen to which an antibody can specifically bind. An epitope can be, for example, contiguous amino acids of a polypeptide (linear or contiguous epitope) or an epitope can, for example, corne together from two or more non-contiguous régions of a polypeptide or polypèptides (conformational, non-linear, discontinuous, or non-contiguous epitope). In certain embodiments, the epitope to which an antibody binds can be determined by, e.g., NMR spectroscopy, X-ray diffraction crystallography studies, ELISA assays, hydrogen/deuterium exchange coupled with mass spectrometry (e.g, liquid chromatography electrospray mass spectrometry), array-based oligo-peptide scanning assays, and/or mutagenesis mapping (e.g., site-directed mutagenesis mapping). For X-ray crystallography, crystallization may be accomplished using any of the known methods in the art (e.g., Giegé R et al., (1994) Acta Crystallogr D Biol Crystallogr 50(Pt 4): 339-350; McPherson A (1990) Eur J Biochem 189: 123; Chayen NE (1997) Structure 5: 1269-1274; McPherson A (1976) J Biol Chem 251: 63006303). Antibody:antigen crystals may be studied using well known X-ray diffraction techniques and may be refined using computer software such as X-PLOR (Yale University, 1992, distributed by Molecular Simulations, Inc.; see e.g. Meth Enzymol (1985) volumes 114 & 115, eds Wyckoff HW e/a/.,; U.S. 2004/0014194), and BUS TER (Bricogne G (1993) Acta Crystallogr D Biol Crystallogr 49(Pt 1): 37-60; Bricogne G (1997) Meth Enzymol 276A: 361423, ed Carter CW; Roversi P et al., (2000) Acta Crystallogr D Biol Crystallogr 56(Pt 10): 1316-1323). Mutagenesis mapping studies may be accomplished using any method known to one of skill in the art. See, e.g., Champe M et al., (1995) J Biol Chem 270: 1388-1394 and Cunningham BC & Wells JA (1989) Science 244: 1081-1085 for a description of mutagenesis techniques, including alanine scanning mutagenesis techniques.
[0106] As used herein, an antigen binding moiecule, an antibody, or an antigen binding moiecule thereof “cross-competes” with a reference antibody or an antigen binding moiecule thereof if the interaction between an antigen and the first binding moiecule, an antibody, or an antigen binding moiecule thereof blocks, limits, inhibits, or otherwise reduces the ability of the reference binding moiecule, reference antibody, or an antigen binding moiecule thereof to interact with the antigen. Cross compétition can be complété, e.g., binding of the binding moiecule to the antigen completely blocks the ability of the reference binding moiecule to bind the antigen, or it can be partial, e.g., binding of the binding moiecule to the antigen reduces the ability of the reference binding moiecule to bind the antigen. In certain embodiments, an antigen binding moiecule that cross-competes with a reference antigen binding moiecule binds 21 the same or an overlapping epitope as the reference antigen binding molécule. In other embodiments, the antigen binding molécule that cross-competes with a reference antigen binding molécule binds a different epitope as the reference antigen binding molécule. Numerous types of compétitive binding assays can be used to détermine if one antigen binding molécule competes with another, for example: solid phase direct or indirect radioimmunoassay (RIA); solid phase direct or indirect enzyme immunoassay (EIA); sandwich compétition assay (Stahli et al., 1983, Methods in Enzymology 9:242-253); solid phase direct biotin-avidin EIA (Kirkland et al., 1986, J. Immunol. 137:3614-3619); solid phase direct labeled assay, solid phase direct labeled sandwich assay (Harlow and Lane, 1988, Antibodies, A Laboratory Manual, Cold Spring Harbor Press); solid phase direct label RIA using 1-125 label (Morel et al., 1988, Molec. Immunol. 25:7-15); solid phase direct biotin-avidin EIA (Cheung, et al., 1990, Virology 176:546-552); and direct labeled RIA (Moldenhauer et al., 1990, Scand. J. Immunol. 32:77-82).
[0107] As used herein, the terms “immunospecifically binds,” “immunospecifically recognizes,” “specifically binds,” and “specifically recognizes” are analogous terms in the context of antibodies and refer to molécules that bind to an antigen (e.g., epitope or immune complex) as such binding is understood by one skilled in the art. For example, a molécule that specifically binds to an antigen may bind to other peptides or polypeptides, generally with lower affinity as determined by, e.g., immunoassays, BIACORE®, KinExA 3000 instrument (Sapidyne Instruments, Boise, ID), or other assays known in the art. In a spécifie embodiment, molécules that specifically bind to an antigen bind to the antigen with a Ka that is at least 2 logs, 2.5 logs, 3 logs, 4 logs or greater than the Ka when the molécules bind to another antigen. [0108] In another embodiment, molécules that specifically bind to an antigen bind with a dissociation constant (Ka) of about 1 x ΙΟ'7 M. In some embodiments, the antigen binding molécule specifically binds an antigen with “high affinity” when the Ka is about 1 x ΙΟ’9 M to about 5 x 10’9 M. In some embodiments, the antigen binding molécule specifically binds an antigen with “very high affinity” when the Ka is 1 x 10'10 M to about 5 x 10'10 M. In one embodiment, the antigen binding molécule has a Ka of ΙΟ'9 M. In one embodiment, the off-rate is less than about 1 x 10'5. In other embodiments, the antigen binding molécule binds human BCMA with a Ka of between about 1 x 10‘7 M and about 1 x 10’13 M. In yet another embodiment, the antigen binding molécule binds human BCMA with a Ka of about 1 x 10'10 M to about 5 x 10'10 M.
[0109] In a spécifie embodiment, provided herein is an antibody or an antigen binding molécule thereof that binds to a target human antigen, e.g., human BCMA or human CLL-1, with higher affmity than to another species of the target antigen, e.g., a non-human BCMA or a non-human CLL-1. In certain embodiments, provided herein is an antibody or an antigen binding molécule t thereof that binds to the target human antigen, e.g., humanBCMA or human CLL-1, with a 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70% or higher affmity than to another species of the target antigen as measured by, e.g., a radioimmunoassay, surface plasmon résonance, or kinetic exclusion assay. In a spécifie embodiment, an antibody or an antigen binding molécule thereof described herein, which binds to a target human antigen, will bind to another species of the target antigen with less than 10%, 15%, or 20% of the binding of the antibody or an antigen binding molécule thereof to the human antigen as measured by, e.g., a radioimmunoassay, surface plasmon résonance, or kinetic exclusion assay.
[0110] An “antigen” refers to any molécule that provokes an immune response or is capable of being bound by an antibody or an antigen binding molécule. The immune response may involve either antibody production, or the activation of spécifie immunologicallycompetent cells, or both. A person of skill in the art would readily understand that any macromolecule, including virtually ail proteins or peptides, can serve as an antigen. An antigen can be endogenously expressed, i.e. expressed by genomic DNA, or can be recombinantly expressed. An antigen can be spécifie to a certain tissue, such as a cancer cell, or it can be broadly expressed. In addition, fragments of larger molécules can act as antigens. In one embodiment, antigens are tumor antigens. In one particular embodiment, the antigen is ail or a fragment of BCMA, FLT3, or CLL-1.
[OUI] The term “neutralizing” refers to an antigen binding molécule, scFv, antibody, or a fragment thereof, that binds to a ligand and prevents or reduces the biological effect of that ligand. In some embodiments, the antigen binding molécule, scFv, antibody, or a fragment thereof, directly blocking a binding site on the ligand or otherwise alters the ligand's ability to bind through indirect means (such as structural or energetic alterations in the ligand). In some embodiments, the antigen binding molécule, scFv, antibody, or a fragment thereof prevents the protein to which it is bound from performing a biological function.
[0112] As used herein, the term “BCMA” refers to B cell maturation antigen, which can include, but is not limited to, native BCMA, an isoform of BCMA, or an interspecies BCMA homolog of BCMA. BCMA (also known as TNFRSF17, CD269, and TNFRSF13A) is 23 a member of the tumor necrosis factor (TNF)-receptor superfamily. BCMA is expressed on the surface of multiple myeloma cells, while highly restricted to plasma cells and a subset of mature B cells in healthy tissue. The amino acid sequence of human BCMA (hBCMA) is provided in NCBI Accession Q02223.2 (GI:313104029). As used herein, BCMA includes human BCMA and non-human BCMA homologs, as well as variants, fragments, or post-transnationally modified forms thereof, including, but not limited to, N- and O-linked glycosylated forms of BCMA. BCMA proteins may further include fragments comprising ail or a portion of the extracellular domain of BCMA (e.g., ail or a portion of amino acids 1-54 of hBCMA).
[0113] As used herein, the term “CLL-1” refers to C-type lectin-like molecule-1, which can include, but is not limited to native CLL-1, an isoform of CLL-1, or an interspecies CLL1 homolog of CLL-1. CLL-1 (also known as C-type lectin domain family 12 member A, CLEC12A, dendritic cell-associated lectin 2, DCAL-2, myeloid inhibitory C-type lectin-like receptor, and MICL) is a cell surface receptor that modulâtes signaling cascades and médiates tyrosine phosphorylation of target MAP kinases. CLL-1 expression is observed, e.g., in acute myeloid leukemia (AML) cells. The amino acid sequence of human CLL-1 (hCLL-1) is provided in UniProtKB/Swiss-Prot Accession No. Q5QGZ9.3 (GL308153619). As used herein, CLL-1 includes human CLL-1 and non-human CLL-1 homologs, as well as variants, fragments, or post-transnationally modified forms thereof, including, but not limited to, N- and O-linked glycosylated forms of CLL-1.
[0114] As used herein the term “FLT3” refers to Fms-like tyrosine kinase 3 (FLT-3), which can include, but is not limited to native FLT3, an isoform of FLT3, or an interspecies FLT3 homolog ofFLT3. FLT3 (also known as Cluster of différentiation antigen 135 (CD135), receptor-type tyrosine-protein kinase FLT3, FMS-related tyrosine kinase 3, stem cell tyrosine kinase 1, FL cytokine receptor, growth factor receptor tyrosine kinase type III, STK1, or fêtai liver kinase-2 (Flk2)) is a cytokine receptor which belongs to the receptor tyrosine kinase class TTT CD 135 is the receptor for the cytokine Flt3 ligand (FLT3L). FLT3 is expressed on the surface of various hematopoietic progenitor cells and on the surface of acute myeloid leukemia (AML) cells. The amino acid sequence of human FLT3 (hFLT3) is provided in UniProtKB/Swiss-Prot AccessionNo. P36888 (GI:156630887). As used herein, FLT3 includes human FLT3 and non-human FLT3 homologs, as well as variants, fragments, or posttransnationally modified forms thereof, including, but not limited to, N- and O-linked glycosylated forms of FLT3.
[0115] The term “autologous” refers to any material derived from the same individual to which it is later to be re-introduced. For example, the engineered autologous cell therapy (eACT™) method described herein involves collection of lymphocytes from a patient, which are then engineered to express, e.g., a CAR construct, and then administered back to the same patient.
[0116] The term “allogeneic” refers to any material derived from one individual which is then introduced to another individual of the same species, e.g., allogeneic T cell transplantation.
[0117] The terms “transduction” and “transduced” refer to the process whereby foreign DNA is introduced into a cell via viral vector (see Jones et al., “Genetics: principles and analysis,” Boston: Jones & Bartlett Publ. (1998)). In some embodiments, the vector is a retroviral vector, a DNA vector, a RNA vector, an adénoviral vector, a baculoviral vector, an Epstein Barr viral vector, a papovaviral vector, a vaccinia viral vector, a herpes simplex viral vector, an adenovirus associated vector, a lentiviral vector, or any combination thereof.
[0118] As used herein, the term “truncated” refers to anything less than the whole. For example, a truncated hinge domain (alternatively referred to herein as “THD”) amino acid sequence can include any amino acid sequence shorter than the füll length or complété hinge domain (“CHD”). In some embodiments, a THD consists essentially of or consists of amino acids 118-152, 119-152, 120-152, 121-152, 122-152, 123-152, 124-152, 125-152, 126-152, 127-152, 128-152, 129-152, or 130-152, of SEQ ID NO: 1. In one embodiment, the THD consists essentially of or consists of the amino acid sequence of SEQ ID NO: 3, which consists of amino acids 123 to 152 of SEQ ID NO: 1.
[0119] A “cancer” refers to a broad group of various diseases characterized by the uncontrolled growth of abnormal cells in the body. Unregulated cell division and growth results in the formation of malignant tumors that invade neighboring tissues and may also metastasize to distant parts of the body through the lymphatic System or bloodstream. A “cancer” or “cancer tissue” can include a tumor. Examples of cancers that can be treated by the methods of the présent invention include, but are not limited to, cancers of the immune System including lymphoma, leukemia, myeloma, and other leukocyte malignancies. In some embodiments, the methods of the présent invention can be used to reduce the tumor size of a tumor derived from, for example, bone cancer, pancreatic cancer, skin cancer, cancer of the head or neck, cutaneous or intraocular malignant melanoma, uterine cancer, ovarian cancer, rectal cancer, cancer of the anal région, stomach cancer, testicular cancer, uterine cancer, carcinoma of the fallopian tubes, 25 carcinoma of the endometrium, carcinoma of the cervix, carcinoma of the vagina, carcinoma of the vulva, multiple myeloma, Hodgkin's Disease, non-Hodgkin's lymphoma (NHL), primary médiastinal large B cell lymphoma (PMBC), diffuse large B cell lymphoma (DLBCL), follicular lymphoma (FL), transformed follicular lymphoma, splenic marginal zone lymphoma (SMZL), cancer of the esophagus, cancer of the small intestine, cancer of the endocrine System, cancer of the thyroid gland, cancer of the parathyroid gland, cancer of the adrenal gland, sarcoma of soft tissue, cancer of the urethra, cancer of the pénis, chronic or acute leukemia, acute myeloid leukemia, chronic myeloid leukemia, acute lymphoblastic leukemia (ALL) (including non T cell ALL), chronic lymphocytic leukemia (CLL), solid tumors of childhood, lymphocytic lymphoma, cancer of the bladder, cancer of the kidney or ureter, carcinoma of the rénal pelvis, neoplasm of the central nervous System (CNS), primary CNS lymphoma, tumor angiogenesis, spinal axis tumor, brain stem glioma, pituitary adenoma, Kaposi's sarcoma, epidermoid cancer, squamous cell cancer, T-cell lymphoma, environmentally induced cancers including those induced by asbestos, other B cell malignancies, and combinations of said cancers. In one particular embodiment, the cancer is multiple myeloma. The particular cancer can be responsive to chemo- or radiation therapy or the cancer can be refractory. A refractory cancer refers to a cancer that is not amendable to surgical intervention and the cancer is either initially unresponsive to chemo- or radiation therapy or the cancer becomes unresponsive over time.
[0120] An “anti-tumor effect” as used herein, refers to a biological effect that can présent as a decrease in tumor volume, a decrease in the number of tumor cells, a decrease in tumor cell prolifération, a decrease in the number of métastasés, an increase in overall or progression-free survival, an increase in life expectancy, or amelioration of various physiological symptoms associated with the tumor. An anti-tumor effect can also refer to the prévention of the occurrence of a tumor, e.g., a vaccine.
[0121] A “cytokine,” as used herein, refers to a non-antibody protein that is released by one cell in response to contact with a spécifie antigen, wherein the cytokine interacts with a second cell to médiate a response in the second cell. A cytokine can be endogenously expressed by a cell or administered to a subject. Cytokines may be released by immune cells, including macrophages, B cells, T cells, and mast cells to propagate an immune response. Cytokines can induce various responses in the récipient cell. Cytokines can include homeostatic cytokines, chemokines, pro-inflammatory cytokines, effectors, and acute-phase proteins. For example, homeostatic cytokines, including interleukin (IL) 7 and IL-15, promote immune cell survival 26 and prolifération, and pro-inflammatory cytokines can promote an inflammatory response. Examples of homeostatic cytokines include, but are not limited to, IL-2, IL-4, IL-5, IL-7, IL10, IL-12p40, IL-12p70, IL-15, and interferon (IFN) gamma. Examples of pro-inflammatory cytokines include, but are not limited to, IL-la, IL-lb, IL-6, IL-13, IL-17a, tumor necrosis factor (TNF)-alpha, TNF-beta, fibroblast growth factor (FGF) 2, granulocyte macrophage colony-stimulating factor (GM-CSF), soluble intercellular adhesion molécule 1 (sICAM-1), soluble vascular adhesion molécule 1 (sVCAM-1), vascular endothélial growth factor (VEGF), VEGF-C, VEGF-D, and placental growth factor (PLGF). Examples of effectors include, but are not limited to, granzyme A, granzyme B, soluble Fas ligand (sFasL), and perforin. Examples of acute phase-proteins include, but are not limited to, C-reactive protein (CRP) and sérum amyloid A (SAA).
[0122] “Chemokines” are a type of cytokine that médiates cell chemotaxis, or directional movement. Examples of chemokines include, but are not limited to, IL-8, IL-16, eotaxin, eotaxin-3, macrophage-derived chemokine (MDC or CCL22), monocyte chemotactic protein 1 (MCP-1 or CCL2), MCP-4, macrophage inflammatory protein la (MFP-la, MlP-la), ΜΠΜβ (MIP-lb), gamma-induced protein 10 (IP-10), and thymus and activation regulated chemokine (TARC or CCL17).
[0123] A “therapeutically effective amount,” “effective dose,” “effective amount,” or “therapeutically effective dosage” of a therapeutic agent, e.g., engineered CAR T cells, is any amount that, when used alone or in combination with another therapeutic agent, protects a subject against the onset of a disease or promûtes disease régression evidenced by a decrease in severity of disease symptoms, an increase in frequency and duration of disease symptomfree periods, or a prévention of impairment or disability due to the disease affliction. The ability of a therapeutic agent to promote disease régression can be evaluated using a variety of methods known to the skilled practitioner, such as in human subjects during clinical trials, in animal model Systems prédictive of efficacy in humans, or by assaying the activity of the agent in in vitro assays.
[0124] The term “lymphocyte” as used herein includes natural killer (NK) cells, T cells, or B cells. NK cells are a type of cytotoxic (cell toxic) lymphocyte that represent a major component of the inhérent immune System. NK cells reject tumors and cells infected by viruses. It works through the process of apoptosis or programmed cell death. They were termed “natural killers” because they do not require activation in order to kill cells. T-cells play a major rôle in cell-mediated-immunity (no antibody involvement). Its T-cell receptors (TCR) differentiate 27 themselves from other lymphocyte types. The thymus, a specialized organ of the immune System, is primarily responsible for the T cell’s maturation. There are six types of T-cells, namely: Helper T-cells (e.g., CD4+ cells), Cytotoxic T-cells (also known as TC, cytotoxic T lymphocyte, CTL, T-killer cell, cytolytic T cell, CD8+ T-cells or killer T cell), Memory T-cells ((i) stem memory Tscm cells, like naïve cells, are CD45RO-, CCR7+, CD45RA+, CD62L+ (L-selectin), CD27+, CD28+ and IL-7Ra+, but they also express large amounts of CD95, IL2RP, CXCR3, and LFA-1, and show numerous functional attributes distinctive of memory cells); (ii) central memory Tcm cells express L-selectin and the CCR7, they secrete IL-2, but not IFNy or IL-4, and (iii) effector memory Tem cells, however, do not express L-selectin or CCR7 but produce effector cytokines like IFNy and IL-4), Regulatory T-cells (Tregs, suppressor T cells, or CD4+CD25+ regulatory T cells), Natural Killer T-cells (NKT) and Gamma Delta T-cells. B-cells, on the other hand, play a principal rôle in humoral immunity (with antibody involvement). It makes antibodies and antigens and performs the rôle of antigen-presenting cells (APCs) and tums into memory B-cells after activation by antigen interaction. In mammals, immature B-cells are formed in the bone marrow, where its name is derived from.
[0125] The term “genetically engineered” or “engineered” refers to a method of modifying the genome of a cell, including, but not limited to, deleting a coding or non-coding région or a portion thereof or inserting a coding région or a portion thereof. In some embodiments, the cell that is modified is a lymphocyte, e.g., a T cell, which can either be obtained from a patient or a donor. The cell can be modified to express an exogenous construct, such as, e.g., a chimeric antigen receptor (CAR) or a T cell receptor (TCR), which is incorporated into the cell's genome.
[0126] An “immune response” refers to the action of a cell of the immune System (for example, T lymphocytes, B lymphocytes, natural killer (NK) cells, macrophages, eosinophils, mast cells, dendritic cells and neutrophils) and soluble macromolecules produced by any of these cells or the liver (including Abs, cytokines, and complément) that results in sélective targeting, binding to, damage to, destruction of, and/or élimination from a vertebrate's body of invading pathogens, cells or tissues infected with pathogens, cancerous or other abnormal cells, or, in cases of autoimmunity or pathological inflammation, normal human cells or tissues.
[0127] The term “immunotherapy” refers to the treatment of a subject affiicted with, or at risk of contracting or suffering a récurrence of, a disease by a method comprising inducing, enhancing, suppressing or otherwise modifying an immune response. Examples of 28 immunotherapy include, but are not limited to, T cell thérapies. T cell therapy can include adoptive T cell therapy, tumor-infïltrating lymphocyte (TIL) immunotherapy, autologous cell therapy, engineered autologous cell therapy (eACT™), and allogeneic T cell transplantation. However, one of skill in the art would recognize that the conditioning methods disclosed herein would enhance the effectiveness of any transplanted T cell therapy. Examples of T cell thérapies are described in U.S. Patent Publication Nos. 2014/0154228 and 2002/0006409, U.S. Patent No. 5,728,388, and International Publication No. WO 2008/081035.
[0128] The T cells of the immunotherapy can corne from any source known in the art. For example, T cells can be differentiated in vitro from a hematopoietic stem cell population, or T cells can be obtained from a subject. T cells can be obtained from, e.g., peripheral blood mononuclear cells (PBMCs), bone marrow, lymph node tissue, cord blood, thymus tissue, tissue from a site of infection, ascites, pleural effusion, spleen tissue, and tumors. In addition, the T cells can be derived from one or more T cell lines available in the art. T cells can also be obtained from a unit of blood collected from a subject using any number of techniques known to the skilled artisan, such as FICOLL™ séparation and/or apheresis. Additional methods of isolating T cells for a T cell therapy are disclosed in U.S. Patent Publication No. 2013/0287748, which is herein incorporated by référencés in its entirety.
[0129] The term “engineered Autologous Cell Therapy,” which can be abbreviated as “eACT™,” also known as adoptive cell transfer, is a process by which a patient's own T cells are collected and subsequently genetically altered to recognize and target one or more antigens expressed on the cell surface of one or more spécifie tumor cells or malignancies. T cells can be engineered to express, for example, chimeric antigen receptors (CAR) or T cell receptor (TCR). CAR positive (+) T cells are engineered to express an extracellular single chain variable fragment (scFv) with specificity for a particular tumor antigen linked to an intracellular signaling part comprising at least one costimulatory domain and at least one activating domain. The costimulatory domain can be derived from a naturally-occurring costimulatory domain, e.g., having the amino acid sequence of SEQ ED NO: 1, or a variant thereof, e.g., a variant having a truncated hinge domain (“THD”), and the activating domain can be derived from, e.g., CD3-zeta. In certain embodiments, the CAR is designed to hâve two, three, four, or more costimulatory domains. The CAR scFv can be designed to target, for example, CD 19, which is a transmembrane protein expressed by cells in the B cell lineage, including ail normal B cells and B cell malignances, including but not limited to NHL, CLL, and non-T cell ALL. In some embodiments, the CAR is engineered such that the costimulatory domain is expressed as a 29 separate polypeptide chain. Example CAR T cell thérapies and constructs are described in U.S. Patent Publication Nos. 2013/0287748, 2014/0227237, 2014/0099309, and 2014/0050708, and these references are incorporated by reference in their entirety.
[0130] A “patient” as used herein includes any human who is afflicted with a cancer (e.g., a lymphoma or a leukemia). The terms “subject” and “patient” are used interchangeably herein.
[0131] As used herein, the term “in vitro cell” refers to any cell which is cultured ex vivo. In particular, an in vitro cell can include a T cell.
[0132] The terms “peptide,” “polypeptide,” and “protein” are used interchangeably, and refer to a compound comprised of amino acid residues covalently linked by peptide bonds. A protein or peptide contains at least two amino acids, and no limitation is placed on the maximum number of amino acids that can comprise a protein's or peptide's sequence. Polypeptides include any peptide or protein comprising two or more amino acids joined to each other by peptide bonds. As used herein, the term refers to both short chains, which also commonly are referred to in the art as peptides, oligopeptides and oligomers, for example, and to longer chains, which generally are referred to in the art as proteins, of which there are many types. “Polypeptides” include, for example, biologically active fragments, substantially homologous polypeptides, oligopeptides, homodimers, heterodimers, variants of polypeptides, modified polypeptides, dérivatives, analogs, fusion proteins, among others. The polypeptides include natural peptides, recombinant peptides, synthetic peptides, or a combination thereof.
[0133] Stimulation,” as used herein, refers to a primary response induced by binding of a stimulatory molécule with its cognate ligand, wherein the binding médiates a signal transduction event. A “stimulatory molécule” is a molécule on a T cell, e.g., the T cell receptor (TCR)/CD3 complex, that specifîcally binds with a cognate stimulatory ligand présent on an antigen présent cell. A “stimulatory ligand” is a ligand that when présent on an antigen presenting cell (e.g, an APC, a dendritic cell, a B-cell, and the like) can specifîcally bind with a stimulatory molécule on a T cell, thereby mediating a primary response by the T cell, including, but not limited to, activation, initiation of an immune response, prolifération, and the like. Stimulatory ligands include, but are not limited to, an anti-CD3 antibody (such as OKT3), an MHC Class I molécule loaded with a peptide, a superagonist anti-CD2 antibody, and a superagonist anti-CD28 antibody.
[0134] A “costimulatory signal,” as used herein, refers to a signal, which in combination with a primary signal, such as TCR/CD3 ligation, leads to a T cell response, such as, but not Iimited to, prolifération and/or upregulation or down régulation of key molécules.
[0135] A “costimulatory ligand” as used herein, includes a molécule on an antigen presenting cell that specifically binds a cognate co-stimulatory molécule on a T cell. Binding of the costimulatory ligand provides a signal that médiates a T cell response, including, but not Iimited to, prolifération, activation, différentiation, and the like. A costimulatory ligand induces a signal that is in addition to the primary signal provided by a stimulatory molécule, for instance, by binding of a T cell receptor (TCR)/CD3 complex with a major histocompatibility complex (MHC) molécule loaded with peptide. A co-stimulatory ligand can include, but is not Iimited to, 3/TR6, 4-IBB ligand, agonist or antibody that binds Toll ligand receptor , B7-1 (CD80), B7-2 (CD86), CD30 ligand, CD40, CD7, CD70, CD83, herpes virus entry mediator (HVEM), human leukocyte antigen G (HLA-G), ILT4, immunoglobulin-like transcript (ILT) 3, inducible costimulatory ligand (ICOS-L), intercellular adhesion molécule (ICAM), ligand that specifically binds with B7-H3. , lymphotoxin beta receptor, MHC class I chain-related protein A (MICA), MHC class I chain-related protein B (MICB), OX40 ligand, PD-L2, or programmed death (PD) L1. A co-stimulatory ligand includes, without limitation, an antibody that specifically binds with a co-stimulatory molécule présent on a T cell, such as, but not Iimited to, 4-1BB, B7-H3, CD2, CD27, CD28, CD30, CD40, CD7, ICOS, ligand that specifically binds with CD83, lymphocyte fimction-associated antigen-1 (LFA-1), natural killer cell receptor C (NKG2C), OX40, PD-1, or tumor necrosis factor superfamily member 14 (TNFSF14 or LIGHT).
[0136] A “costimulatory molécule” is a cognate binding partner on a T cell that specifically binds with a costimulatory ligand, thereby mediating a costimulatory response by the T cell, such as, but not Iimited to, prolifération. Costimulatory molécules include, but are not Iimited to, A “costimulatory molécule” is a cognate binding partner on a T cell that specifically binds with a costimulatory ligand, thereby mediating a costimulatory response by the T cell, such as, but not Iimited to, prolifération. Costimulatory molécules include, but are not Iimited to, 4-1BB/CD137, B7-H3, BAFFR, BLAME (SLAMF8), BTLA, CD 33, CD 45, CD100 (SEMA4D), CD103, CD134, CD137, CD154, CD16, CD160 (BY55), CD18, CD19, CD 19a, CD2, CD22, CD247, CD27, CD276 (B7-H3), CD28, CD29, CD3 (alpha; beta; delta; epsilon; gamma; zêta), CD30, CD37, CD4, CD4, CD40, CD49a, CD49D, CD49f, CD5, CD64, CD69, CD7, CD80, CD83 ligand, CD84, CD86, CD8alpha, CD8beta, CD9, CD96 (Tactile), 31
CDl-la, CDl-lb, CDl-lc, CDl-ld, CDS, CEACAM1, CRT AM, DAP-10, DNAM1 (CD226), Fc gamma receptor, GADS, GITR, HVEM (LIGHTR), IA4, ICAM-1, ICAM-1, ICOS, Ig alpha (CD79a), IL2R beta, IL2R gamma, IL7R alpha, integrin, ITGA4, ITGA4, ITGA6, ITGAD, ITGAE, ITGAL, ITGAM, ITGAX, ITGB2, ITGB7, ITGB1, KIRDS2, LAT, LFA-1, LFA-1, LIGHT, LIGHT (tumor necrosis factor superfamily member 14; TNFSF14), LTBR, Ly9 (CD229), lymphocyte function-associated antigen-1 (LFA-1 (CD1 la/CD18), MHC class I molécule, NKG2C, NKG2D, NKp30, NKp44, NKp46, NKp80 (KLRF1), 0X40, PAG/Cbp, PD-1, PSGL1, SELPLG (CD 162), signaling lymphocytic activation molécule, SLAM (SLAMF1; CD150; IPO-3), SLAMF4 (CD244; 2B4), SLAMF6 (NTB-A; Lyl08), SLAMF7, SLP-76, TNF, TNFr, TNFR2, Toll ligand receptor, TRANCE/RANKL, VLA1, or VLA-6, or fragments, truncations, or combinations thereof.
[0137] The terms “reducing” and “decreasing” are used interchangeably herein and indicate any change that is less than the original. “Reducing” and “decreasing” are relative terms, requiring a comparison between pre- and post- measurements. “Reducing” and “decreasing” include complété déplétions.
[0138] “Treatment” or “treating” of a subject refers to any type of intervention or process performed on, or the administration of an active agent to, the subject with the objective of reversing, alleviating, ameliorating, inhibiting, slowing down or preventing the onset, progression, development, severity or récurrence of a symptom, complication or condition, or biochemical indicia associated with a disease. In one embodiment, “treatment” or “treating” includes a partial remission. In another embodiment, “treatment” or “treating” includes a complété remission.
[0139] To calculate percent identity, the sequences being compared are typically aligned in a way that gives the largest match between the sequences. One example of a computer program that can be used to détermine percent identity is the GCG program package, which includes GAP (Devereux et al., 1984, Nucl. Acid Res. 12:387; Genetics Computer Group, University of Wisconsin, Madison, Wis.). The computer algorithm GAP is used to align the two polypeptides or polynucleotides for which the percent sequence identity is to be determined. The sequences are aligned for optimal matching of their respective amino acid or nucieotide (the “matched span,” as determined by the algorithm). In certain embodiments, a standard comparison matrix (see, Dayhoff et al., 1978, Atlas of Protein Sequence and Structure 5:345-352 for the PAM 250 comparison matrix; Henikoff et al., 1992, Proc. Natl. Acad. Sci. U. S.A. 89:10915-10919 for the BLOSUM 62 comparison matrix) is also used by the algorithm.
[0140] Various aspects of the invention are described in further detail in the following subsections.
I. Chimeric Antigen Receptors and T Cell Receptors
[0141] Chimeric antigen receptors (CARs or CAR-Ts) and T cell receptors (TCRs) are genetically engineered receptors. These engineered receptors can be readily inserted into and expressed by immune cells, including T cells in accordance with techniques known in the art. With a CAR, a single receptor can be programmed to both recognize a spécifie antigen and, when bound to that antigen, activate the immune cell to attack and destroy the cell bearing that antigen. When these antigens exist on tumor cells, an immune cell that expresses the CAR can target and kill the tumor cell.
[0142] One aspect of the présent invention is directed to polynucleotides encoding chimeric antigen receptors (CARs) or T cell receptors (TCRs) comprising a costimulatory domain comprising a novel extracellular domain comprising a truncated hinge domain (“THD”), and engineered T cells comprising a costimulatory domain comprising the novel THD. The costimulatory domain can further comprise a transmembrane domain and/or an intracellular domain. In some embodiments, a CAR or TCR encoded by the polynucleotide of the présent invention further comprises an antigen binding molécule that specifically binds to a target antigen. In some embodiments, the CAR or TCR encoded by the polynucleotide further comprises an activating domain. In one particular embodiment, the CAR or TCR encoded by the polynucleotide comprises (i) an antigen binding molécule that specifically binds to a target antigen, (ii) a costimulatory domain comprising an extracellular domain, a transmembrane domain, and an intracellular domain, and (iii) an activating domain, wherein the extracellular domain comprises, consists essentially of, or consists of a THD described herein, e.g., SEQ ID NO: 3.
[0143] In some embodiments, an orientation of the CARs in accordance with the invention comprises an antigen binding domain (such as scFv) in tandem with a costimulatory domain and an activating domain. The costimulatory domain can comprise one or more of an extracellular portion, a transmembrane portion, and an intracellular portion. In other embodiments, multiple costimulatory domains can be utilized in tandem.
LA. Costimulatory Domain.
[0144] Chimeric antigen receptors incorporâtes costimulatory (signaling) domains to increase their potency. See U.S. Patent Nos. 7,741,465, and 6,319,494, as well as Krause et al. and Finney étal, (supra), Song étal., Blood 119:696-706 (2012); Kalos et al., Sci Transi. Med. 3:95 (2011); Porter et al., N. Engl. J. Med. 365:725-33 (2011), and Gross et al., Annu. Rev. Pharmacol. Toxicol. 56:59-83 (2016). The costimulatory protein having the amino acid sequence of SEQ ID NO: 1 is a costimulatory protein found naturally on T-cells. The complété native amino acid sequence of this costimulatory protein is described in NCBI Reference Sequence: NP 006130.1. See Figure IA. The complété native nucleic acid sequence of this costimulatory protein is described in NCBI Reference Sequence: NM 006139.1.
[0145] Novel Extracellular Domain. The présent disciosure shows that a novel extracellular domain of a costimulatory protein and comprising a truncated hinge domain (“THD”) can improve one or more properties of a CAR or a TCR. In some embodiments, the THD domain is a truncated version of a complété hinge domain (“CHD”). In certain embodiments, the isolated polynucleotide encoding a THD comprises (i) an amino acid sequence at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or about 100% identical to amino acids 123 to 152 of SEQ ID NO: 1, wherein the THD domain does not contain amino acids 1 to 122 of SEQ ID NO: 1.
10146] In other embodiments, the THD consists essentially of or consists of an amino acid sequence at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or about 100% identical to amino acids 123 to 152 of SEQ ID NO: 1. In other embodiments, the THD consists essentially of or consists of an amino acid sequence encoded by a nucieotide sequence at least about 60%, at least about 70%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or about 100% identical to SEQ ID NO: 3.
[0147] In some embodiments, the isolated polynucleotide encoding a THD consists essentially of or consists of (i) an amino acid sequence at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or about 100% identical to amino acids 123 to 152 of SEQ ID NO: 1 and (ii) optionally ± one amino acid, ± two amino acids, ± three amino acids, ± four amino acids, ± five amino acids, or ± six amino acids. In some embodiments, the isolated 34 polynucleotide encoding a THD consists essentially of or consists of (i) an amino acid sequence at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or about 100% identical to amino acids 123 to 152 of SEQ ID NO: 1 and (ii) optionally one or two amino acids, one to three amino acids, one to four amino acids, one to five amino acids, or one to six amino acids. The one to six amino acids that can be added or deleted from the amino acid sequence in the THD can be at either the N-terminus, at the C-terminus, or both the N-terminus and the Cterminus.
[0148] In some embodiments, the isolated polynucleotide encoding a THD consists essentially of or consists of (i) an amino acid sequence at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or about 100% identical to amino acids 123 to 152 of SEQ ID NO: 1 and (ii) one additional N-terminal amino acid, two additional N-terminal amino acids, three additional N-terminal amino acids, four additional N-terminal amino acids, five additional Nterminal amino acids, or six additional N-terminal amino acids.
[0149] In some embodiments, the additional amino acids can be N-terminal amino acids. In some embodiments, the additional amino acids can be heterologous. In other embodiments, the additional amino acids are part of the naturally occurring costimulatory protein sequence.
[0150] In some embodiments, the THD consists essentially of or consists of an amino acid sequence at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or about 100% identical to amino acids 123 to 152 of SEQ ID NO: 1, amino acids 122 to 152 of SEQ ID NO: 1, amino acids 121 to 152 of SEQ ID NO: 1, amino acids 120 to 152 of SEQ ID NO: 1, amino acids 119 to 152 of SEQ ID NO: 1, amino acids 118 to 152 of SEQ ID NO: 1, or amino acids 117 to 152 of SEQ ID NO: 1.
[0151] In other embodiments, the THD consists essentially of or consists of an amino acid sequence at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or about 100% identical to amino acids 124 to 152 of SEQ ID NO: 1, amino acids 125 to 152 of SEQ ID NO: 1, amino acids 126 to 152 of SEQ ID NO: 1, amino acids 127 to 152 of SEQ ID NO: 1, amino acids 128 to 152 of SEQ ID NO: 1, amino acids 129 to 152 of SEQ ID NO: 1, or amino acids 130 to 152 ofSEQIDNO: 1.
[0152] In some embodiments, the THD does not comprise amino acids 1-116 of SEQ ID NO: 1. In some embodiments, the THD does not comprise amino acids 1-117 of SEQ ID NO: 1. In some embodiments, the THD does not comprise amino acids 1-118 of SEQ ID NO:
1. In some embodiments, the THD does not comprise amino acids 1 -119 of SEQ ID NO : 1. In some embodiments, the THD does not comprise amino acids 1-120 of SEQ ED NO: 1. In some embodiments, the THD does not comprise embodiments, the THD does not comprise embodiments, the THD does not comprise embodiments, the THD does not comprise embodiments, the THD does not comprise embodiments, the THD does not comprise embodiments, the THD does not comprise embodiments, the THD does not comprise embodiments, the THD does not comprise amino acids 1-121 of SEQ ID NO: 1. Insome amino acids 1-122 of SEQ ID NO: 1. Insome amino acids 1-123 of SEQ ID NO: 1. Insome amino acids 1-124 of SEQ ED NO: 1. Insome amino acids 1-125 of SEQ ED NO: 1. Insome amino acids 1-126 of SEQ ID NO: 1. Insome amino acids 1-127 of SEQ ID NO: 1. Insome amino acids 1-128 of SEQ ED NO: 1. Insome amino acids 1-129 of SEQ ED NO: 1.
[0153] The corresponding amino acid sequence of the THD is set forth in SEQ ID NO.
LDNEKSNGTI IHVKGKHLCP SPLFPGPSKP. A nucléotide sequence encoding the extracellular portion of THD is set forth in SEQ ID NO. 2
CTTGATAATGAAAAGTCAAACGGAACAATCATTCACGTGAAGGGCAAGCACCTC
TGTCCGTCACCCTTGTTCCCTGGTCCATCCAAGCCA.
[0154] In certain embodiments, the polynucleotide encoding a costimulatory domain in a CAR or TCR comprises a nucléotide sequence at least about 60%, at least about 70%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or about 100% identical to SEQ ID NO: 3, wherein the nucléotide sequence encodes a THD and wherein the CAR or TCR does not comprise amino acids 1 to 122 of SEQ IDNO: 1.
[0155] In one particular embodiment, the THD consists essentially of or consists of an amino acid sequence at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or about 100% identical to the amino acid sequence of SEQ ID NO: 3. In a spécifie embodiment, the polynucleotide encoding THD consists essentially of or consists of a nucléotide sequence at least about 60%, at least about 65%, at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or about 100% identical to the nucléotide sequence of SEQ ID NO: 2.
[0156] In some embodiments, the THD further comprises some or ail of a member of the immunoglobulin family such as IgGl, IgG2, IgG3, IgG4, IgA, IgD, IgE, IgM, or fragment thereof.
[0157] In some embodiments, the THD is derived from a human complété hinge domain (“CHD”), e.g., from the costimulatory protein having the amino acid sequence of SEQ ID NO: 1. In other embodiments, the THD is derived from a rodent, murine, or primate (e.g., non-human primate) CHD of a costimulatory protein. In some embodiments, the THD is derived from a chimeric CHD of a costimulatory protein.
[0158] Transmembrane Domain: The costimulatory domain for the CAR or TCR of the invention can fùrther comprise a transmembrane domain and/or an intracellular signaling domain. The transmembrane domain can be designed to be fused to the extracellular domain of the CAR. It can similarly be fused to the intracellular domain of the CAR. In one embodiment, the transmembrane domain that naturally is associated with one of the domains in a CAR is used. In some instances, the transmembrane domain can be selected or modified by amino acid substitution to avoid binding of such domains to the transmembrane domains of the same or different surface membrane proteins to minimize interactions with other members of the receptor complex. The transmembrane domain can be derived either from a natural or from a synthetic source. Where the source is natural, the domain can be derived from any membrane-bound or transmembrane protein. Transmembrane régions of particular use in this invention can be derived from (i.e., comprise) 4-1BB/CD137, activating NK cell receptors, an Immunoglobulin protein, B7-H3, BAFFR, BLAME (SLAMF8), BTLA, CD 100 (SEMA4D), CD103, CD160 (BY55), CD18, CD19, CD19a, CD2, CD247, CD27, CD276 (B7-H3), CD28, CD29, CD3 delta, CD3 epsilon, CD3 gamma, CD30, CD4, CD40, CD49a, CD49D, CD49f, CD69, CD7, CD84, CD8alpha, CD8beta, CD96 (Tactile), CD1 la, CD11b, CD1 le, CD1 Id, CDS, CEACAM1, CRT AM, cytokine receptor, DAP-10, DNAM1 (CD226), Fc gamma receptor, GADS, GITR, HVEM (LIGHTR), IA4,ICAM-1, ICAM-1, Ig alpha (CD79a), IL-2R beta, IL2R gamma, IL-7R alpha, inducible T cell costimulator (ICOS), integrins, ITGA4, ITGA4, ITGA6, ITGAD, ITGAE, ITGAL, ITGAM, ITGAX, ITGB2, ITGB7, ITGB1, KIRDS2, LAT, LFA-1, LFA-1, a ligand that specifically binds with CD83,, LIGHT, LIGHT, LTBR, Ly9 (CD229), lymphocyte function-associated antigen-1 (LFA-1; CDl-la/CD18), MHC class 1 molécule, NKG2C, NKG2D, NKp30, NKp44, NKp46, NKp80 (KLRF1), OX-40, PAG/Cbp, 37 programmed death-1 (PD-1), PSGL1, SELPLG (CD 162), Signaling Lymphocytic Activation Molécules (SLAM proteins), SLAM (SLAMF1; CD 150; IPO-3), SLAMF4 (CD244; 2B4), SLAMF6 (NTB-A; Lyl08), SLAMF7, SLP-76, TNF receptor proteins, TNFR2, TNFSF14, a Toll ligand receptor, TRANCE/RANKL, VLA1, or VLA-6, or a fragment, truncation, or a combination thereof.
[0159] Optionally, short linkers can form linkages between any or some of the extracellular, transmembrane, and intracellular domains of the CAR.
|0160] In one spécifie embodiment, the nucléotide sequence of the costimulatory protein’s transmembrane domain is set forth in SEQ ID NO. 4: TTCTGGGTGTTGGTCGTAGTGGGTGGAGTCCTCGCTTGTTACTCTCTGCTCGTCAC CGTGGCTTTTATAATCTTCTGGGTT
[0161] In one embodiment, the polynucleotide encoding a transmembrane domain within a costimulatory domain comprises a nucléotide sequence at least about 60%, at least about 65%, at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or about 100% identical to the nucléotide sequence of SEQ ID NO: 4.
[0162] The amino acid sequence of the costimulatory protein’s transmembrane domain is set forth in SEQ ID NO. 5: FWVLVWGGV LACYSLLVTV AFIIFWV.
[0163] In one particular embodiment, the transmembrane domain within a costimulatory domain comprises an amino acid sequence at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or about 100% identical to the amino acid sequence of SEQ ID NO: 5
[0164] In another embodiment, the transmembrane domain is derived from (i.e., comprises) CD8. In one embodiment, the nucléotide sequence ofthe CD8 extracellular domain and transmembrane domain is set forth in SEQ ID NO: 238 GCTGCAGCATTGAGCAACTCAATAATGTATTTTAGTCACTTTGTACCAGTGTTCTT GCCGGCTAAGCCTACTACCACACCCGCTCCACGGCCACCTACCCCAGCTCCTACC ATCGCTTCACAGCCTCTGTCCCTGCGCCCAGAGGCTTGCCGACCGGCCGCAGGGG GCGCTGTTCATACCAGAGGACTGGATTTCGCCTGCGATATCTATATCTGGGCACC CCTGGCCGGAACCTGCGGCGTACTCCTGCTGTCCCTGGTCATCACGCTCTATTGT AATCACAGGAAC.
[0165] In some embodiments, the polynucleotide encoding a transmembrane domain within a costimulatory domain comprises a nucléotide sequence at least about 60%, at least about 65%, at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or about 100% identical to the nucléotide sequence of the CD8 transmembrane domain.
[0166] The amino acid sequence of the CD8 extracellular domain and transmembrane domain is set forth in SEQ ID NO. 239 AAALSNSIMYFSHFVPVFLPAKPTTTPAPRPPTPAPTIASQPLSLRPEACRPAAGGAVH TRGLDFACDIYIWAPLAGTCGVLLLSLVITLYCNHRN.
[0167] In one particular embodiment, the transmembrane domain within a costimulatory domain comprises an amino acid sequence at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or about 100% identical to the amino acid sequence of the CD8 transmembrane domain.
[0168] Intracellular (signaling) Domaint The intracellular (signaling) domain of the engineered T cells of the invention can provide signaling to an activating domain, which then activâtes at least one of the normal effector fonctions of the immune cell. Effector fonction of a T cell, for example, can be cytolytic activity or helper activity including the sécrétion of cytokines.
[0169] In certain embodiments, suitable intracellular signaling domain include (i.e., comprise), but are not limited to 4-1BB/CD137, activating NK cell receptors, an Immunoglobulin protein, B7-H3, BAFFR, BLAME (SLAMF8), BTLA, CD100 (SEMA4D), CD 103, CD 160 (BY55), CD 18, CD 19, CD 19a, CD2, CD247, CD27, CD276 (B7-H3), CD28, CD29, CD3 delta, CD3 epsilon, CD3 gamma, CD30, CD4, CD40, CD49a, CD49D, CD49f, CD69, CD7, CD84, CD8alpha, CD8beta, CD96 (Tactile), CD1 la, CD11b, CD1 le, CD1 Id, CDS, CEACAM1, CRT AM, cytokine receptor, DAP-10, DNAM1 (CD226), Fc gamma receptor, GADS, GITR, HVEM (LIGHTR), IA4, ICAM-1, ICAM-1, Ig alpha (CD79a), IL-2R beta, IL2R gamma, IL-7R alpha, inducible T cell costimulator (ICOS), integrins, ITGA4, ITGA4, ITGA6, ITGAD, ITGAE, ITGAL, ITGAM, ITGAX, ITGB2, ITGB7, ITGB1, KIRDS2, LAT, LFA-1, LFA-1, ligand that specifîcally binds with CD83„ LIGHT, LIGHT, LTBR, Ly9 (CD229), Lyl08), lymphocyte fonction-associated antigen-1 (LFA-1; CDl-la/CD18), MHC class 1 molécule, NKG2C, NKG2D, NKp30, NKp44, NKp46, NKp80 (KLRF1), OX-40, 39
PAG/Cbp, programmée! death-1 (PD-1), PSGL1, SELPLG (CD 162), Signaling Lymphocytic Activation Molécules (SLAM proteins), SLAM (SLAMF1; CD150; IPO-3), SLAMF4 (CD244; 2B4), SLAMF6 (NTB-A, SLAMF7, SLP-76, TNF receptor proteins, TNFR2, TNFSF14, a Toll ligand receptor, TRANCE/RANKL, VLA1, or VLA-6, or a fragment, truncation, or a combination thereof.
[0170] An example of a nucléotide sequence encoding the intracellular signaling domain is set forth in SEQ ID NO. 6: AGATCCAAAAGAAGCCGCCTGCTCCATAGCGATTACATGAATATGACTCCACGC CGCCCTGGCCCCACAAGGAAACACTACCAGCCTTACGCACCACCTAGAGATTTCG CTGCCTATCGGAGC
[0171] In one embodiment, the polynucleotide encoding an intracellular signaling domain within a costimulatory domain comprises a nucléotide sequence at least about 60%, at least about 65%, at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or about 100% identical to the nucléotide sequence of SEQ ID NO: 6.
[0172] An example of an intracellular signaling domain is set forth in SEQ ID NO. 7: RSKRSRLLHSDYMNMTPRRPGPTRKHYQPYAPPRDFAAYRS.
[0173] In one particular embodiment, the intracellular signaling domain within a costimulatory domain comprises an amino acid sequence at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or about 100% identical to the amino acid sequence of SEQ ID NO: 7.
[0174] In some embodiments, the costimulatory domain comprises, consists essentially of, or consists of the extracellular THD, and the costimulatory proteins’ s transmembrane and intracellular domains. For example, a nucléotide sequence encoding a costimulatory domain is set forth in SEQ ED NO. 240:
CTTGATAATGAAAAGTCAAACGGAACAATCATTCACGTGAAGGGCAAGCACCTC TGTCCGTCACCCTTGTTCCCTGGTCCATCCAAGCCATTCTGGGTGTTGGTCGTAGT GGGTGGAGTCCTCGCTTGTTACTCTCTGCTCGTCACCGTGGCTTTTATAATCTTCT GGGTTAGATCCAAAAGAAGCCGCCTGCTCCATAGCGATTACATGAATATGACTCC
ACGCCGCCCTGGCCCCACAAGGAAACACTACCAGCCTTACGCACCACCTAGAGA TTTCGCTGCCTATCGGAGC
[0175] In some embodiments, the polynucleotide encoding a costimulatory domain comprises, consists essentially of, or consists of a nucléotide sequence at least about 60%, at least about 65%, at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or about 100% identical to the nucléotide sequence of SEQ ID NO: 240, wherein the costimulatory domain does not comprises amino acids 1 to 122 of SEQ ID NO: 1, amino acids 1 to 121 of SEQ ID NO: 1, amino acids 1 to 120 of SEQ ID NO: 1, amino acids 1 to 119 of SEQ ID NO: 1, amino acids 1 to 118 of SEQ ID NO: 1, or amino acids 1 to 118 of SEQIDNO: 1.
[0176] The corresponding amino acid sequence of the costimulatory domain is set forth in SEQ ID NO. 241:
LDNEKSNGTIIHVKGKHLCPSPLFPGPSKPFWVLVWGGVLACYSLLVTVAFIIFWVR SKRSRLLHSDYMNMTPRRPGPTRKHYQPYAPPRDFAAYRS
[0177] In some embodiments, the costimulatory domain comprises, consists essentially of, or consists of a nucléotide sequence at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or about 100% identical to the amino acid sequence of SEQ ID NO: 241, wherein the costimulatory domain does not comprises amino acids 1 to 122 of SEQ ID NO: 1, amino acids 1 to 121 of SEQ ID NO: 1, amino acids 1 to 120 of SEQ ID NO: 1, amino acids 1 to 119 of SEQ ID NO: 1, amino acids 1 to 118 of SEQ ID NO: 1, or amino acids 1 to 118 of SEQ ID NO: 1.
I.B. Activating Domain.
[0178] CD3 is an element of the T cell receptor on native T cells, and has been shown to be an important intracellular activating element in CARs. In one embodiment, the CD3 is CD3 zêta, the nucléotide sequence of which is set forth in SEQ ID NO. 8: AGGGTGAAGTTTTCCAGATCTGCAGATGCACCAGCGTATCAGCAGGGCCAGAAC CAACTGTATAACGAGCTCAACCTGGGACGCAGGGAAGAGTATGACGTTTTGGAC AAGCGCAGAGGACGGGACCCTGAGATGGGTGGCAAACCAAGACGAAAAAACCC CCAGGAGGGTCTCTATAATGAGCTGCAGAAGGATAAGATGGCTGAAGCCTATTC TGAAATAGGCATGAAAGGAGAGCGGAGAAGGGGAAAAGGGCACGACGGTTTGT
ACCAGGGACTCAGCACTGCTACGAAGGATACTTATGACGCTCTCCACATGCAAG CCCTGCCACCTAGG
[0179] In some embodiments, the polynucleotide encoding an activating domain comprises a nucieotide sequence at least about 60%, at least about 65%, at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or about 100% identical to the nucieotide sequence of SEQ ID NO: 8.
[0180] The corresponding amino acid of intracellular CD3 zêta is set forth in SEQ ID NO. 9:
RVKFSRSADAPAYQQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGGKPRRKNPQ EGLYNELQKDKMAEAYSEIGMKGERRRGKGHDGLYQGLSTATKDTYDALHMQALP PR
[0181] In some embodiments, the activating domain comprises a nucieotide sequence at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or about 100% identical to the amino acid sequence of SEQ ID NO: 9.
[0182] In some embodiments, the activating domain comprises an amino acid sequence at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or about 100% identical to the amino acid sequence of: RVKFSRSADAPAYKQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGGKPRRKNPQ EGLYNELQKDKMAEAYSEIGMKGERRRGKGHDGLYQGLSTATKDTYDALHMQALP PR (SEQIDNO: 251).
L C. Antigen Binding Molécules
[0183] CARs can be engineered to bind to an antigen (such as a cell-surface antigen) by incorporating an antigen binding molécule that interacts with that targeted antigen. In some embodiments, the antigen binding molécule is an antibody fragment thereof, e.g., one or more single chain antibody fragment (“scFv”). An scFv is a single chain antibody fragment having the variable régions of the heavy and light chains of an antibody linked together. See U.S. Patent Nos. 7,741,465, and 6,319,494 as well asEshhar étal., Cancer Immunol Immunotherapy (1997) 45: 131-136. An scFv retains the parent antibody's ability to specifically interact with target antigen. scFvs are useful in chimeric antigen receptors because they can be engineered to be expressed as part of a single chain along with the other CAR components. Id. See also Krause et al., J. Exp. Med., Volume 188, No. 4, 1998 (619-626); Finney et al., Journal of Immunology, 1998, 161: 2791-2797. It will be appreciated that the antigen binding molécule is typically contained within the extracellular portion of the CAR such that it is capable of recognizing and binding to the antigen of interest. Bispecific and multispecific CARs are contemplated within the scope of the invention, with specificity to more than one target of interest.
[0184] In some embodiments, the polynucleotide encodes a CAR or a TCR comprising a THD of the présent invention and an antigen binding molécule that specifïcally binds to a target antigen. In some embodiments, the target antigen is a tumor antigen. In some embodiments, the antigen is selected from a tumor-associated surface antigen, such as 5T4, alphafetoprotein (AFP), B7-1 (CD80), B7-2 (CD86), BCMA, B-human chorionic gonadotropin, CA-125, carcinoembryonic antigen (CEA), carcinoembryonic antigen (CEA), CD123, CD133, CD138, CD19, CD20, CD22, CD23, CD24, CD25, CD30, CD33, CD34, CD4, CD40, CD44, CD56, CD8, CLL-1, c-Met, CMV-specific antigen, CSPG4, CTLA-4, disialoganglioside GD2, ductal-epithelial mucine, EBV-specific antigen, EGFR variant III (EGFRvIII), ELF2M, endoglin, ephrin B2, epidermal growth factor receptor (EGFR), épithélial cell adhesion molécule (EpCAM), épithélial tumor antigen, ErbB2 (HER2/neu), fibroblast associated protein (fap), FLT3, folate binding protein, GD2, GD3, glioma-associated antigen, glycosphingolipids, gp36, HBV- spécifie antigen, HCV-specific antigen, HER1-HER2, HER2HER3 in combination, HERV-K, high molecular weight-melanoma associated antigen (HMWMAA), HIV-1 envelope glycoprotein gp41, HPV-specific antigen, human telomerase reverse transcriptase, IGFI receptor, IGF-II, IL-llRalpha, IL-13R-a2, Influenza Virus-specific antigen; CD38, insulin growth factor (IGFl)-l, intestinal carboxyl esterase, kappa chain, LAGA-la, lambda chain, Lassa Virus-specific antigen, lectin-reactive AFP, lineage-specific or tissue spécifie antigen such as CD3, MAGE, MAGE-Al, major histocompatibility complex (MHC) molécule, major histocompatibility complex (MHC) molécule presenting a tumorspecific peptide epitope, M-CSF, melanoma-associated antigen, mesothelin, mesothelin, MNCA IX, MUC-1, mut hsp70-2, mutated p53, mutated p53, mutated ras, neutrophil elastase, NKG2D, Nkp30, NY-ESO-1, p53, PAP, prostase, prostase spécifie antigen (PSA), prostatecarcinoma tumor antigen-1 (PCTA-1), prostate-spécifie antigen, prostein, P SMA, RAGE-1, ROR1, RU1, RU2 (AS), surface adhesion molécule, surviving and telomerase, TAG-72, the extra domain A (EDA) and extra domain B (EDB) of fibronectin and the Al domain of tenascin43
C (TnC Al) , thyroglobulin, tumor stromal antigens, vascular endothélial growth factor receptor-2 (VEGFR2), virus-specific surface antigen such as an HIV-specific antigen (such as HIV gp!20), as well as any derivate or variant of these surface markers. In certain embodiments, the antigen binding moiecule specifically binds to BCMA. In other embodiments, the antigen binding moiecule specifically binds to CLL-1. In other embodiments, the antigen binding moiecule specifically binds to FLT3.
[0185] In some embodiments, the antigen binding moiecule specifically binds BCMA. In certain embodiments, the antigen binding moiecule comprises (a) a VH CDR1 comprising an amino acid sequence selected from SEQ ID NOs: 13-20; (b) a VH CDR2 comprising an amino acid sequence selected from SEQ ID NOs: 21-28; (c) a VH CDR3 comprising an amino acid sequence selected from SEQ ID NOs: 29-36; (d) a VL CDR1 comprising an amino acid sequence selected from SEQ ID NOs: 37-44; (e) a VL CDR2 comprising an amino acid sequence selected from SEQ ID NOs: 45-52; and/or (f) a VL CDR3 comprising an amino acid sequence selected from SEQ ID NOs: 53-60.
[0186] In one embodiment, the antigen binding moiecule comprises (a) a VH CDR1 comprising an amino acid of SEQ ID NO: 13; (b) a VH CDR2 comprising an amino acid sequence of SEQ ID NO: 21, (c) a VH CDR3 comprising an amino acid sequence of SEQ ID NO: 29; (d) a VL CDR1 comprising an amino acid sequence of SEQ ID NO: 37; (e) a VU CDR2 comprising an amino acid sequence of SEQ ID NO: 45; and/or (f) a VL CDR3 comprising an amino acid sequence of SEQ ID NO: 53.
[0187] In another embodiment, the antigen binding moiecule comprises (a) a VH CDR1 comprising an amino acid of SEQ ID NO: 14; (b) a VH CDR2 comprising an amino acid sequence of SEQ ID NO: 22; (c) a VH CDR3 comprising an amino acid sequence of SEQ ID NO: 30; (d) a VL CDR1 comprising an amino acid sequence of SEQ ID NO: 38; (e) a VL CDR2 comprising an amino acid sequence of SEQ ID NO: 46; and/or (f) a VL CDR3 comprising an amino acid sequence of SEQ ID NO: 54.
[0188] In another embodiment, the antigen binding moiecule comprises (a) a VH CDR1 comprising an amino acid of SEQ ID NO: 15; (b) a VH CDR2 comprising an amino acid sequence of SEQ ID NO: 23; (c) a VH CDR3 comprising an amino acid sequence of SEQ ID NO: 31; (d) a VL CDR1 comprising an amino acid sequence of SEQ ID NO: 39; (e) a VL CDR2 comprising an amino acid sequence of SEQ ID NO: 47; and/or (f) a VL CDR3 comprising an amino acid sequence of SEQ ID NO: 55.
[0189] In another embodiment, the antigen binding molécule comprises (a) a VH CDR1 comprising an amino acid of SEQ ID NO: 16; (b) a VH CDR2 comprising an amino acid sequence of SEQ ID NO: 24; (c) a VH CDR3 comprising an amino acid sequence of SEQ ID NO: 32; (d) a VL CDR1 comprising an amino acid sequence of SEQ ID NO: 40; (e) a VL CDR2 comprising an amino acid sequence of SEQ ID NO: 48; and/or (f) a VL CDR3 comprising an amino acid sequence of SEQ ED NO: 56.
[0190] In another embodiment, the antigen binding molécule comprises (a) a VH CDR1 comprising an amino acid of SEQ ED NO: 17; (b) a VH CDR2 comprising an amino acid sequence of SEQ ED NO: 25; (c) a VH CDR3 comprising an amino acid sequence of SEQ ID NO: 33, (d) a VL CDR1 comprising an amino acid sequence of SEQ ID NO: 41; (e) a VL CDR2 comprising an amino acid sequence of SEQ ED NO: 49; and/or (f) a VL CDR3 comprising an amino acid sequence of SEQ ID NO: 57.
[0191] In another embodiment, the antigen binding molécule comprises (a) a VH CDR1 comprising an amino acid of SEQ ID NO: 18, (b) a VH CDR2 comprising an amino acid sequence of SEQ ED NO: 26; (c) a VH CDR3 comprising an amino acid sequence of SEQ ID NO: 34; (d) a VL CDR1 comprising an amino acid sequence of SEQ ID NO: 42; (e) a VL CDR2 comprising an amino acid sequence of SEQ ID NO: 50; and/or (f) a VL CDR3 comprising an amino acid sequence of SEQ ID NO: 58.
[0192] In another embodiment, the antigen binding molécule comprises (a) a VH CDR1 comprising an amino acid of SEQ ID NO: 19; (b) a VH CDR2 comprising an amino acid sequence of SEQ ID NO: 27; (c) a VH CDR3 comprising an amino acid sequence of SEQ ID NO: 35; (d) a VL CDRI comprising an amino acid sequence of SEQ ID NO: 43; (e) a VL CDR2 comprising an amino acid sequence of SEQ ED NO: 51; and/or (f) a VL CDR3 comprising an amino acid sequence of SEQ ID NO: 59.
[0193] In another embodiment, the antigen binding molécule comprises (a) a VH CDRI comprising an amino acid of SEQ ID NO: 20; (b) a VH CDR2 comprising an amino acid sequence of SEQ ED NO: 28; (c) a VH CDR3 comprising an amino acid sequence of SEQ ID NO: 36; (d) a VL CDRI comprising an amino acid sequence of SEQ ID NO: 44; (e) a VL CDR2 comprising an amino acid sequence of SEQ ED NO: 52; and/or (f) a VL CDR3 comprising an amino acid sequence of SEQ ID NO: 60.
[0194] In certain embodiments, the antigen binding molécule comprises a VH comprising an amino acid sequence selected from the group consisting of SEQ ID NOs: 77-84 and a VL comprising an amino acid sequence selected from the group consisting of SEQ ID 45
NOs: 85-92. In one embodiment, the antigen binding molécule comprises a VH comprising an amino acid sequence of SEQ ID NO: 77 and a VL comprising an amino acid sequence of SEQ ID NO: 85. In another embodiment, the antigen binding molécule comprises a VH comprising an amino acid sequence of SEQ ID NO: 78 and a VL comprising an amino acid sequence of SEQ ID NO: 86. In another embodiment, the antigen binding molécule comprises a VH comprising an amino acid sequence of SEQ ID NO: 79 and a VL comprising an amino acid sequence of SEQ ID NO: 87. In another embodiment, the antigen binding molécule comprises a VH comprising an amino acid sequence of SEQ ID NO: 80 and a VL comprising an amino acid sequence of SEQ ID NO: 88. In another embodiment, the antigen binding molécule comprises a VH comprising an amino acid sequence of SEQ ID NO: 81 and a VL comprising an amino acid sequence of SEQ ID NO: 89. In another embodiment, the antigen binding molécule comprises a VH comprising an amino acid sequence of SEQ ID NO: 82 and a VL comprising an amino acid sequence of SEQ ID NO: 90. In another embodiment, the antigen binding molécule comprises a VH comprising an amino acid sequence of SEQ ID NO: 83 and a VL comprising an amino acid sequence of SEQ ID NO: 91. In another embodiment, the antigen binding molécule comprises a VH comprising an amino acid sequence of SEQ ID NO: 84 and a VL comprising an amino acid sequence of SEQ ID NO: 92.
[0195] In one particular embodiment, the polynucleotide of the présent invention comprises a nucléotide sequence at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or about 100% identical to a nucléotide sequence selected form the group consisting of SEQ ID NOs: 61-68. In another embodiment, the polynucleotide of the présent invention comprises a nucléotide sequence at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or about 100% identical to a nucléotide sequence selected form the group consisting ofSEQ ID NOs: 69-76.
[0196] Other known anti-BCMA antibodies or antigen binding molécules thereof can be used as antigen binding molécules of a CAR or TCR comprising a THD of the présent invention. Non-limiting examples of such BCMA antibodies or antigen binding molécule thereof include antibodies or antigen binding molécules described in WO2015158671 Al, published October 22, 2015 and WO2016014565A2, published January 28, 2016.
[0197] In some embodiments, the antigen binding molécule specifically binds CLL-1. In certain embodiments, the antigen binding molécule comprises (a) a VH CDR1 comprising 46 an amino acid sequence selected from SEQ ID NOs: 93-96; (b) a VH CDR2 comprising an amino acid sequence selected from SEQ ID NOs: 97-100; (c) a VH CDR3 comprising an amino acid sequence selected from SEQ ID NOs: 101-104; (d) a VL CDR1 comprising an amino acid sequence selected from SEQ ID NOs: 105-108; (e) a VL CDR2 comprising an amino acid sequence selected from SEQ ID NOs: 109-112; and/or (f) a VL CDR3 comprising an amino acid sequence selected from SEQ ID NOs: 113-116.
[0198] In one embodiment, the antigen binding molécule comprises (a) a VH CDR1 comprising an amino acid of SEQ ID NO: 93; (b) a VH CDR2 comprising an amino acid sequence of SEQ ID NO: 97; (c) a VH CDR3 comprising an amino acid sequence of SEQ ID NO: 101; (d) a VL CDR1 comprising an amino acid sequence of SEQ ID NO: 105; (e) a VL CDR2 comprising an amino acid sequence of SEQ ID NO: 109; and/or (f) a VL CDR3 comprising an amino acid sequence of SEQ ID NO: 113.
[0199] In one embodiment, the antigen binding molécule comprises (a) a VH CDR1 comprising an amino acid of SEQ ID NO: 94; (b) a VH CDR2 comprising an amino acid sequence of SEQ ID NO: 98; (c) a VH CDR3 comprising an amino acid sequence of SEQ ID NO: 102; (d) a VL CDR1 comprising an amino acid sequence of SEQ ID NO: 106; (e) a VL CDR2 comprising an amino acid sequence of SEQ ID NO: 110, and/or (f) a VL CDR3 comprising an amino acid sequence of SEQ ID NO: 114.
[0200] In one embodiment, the antigen binding molécule comprises (a) a VH CDR1 comprising an amino acid of SEQ ID NO: 95; (b) a VH CDR2 comprising an amino acid sequence of SEQ ID NO: 99; (c) a VH CDR3 comprising an amino acid sequence of SEQ ID NO: 103; (d) a VL CDR1 comprising an amino acid sequence of SEQ ID NO: 107; (e) a VL CDR2 comprising an amino acid sequence of SEQ ID NO: 111; and/or (f) a VL CDR3 comprising an amino acid sequence of SEQ ID NO: 115.
[0201] In one embodiment, the antigen binding molécule comprises (a) a VH CDR1 comprising an amino acid of SEQ ID NO: 96; (b) a VH CDR2 comprising an amino acid sequence of SEQ ID NO: 100; (c) a VH CDR3 comprising an amino acid sequence of SEQ ID NO: 104; (d) a VL CDR1 comprising an amino acid sequence of SEQ ID NO: 108; (e) a VL CDR2 comprising an amino acid sequence of SEQ ID NO: 112; and/or (f) a VL CDR3 comprising an amino acid sequence of SEQ ID NO: 116.
[0202] In certain embodiments, the antigen binding molécule comprises a VH comprising an amino acid sequence selected from the group consisting of SEQ ID NOs: 125128 and a VL comprising an amino acid sequence selected from the group consisting of SEQ 47
ID NOs: 129-132. In one embodiment, the antigen binding molécule comprises a VH comprising an amino acid sequence of SEQ ID NO: 125 and a VL comprising an amino acid sequence of SEQ ID NO: 129. In another embodiment, the antigen binding molécule comprises a VH comprising an amino acid sequence of SEQ ID NO: 126 and a VL comprising an amino acid sequence of SEQ ID NO: 130. In another embodiment, the antigen binding molécule comprises a VH comprising an amino acid sequence of SEQ ID NO: 127 and a VL comprising an amino acid sequence of SEQ ID NO: 131. In another embodiment, the antigen binding molécule comprises a VH comprising an amino acid sequence of SEQ ID NO: 128 and a VL comprising an amino acid sequence of SEQ ID NO: 132.
[0203] In one particular embodiment, the polynucleotide of the présent invention comprises a nucléotide sequence at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or about 100% identical to a nucléotide sequence selected form the group consisting of SEQ ID NOs: 117-120. In another embodiment, the polynucleotide of the présent invention comprises a nucléotide sequence at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or about 100% identical to a nucléotide sequence selected form the group consisting of SEQ ID NOs: 121124.
[0204] Other examples of anti-CLL-1 antibodies or antigen binding molécules thereof include antibodies or antigen binding molécules described in WO2016014535, published January 28, 2016, and US 2016/0051651 Al, published Feb. 25, 2016.
[0205] The antigen binding molécule encoded by the polynucleotide of the présent invention can be single chained or double chained. In some embodiments, the antigen binding molécule is single chained. In certain embodiments, the antigen binding molécule is selected from the group consisting of an scFv, an Fab, an Fab', an Fv, an F(ab')2, a dAb, and any combination thereof. In one particular embodiment, the antigen binding molécule comprises an scFv.
[0206] In certain embodiments, the antigen binding molécule comprises a single chain, wherein the heavy chain variable région and the light chain variable région are connected by a linker. In some embodiments, the VH is located at the N terminus of the linker and the VL is located at the C terminus of the linker. In other embodiments, the VL is located at the N terminus of the linker and the VH is located at the C terminus of the linker. In some 48 embodiments, the linker comprises at least about 5, at least about 8, at least about 10, at least about 13, at least about 15, at least about 18, at least about 20, at least about 25, at least about 30, at least about 35, at least about 40, at least about 45, at least about 50, at least about 60, at least about 70, at least about 80, at least about 90, or at least about 100 amino acids. In some embodiments, the linker comprises at least about 18 amino acids. In certain embodiments, the linker comprises an amino acid sequence that is at least about 75%, at least about 85%, at least about 85%, at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or 100% identical to the amino acid sequence GSTSGSGKPGSGEGSTKG (SEQ ID NO: 12) or the amino acid sequence GGGGSGGGGSGGGGS (SEQ ID NO: 237). In one embodiment, the linker is a Whitlow linker. In certain embodiments, the binding molécule comprises a single chain, wherein the heavy chain variable région and the light chain variable région are connected by a linker, wherein the linker comprises the amino acid sequence of SEQ ID NO: 12.
[0207] In some embodiments, the antigen binding molécule binds a target antigen (e.g., human BCMA, human FLT3, or human CLL-1) with a KD of less than 1 x 10’6M, less than 1 x 10'7M, less than 1 x 10‘8M, or less than 1 x 10’9M. In one particular embodiment, the antigen binding molécule binds a target antigen (e.g., human BCMA, human FLT3, or human CLL-1) with a Kd of less than 1 x 10'7M. In another embodiment, the antigen binding molécule binds a target antigen (e.g., human BCMA, human FLT3, or human CLL-1) with a Kd of less than 1 x 10'8M. In some embodiments, the antigen binding molécule binds a target antigen (e.g., human BCMA, human FLT3, or human CLL-1) with a Koof about 1 x 10’7M, about 2 x 10'7 M, about 3 x W7M, about 4 x 10‘7M, about 5 x 10'7M, about 6 x 10‘7M, about 7 x 10’7M, about 8 x 10'7M, about 9 x 10'7M, about 1 x 10'8M, about 2 x 10’8M, about 3 x 10’8M, about 4 x 10’8M, about 5 x 10'8M, about 6 x 10'8M, about 7 x 10'8M, about 8 x 10'8M, about 9 x 10‘8M, about 1 x 10'9M, about 2 x 10'9M, about 3 x l(L9M, about 4 x 10'9M, about 5 x 10'9 M, about 6 x 10'9M, about 7 x ΙΟ’9 M, about 8 x 10'9M, about 9 x 10'9M, about 1 x 10'10M, or about 5 x 10'10 M. In certain embodiments, the Kd is calculated as the quotient of koff/kOn, and the kon and koff are determined using a monovalent antibody, such as a Fab fragment, as measured by, e.g., BIAcore® surface plasmon résonance technology. In other embodiments, the Kd is calculated as the quotient of koff/kon, and the kon and koff are determined using a bivalent antibody, such as a Fab fragment, as measured by, e.g., BIAcore® surface plasmon résonance technology.
[0208] In some embodiments, the antigenbinding moiecule binds a target antigen (e.g., human BCMA, human FLT3, or human CLL-1) with an association rate (kon) of less than 1 x 10‘4 M'1 s'1, less than 2 x ΙΟ'4 M'1 s'1, less than 3 x 104 M'1 s’1, less than 4 x 10'4 M'1 s’1, less than 5 x 10'4 M’1 s'1, less than 6 x 10‘4 M'1 s’1, less than 7 x1ο-4 M'1 s’1, less than 8 x 10'4 M-1 s'1, less than 9 x 10'4 M-1 s'1, less than 1 x 10'5 M’1 s’1, less than 2 x 10‘5 M'1 s’1, less than 3 x 10‘5 M’1 s'1, less than 4 x ΙΟ'5 M'1 s'1, less than 5 x ΙΟ'5 M'1 s'1, less than 6 x 10’5 M-1 s’1, less than 7 x ΙΟ'5 M’1 s'1, less than 8 x ΙΟ'5 M'1 s'1, less than 9 x 10’5 M1 s’1, less than 1 x 10’6 M’1 s'1, less than 2 x ΙΟ'6 M'1 s’1, less than 3 x 10‘6 M'1 s1, less than 4 x 10‘6 M-1 s'1, less than 5 x 10'6 M-1 s’1, less than 6 x ΙΟ'6 M’1 s'1, less than 7 x ΙΟ'6 M'1 s’1, less than 8 x ΙΟ’6 M'1 s’1, less than 9 x 10‘6 M'1 s'1, or less than 1 x 10’7 M’1 s-1. In certain embodiments, the kon is determined using a monovalent antibody, such as a Fab fragment, as measured by, e.g., BIAcore® surface plasmon résonance technology. In other embodiments, the kon is determined using a bivalent antibody as measured by, e.g., BIAcore® surface plasmon résonance technology.
[0209] In some embodiments, the antigen binding moiecule binds a target antigen (e.g., human BCMA, human FLT3, or human CLL-1) with an dissociation rate (koff) of less than 1 x 10’2 s’1, less than 2 x 102 s’1, less than 3 x 10'2 s’1, less than 4 x 10'2 s'1, less than 5 x 10'2 s1, less than 6 x 10'2 s’1, less than 7 x 10'2 s'1, less than 8 x 10'2 s’1, less than 9 x 10'2 s'1, less than 1 x 10'3 s’1, less than 2 x 10'3 s'1, less than 3 x 10’3 s’1, less than 4 x 10'3 s'1, less than 5 x 10’3 s’ \ less than 6 x 10'3 s'1, less than 7 x 10‘3 s’1, less than 8 x 10'3 s'1, less than 9 x 10'3 s'1, less than 1 x 10'4 s'1, less than 2 x 10'4 s'1, less than 3 x 10'4 s'1, less than 4 x 10‘4 s’1, less than 5 x 10‘4 s' \ less than 6 x 10'4 s'1, less than 7 x 10'4 s’1, less than 8 x 10'4 s’1, less than 9 x 10'4 s’1, less than 1 x 10'4 s'1, or less than 5 x 10'4 s'1. In certain embodiments, the kOfr is determined using a monovalent antibody, such as a Fab fragment, as measured by, e.g., BIAcore® surface plasmon résonance technology. In other embodiments, the koff is determined using a bivalent antibody as measured by, e.g., BIAcore® surface plasmon résonance technology.
[0210] In some embodiments, the polynucleotide encodes a TCR, wherein the TCR further comprises a fourth complementarity determining région (CDR4). In certain embodiments, the polynucleotide encodes a TCR, wherein the TCR fùrther comprises a constant région. In some embodiments, the constant région is selected from a constant région of IgGl, IgG2, IgG3, IgG4, IgA, IgD, IgE, and IgM.
LD. Switch Domain
[0211] It will be appreciated that adverse events may be minimized by transducing the immune cells (containing one or more CARs or TCRs) with a suicide gene. It may also be desired to incorporate an inducible “on” or “accelerator” switch into the immune cells. Suitable techniques include use of inducible caspase-9 (U.S. Appl. 2011/0286980) or a thymidine kinase, before, after or at the same time, as the cells are transduced with the CAR construct of the présent invention. Additionai methods for introducing suicide genes and/or “on” switches include TALENS, zinc fmgers, RNAi, siRNA, shRNA, antisense technology, and other techniques known in the art.
[0212] In accordance with the invention, additionai on-off or other types of control switch techniques may be incorporated herein. These techniques may employ the use of dimerization domains and optional activators of such domain dimerization. These techniques include, e.g., those described by Wu et al., Science 2014 350 (6258) utilizing FKBP/Rapalog dimerization Systems in certain cells, the contents of which are incorporated by reference herein in their entirety. Additionai dimerization technology is described in, e.g., Fegan et al. Chem. Rev. 2010, 110, 3315-3336 as well as U.S. Patent Nos. 5,830,462; 5,834,266; 5,869,337; and 6,165,787, the contents of which are also incorporated by reference herein in their entirety. Additionai dimerization pairs may include cyclosporine-A/cyclophilin, receptor, estrogen/estrogen receptor (optionally using tamoxifen), glucocorticoids/glucocorticoid receptor, tetracycline/tetracycline receptor, vitamin D/vitamin D receptor. Further examples of dimerization technology can be found in e.g., WO 2014/127261, WO 2015/090229, US 2014/0286987, US 2015/0266973, US 2016/0046700, U.S. Patent No. 8,486,693, US 2014/0171649, and US 2012/0130076, the contents of which are further incorporated by reference herein in their entirety.
LE. Leader Peptide
[0213] In some embodiments, the polynucleotide of the présent invention encodes a CAR or a TCR can further comprises a leader peptide (also referred to herein as a “signal peptide”). In certain embodiments, the leader peptide comprises an amino acid sequence that is at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or 100% identical to the amino acid sequence MALPVTALLLPLALLLHAARP (SEQ ID NO: 11). In some embodiments, the leader peptide comprises the amino acid sequence of SEQ ID NO: 11.
[0214] In some embodiments, the polynucleotide of the présent invention encodes a CAR or a TCR, wherein the CAR or the TCR comprises a leader peptide (P), an antigen binding molécule (B), a costimulatory protein’s extracellular domain (E), a transmembrane domain (T), a costimulatory région (C), and an activation domain (A), wherein the CAR is configured 5 according to the following: P-B-E-T-C-A. In some embodiments, the antigen binding molécule comprises a VH and a VL, wherein the CAR is configured according to the following: P-VIIVL-E-T-C-A or P-VL-VH-E-T-C-A. In some embodiments, the VH and the VL are connected by a linker (L), wherein the CAR is configured according to the following, from N-terminus to C-terminus: P-VH-L-VL-E-T-C-A or P-VH-L-VL-E-T-C-A.
[0215] In some embodiments, the polynucleotide of the présent invention encodes a
CAR, wherein the CAR comprises an amino acid sequence at least about 75%, at least about 85%, at least about 85%, at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or 100% identical to an amino acid sequence selected from Table 2. In certain embodiments, the polynucleotide of the présent invention encodes a CAR, wherein the CAR comprises an amino acid sequence selected from Table 2.
[0216] Table 2. Example CAR Sequences
CAR Construct Nucléotide Sequence SEQ ID NO: Amino Acid Sequence SEQ ID NO:
10E3_CHD ATGGCACTCCCCGTAACTGCTCTGCTGCT GCCGTTGGCATTGCTCCTGCACGCCGCAC GCCCGCAGGTGACCCTCAAAGAGTCTGGA CCCGTGCTCGTAAAACCTACGGAGACCCT GACACTCACCTGCACAGTCTCCGGCTTCA GCCTCATCAATGCCAGGATGGGAGTTTCC TGGATCAGGCAACCGCCCGGAAAGGCCCT GGAATGGCTCGCACATATTTTCAGTAACG CT GAAAAAAGCTAT CGGACTT CT CT GAAA AGT C GGCT CAC GATT AGT AAGGACACATC CAAGAGCCAAGTGGT GCTTACGATGACTA ACAT GGAC C CT GT GGATACT GCAACCTAT TACTGTGCTCGAATCCCTGGTTATGGCGG AAAT GGGGACTAC CACTACTACGGTAT GG ATGTCTGGGGCCAAGGGACCACGGTTACT GTTTCAAGCGGAGGGGGAGGGAGTGGGGG TGGCGGATCTGGCGGAGGAGGCAGCGATA TCCAGATGACGCAGTCCCCTAGTTCACTT TCCGCATCCCTGGGGGATCGGGTTACCAT TACATGCCGCGCGTCACAGGGTATCCGGA ATGATCTGGGATGGTACCAGCAGAAGCCG GGAAAGGCTCCTAAGCGCCTCATCTACGC CAGCTCCACCCTGCAGAGTGGAGTGCCCT CCCGGTTTTCAGGCAGTGGCTCCGGTACG GAGTTTACTCTTACAATTAGCAGCCTGCA GCCAGAAGATTTTGCAACTTACTACTGTT 242 MALPVTALLLPLALLL HAARPQVTLKESGPVL VKPTETLTLTCTVSGF SLINARMGVSWIRQPP GKALEWLAHIFSNAEK S YRT S LKS RLTIS KDT S KS QWLTMTNMD PVD TATYYCARIPGYGGNG DYHYYGMDVWGQGTTV TVS S GGGGS GGGGS GG GGSDIQMTQSPSSLSA SLGDRVTITCRASQGI RNDLGWYQQKPGKAPK RLIYASSTLQSGVPSR FSGSGSGTEFTLTISS LQPEDFATYYCLQHNN FPWTFGQGTKVEIKRA AAIEVMYPPPYLDNEK SNGTIIHVKGKHLCPS PLFPGPSKPFWVLWV GGVLACYSLLVTVAFI IFWVRSKRSRLLHSDY MNMTPRRPGPTRKHYQ PYAP P RD FAAYRS RVK FSRSADAPAYQQGQNQ LYNELNLGRREEYDVL 243
TGCAGCATAATAATTTCCCCTGGACCTTT GGT CAGGGCACCAAGGT GGAGAT CAAAAG AGCAGCCGCCATCGAAGTAATGTATCCCC CCCCGTACCTTGACAATGAGAAGTCAAAT GGAAC CAT TAT C CAT GT T AAGG GCAAACA CCTCTGCCCTTCTCCACTGTTCCCTGGCC CTAGTAAGCCGTTTTGGGTGCTGGTGGTA GTCGGTGGGGTGCTGGCTTGTTACTCTCT TCTCGTGACCGTCGCCTTTATAATCTTTT GGGTCAGATCCAAAAGAAGCCGCCTGCTC CATAGCGATTACATGAATATGACTCCACG CCGCCCTGGCCCCACAAGGAAACACTACC AGCCTTACGCACCACCTAGAGATTTCGCT GCCTATCGGAGCCGAGTGAAATTTTCTAG ATCAGCTGATGCTCCCGCCTATCAGCAGG GACAGAATCAACTTTACAATGAGCTGAAC CTGGGTCGCAGAGAAGAGTACGACGTTTT GGACAAACGCCGGGGCCGAGATCCTGAGA TGGGGGGGAAGCCGAGAAGGAAGAATCCT CAAGAAGGCCTGTACAACGAGCTTCAAAA AGACAAAATGGCT GAGGCGTACTCTGAGA TCGGCATGAAGGGCGAGCGGAGACGAGGC AAGGGTCACGATGGCTTGTATCAGGGCCT GAGT ACAGCCACAAAGGACAC CTAT GAC G CCCTCCACATGCAGGCACTGCCCCCACGC TAG DKRRGRDPEMGGKPRR KNPQEGLYNELQKDKM AEAYS ElGMKGERRRG KGHDGLYQGLSTATKD TYDALHMQALPPR
10E3_THD ATGGCACTCCCCGTAACTGCTCTGCTGCT GCCGTTGGCATTGCTCCTGCACGCCGCAC GCCCGCAAGTTACTTTGAAGGAGTCTGGA CCTGTACTGGTGAAGCCAACCGAGACACT GACACTCACGTGTACAGTGAGTGGTTTTT CCTTGATCAACGCAAGGATGGGCGTCAGC TGGATCAGGCAACCCCCTGGCAAGGCTCT GGAAT GGCT CGCT CACATATT CAGCAAT G CCGAAAAAAGCTACCGGACAAGCCTGAAA TCCCGCCTGACTATTTCCAAGGACACTTC TAAGTCTC7A GGTGGT GCT GACCAT GACCA ACATGGACCCGGTGGACACCGCCACCTAT TACTGCGCAAGAATCCCTGGGTATGGTGG G7XAT GGT GACTAC CATTATTAT GGGAT GG ATGTGTGGGGGCAAGGCACAACCGTAACG GT CT CAAGCGGT GGGGGAGGCT CAGGGGG CGGAGGCTCCGGAGGTGGCGGCTCCGACA TTCAGATGACCCAAAGCCCGTCCAGCCTG TCCGCCAGCCTGGGAGATAGAGTGACAAT CACGTGTAGAGCTTCCCAAGGGATAAGAA ATGATCTCGGGTGGTATCAGCAGAAGCCC GGCAAAGCCCCCAAAAGGCTTATATATGC TAGTAGTACACTGCAGTCTGGAGTTCCTT CCCGATTTTCAGGTAGCGGCTCCGGTACA GAGTTCACCCTCACGATAAGCTCACTCCA GCCTGAGGATTTCGCAACGTACTACTGCC TCCAGCACAACAATTTTCCCTGGACTTTC GGCCAGGGCACCAAGGTGGAGATCAAGAG GGCCGCTGCCCTTGATAATGAAAAGTCAA ACGGAACAATCATTCACGTGAAGGGCAAG CACCTCTGTCCGTCACCCTTGTTCCCTGG TCCATCCAAGCCATTCTGGGTGTTGGTCG TAGTGGGTGGAGTCCTCGCTTGTTACTCT 244 MALPVTALLLPLALLL HAARPQVTLKESGPVL VKPTETLTLTCTVSGF SLINARMGVSWIRQPP GKALEWLAHIFSNAEK SYRTSLKSRLTISKDT S KS QWLTMTNMD P VD TATYYCARIPGYGGNG DYHYYGMDVWGQGTTV TVSSGGGGSGGGGSGG GGSDIQMTQSPSSLSA SLGDRVTITCRASQGI RNDLGWYQQKPGKAPK RLIYASSTLQSGVPSR FSGSGSGTEFTLTISS LQPEDFATYYCLQHNN FPWTFGQGTKVEIKRA AALDNEKSNGTIIHVK GKHLCPSPLFPGPSKP FWVLVWGGVLAC YS L LVTVAFIIFWVRSKRS RLLHSDYMNMTPRRPG P T RKHYQ PYAP P RD FA AYRSRVKFSRSADAPA YQQGQNQLYNELNLGR REEYDVLDKRRGRDPE MGGKPRRKNPQEGLYN ELQKDKMAEAYSEl GM KGERRRGKGHDGLYQG L S TAT KDT YDALHMQA LPPR 245
CTGCTCGTCACCGTGGCTTTTATAATCTT CTGGGTTAGATCCAAAAGAAGCCGCCTGC TCCATAGCGATTACATGAATATGACTCCA CGCCGCCCTGGCCCCACAAGGAAACACTA CCAGCCTTACGCACCACCTAGAGATTTCG CTGCCTATCGGAGCCGAGTGAAATTTTCT AGATCAGCTGATGCTCCCGCCTATCAGCA GGGACAGAATCAACTTTACAATGAGCTGA ACCTGGGTCGCAGAGAAGAGTACGACGTT TTGGACAAACGCCGGGGCCGAGATCCTGA GATGGGGGGGAAGCCGAGAAGGAAGAATC CTCAAGAAGGCCTGTACAACGAGCTTCAA AAAGACAAAAT GGCT GAGGCGTACTCT GA GATCGGCATGAAGGGCGAGCGGAGACGAG GCAAGGGTCACGATGGCTTGTATCAGGGC CTGAGT'ACAGCCACAAAGGACACCTATGA CGCCCTCCACATGCAGGCACTGCCCCCAC GCTAG
8B5_CHD ATGGCACTCCCCGTAACTGCTCTGCTGCT GCCGTTGGCATTGCTCCTGCACGCCGCAC GCCCGCAGATCCAGTTGGTGGAATCAGGG GGCGGTGTGGTGCAGCCGGGTAGGAGCCT GAGACTGTCATGCGTGGCGTCTGGCTTCA CATTCAAGAACTACGGCATGCACTGGGTG CGACAGGCCCCCGGAAAGGGTTTGGAGTG GGTCGCCGTGATCTGGTACGACGGATCTA ATGAGTATTACGGAGATCCTGTGAAGGGA AGGTTCACCATCTCCCGCGACAATAGCAA AAATATGCT CTACCT GCAAAT GAACTCAC TCAGGGCGGATGATACGGCGGTCTACTAT TGCGCTCGCTCAGGGATTGCTGTGGCCGG C GCAT T C GATTACT GGGGACAGGGTAC CC TGGTGACAGTATCAAGCGGAGGCGGCGGC TCTGGCGGCGGCGGATCTGGCGGGGGGGG AAGTGAGATTGTGTTGACACAGTCTCCCG ATACCCT GT CACT GTCACCCGGCGAGAAG GCAACGCTGAGTTGCAGAGCAAGCCAGTC AGTCTCCTCTTCTTTTCTGGCCTGGTATC AGCAAAAACCAGGT CAGGCACCAT CT CT C CTGATTTACGTTGCCAGCAGACGGGCGGC TGGCATTCCCGACAGGTTCTCTGGAAGCG GATCTGGGACCGATTTTACCCTGACAATT AGCCGCTTGGAGCCCGAAGACTTTGGTAT GTTTTACTGCCAGCACTACGGAAGGACAC CTTTCACATTTGGCCCGGGCACGAAAGTC GATATAAAAC GCGCAGCCGCCATTGAAGT AATGTACCCACCACCTTATTTGGACAATG AAAAGTCCAATGGTACCATTATTCACGTC AAGGGAAAGCATCTCTGTCCAAGCCCTCT GTTCCCCGGCCCCTCCAAACCATTCTGGG TGCTGGTGGTCGTCGGCGGAGTTCTGGCC TGCTATTCTCTGCTCGTGACTGTTGCATT CATCATTTTCTGGGTGAGATCCAAAAGAA GCCGCCTGCTCCATAGCGATTACATGAAT ATGACTCCACGCCGCCCTGGCCCCACAAG GAAACACTACCAGCCTTACGCACCACCTA GAGATTTCGCTGCCTATCGGAGCCGAGTG AAATTTTCTAGATCAGCTGATGCTCCCGC CTATCAGCAGGGACAGAATCAACTTTACA 246 MALPVTALLLPLALLL HAARPQIQLVESGGGV VQPGRSLRLSCVASGF TFKNYGMHWVRQAPGK GLEWVAVIWYDGSNEY YGD PVKGRFTIS RDN S KNMLYLQMNSLRADDT AVYYCARS GlAVAGAF DYWGQGT LWVS S GGG GSGGGGSGGGGSEIVL TQSPDTLSLSPGEKAT LS CRAS Q S VS S S FLAW YQQKPGQAPSLLIYVA SRRAAGIPDRFSGSGS GTDFTLTISRLEPEDF GMFYCQHYGRT P FT FG P GT KVDIKRAAAIEVM YPPPYLDNEKSNGTII HVKGKHLCPSPLFPGP S KP FWLVWGGVLAC YS LLVTVAFIIFWVRS KRSRLLHSDYMNMTPR RPGPTRKHYQPYAPPR DFAAYRSRVKFSRSAD APAYQQGQNQLYNELN LGRREEYDVLDKRRGR DPEMGGKPRRKNPQEG LYNELQKDKMAEAYSE IGMKGERRRGKGHDGL YQGLSTATKDTYDALH MQALPPR 247
AT GAGCT GAACCTGGGT CGCAGAGAAGAG TACGACGTTTTGGACAAACGCCGGGGCCG AGAT C CT GAGAT GGGGGGGAAGCCGAGAA GGAAGAAT C CT CAAGAAGGCCT GTACAAC GAGCTT CAAAAAGACAAAAT GGCT GAGGC GTACTCTGAGATCGGCATGAAGGGCGAGC GGAGACGAGGCAAGGGTCACGATGGCTTG TATCAGGGCCTGAGTACAGCCACAAAGGA CACCTATGACGCCCTCCACATGCAGGCAC TGCCCCCACGCTAG
8B5_THD ATGGCACTCCCCGTAACTGCTCTGCTGCT GCCGTTGGCATTGCTCCTGCACGCCGCAC GC C C GCAGATT CAGCT CGT GGAGT CAGGT GGTGGCGTGGTTCAGCCCGGACGGTCCCT GCGACTCTCTTGTGTGGCAAGCGGATTTA CCTTTAAGAACTATGGCATGCACTGGGTG AGGCAGGCCCCTGGAAAAGGACTGGAGTG GGTTGCTGTGATCTGGTACGACGGGTCCA ACGAATATTATGGCGATCCTGTGAAGGGA CGGTTTACAATCTCACGCGATAACTCAAA GAACAT GCT GTACCT GCAA ATGAACTCTC TGCGCGCTGATGACACTGCCGTGTATTAT TGCGCTCGGAGTGGTATCGCCGTCGCAGG AGCATTTGATTATTGGGGGCAAGGGACCC TCGTGACAGTGAGTTCCGGAGGGGGAGGT TCTGGTGGAGGCGGCTCTGGTGGGGGAGG CAGCGAGATCGTTCTGACCCAGTCTCCTG ACACACTGTCACTGTCCCCTGGTGAAAAG GCCACACTGTCTTGTAGAGCGTCCCAGAG CGTTTCCAGTTCCTTCCTTGCATGGTATC AACAAAAACCCGGGCAGGCTCCAAGCTTG CTGATCTACGTGGCCAGCCGCCGGGCCGC AGGCATCCCTGATAGGTTTAGCGGTTCTG GGAGCGGGACGGACTTCACCTTGACAATA TCACGGCTGGAACCCGAAGACTTCGGAAT GTTTTATTGCCAGCACTACGGAAGAACTC CATTCACCTTTGGCCCGGGAACGAAGGTA GACATCAAGAGAGCAGCAGCCCTCGACAA CGAGAAATCCAATGGAACCATTATCCATG TGAAGGGGAAACATCTCTGCCCTTCACCA TTGTTCCCTGGACCCAGCAAGCCTTTTTG GGTTCTGGTCGTGGTGGGGGGCGTCCTGG CTTGTTACTCCCTCCTCGTTACAGTCGCC TTCATAATCTTTTGGGTTAGATCCAAAAG AAGCCGCCTGCTCCATAGCGATTACATGA ATATGACTCCACGCCGCCCTGGCCCCACA AGGAAACACTACCAGCCTTACGCACCACC TAGAGATTTCGCTGCCTATCGGAGCCGAG TGAAATTTTCTAGATCAGCTGATGCTCCC GCCTATCAGCAGGGACAGAATCAACTTTA CAATGAGCTGAACCTGGGTCGCAGAGAAG AGTACGACGTTTTGGACAAACGCCGGGGC CGAGAT CCT GAGAT GGGGGGGAAGCCGAG AAGGAAGAATCCTCAAGAAGGCCTGTACA ACGAGCTTCAAAAAGACAAAATGGCTGAG GCGTACTCTGAGATCGGCATGAAGGGCGA GCGGAGACGAGGCAAGGGTCACGATGGCT TGTATCAGGGCCTGAGTACAGCCACAAAG 248 MALPVTALLLPLALLL HAARPQIQLVESGGGV VQPGRSLRLSCVASGF T FKNYGMHWVRQAP GK GLEWVAVIWYDGSNEY YGD PVKGRFTIS RDNS KNMLYLQMNSLRADDT AVYYCARS GIAVAGAF DYWGQGTLVTVSSGGG GSGGGGSGGGGSEIVL TQSPDTLSLSPGEKAT L S C RAS Q S VS S S FLAW YQQKPGQAPSLLIYVA SRRAAGIPDRFSGSGS GTDFTLTISRLEPEDF GMFYCQHYGRT P FT FG PGTKVDIKRAAALDNE KSNGTIIHVKGKHLCP S PLFPGPSKPFWLW VGGVLACYSLLVTVAF IIFWRSKRSRLLHSD YMNMTPRRPGPTRKHY QPYAPPRDFAAYRSRV KFSRSADAPAYQQGQN QLYNELNLGRREEYDV LDKRRGRDPEMGGKPR RKNPQEGLYNELQKDK MAEAYSElGMKGERRR GKGHDGLYQGLSTATK DTYDALHMQALPPR 249
GACACCTATGACGCCCTCCACATGCAGGC ACTGCCCCCACGCTAG
FS21495CARHX L ATGGCACTCCCCGTAACTGCTCTGCTGCT GCCGTTGGCATTGCTCCTGCACGCCGCAC GCCCGGAGGTGCAGCTGTTGGAGTCTGGG GGAGGCTTGGTACAGCCTGGGGGGTCCCT GAGACTCTCCTGTGCAGCCTCTGGATTCA CCTTTAGCAGCTATGCCATGAGCTGGGTC CGCCAGGCTCCAGGGAAGGGGCTGGAGTG GGT CT CAGCTATTAGTGGTAGT GGT GGTA GCACATACTACGCAGACTCCGTGAAGGGC CGGTTCACCATCTCCAGAGACAATTCCAA GAACACGCT GT AT CT GCA AAT GAACAGCC TGAGAGCCGAGGACACGGCGGTGTACTAC TGCGCAAGAGCCGAGATGGGAGCCGTATT C GACATAT GGGGT CAGGGT ACAAT GGT CA CCGTCTCCTCAGGGTCTACATCCGGCTCC GGGAAGCCCGGAAGTGGCGAAGGTAGTAC AAAGGGGGAAATTGTGTTGACACAGTCTC CAGCCACCCTGTCTTTGTCTCCAGGGGAA AGAGCCACCCTCTCCTGCAGGGCCAGTCA GAGT GT T AGCAGGTACTTAGCCT GGT AC C AACAGAAACCTGGCCAGGCTCCCAGGCTC CT CAT CT AT GAT GCAT CCAACAGGGCCAC TGGCATCCCAGCCAGGTTCAGTGGCAGTG GGT CT GGGACAGACTTCACT CT CACCAT C AGCAGCCTAGAGCCTGAAGATTTTGCAGT TTATTACT GT CAGCAGAGAATCTCCTGGC CTTTCACTTTTGGCGGAGGGACCAAGGTT GAGATCAAACGGGCCGCTGCCCTTGATAA TGAAAAGTCAAACGGAACAATCATTCACG TGAAGGGCAAGCACCTCTGTCCGTCACCC TTGTTCCCTGGTCCATCCAAGCCATTCTG GGTGTTGGTCGTAGTGGGTGGAGTCCTCG CTTGTTACTCTCTGCTCGTCACCGTGGCT TTTATAATCTTCTGGGTTAGATCCAAAAG AAGCCGCCTGCTCCATAGCGATTACATGA ATATGACTCCACGCCGCCCTGGCCCCACA AGGAAACACTACCAGCCTTACGCACCACC TAGAGATTTCGCTGCCTATCGGAGCAGGG TGAAGTTTTCCAGATCTGCAGATGCACCA GCGTATCAGCAGGGCCAGAACCAACTGTA TAACGAGCTCAACCTGGGACGCAGGGAAG AGTATGACGTTTTGGACAAGCGCAGAGGA CGGGACCCTGAGATGGGTGGCAAACCAAG ACGAAAAAACCCCCAGGAGGGTCTCTATA AT GAGCT GCAGAAGGATAAGAT GGCT GAA GC CTATT CT GAAATAGGCAT GAAAGGAGA GCGGAGAAGGGGAAAAGGGCACGACGGTT TGTACCAGGGACTCAGCACTGCTACGAAG GATACTTAT GACGCT CT CCACAT GCAAGC CCTGCCACCTAGGTAA 133 MALPVTAiLLPLALLL HAARPEVQLLESGGGL VQPGGSLRLSCAASGF TFSSYAMSWVRQAPGK GLEWVSAISGSGGSTY YAD SVKGRFTIS RDN S KNTLYLQMNSLRA.EDT AVYYCARAEMGAVFDI WGQGTMVTVSSGSTSG SGKPGSGEGSTKGEIV LTQSPATLSLSPGERA TLSCRASQSVSRYIAW YQQKPGQAPRLLIYDA SNRATGIPARFSGSGS GTDFTLTISSLEPEDF AVYYCQQRISWP FT FG GGTKVEIKRAAALDNE KSNGTIIHVKGKHLCP SPLFPGPSKPFWVLW VGGVLACYSLLVTVAF IIFWVRSKRSRLLHSD YMNMTPRRPGPTRKHY Q P YAP P RD FAAYRS RV KFSRSADAPAYQQGQN QLYNELNLGRREEYDV LDKRRGRDPEMGGKPR RKNPQEGLYNELQKDK MAEAYSEIGMKGERRR GKGHDGLYQGLSTATK DTYDALHMQALPPR 134
FS21495CARLX H ATGGCACTCCCCGTAACTGCTCTGCTGCT GCCGTTGGCATTGCTCCTGCACGCCGCAC GCCCGGAAATTGTGTTGACACAGTCTCCA GCCACCCTGTCTTTGTCTCCAGGGGAAAG AGCCACCCTCTCCTGCAGGGCCAGTCAGA GTGTTAGCAGGTACTTAGCCTGGTACCAA CAGAAACCTGGCCAGGCTCCCAGGCTCCT 135 MALPWALLLPLALLL HAARP EIVLT Q S P AT L SLSPGERATLSCRASQ SVSRYLAWYQQKPGQA PRLLIYDASNRATGIP ARFSGSGSGTDFTLTI SSLEPEDFAVYYCQQR 136
CATCTATGATGCATCCAACAGGGCCACTG GCATCCCAGCCAGGTTCAGTGGCAGTGGG T CT GGGACAGACTT CACT CT CACCAT CAG CAGCCTAGAGCCTGAAGATTTTGCAGTTT ATTACTGTCAGCAGAGAATCTCCTGGCCT TTCACTTTTGGCGGAGGGACCAAGGTTGA GATCAAACGGGGGTCTACATCCGGCTCCG GGAAGCCCGGAAGTGGCGAAGGTAGTACA AAGGGGGAGGTGCAGCTGTTGGAGTCTGG GGGAGGCTT GGTACAGC CT GGGGGGT CCC TGAGACTCTCCTGTGCAGCCTCTGGATTC ACCTTTAGCAGCTATGCCATGAGCTGGGT CCGCCAGGCTCCAGGGAAGGGGCTGGAGT GGGTCTCAGCTATTAGTGGTAGTGGTGGT AGCACATACTACGCAGACTCCGTGAAGGG CCGGTTCACCATCTCCAGAGACAATTCCA AGAACACGCT GTAT CT GCAAAT GAACAGC CTGAGAGCCGAGGACACGGCGGTGTACTA CTGCGCAAGAGCCGAGATGGGAGCCGTAT T CGACATATGGGGT CAGGGTACAATGGTC ACCGTCTCCTCAGCCGCTGCCCTTGATAA T GAAAAGT CAAACGGAACAAT CATTCACG TGAAGGGCAAGCACCTCTGTCCGTCACCC TTGTTCCCTGGTCCATCCAAGCCATTCTG GGTGTTGGTCGTAGTGGGTGGAGTCCTCG CTTGTTACTCTCTGCTCGTCACCGTGGCT TTTATAATCTTCTGGGTTAGATCCAAAAG AAGCCGCCTGCTCCATAGCGATTACATGA ATATGACTCCACGCCGCCCTGGCCCCACA AGGAAACACTACCAGCCTTACGCACCACC TAGAGATTTCGCTGCCTATCGGAGCAGGG TGAAGTTTTCCAGATCTGCAGATGCACCA GCGTATCAGCAGGGCCAGAACCAACTGTA TAACGAGCTCAACCTGGGACGCAGGGAAG AGTATGACGTTTTGGACAAGCGCAGAGGA CGGGACCCTGAGATGGGTGGCAAACCAAG ACGAAAAAACCCCCAGGAGGGTCTCTATA AT GAGCT GCAGAAGGATAAGAT GGCT GAA GCCTATTCTGAAATAGGCATGAAAGGAGA GCGGAGAAGGGGAAAAGGGCACGACGGTT TGTACCAGGGACTCAGCACTGCTACGAAG GATACT TAT GAC GCT CT C CACAT GCAAGC CCTGCCACCTAGGTAA ISWPFTFGGGTKVEIK RGSTSGSGKPGSGEGS TKGEVQLLESGGGLVQ PGGSLRLSCAASGFTF SSYAMSWVRQAPGKGL EWVSAISGSGGSTYYA DSVKGRFTISRDNSKN TLYLQMNSLRAEDTAV YYCARAEMGAVFDIWG QGTMVTVSSAAALDNE KSNGTIIHVKGKHLCP SPLFPGPSKPFWVLW VGGVLACYSLLVTVAF IIFWVRSKRSRLLHSD YMNMTPRRPGPTRKHY QPYAPPRDFAAYRSRV KFSRSADAPAYQQGQN QLYNELNLGRREEYDV LDKRRGRDPEMGGKPR RKNPQEGLYNELQKDK MAEAYSElGMKGERRR GKGHDGLYQGLSTATK DTYDALHMQALPPR
PC21497CARHX L ATGGCACTCCCCGTAACTGCTCTGCTGCT GCCGTTGGCATTGCTCCTGCACGCCGCAC GCCCGCAGGTGCAGCTGGTGGAGTCTGGG GGAGGCGTGGTCCAGCCTGGGAGGTCCCT GAGACTCTCCTGTGCAGCGTCTGGATTCA CCTTCAGTAGCTATGGCATGCACTGGGTC CGCCAGGCTCCAGGCAAGGGGCTGGAGTG GGTGGCAGTTATATCGTATGATGGAAGTA ATAAATACT AT GCAGACT CCGT GAAGGGC CGATT CACCAT CTCCAGAGACAATT CCAA GAACAC GCT GTAT CT GCAAAT GAACAGCC TGAGAGCCGAGGACACGGCGGTGTACTAC T GCGC CAGAGAC GGTACTTAT CTAGGT GG TCTCTGGTACTTCGACTTATGGGGGAGAG GTACCTTGGTCACCGTCTCCTCAGGGTCT ACATCCGGCTCCGGGAAGCCCGGAAGTGG 137 MALPT/TALLLPLALLL HAARPQVQLVESGGGV VQPGRSLRLSCAASGF TFS SYGMHWVRQAPGK GLEWVAVISYDGSNKY YAD SVKGRFTIS RDN S KNTLYLQMNSLRAEDT AVYYCARDGTYLGGLW YFDLWGRGTLWVSSG STSGSGKPGSGEGSTK GDIVMTQSPLSLPVTP GEPASISCRSSQSLLH SNGYNYLDWYLQKPGQ SPQLLIYLGSNRASGV PDRFSGSGSGTDFTLK IS RVEAEDVGVYYCMQ
138
C GAAGGTAGTACAAAGGGGGAT ATT GT GA TGACTCAGTCTCCACTCTCCCTGCCCGTC ACCCCTGGAGAGCCGGCCTCCATCTCCTG CAGGTCTAGTCAGAGCCTCCTGCATAGTA ATGGATACAACTATTTGGATTGGTACCTG CAGAAGCCAGGGCAGTCTCCACAGCTCCT GATCTATTTGGGTTCTAATCGGGCCTCCG GGGTCCCTGACAGGTTCAGTGGCAGTGGA TCAGGCACAGATTTTACACTGAAAATCAG CAGAGTGGAGGCTGAGGATGTTGGGGTTT ATTACTGCATGCAGGGACTCGGCCTCCCT CTCACTTTTGGCGGAGGGACCAAGGTTGA GATCAAACGGGCCGCTGCCCTTGATAATG AAAAGT CAAACGGAACAATCATTCACGTG AAGGGCAAGCACCTCTGTCCGTCACCCTT GTTCCCTGGTCCATCCAAGCCATTCTGGG TGTTGGTCGTAGTGGGTGGAGTCCTCGCT TGTTACTCTCTGCTCGTCACCGTGGCTTT TATAATCTTCTGGGTTAGATCCAAAAGAA GCCGCCTGCTCCATAGCGATTACATGAAT ATGACTCCACGCCGCCCTGGCCCCACAAG GAAACACTACCAGCCTTACGCACCACCTA GAGATTTCGCTGCCTATCGGAGCAGGGTG AAGTTTTCCAGATCTGCAGATGCACCAGC GTATCAGCAGGGCCAGAACCAACTGTATA ACGAGCTCAACCTGGGACGCAGGGAAGAG TATGACGTTTTGGACAAGCGCAGAGGACG GGACCCTGAGATGGGTGGCAAACCAAGAC GAAAAAACCCCCAGGAGGGTCTCTATAAT GAGCT GCAGAAGGATAAGAT GGCT GAAGC CTATTCTGAAATAGGCATGAAAGGAGAGC GGAGAAGGGGAAAAGGGCACGACGGTTTG TACCAGGGACT CAGCACT GCTAC GAAGGA TACTTATGACGCTCTCCACATGCAAGCCC TGCCACCTAGGTAA GLGLPLTFGGGTKVEI KRAAALDNEKSNGTII HVKGKHLCPSPLFPGP S K P FWVLVVVGGVLAC YSLLVTVAFIIFWVRS KRS RLLH S DYMNMTP R RPGPTRKHYQPYAPPR DFAAYRSRVKFSRSAD APAYQQGQNQLYNELN LGRREEYDVLDKRRGR DPEMGGKPRRKNPQEG LYNELQKDKMAEAYSE IGMKGERRRGKGHDGL YQGLSTATKDTYDALH MQALPPR
PC21497CARHX L ATGGCACTCCCCGTAACTGCTCTGCTGCT GCCGTTGGCATTGCTCCTGCACGCCGCAC GCCCGGATATTGTGATGACTCAGTCTCCA CTCTCCCTGCCCGTCACCCCTGGAGAGCC GGCCTCCATCTCCTGCAGGTCTAGTCAGA GCCT C CT GCATAGTAAT GGATACAACTAT TTGGATTGGTACCTGCAGAAGCCAGGGCA GTCTCCACAGCTCCTGATCTATTTGGGTT CTAATCGGGCCTCCGGGGTCCCTGACAGG TT CAGT GGCAGT GGAT CAGGCACAGATTT TACACT GAAAAT CAGCAGAGT GGAGGCT G AGGATGTTGGGGTTTATTACTGCATGCAG GGACTCGGCCTCCCTCTCACTTTTGGCGG AGGGACCAAGGTTGAGATCAAACGGGGGT CTACATCCGGCTCCGGGAAGCCCGGAAGT GGCGAAGGTAGTACAAAGGGGCAGGTGCA GCTGGTGGAGTCTGGGGGAGGCGTGGTCC AGCCTGGGAGGTCCCTGAGACTCTCCTGT GCAGCGTCTGGATTCACCTTCAGTAGCTA TGGCATGCACTGGGTCCGCCAGGCTCCAG GCAAGGGGCT GGAGT GGGT GGCAGTTATA T CGTAT GAT GGAAGTAATAAATACTATGC AGACTCCGTGAAGGGCCGATTCACCATCT CCAGAGACAATTCCAAGAACACGCTGTAT_ 139 MALPVTALLLPLALLL HAARPDIVMTQSPLSL PVTPGEPASISCRSSQ SLLHSNGYNYLDWYLQ KPGQSPQLLIYLGSNR ASGVPDRFSGSGSGTD FTLKISRVEAEDVGVY YCMQGLGLPLTFGGGT KVEIKRGSTSGSGKPG SGEGSTKGQVQLVESG GGWQPGRSLRLSCAA SGFTFSSYGMHWVRQA PGKGLEWVAVISYDGS NKYYAD SVKGRFTIS R DNSKNTLYLQMNSLRA EDTAVYYCARDGTYLG GLWYFDLWGRGTLVTV SSAAALDNEKSNGTII HVKGKHLCPSPLFPGP S KP FWVLVVVGGVLAC YSLLVTVAFIIFWVRS KRSRLLHSDYMNMTPR RPGPTRKHYQPYAPPR DFAAYRSRVKFSRSAD 140
CTGCAAATGAACAGCCTGAGAGCCGAGGA CACGGCGGTGTACTACTGCGCCAGAGACG GTACTTAT CTAGGT GGT CT CT GGTACTT C GACTTAT GGGGGAGAGGTAC CTT GGT CAC CGTCTCCTCAGCCGCTGCCCTTGATAATG AAAAGT CAAAC GGAACAAT CAT T CAC GTG AAGGGCAAGCACCTCTGTCCGTCACCCTT GTTCCCTGGTCCATCCAAGCCATTCTGGG TGTTGGTCGTAGTGGGTGGAGTCCTCGCT TGTTACTCTCTGCTCGTCACCGTGGCTTT TATAATCTTCTGGGTTAGATCCAAAAGAA GCCGCCTGCTCCATAGCGATTACATGAAT ATGACTCCACGCCGCCCTGGCCCCACAAG GAAACACTACCAGCCTTACGCACCACCTA GAGATTTCGCTGCCTATCGGAGCAGGGTG AAGTT TT C CAGAT CT GCAGAT GCAC CAGC GTATCAGCAGGGC CAGAAC CAACT GT ATA ACGAGCTCAACCTGGGACGCAGGGAAGAG TATGACGTTTTGGACAAGCGCAGAGGACG GGACCCTGAGATGGGTGGCAAACCAAGAC GAAAAAACCCCCAGGAGGGTCTCTATAAT GAGCTGCAGAAGGATAAGATGGCTGAAGC CTATT CT GAAATAGGCAT GAAAGGAGAGC GGAGAAGGGGAAAAGGGCACGACGGTTTG TACCAGGGACTCAGCACTGCTACGAAGGA TACTTATGACGCTCTCCACATGCAAGCCC TGCCACCTAGGTAA APAYQQGQNQLYNELN LGRREEYDVLDKRRGR DPEMGGKPRRKNPQEG LYNELQKDKMAEAYSE IGMKGERRRGKGHDGL YQGLSTATKDTYDALH MQALPPR
AJ21508CARHx L ATGGCACTCCCCGTAACTGCTCTGCTGCT GCCGTTGGCATTGCTCCTGCACGCCGCAC GCCCGCAGGTGCAGCTGGTGCAGTCTGGG GCTGAGGTGAAGAAGCCTGGGGCCTCAGT GAAGGTTTCCTGCAAGGCATCTGGATACA CCTTCACCAGCTACTATATGCACTGGGTG CGACAGGCCCCTGGACAAGGGCTTGAGTG GATGGGAATAATCAACCCTGGTGGTGGTA GCACAAGCTAC GCACAGAAGT T C CAGGGC AGAGT CAC CAT GAC CAGGGACAC GT C CAC GAGCACAGTCTACATGGAGCTGAGCAGCC TGAGATCTGAGGACACGGCGGTGTACTAC TGCGCCAGAGAGAGTTGGCCAATGGACGT ATGGGGCCAGGGAACAACTGTCACCGTCT CCTCAGGGTCTACATCCGGCTCCGGGAAG CCCGGAAGTGGCGAAGGTAGTACAAAGGG GGAAATAGTGATGACGCAGTCTCCAGCCA CCCTGTCTGTGTCTCCAGGGGAAAGAGCC ACCCTCTCCTGCAGGGCCAGTCAGAGTGT TAGCAGCAACTTAGCCTGGTACCAGCAGA AACCTGGCCAGGCTCCCAGGCTCCTCATC TAT GGT GCAT CCAC CAGGGC CACT GGTAT CCCAGCCAGGTTCAGTGGCAGTGGGTCTG GGACAGAGTT CACT CT CAC CAT CAGCAGC CTGCAGTCTGAAGATTTTGCAGTTTATTA CTGTCAGCAGTACGCCGCCTACCCTACTT TTGGCGGAGGGACCAAGGTTGAGA.TCAAA CGGGCCGCTGCCCTTGATAATGAAAAGTC AAACGGAACAATCATTCACGTGAAGGGCA AGCACCTCTGTCCGTCACCCTTGTTCCCT GGTCCATCCAAGCCATTCTGGGTGTTGGT C GTAGT GGGT GGAGT C CTCGCTTGTTACT 141 MALPVTALLLPLALLL HAARPQVQLVQS GAEV KKPGASVKVSCKASGY TETS YYMHWVRQAP GQ GLEWMGIINPGGGSTS YAQKFQGRVTMTRDTS TSTVYMELSSLRSEDT AVYYCARESWPMDVWG QGTTVTVSSGSTSGSG KPGSGEGSTKGEIVMT QSPATLSVSPGERATL SCRASQSVSSNLAWYQ QKPGQAPRLLIYGAST RATGIPARFSGSGSGT EFTLTISSLQSEDFAV YYCQQYAAYPTFGGGT KVEIKRAAALDNEKSN GTIIHVKGKHLCPSPL FP GP S KP FWLWVGG VLACYSLLVTVAFIIF WVRSKRSRLLHSDYMN MTPRRPGPTRKHYQPY APPRDFAAYRSRVKFS RSADAPAYQQGQNQLY NELNLGRREEYDVLDK RRGRD P EMGGKP RRKN PQEGLYNELQKDKMAE AYS ElGMKGERRRGKG HDGLYQGLSTATKDTY DALHMQALPPR 142
CTCTGCTCGTCACCGTGGCTTTTATAATC TTCTGGGTTAGATCCAAAAGAAGCCGCCT GCT CCATAGCGATTACAT GAATATGACT C CACGCCGCCCTGGCCCCACAAGGAAACAC TACCAGCCTTACGCACCACCTAGAGATTT CGCTGCCTATCGGAGCAGGGTGAAGTTTT C CAGAT CT GCAGAT GCACCAGC GTAT CAG CAGGGCCAGAACCAACTGTATAACGAGCT CAACCTGGGACGCAGGGAAGAGTATGACG TTTTGGACAAGCGCAGAGGACGGGACCCT GAGATGGGTGGCAAACCAAGACGAAAAAA CCCCCAGGAGGGTCTCTATAATGAGCTGC AGAAGGATAAGAT GGCT GAAGCCTATTCT GAAATAGGCATGAAAGGAGAGCGGAGAAG GGGAAAAGGGCACGACGGTTTGTACCAGG GACT CAGCACT GCTACGAAGGATACTTAT GACGCTCTCCACATGCAAGCCCTGCCACC TAGGT7XA
AJ21508CARLx H ATGGCACTCCCCGTAACTGCTCTGCTGCT GCCGTTGGCATTGCTCCTGCACGCCGCAC GCC C GGAAATAGT GAT GAC GCAGT CT CCA GCCACCCTGTCTGTGTCTCCAGGGGAAAG AGCCACCCTCTCCTGCAGGGCCAGTCAGA GTGTTAGCAGCAACTTAGCCTGGTACCAG CAGAAACCTGGCCAGGCTCCCAGGCTCCT CAT CTAT GGTGCAT CCACCAGGGCCACT G GTATCCCAGCCAGGTTCAGTGGCAGTGGG TCTGGGACAGAGTTCACTCTCACCATCAG CAGCCTGCAGTCTGAAGATTTTGCAGTTT ATTACTGTCAGCAGTACGCCGCCTACCCT ACTTTTGGCGGAGGGACCAAGGTTGAGAT CAAACGGGGGTCTACATCCGGCTCCGGGA AGCCCGGAAGTGGCGAAGGTAGTACAAAG GGGCAGGTGCAGCTGGTGCAGTCTGGGGC TGAGGTGAAGAAGCCTGGGGCCTCAGTGA AGGTTTCCTGCAAGGCATCTGGATACACC TTCACCAGCTACTATATGCACTGGGTGCG ACAGGCCCCTGGACAAGGGCTTGAGTGGA TGGGAATAATCAACCCTGGTGGTGGTAGC ACAAGCTACGCACAGAAGTTCCAGGGCAG AGTCACCATGACCAGGGACACGTCCACGA GCACAGTCTACATGGAGCTGAGCAGCCTG AGAT CT GAGGACACGGCGGTGTACTACTG CGCCAGAGAGAGTTGGCCAATGGACGTAT GGGGCCAGGGAACAACTGTCACCGTCTCC TCAGCCGCTGCCCTTGATAATGAAAAGTC AAACGGAACAATCATTCACGTGAAGGGCA AGCACCTCTGTCCGTCACCCTTGTTCCCT GGTCCATCCAAGCCATTCTGGGTGTTGGT CGTAGTGGGTGGAGTCCTCGCTTGTTACT CTCTGCTCGTCACCGTGGCTTTTATAATC TTCTGGGTTAGATCCAAAAGAAGCCGCCT GCTCCATAGCGATTACATGAATATGACTC CACGCCGCCCTGGCCCCACAAGGAAACAC TACCAGCCTTACGCACCACCTAGAGATTT CGCTGCCTATCGGAGCAGGGTGAAGTTTT CCAGATCTGCAGAT GCACCAGCGTAT CAG CAGGGCCAGAACCAACTGTATAACGAGCT CAACCTGGGACGCAGGGAAGAGTATGACG 143 MALP VTALLLPLALLL HAARPEIVMTQSPATL SVSPGERATLSCRASQ SVSSNLAWYQQKPGQA PRLLIYGASTRATGIP ARFSGSGSGTEFTLTI SSLQSEDFAVYYCQQY AAYPTFGGGTKVEIKR GSTSGSGKPGSGEGST KGQVQLVQSGAEVKKP GASVKVS CKAS GYT FT SYYMHWVRQAPGQGLE WMGIIN P GGGS T SYAQ KFQGRVTMTRDTSTST VYMELSSLRSEDTAVY YCARESWPMDVWGQGT TVTVS SAAALDNEKSN GTIIHVKGKHLCPSPL FPGPSKPFWVLVWGG VLACYSLLVTVAFIIF WVRSKRSRLLHSDYMN MTPRRPGPTRKHYQPY APPRDFAAYRSRVKFS RSADAPAYQQGQNQLY NELNLGRREEYDVLDK RRGRD P EMGGKP RRKN PQEGLYNELQKDKMAE AYSEIGMKGERRRGKG HDGLYQGLSTATKDTY DALHMQALPPR 144
TTTTGGACAAGCGCAGAGGACGGGACCCT GAGATGGGTGGCAAACCAAGACGAAAAAA C C C CCAGGAGGGT CT CTATAAT GAGCT GC AGAAGGATAAGATGGCTGAAGCCTATTCT GAAATAGGCATGAAAGGAGAGCGGAGAAG GGGAAAAGGGCACGACGGTTTGTACCAGG GACTCAGCACTGCTACGAAGGATACTTAT GACGCTCTCCACATGCAAGCCCTGCCACC TAGGTAA
NM21517CARHx L ATGGCACTCCCCGTAACTGCTCTGCTGCT GCCGTTGGCATTGCTCCTGCACGCCGCAC GCCCGCAGCTGCAGCTGCAGGAGTCGGGC CCAGGACTGGTGAAGCCTTCGGAGACCCT GTCCCTCACCTGCACTGTCTCTGGTGGCT CCAT CAGCAGTAGTAGTTACTACT GGGGC TGGATCCGCCAGCCCCCAGGGAAGGGGCT GGAGT GGATT GGGAGTAT CT C CTATAGT G GGAGCACCTACTACAACCCGTCCCTCAAG AGT C GAGT CACCAT AT C C GT AGAC ACGT C CAAGAACCAGTTCTCCCTGAAGCTGAGTT CTGTGACCGCCGCAGACACGGCGGTGTAC TACTGCGCCAGAGGCAGGGGATATGCAAC CAGCTTAGCCTTCGATATCTGGGGTCAGG GTACAATGGTCACCGTCTCCTCAGGGTCT ACATCCGGCTCCGGGAAGCCCGGAAGTGG C GAAGGT AGTACAAAGGGGGAAATT GT GT TGACACAGTCTCCAGCCACCCTGTCTTTG TCTCCAGGGGAAAGAGCCACCCTCTCCTG CAGGGCCAGTCAGAGTGTTAGCAGCTACT TAGCCTGGTACCAACAGAAACCTGGCCAG GCTCCCAGGCTCCTCATCTATGATGCATC CAACAGGGCCACTGGCATCCCAGCCAGGT T CAGTGGCAGT GGGT CT GGGACAGACTTC ACTCTCACCATCAGCAGCCTAGAGCCTGA AGATTTTGCAGTTTATTACTGTCAGCAGA GACACGTCTGGCCTCCTACTTTTGGCGGA GGGACCAAGGTTGAGATCAAACGGGCCGC T G C C C T T G AT AAT GAAAAGT CAAAC G GAA CAATCATTCACGTGAAGGGCAAGCACCTC TGTCCGTCACCCTTGTTCCCTGGTCCATC CAAGCCATTCTGGGTGTTGGTCGTAGTGG GTGGAGTCCTCGCTTGTTACTCTCTGCTC GTCACCGTGGCTTTTATAATCTTCTGGGT TAGATCCAAAAGAAGCCGCCTGCTCCATA GCGATTACATGAATATGACTCCACGCCGC CCTGGCCCCACAAGGAAACACTACCAGCC TTACGCACCACCTAGAGATTTCGCTGCCT ATCGGAGCAGGGTGAAGTTTTCCAGATCT GCAGATGCACCAGCGTATCAGCAGGGCCA GAACCAACTGTATAACGAGCTCAACCTGG GACGCAGGGAAGAGTATGACGTTTTGGAC AAGCGCAGAGGACGGGACCCTGAGATGGG TGGCAAACCAAGACGAAAAAACCCCCAGG AGGGT CT CTATAAT GAGCT GCAGAAGGAT AAGAT GGCT GAAGCCTATT CTGAAATAGG CATGAAAGGAGAGCGGAGAAGGGGAAAAG GGCACGACGGTTTGTACCAGGGACTCAGC ACTGCTACGAAGGATACTTATGACGCTCT CCACATGCAAGCCCTGCCACCTAGGTAA 145 MALPVTALLLPLALLL HAARPQLQLQESGPGL VKPSETLSLTCTVSGG SISSSSYYWGWIRQPP GKGLEWIGSISYSGST YYNPSLKSRVTISVDT SKNQFSLKLSSVTAAD TAVYYCARGRGYAT S L AFDIWGQGTMVTVSS G STSGSGKPGSGEGSTK GEIVLTQSPATLSLSP GERATLSCRASQSVSS YLAWYQQKPGQAPRLL IYDASNRATGIPARFS GSGSGTDFTLTISSLE PEDFAVYYCQQRHWP PTFGGGTKVEIKRAAA LDNEKSNGTIIHVKGK HLCPSPLFPGPSKPFW VLVWGGVLACYSLLV TVAFIIFWVRSKRSRL LHSDYMNMTPRRPGPT RKHYQPYAPPRDFAAY RS RVKFS RSADAPAYQ QGQNQLYNELNLGRRE EYDVLDKRRGRDPEMG GKPRRKNPQEGLYNEL QKDKMAEAYSEIGMKG ERRRGKGHDGLYQGLS TATKDTYDALHMQALP PR 146
NM21517CARLX H ATGGCACTCCCCGTAACTGCTCTGCTGCT GCCGTTGGCATTGCTCCTGCACGCCGCAC GCCCGGAAATTGTGTTGACACAGTCTCCA GCCACCCTGTCTTTGTCTCCAGGGGAAAG AGCCACCCTCTCCTGCAGGGCCAGTCAGA GTGTTAGCAGCTACTTAGCCTGGTACCAA CAGAAACCTGGCCAGGCTCCCAGGCTCCT CAT CTAT GAT GCAT C CAACAGGG CCACTG GCATCCCAGCCAGGTTCAGTGGCAGTGGG T CT GGGACAGACTT CACT CT CAC CAT CAG CAGCCTAGAGCCTGAAGATTTTGCAGTTT ATTACTGTCAGCAGAGACACGTCTGGCCT CCTACTTTTGGCGGAGGGACCAAGGTTGA GATCAAACGGGGGTCTACATCCGGCTCCG GGAAGCCCGGAAGTGGCGAAGGTAGTACA AAGGGGCAGCTGCAGCTGCAGGAGTCGGG CCCAGGACTGGTGAAGCCTTCGGAGACCC TGTCCCTCACCTGCACTGTCTCTGGTGGC T GCAT CAGCAGTAGTAGTTACTACT GGGG CTGGATCCGCCAGCCCCCAGGGAAGGGGC T GGAGT GGATT GGGAGTAT CT C CTATAGT GGGAGCAC CTACTACAAC C C GT CC CT CAA GAGTCGAGTCACCATATCCGTAGACACGT CCAAGAACCAGTTCTCCCTGAAGCTGAGT TCTGTGACCGCCGCAGACACGGCGGTGTA CTACTGCGCCAGAGGCAGGGGATATGCAA CCAGCTTAGCCTTCGATATCTGGGGTCAG GGTACAATGGTCACCGTCTCCTCAGCCGC TGCCCTTGATAATGAAAAGTCAAACGGAA CAATCATTCACGTGAAGGGCAAGCACCTC TGTCCGTCACCCTTGTTCCCTGGTCCATC CAAGCCATTCTGGGTGTTGGTCGTAGTGG GTGGAGTCCTCGCTTGTTACTCTCTGCTC GTCACCGTGGCTTTTATAATCTTCTGGGT TAGATCCAAAAGAAGCCGCCTGCTCCATA GCGATTACATGAATATGACTCCACGCCGC CCTGGCCCCACAAGGAAACACTACCAGCC TTACGCACCACCTAGAGATTTCGCTGCCT ATCGGAGCAGGGTGAAGTTTTCCAGATCT GCAGATGCACCAGCGTATCAGCAGGGCCA GAACCAACTGTATAACGAGCTCAACCTGG GACGCAGGGAAGAGTATGACGTTTTGGAC AAGCGCAGAGGACGGGACCCTGAGATGGG TGGCAAACCAAGACGAAAAAACCCCCAGG AGGGTCTCTATAATGAGCTGCAGAAGGAT AAGATGGCTGAAGCCTATTCTGAAATAGG CATGAAAGGAGAGCGGAGAAGGGGAAAAG GGCACGACGGTTTGTACCAGGGACTCAGC ACTGCTACGAAGGATACTTATGACGCTCT CCACATGCAAGCCCTGCCACCTAGGTAA 147 MALPVTALLLPLALLL HAARPEIVLTQSPATL SLSPGERATLSCRASQ SVSSYLAWYQQKPGQA PRLLIYDASNRATGIP ARFSGSGSGTDFTLTI SSLEPEDFAVYYCQQR HWPPTFGGGTKVEIK RGSTSGSGKPGSGEGS TKGQLQLQESGPGLVK PSETLSLTCTVSGGSI SSSSYYWGWIRQPPGK GLEWIGSISYSGSTYY NPSLKSRVTISVDTSK NQFSLKLSSVTAADTA VYYCARGRGYATS LAF DIWGQGTMVTVSSAAA LDNEKSNGTIIHVKGK HLCPSPLFPGPSKPFW VLWVGGVLACYSLLV TVAFIIFWVRS KRS RL LH S D YMNMT P RRP G P T RKHYQPYAPPRDFAAY RS RVKFS RSADAPAYQ QGQNQLYNELNLGRRE EYDVLDKRRGRDPEMG GKPRRKNPQEGLYNEL QKDKMAEAYSElGMKG ERRRGKGHDGLYQGLS TATKDTYDALHMQALP PR 148
TS21522CARHx L ATGGCACTCCCCGTAACTGCTCTGCTGCT GCCGTTGGCATTGCTCCTGCACGCCGCAC GCCCGGAGGTGCAGCTGGTGGAGTCTGGG GGAGGCTTGGTACAGCCTGGGGGGTCCCT GAGACTCTCCTGTGCAGCCTCTGGATTCA C CTT CAGTAGCTATAGCAT GAACT GGGT C CGCCAGGCTCCAGGGAAGGGGCTGGAGTG GGTTTCAACCATTAGTAGTAGTAGTAGTA C CATATACT ACGCAGACT CT GT GAAGGGC 149 MALPVTALLLPLALLL HAARPEVQLVESGGGL VQPGGSLRLSCAASGF TFSSYSMNWVRQAPGK GLEWVSTISSSSSTIY YADSVKGRFTISRDNA KNSLYLQMNSLRAEDT AVYYCARGSQEHLIFD YWGQGTLVTVSSGSTS 150
CGATTCACCATCTCCAGAGACAATGCCAA GAACT CACT GTAT CT GCAAAT GAACAGC C TGAGAGCTGAGGACACGGCGGTGTACTAC TGCGCCAGAGGTTCTCAGGAGCACCTGAT TTTCGATTATTGGGGACAGGGTACATTGG TCACCGTCTCCTCAGGGTCTACATCCGGC TCCGGGAAGCCCGGAAGTGGCGAAGGTAG TACAAAGGGGGAAATTGTGTTGACACAGT CTCCAGCCACCCTGTCTTTGTCTCCAGGG GAAAGAGCCACCCTCTCCTGCAGGGCCAG T CAGAGT GTTAGCAGGTACTTAGCCT GGT ACCAACAGAAACCTGGCCAGGCTCC CAGG CT C CT CAT CTAT GAT GCAT C CAACAGGGC CACTGGCATCCCAGCCAGGTTCAGTGGCA GTGGGTCTGGGACAGACTTCACTCTCACC ATCAGCAGCCTAGAGCCTGAAGATTTTGC AGT TTAT TACT GT CAGCAGAGATT CTACT ACCCTTGGACTTTTGGCGGAGGGACCAAG GTTGAGATCAAACGGGCCGCTGCCCTTGA TAATGAAAAGTCAAACGGAACAATCATTC ACGTGAAGGGCAAGCACCTCTGTCCGTCA CCCTTGTTCCCTGGTCCATCCAAGCCATT CTGGGTGTTGGTCGTAGTGGGTGGAGTCC TCGCTTGTTACTCTCTGCTCGTCACCGTG GCT T T TATAAT CTT CT GGGTTAGAT C CAA AAGAAGCCGCCTGCTCCATAGCGATTACA TGAATATGACTCCACGCCGCCCTGGCCCC ACAAGGAAACACTACCAGCCTTACGCACC ACCTAGAGATTTCGCTGCCTATCGGAGCA GGGTGAAGTTTTCCAGATCTGCAGATGCA CCAGCGTATCAGCAGGGCCAGAACCAACT GTATAACGAGCTCAACCTGGGACGCAGGG AAGAGTATGACGTTTTGGACAAGCGCAGA GGACGGGACCCTGAGATGGGTGGCAAACC AAGACGAAAAAACCCCCAGGAGGGTCTCT ATAAT GAGCT GCAGAAGGATAAGAT GGCT GAAGCCTATTCTGAAATAÆGCATGAAAGG AGAGCGGAGAAGGGGAAAAGGGCACGACG GTTT GTACCAGGGACT CAGCACT GCTAC G AAGGATACTTAT GACGCT CT C CACAT GCA AGCCCTGCCACCTAGGTAA GSGKPGSGEGSTKGEI VLTQSPATLSLSPGER AT L S C RAS Q S VS RYLA WYQQKPGQAPRLLIYD ASNRATGIPARFSGSG SGTDFTLTISSLEPED FAVYYCQQRFYYPWTF GGGTKVEIKRAAALDN EKSNGTIIHVKGKHLC PSPLFPGPSKPFWVLV WGGVLACYSLLVTVA FIIFWVRSKRSRLLHS DYMNMTPRRPGPTRKH YQPYAPPRDFAAYRSR VKFS RSADAPAYQQGQ NQLYNELNLGRREEYD VLDKRRGRDPEMGGKP RRKNPQEGLYNELQKD KMAEAYSElGMKGERR RGKGHDGLYQGLSTAT KDT YDALHMQAL P P R
TS21522CARLx H ATGGCACTCCCCGTAACTGCTCTGCTGCT GCCGTTGGCATTGCTCCTGCACGCCGCAC GCCCGGAAATTGTGTTGACACAGTCTCCA GCCACCCTGTCTTTGTCTCCAGGGGAAAG AGCCACCCTCTCCTGCAGGGCCAGTCAGA GTGTTAGCAGGTACTTAGCCTGGTACCAA CAGAAACCTGGCCAGGCTCCCAGGCTCCT CAT CTAT GAT GCAT CCAACAGGGCCACT G GCATCCCAGCCAGGTTCAGTGGCAGTGGG TCT GGGACAGACTT CACT CT CACCATCAG CAGCCTAGAGCCTGAAGATTTTGCAGTTT ATTACTGTCAGCAGAGATTCTACTACCCT TGGACTTTTGGCGGAGGGACCAAGGTTGA GATCAAACGGGGGTCTACATCCGGCTCCG GGAAGCCCGGAAGTGGCGAAGGTAGTACA AAGGGGGAGGTGCAGCTGGTGGAGTCTGG GGGAGGCTTGGTACAGCCTGGGGGGTCCC TGAGACTCTCCTGTGCAGCCTCTGGATTC 151 MALPVTALLLPLALLL HAARPEIVLTQSPATL SLSPGERATLSCRASQ SVSRYLAWYQQKPGQA PRLLIYDASNRATGIP ARFSGSGSGTDFTLTI SSLEPEDFAVYYCQQR FYYPWTFGGGTKVEIK RGSTSGSGKPGSGEGS TKGEVQLVESGGGLVQ PGGSLRLSCAASGFTF SSYSMNWVRQAPGKGL EWVSTISSSSSTIYYA D SVKGRFTIS RDNAKN SLYLQMNSLRAEDTAV YYCARGSQEHLIFDYW GQGT LVTVS SAAALDN EKSNGTIIHVKGKHLC 152
AC CTT CAGTAGCTATAGCAT GAACT GGGT CCGCCAGGCTCCAGGGAAGGGGCTGGAGT GGGTTTCAACCATTAGTAGTAGTAGTAGT ACCATATACTACGCAGACTCTGTGAAGGG CCGATTCACCATCTCCAGAGACAATGCCA AGAACT CACT GTAT CT GCAAATGAACAGC CT GAGAGCTGAGGACACGGCGGT GTACTA CTGCGCCAGAGGTTCTCAGGAGCACCTGA TTTTCGATTATTGGGGACAGGGTACATTG GTCACCGTCTCCTCAGCCGCTGCCCTTGA TAATGAAAAGTCAAACGGAACAATCATT C ACGTGAAGGGCAAGCACCTCTGTCCGTCA CCCTTGTTCCCTGGTCCATCCAAGCCATT CT GGGT GTT GGT CGTAGT GGGT GGAGTCC TCGCTTGTTACTCTCTGCTCGTCACCGTG GCTTTTATAATCTTCTGGGTTAGATCCAA AAGAAGCCGCCTGCTCCATAGCGATTACA TGAATATGACTCCACGCCGCCCTGGCCCC ACAAGGAAACACTACCAGCCTTACGCACC ACCTAGAGATTTCGCTGCCTATCGGAGCA GGGTGAAGTTTTCCAGATCTGCAGATGCA CCAGCGTATCAGCAGGGCCAGAACCAACT GTATAACGAGCTCAACCTGGGACGCAGGG AAGAGTATGACGTTTTGGACAAGCGCAGA GGACGGGACCCTGAGATGGGTGGCAAACC AAGACGAAAAAACCCCCAGGAGGGTCTCT AT AAT GAGCT GCAGAAGGATAAGAT GGCT GAAGCCTATT CT GAAAT AGGCAT GAAAGG AGAGCGGAGAAGGGGAAAAGGGCACGACG GTTTGTACCAGGGACTCAGCACTGCTACG AAGGATACTTATGACGCTCTCCACATGCA AGCCCTGCCACCTAGGTAA PSPLFPGPSKPFWVLV WGGVLACYS LLVT VA FIIFWVRSKRSRLLHS DYMNMTPRRPGPTRKH YQPYAPPRDFAAYRSR VKFS RS ADAPAYQQGQ NQLYNELNLGRREEYD VLDKRRGRDPEMGGKP RRKN P Q E GLYN E LQKD KMAEAYSElGMKGERR RGKGHDGLYQGLSTAT KDTYDALHMQALP PR
RY21527CARHx L ATGGCACTCCCCGTAACTGCTCTGCTGCT GCCGTTGGCATTGCTCCTGCACGCCGCAC GCCCGCAGGTGCAGCTGGTGGAGTCTGGG GGAGGCGTGGTCCAGCCTGGGAGGTCCCT GAGACTCTCCTGTGCAGCGTCTGGATTCA CCTTCAGTAGCTATGGCATGCACTGGGTC CGCCAGGCTCCAGGCAAGGGGCTGGAGTG GGT GGCAGTTATAT CGTATGAT GG7XAGTA ATAAATACTATGCAGACTCCGTGAAGGGC CGATTCACCATCTCCAGAGACAATTCCAA GAACAC GCT GTAT CT GCAAAT GAACAGC C TGAGAGCCGAGGACACGGCGGTGTACTAC TGCGCCAGAACTGACTTCTGGAGCGGATC CCCTCCAGGCTTAGATTACTGGGGACAGG GTACATTGGTCACCGTCTCCTCAGGGTCT ACATCCGGCTCCGGGAAGCCCGGAAGTGG CGAAGGTAGTACAAAGGGGGACATCCAGT TGACCCAGTCTCCATCTTCCGTGTCTGCA TCT GT AGGAGAC AGAGT CAC CAT CACT T G TCGGGCGAGTCAGGGTATTAGCAGCTGGT TAGCCTGGTATCAGCAGAAACCAGGGAAA GCCCCTAAGCTCCTGATCTATGGTGCATC CAGTTTGCAAAGTGGGGTCCCATCAAGGT TCAGCGGCAGTGGATCTGGGACAGATTTC ACTCTCACCATCAGCAGCCTGCAGCCTGA AGATTTTGCAACTTATTACTGTCAGCAGA TATACACCTTCCCTTTCACTTTTGGCGGA_ 153 MALPVTALLLPLALLL HAARPQVQLVESGGGV VQPGRSLRLSCAASGF TFSSYGMHWVRQAPGK GLEWVAVISYDGSNKY YADSVKGRFTIS RDN S KNTLYLQMNSLRAEDT AVYYCARTDFWSGSPP GLDYWGQGTLVTVS S G STSGSGKPGSGEGSTK GDIQLTQS PS SVSASV GDRVTITCRASQGISS WLAWYQQKPGKAPKLL IYGASSLQSGVPSRFS GSGSGTDFTLTISSLQ PEDFATYYCQQIYTFP FTFGGGTKVEIKRAAA LDNEKSNGTIIHVKGK HLCPSPLFPGPSKPFW VLVVVGGVLACYSLLV T VAF11FWVRS KRS RL LHSDYMNMTPRRPGPT RKHYQPYAPPRDFAAY RSRVKFSRSADAPAYQ QGQNQLYNELNLGRRE EYDVLDKRRGRDPEMG GKPRRKNPQEGLYNEL 154
GGGACCAAGGTTGAGATCAAACGGGCCGC TGCCCTTGATAATGAAAAGTCAAACGGAA CAAT CATT CAC GT GAAGGGCAAGCACCT C TGTCCGTCACCCTTGTTCCCTGGTCCATC CAAGCCATTCTGGGTGTTGGTCGTAGTGG GTGGAGTCCTCGCTTGTTACTCTCTGCTC GTCACCGTGGCTTTTATAATCTTCTGGGT TAGATCCAAAAGAAGCCGCCTGCTCCATA GCGATTACATGAATATGACTCCACGCCGC CCTGGCCCCACAAGGAAACACTACCAGCC TTACGCACCACCTAGAGATTTCGCTGCCT ATCGGAGCAGGGTGAAGTTTTCCAGATCT GCAGATGCACCAGCGTATCAGCAGGGCCA GAACCAACTGTATAACGAGCTCAACCTGG GACGCAGGGAAGAGTATGACGTTTTGGAC AAGCGCAGAGGACGGGACCCTGAGATGGG TGGCAAACCAAGACGAAAAAACCCCCAGG AGGGT CTCTATAAT GAGCT GCAGAAGGAT AAGAT GGCT GAAGCCTATT CT GAAATAGG CATGAAAGGAGAGCGGAGAAGGGGAAAAG GGCACGACGGTTTGTACCAGGGACTCAGC ACTGCTACGAAGGATACTTATGACGCTCT CCACATGCAAGCCCTGCCACCTAGGTAA QKDKMAEAYSEIGMKG ERRRGKGHDGLYQGLS TATKDTYDALHMQALP PR
RY21527CARLX H ATGGCACTCCCCGTAACTGCTCTGCTGCT GCCGTTGGCATTGCTCCTGCACGCCGCAC GCCCGGACATCCAGTTGACCCAGTCTCCA TCTTCCGTGTCTGCATCTGTAGGAGACAG AGTCACCATCACTTGTCGGGCGAGTCAGG GTATTAGCAGCTGGTTAGCCTGGTATCAG CAGAAACCAGGGAAAGCCCCTAAGCTCCT GAT CTAT GGT GCATCCAGTTT GCAAAGT G GGGTCCCATCAAGGTTCAGCGGCAGTGGA TCTGGGACAGATTTCACTCTCACCATCAG CAGCCTGCAGCCTGAAGATTTTGCAACTT ATTACTGTCAGCAGATATACACCTTCCCT TTCACTTTTGGCGGAGGGACCAAGGTTGA GATCAAACGGGGGTCTACATCCGGCTCCG GGAAGCCCGGAAGTGGCGAAGGTAGTACA AAGGGGCAGGT GCAGCT GGT GGAGT CT GG GGGAGGCGTGGTCCAGCCTGGGAGGTCCC TGAGACTCTCCTGTGCAGCGTCTGGATTC ACCT T CAGTAGCTAT GGCAT GCACT GGGT CCGCCAGGCTCCAGGCAAGGGGCTGGAGT GGGT GGCAGTTATAT CGTAT GAT GGAAGT AATAAATACTAT GCAGACT CCGT GAAGGG CCGATTCACCATCTCCAGAGACAATTCCA AGAACAC GCT GTAT CT GCAAAT GAACAGC CT GAGAGC C GAGGACACGGC GGT GTACTA CTGCGCCAGAACTGACTTCTGGAGCGGAT CCCCTCCAGGCTTAGATTACTGGGGACAG GGTACATTGGTCACCGTCTCCTCAGCCGC TGCCCTTGATAATGAAAAGTCAAACGGAA CAATCATTCACGTGAAGGGCAAGCACCTC TGTCCGTCACCCTTGTTCCCTGGTCCATC CAAGCCATTCTGGGTGTTGGTCGTAGTGG GTGGAGTCCTCGCTTGTTACTCTCTGCTC GTCACCGTGGCTTTTATAATCTTCTGGGT TAGATCCAAAAGAAGCCGCCTGCTCCATA GCGATTACATGAATATGACTCCACGCCGC 155 MAL PVTALLLPLALLL HAARPDIQLTQSPSSV S AS VGDRVTITCRASQ GTS SWLAWYQQKPGKA PKLLIYGASSLQSGVP SRFSGSGSGTDFTLTI SSLQPEDFATYYCQQI YTFPFTFGGGTKVEIK RGSTSGSGKPGSGEGS TKGQVQLVESGGGWQ PGRSLRLSCAASGFTF S S YGMHWVRQAP GKGL EWVAVISYDGSNKYYA D SVKGRFTIS RDNS KN TLYLQMNSLRAEDTAV YYCARTDFWSGSPPGL DYWGQGTLVTVS SA7XA LDNEKSNGTIIHVKGK HLCPSPLFPGPSKPFW VLWVGGVLACYS LLV TVAFIIFWVRSKRSRL LHSDYMNMTPRRPGPT RKHYQPYAPPRDFAAY RS RVKFS RSADAPAYQ QGQNQLYNELNLGRRE EYDVLDKRRGRD P EMG GKPRRKNPQEGLYNEL QKDKMAEAYSElGMKG ERRRGKGHDGLYQGLS TAT KDT YDALHMQAL P PR 156
CCTGGCCCCACAAGGAAACACTACCAGCC TTACGCACCACCTAGAGATTTCGCTGCCT AT CGGAGCAGGGT GAAGTTTT CCAGATCT GCAGATGCACCAGCGTATCAGCAGGGCCA GAACCAACTGTATAACGAGCTCAACCTGG GACGCAGGGAAGAGTATGACGTTTTGGAC AAGCGCAGAGGACGGGACCCTGAGATGGG TGGCAAACCAAGACGAAAAAACCCCCAGG AGGGT CT CTATAAT GAGCT GCAGAAGGAT AAGATGGCTGAAGCCTATTCTGAAATAGG CAT GAAAGGAGAGCGGAGAAGGGGAAAAG GGCACGACGGTTTGTACCAGGGACTCAGC ACTGCTACGAAGGATACTTATGACGCTCT CCACATGCAAGCCCTGCCACCTAGGTAA
PP21528CARHX L ATGGCACTCCCCGTAACTGCTCTGCTGCT GCCGTTGGCATTGCTCCTGCACGCCGCAC GCCCGCAGGTGCAGCTGGTGCAGTCTGGG GCTGAGGTGAAGAAGCCTGGGTCCTCGGT GAAGGTCTCCTGCAAGGCTTCTGGAGGCA CCTTCAGCAGCTATGCTATCAGCTGGGTG C GACAGGC C C CT GGACAAGGGCTTGAGTG GATGGGAGGGATCATCCCTATCTTTGGTA CAGCAAACTACGCACAGAAGTTCCAGGGC AGAGTCACGATTACCGCGGACGAATCCAC GAGCACAGCCTACAT GGAGCT GAGCAGCC T GAGAT CT GAGGACACGGCGGT GTACTAC TGCGCCAGAACTCCTGAATACTCCTCCAG CATATGGCACTATTACTACGGCATGGACG TATGGGGCCAGGGAACAACTGTCACCGTC T C CT CAGGGT CTACAT C C GGCT C CGGGAA GCCCGGAAGTGGCGAAGGTAGTACAAAGG GGGACATCGTGATGACCCAGTCTCCAGAC TCCCTGGCTGTGTCTCTGGGCGAGAGGGC CACCATCAACTGCAAGTCCAGCCAGAGTG TTTTATACAGCTCCAACAATAAGAACTAC TTAGCTTGGTACCAGCAGAAACCAGGACA GCCTCCTAAGCTGCTCATTTACTGGGCAT CTACCCGGGAATCCGGGGTCCCTGACCGA TTCAGTGGCAGCGGGTCTGGGACAGATTT CACTCTCACCATCAGCAGCCTGCAGGCTG AAGATGTGGCAGTTTATTACTGTCAGCAG TTCGCCCACACTCCTTTCACTTTTGGCGG AGGGAC CAAGGTT GAGAT CAAACGGGCCG CTGCCCTTGATAATGAAAAGTCAAACGGA ACAATCATTCACGTGAAGGGCAAGCACCT CTGTCCGTCACCCTTGTTCCCTGGTCCAT CCAAGCCATTCTGGGTGTTGGTCGTAGTG GGTGGAGTCCTCGCTTGTTACTCTCTGCT CGTCACCGTGGCTTTTATAATCTTCTGGG TTAGATCCAAAAGAAGCCGCCTGCTCCAT AGCGATTACATGAATATGACTCCACGCCG CCCTGGCCCCACAAGGAAACACTACCAGC CTTACGCACCACCTAGAGATTTCGCTGCC TATCGGAGCAGGGTGAAGTTTTCCAGATC T GCAGAT GCAC CAGC GTAT CAGCAGGGCC AGAACCAACTGTATAACGAGCTCAACCTG GGACGCAGGGAAGAGTATGACGTTTTGGA CAAGCGCAGAGGACGGGACCCTGAGATGG GT GGCAAACCAAGACGAAAAAACCCCCAG 157 MALPVTALLLPLALLL HAARPQVQLVQSGAEV KKPGSSVKVSCKASGG TFSSYAISWVRQAPGQ GLEWMGGIIPIFGTAN YAQKFQGRVTITADES TSTAYMELSSLRSEDT AVYYCART PEYS S SI VJ HYYYGMDVWGQGTTVT VSSGSTSGSGKPGSGE GSTKGDIVMTQSPDSL AVSLGERATINCKSSQ SVLYSSNNKNYLAWYQ QKPGQPPKLLIYWAST RESGVPDRFSGSGSGT D FT LTIS S LQAEDVAV YYCQQFAHTPFTFGGG TKVEIKRAAALDNEKS N GT11HVKGKHLC P S P LFPGPSKPFWVLVWG GVLACYSLLVTVAFII FWVRS KRS RLLH S D YM NMTPRRPGPTRKHYQP YAPPRDFAAYRSRVKF SRSADAPAYQQGQNQL YNELNLGRREEYDVLD KRRGRDPEMGGKPRRK NPQEGLYNELQKDKMA EAYSElGMKGERRRGK GHDGLYQGLSTATKDT YDALHMQALPPR 158
GAGGGT CT CTATAAT GAGCT GCAGAAGGA TAAGATGGCTGAAGCCTATTCTGAAATAG GCATGAAAGGAGAGCGGAGAAGGGGAAAA GGGCACGACGGTTTGTACCAGGGACTCAG CACTGCTACGAAGGATACTTAT GACGCT C TCCACATGCAAGCCCTGCCACCTAGGTAA
PP21528CARLx H ATGGCACTCCCCGTAACTGCTCTGCTGCT GCCGTTGGCATTGCTCCTGCACGCCGCAC GCCCGGACATCGTGATGACCCAGTCTCCA GACTCCCTGGCTGTGTCTCTGGGCGAGAG GGCCACCATCAACTGCAAGTCCAGCCAGA GTGTTTTATACAGCTCCAACAATAAGAAC TACTTAGCTTGGTACCAGCAGAAACCAGG ACAGCCTCCTAAGCTGCTCATTTACTGGG CATCTACCCGGGAATCCGGGGTCCCTGAC C GATT CAGT GGCAGC GGGT CT GGGACAGA TTTCACTCTCACCATCAGCAGCCTGCAGG CT GAAGAT GT GGCAGTTTATTACTGT CAG CAGTTCGCCCACACTCCTTTCACTTTTGG CGGAGGGACCAAGGTTGAGATCAAACGGG GGTCTACATCCGGCTCCGGGAAGCCCGGA AGTGGCGAAGGTAGTACAAAGGGGCAGGT GCAGCT GGT GCAGT CT GGGGCT GAGGT GA AGAAGCCTGGGTCCTCGGTGAAGGTCTCC TGCAAGGCTTCTGGAGGCACCTTCAGCAG CTATGCTATCAGCTGGGTGCGACAGGCCC CTGGACAAGGGCTTGAGTGGATGGGAGGG ATCATCCCTATCTTTGGTACAGCAAACTA CGCACAGAAGTTCCAGGGCAGAGTCACGA TTACCGCGGACGAATCCACGAGCACAGCC T ACAT GGAGCT GAGCAGCCT GAGAT CT GA GGACACGGCGGTGTACTACTGCGCCAGAA CT CCT GAATACT CCT CCAGCATAT GGCAC TATTACTACGGCATGGACGTATGGGGCCA GGGAACAACTGTCACCGTCTCCTCAGCCG CTGCCCTTGATAATGAAAAGTCAAACGGA ACAAT CATT CAC GT GAAGGGCAAGCACCT CTGTCCGTCACCCTTGTTCCCTGGTCCAT CCAAGCCATTCTGGGTGTTGGTCGTAGTG GGTGGAGTCCTCGCTTGTTACTCTCTGCT CGTCACCGTGGCTTTTATAATCTTCTGGG TTAGATCCAAAAGAAGCCGCCTGCTCCAT AGCGATTACATGAATATGACTCCACGCCG CCCTGGCCCCACAAGGAAACACTACCAGC CTTACGCACCACCTAGAGATTTCGCTGCC TATCGGAGCAGGGTGAAGTTTTCCAGATC TGCAGATGCACCAGCGTATCAGCAGGGCC AGAAC CAACT GTATAAC GAGCT CAAC CTG GGACGCAGGGAAGAGTATGACGTTTTGGA CAAGCGCAGAGGACGGGACCCTGAGATGG GTGGCAAACCAAGACGAAAAAACCCCCAG GAGGGT CT CTATAAT GAGCT GCAGAAGGA TAAGAT GGCT GAAGCCTATT CT GAAATAG GCAT GAAAGGAGAGCGGAGAAGGGGAAAA GGGCACGACGGTTTGTACCAGGGACTCAG CACTGCTACGAAGGATACTTATGACGCTC TCCACATGCAAGCCCTGCCACCTAGGTAA 159 MALPWALLLPLALLL HAARPDIVMTQSPDSL AVSLGERATINCKSSQ SVLYS SNNKNYLAWYQ QKPGQPPKLLIYWAST RESGVPDRFSGSGSGT D FT LTIS SLQAEDVAV YYCQQFAHTPFTFGGG TKVEIKRGSTSGSGKP GSGEGSTKGQVQLVQS GAEVKKPGSSVKVSCK ASGGTFSSYAISWVRQ APGQGLEWMGGIIPIF GTANYAQKFQGRVTIT ADESTSTAYMELSSLR SEDTAVYYCARTPEYS S SIWHYYYGMDVWGQG TTVTVS SAAALDNEKS NGTIIHVKGKHLCPSP LFP GP S KP FWVLVWG GVLACYSLLVTVAFII FWVRSKRSRLLHSDYM NMTPRRPGPTRKHYQP YAP PRDFAAYRSRVKF SRSADAPAYQQGQNQL YNELNLGRREEYDVLD KRRGRDPEMGGKPRRK NPQEGLYNELQKDKMA EAYSElGMKGERRRGK GHDGLYQGLSTATKDT YDALHMQALPPR 160
RD21530CARHX L ATGGCACTCCCCGTAACTGCTCTGCTGCT GCCGTTGGCATTGCTCCTGCACGCCGCAC GCCCGCAGGT GCAGCT GGT GGAGT CT GGG GGAGGCGTGGTCCAGCCTGGGAGGTCCCT GAGACTCTCCTGTGCAGCGTCTGGATTCA CCTT CAGTAGCTAT GGCAT GCACT GGGT C CGCCAGGCTCCAGGCAAGGGGCTGGAGTG GGT GG CAGT TATAT C GTAT GAT GGAAGTA ATAAATACTAT GCAGACT CC GT GAAGGGC C GAT T CAC C AT C T C C AGAGACAAT T C CAA GAACACGCTGTATCTGCAAATGAACAGCC TGAGAGCCGAGGACACGGCGGTGTACTAC TGCGTCAAGGGGCCGTTGCAGGAGCCGCC ATACGATTATGGAATGGACGTATGGGGCC AGGGAACAACTGTCACCGTCTCCTCAGGG TCTACATCCGGCTCCGGGAAGCCCGGAAG TGGCGAAGGTAGTACAAAGGGGGAAATAG T GAT GAC GCAGT CT CCAGCCAC C CT GT CT GTGTCTCCAGGGGAAAGAGCCACCCTCTC CTGCAGGGCCAGTCAGAGTGTTAGCAGCA ACTTAGCCTGGTACCAGCAGAAACCTGGC CAGGCTCCCAGGCTCCTCATCTATAGCGC ATCCACCAGGGCCACTGGTATCCCAGCCA GGTT CAGT GGCAGT GGGT CT GGGACAGAG TT CACT CT CACCAT CAGCAGCCT GCAGT C TGAAGATTTTGCAGTTTATTACTGTCAGC AGCACCACGTCTGGCCTCTCACTTTTGGC GGAGGGACCAAGGTTGAGATCAAACGGGC CGCTGCCCTTGATAATGAAAAGTCAAACG GAACAAT CAT T C AC GT GAAGGGCAAG CAC CTCTGTCCGTCACCCTTGTTCCCTGGTCC ATCCAAGCCATTCTGGGTGTTGGTCGTAG TGGGTGGAGTCCTCGCTTGTTACTCTCTG CTCGTCACCGTGGCTTTTATAATCTTCTG GGTTAGATCCAAAAGAAGCCGCCTGCTCC ATAGCGATTACATGAATATGACTCCACGC CGCCCTGGCCCCACAAGGAAACACTACCA GCCTTACGCACCACCTAGAGATTTCGCTG CCTATCGGAGCAGGGTGAAGTTTTCCAGA TCT GCAGAT GCACCAGCGTAT CAGCAGGG C C AGAAC CAACT GTAT AAC GAG CT CAAC C T GGGAC GCAGGGAAGAGTAT GAC GTT TT G GACAAGCGCAGAGGACGGGACCCTGAGAT GGGTGGCAAACCAAGACGAAAAAACCCCC AGGAGGGT CT CTATAAT GAGCT GCAGAAG GATAAGAT GGCT GAAGCCTATT CT GAAAT AGGCATGAAAGGAGAGCGGAGAAGGGGAA AAGGGCACGACGGTTTGTACCAGGGACTC AGCACTGCTACGAAGGATACTTATGACGC TCTCCACATGCAAGCCCTGCCACCTAGGT TVA 161 MALPVTALLLPLALLL HAARPQVQLVESGGGV VQPGRSLRLSCAASGF TFSSYGMHWVRQAPGK GLEWVAVISYDGSNKY YAD SVKGRFTIS RDNS KNTLYLQMNSLRAEDT AVYYCVKGPLQEPPYD YGMDVWGQGTTVTVS S GSTSGSGKPGSGEGST KGEIVMTQSPATLSVS PGERATLSCRASQSVS SNLAWYQQKPGQAPRL LIYSASTRATGIPARF SGSGSGTEFTLTISSL QSEDFAVYYCQQHHVW PLTFGGGTKVEIKRAA ALDNEKSNGTIIHVKG KHLCPSPLFPGPSKPF WVLVWGGVLACYS LL VTVAFIIFWVRSKRSR LLHSDYMNMTPRRPGP TRKHYQPYAPPRDFAA YRS RVKFS RSADAPAY QQGQNQLYNELNLGRR EEYDVLDKRRGRDPEM GGKPRRKNPQEGLYNE LQKDKMAEAYSEIGMK GERRRGKGHDGLYQGL S TAT KDT YDALHMQAL PPR 162
RD21530CARLX H ATGGCACTCCCCGTAACTGCTCTGCTGCT GCCGTTGGCATTGCTCCTGCACGCCGCAC GCCCGGAAATAGTGATGACGCAGTCTCCA GCCAC C CT GT CT GT GT CT C CAGGGGAAAG AGCCACCCTCTCCTGCAGGGCCAGTCAGA GTGTTAGCAGCAACTTAGCCTGGTACCAG CAGAAACCTGGCCAGGCTCCCAGGCTCCT CATCTATAGCGCATCCACCAGGGCCACTG 163 MALPVTALLLPLALLL HAARPEIVMTQSPATL SVSPGERATLSCRASQ SVSSNLAWYQQKPGQA PRLLIYSASTRATGIP ARFSGSGSGTEFTLTI SSLQSEDFAVYYCQQH HVWPLTFGGGT KVEIK 164
GTATCCCAGCCAGGTTCAGTGGCAGTGGG T CT GGGACAGAGTT CACT CT CAC CAT CAG CAGCCTGCAGTCTGAAGATTTTGCAGTTT ATTACTGTCAGCAGCACCACGTCTGGCCT CTCACTTTTGGCGGAGGGACCAAGGTTGA GATCAAACGGGGGTCTACATCCGGCTCCG GGAAGCCCGGAAGTGGCGAAGGTAGTACA AAGGGGCAGGT GCAGCT GGT GGAGT CT GG GGGAGGCGTGGTCCAGCCTGGGAGGTCCC TGAGACTCTCCTGTGCAGCGTCTGGATTC ACCTTCAGTAGCTATGGCATGCACTGGGT CCGCCAGGCTCCAGGCAAGGGGCTGGAGT GGGTGGCAGTTATATCGTATGATGGAAGT AATAAATACTATGCAGACTCCGTGAAGGG CCGATTCACCATCTCCAGAGACAATTCCA AGAACACGCTGTATCTGCAAATGAACAGC CT GAGAGCCGAGGACAC GGC GGT GTACTA CTGCGTCAAGGGGCCGTTGCAGGAGCCGC CATACGATTATGGAATGGACGTATGGGGC CAGGGAACAACTGTCACCGTCTCCTCAGC CGCTGCCCTTGATAATGAAAAGTCAAACG GAACAAT CATT CACGT GAAGGGCAAGCAC CTCTGTCCGTCACCCTTGTTCCCTGGTCC ATCCAAGCCATTCTGGGTGTTGGTCGTAG TGGGTGGAGTCCTCGCTTGTTACTCTCTG CTCGTCACCGTGGCTTTTATAATCTTCTG GGTTAGATCCAAAAGAAGCCGCCTGCTCC AT AGC GAT T ACAT GAAT AT GACT C CAC GC CGCCCTGGCCCCACAAGGAAACACTACCA GCCTTACGCACCACCTAGAGATTTCGCTG CCTAT CGGAGCAGGGT GAAGT TTT CCAGA TCTGCAGATGCACCAGCGTATCAGCAGGG CCAGAACCAACTGTATAACGAGCTCAACC TGGGACGCAGGGAAGAGTATGACGTTTTG GACAAGCGCAGAGGACGGGACCCTGAGAT GGGTGGCAAACCAAGACGAAAAAACCCCC AGGAGGGTCTCTATAATGAGCTGCAGAAG GATAAGAT GGCT GAAGCCTATT CT GAAAT AGGCATGAAAGGAGAGCGGAGAAGGGGAA AAGGGCACGACGGTTTGTACCAGGGACTC AGCACTGCTACGAAGGATACTTATGACGC T CT C CACAT GCAAGC CCT GCCACCTAGGT AA RGSTSGSGKPGSGEGS TKGQVQLVESGGGWQ PGRSLRLSCAASGFTF SSYGMHWVRQAPGKGL EWVAVISYDGSNKY YA D SVKGRFT T S RDN S KN T L YLQMN S L RAEDT AV YYCVKGPLQEPPYDYG MDWGQGTTVTVS SAA ALDNEKSNGTIIHVKG KHLCPSPLFPGPSKPF WVLVWGGVLACYSLL VTVAFIIFWVRS KRS R LLHSDYMNMTPRRPGP TRKHYQPYAPPRDFAA YRS RVKFS RSADAPAY QQGQNQLYNELNLGRR EEYDVLDKRRGRDPEM GGKPRRKNPQEGLYNE LQKDKMAEAYSElGMK GERRRGKGHDGLYQGL S TAT KDT YDALHMQAL PPR
Clone 24C1 THD CAR DNA HxL ATGGCACTCCCCGTAACTGCTCTGCTGCT GCCGTTGGCATTGCTCCTGCACGCCGCAC GCCCGCAGGTCCAACTGCAAGAAAGCGGA CCCGGACTGGTGAAGCCTTCTGAGACACT TAGTCTGACGTGCACGGTCAGTGGCGGCT CCATCTCCTCCTATTATTGGTCATGGATA CGACAACCCCCAGGTAAGGGCCTGGAATG GATT GGCTATATCTACTATT CAGGAAGCA CGAACTACAATCCCAGCCTGAAGTCCCGA GTGACAATTTCAGTAGATACCAGTAAAAA CCAGTTCAGTCTTAAACTGTCAAGCGTGA CAGCTGCCGACACCGCTGTGTATTACTGC GTCTCACTGGTGTATTGTGGAGGGGATTG TTATAGCGGGTTCGATTATTGGGGACAGG GAACCCTGGTGACTGTATCTTCCGGCGGC GGCGGCTCAGGGGGTGGCGGTAGTGGCGG 165 MALPVTALLLPLALLL HAARPQVQLQESGPGL VKPSETLSLTCTVSGG SISSYYWSWIRQPPGK GLEWIGYIYYSGSTNY NPSLKSRVTISVDTSK NQFSLKLSSVTAADTA VYYCVSLVYCGGDCYS GFDYWGQGTLVTVS S G GGGSGGGGSGGGGSDI QLTQ S P S S LSASVGDR VS FT CQAS QDINNFLN WYQQKPGKAPKLLIYD ASNLETGVPSRFSGSG SGTDFTFTISSLQPED IATYYCQQYGNLPFTF 166
TGGGGGTTCCGATATTCAACTGACACAAT CCCCCAGCTCACTCAGCGCCAGCGTGGGG GACAGGGTTAGCTTTACCTGTCAAGCCTC TCAGGATATAAATAACTTTCTGAACTGGT ATCAACAGAAGCCTGGGAAGGCGCCCAAA CTCCTGATCTATGATGCGTCCAACCTGGA AACTGGCGTGCCTTCACGCTTTAGCGGCT CT GGCAGT GGTACAGACT T CACTT T TACC ATCTCTTCACTTCAGCCGGAGGACATCGC CACATATTACTGTCAACAGTACGGAAACT TGCCCTTTACTTTTGGAGGCGGCACCAAA GTTGAAATCAAAAGGGCCGCTGCCCTGGA TAACGAAAAGAGCAATGGGACTATAATAC ATGTTAAAGGAAAACACCTGTGTCCATCT CCCCTGTTCCCTGGACCGTCAAAGCCATT TTGGGTGCTCGTGGTTGTCGGTGGCGTTC TCGCCTGTTATAGCTTGCTGGTGACAGTA GCCTTCATTATCTTTTGGGTGAGATCCAA AAGAAGCCGCCTGCTCCATAGCGATTACA TGAATATGACTCCACGCCGCCCTGGCCCC ACAAGGAAACACTACCAGCCTTACGCACC ACCTAGAGATTTCGCTGCCTATCGGAGCA GGGTGAAGTTTTCCAGATCTGCAGATGCA CCAGCGTATCAGCAGGGCCAGAACCAACT GTATAACGAGCTCAACCTGGGACGCAGGG AAGAGTATGACGTTTTGGACAAGCGCAGA GGACGGGACCCTGAGATGGGTGGCAAACC AAGACGAAAAAACCCCCAGGAGGGTCTCT ATAATGAGCTGCAGAAGGATAAGATGGCT GAAGCCTATTCT GAAATAGGCAT GAAAGG AGAGCGGAGAAGGGGAAAAGGGCACGACG GTT T GTAC CAGGGACT CAGCACT GCTACG AAGGATACTTATGACGCTCTCCACATGCA AGCCCTGCCACCTAGGTAA GGGTKVEIKRAAALDN EKSNGTIIHVKGKHLC PSPLFPGPSKPFWVLV WGGVLACYS LLVTVA FIIFWVRSKRSRLLHS DYMNMTPRRPGPTRKH YQ P YAP P RD FAAYRS R VKFSRSADAPAYQQGQ NQLYNELNLGRREEYD VLDKRRGRDPEMGGKP RRKNPQEGLYNELQKD KMAEAYSElGMKGERR RGKGHDGLYQGLSTAT KDTYDALHMQALPPR
(CARI.1) Clone 24C1 THD CAR DNA HxL CAGGTCCAACTGCAAGAAAGCGGACCCGG ACTGGTGAAGCCTTCTGAGACACTTAGTC TGACGTGCACGGTCAGTGGCGGCTCCATC TCCTCCTATTATTGGTCATGGATACGACA ACCCCCAGGTAAGGGCCTGGAATGGATTG GCTATATCTACTATTCAGGAAGCACGAAC TACAAT C C CAG CCT GAAGT C C C GAGT GAC ΑΆΤΤΤ CAGTAGATACCAGTAAAAACCAGT TCAGTCTTAAACTGTCAAGCGT GACAGCT GCCGACACCGCTGTGTATTACTGCGTCTC ACTGGTGTATTGTGGAGGGGATTGTTATA GCGGGTTCGATTATTGGGGACAGGGAACC CTGGTGACTGTATCTTCCGGCGGCGGCGG CTCAGGGGGTGGCGGTAGTGGCGGTGGGG GTTCCGATATTCAACTGACACAATCCCCC AGCTCACTCAGCGCCAGCGTGGGGGACAG GGTTAGCTTTACCTGTCAAGCCTCTCAGG ATATAAATAACTTTCTGAACTGGTATCAA CAGAAGCCTGGGAAGGCGCCCAAACTCCT GAT CT AT GATGCGTCCAACCTGGAAACTG GCGTGCCTTCACGCTTTAGCGGCTCTGGC AGTGGTACAGACTTCACTTTTACCATCTC TTCACTTCAGCCGGAGGACATCGCCACAT ATTACTGTCAACAGTACGGAAACTTGCCC TTTACTTTTGGAGGCGGCACCAAAGTTGA 167 QVQLQESGPGLVKPSE TLSLTCTVSGGSISSY YWSWIRQPPGKGLEWI GYIYYSGSTNYNPSLK SRVTISVDTSKNQFSL KL S S VTAADTAVYYCV SLVYCGGDCYSGFDYW GQGTLVTVSSGGGGSG GGGSGGGGSDIQLTQS P S S LSASVGDRVS FT C QASQDINNFLNWYQQK PGKAPKLLIYDASNLE TGVPSRFSGSGSGTDF TFTISSLQPEDIATYY CQQYGNLPFTFGGGTK VEIKRAAALDNEKSNG TIIHVKGKHLCPSPLF P G P S K P FWVL VWGGV LACYSLLVTVAFIIFW VRS KRS RLLH S DYMNM TPRRPGPTRKHYQPYA PPRDFAAYRSRVKFSR SADAPAYQQGQNQLYN ELNLGRREEYDVLDKR RGRDPEMGGKPRRKNP 16Θ
AATCAAAAGGGCCGCTGCCCTGGATAACG AAAAGAGCAAT GGGACTATAATACAT GTT AAAGGAAAACACCTGTGTCCATCTCCCCT GTTCCCTGGACCGTCAAAGCCATTTTGGG TGCTCGTGGTTGTCGGTGGCGTTCTCGCC TGTTATAGCTTGCTGGTGACAGTAGCCTT CATTATCTTTTGGGTGAGATCCAAAAGAA GCCGCCTGCTCCATAGCGATTACATGAAT ATGACTCCACGCCGCCCTGGCCCCACAAG GAAACACTACCAGCCTTACGCACCACCTA GAGATTTCGCTGCCTATCGGAGCAGGGTG AAGTTTTCCAGATCTGCAGATGCACCAGC GTATCAGCAGGGCCAGAACCAACTGTATA ACGAGCTCAACCTGGGACGCAGGGAAGAG TATGACGTTTTGGACAAGCGCAGAGGACG GGACCCT GAGAT GGGT GGCAAAC CAAGAC GAAAAAACCCCCAGGAGGGTCTCTATAAT GAGCT GCAGAAGGATAAGATGGCTGAAGC CTATTCTGAAATAGGCATGAAAGGAGAGC GGAGAAGGGGAAAAGGGCACGACGGTTTG TACCAGGGACT CAGCACT GCTAC GAAGGA TACTTATGACGCTCTCCACATGCAAGCCC TGCCACCTAGG QEGLYNELQKDKMAEA YSEIGMKGERRRGKGH DGLYQGLSTATKDTYD ALHMQALPPR
(CARI.2) Clone 24C1 CHD CAR DNA HxL ATGGCACTCCCCGTAACTGCTCTGCTGCT GCCGTTGGCATTGCTCCTGCACGCCGCAC GCCCGCAGGTGCAGCTGCAGGAATCCGGA CCGGGGCTGGTGAAGCCCAGCGAGACTCT GAGTCTCACGTGTACAGTTTCTGGAGGTA GCATTAGCTCCTACTATTGGTCATGGATA AGGCAGCCCCCCGGGAAGGGATTGGAATG GATCGGCTATATTTACTACAGTGGGAGCA CCAATTACAACCCCTCACTGAAGTCTAGA GTTACAATCAGCGTTGACACCTCAAAGAA TCAGTTCAGTTTGAAATTGTCTAGCGTCA CAGCAGCT GATACAGCC GT CTATTATT GT GTTTCTCTGGTCTATTGCGGTGGGGATTG TTACAGTGGCTTTGACTATTGGGGGCAGG GTACTCTGGTTACAGTTTCTTCCGGGGGG GGAGGCTCTGGGGGCGGAGGCTCAGGTGG T GGAGGCAGC GACAT CCAGTT GACACAGA GCCCGAGTTCCTTGTCCGCCTCCGTCGGG GATAGAGTGTCATTTACCTGTCAGGCCTC TCAGGATATTAATAACTTTCTGAATTGGT ATCAGCAAAAGCCCGGAAAGGCACCCAAG CTGTTGATTTACGACGCCAGTAACCTGGA GACAGGCGTGCCCTCCCGGTTTAGTGGTA GCGGAAGCGGTACGGATTTTACCTTTACT ATCAGCTCTCTCCAACCCGAAGACATTGC AACCTACTATTGTCAACAATATGGAAACC TGCCTTTTACATTTGGCGGCGGCACCAAG GTGGAGATTAAGCGGGCGGCAGCTATTGA GGTGATGTATCCACCGCCTTACCTGGATA ACGAAAAGAGTAACGGTACCATCATTCAC GTGAAAGGTAAACACCTGTGTCCTTCTCC CCTCTTCCCCGGGCCATCAAAGCCCTTCT GGGTTCTTGTGGTCGTGGGAGGCGTGCTT GCTTGTTATTCTCTGCTCGTTACCGTGGC GTTTATCATTTTTTGGGTTAGATCCAAAA GAAGCCGCCTGCTCCATAGCGATTACATG 169 MALPVTALLLPLALLL HAARPQVQLQESGPGL VKPSETLSLTCTVSGG SISSYYWSWIRQPPGK GLEWIGYIYYSGSTNY NPSLKSRVTISVDTSK NQFSLKLSSVTAADTA VYYCVSLVYCGGDCYS GFDYWGQGTLVTVSSG GGGS GGGGS GGGGS DI QLTQSPSSLSASVGDR VS FTCQASQDINNFLN WYQQKPGKAPKLLIYD ASNLETGVPSRFSGSG SGTDFTFTISSLQPED IATYYCQQYGNLPFTF GGGTKVEIKRAAAIEV MYPPPYLDNEKSNGTI IHVKGKHLCPSPLFPG P S KP FWVLVVVGGVLA CYSLLVTVAFIIFWVR SKRSRLLHSDYMNMTP RRPGPTRKHYQPYAPP RDFAAYRSRVKFSRSA DAPAYQQGQNQLYNEL NLGRREEYDVLDKRRG RDPEMGGKPRRKNPQE GLYNELQKDKMAEAYS EIGMKGERRRGKGHDG L YQ GLS T AT KDT YDAL HMQALPPR 170
AATATGACTCCACGCCGCCCTGGCCCCAC AAGGAAACACTACCAGCCTTACGCACCAC CTAGAGATTTCGCTGCCTATCGGAGCAGG GTGAAGTTTTCCAGATCTGCAGATGCACC AGCGTATCAGCAGGGCCAGAACCAACTGT ATAACGAGCT CAACCT GGGACGCAGGGAA GAGTAT GAC GTT TT GGACAAGCGCAGAGG ACGGGACCCTGAGATGGGTGGCAAACCAA GACGAAAAAACCCCCAGGAGGGTCTCTAT AATGAGCTGCAGAAGGATAAGATGGCTGA AGCCTATTCTGAAATAGGCATGAAAGGAG AGCGGAGAAGGGGAAAAGGGCACGACGGT TTGTACCAGGGACTCAGCACTGCTACGAA GGATACTTATGACGCTCTCCACATGCAAG CCCTGCCACCTAGGTAA
(CARI.2) Clone 24C1 CHD CAR DNA HxL CAGGTGCAGCTGCAGGAATCCGGACCGGG GCT GGT GAAGCCCAGCGAGACT CTGAGT C TCACGTGTACAGTTTCTGGAGGTAGCATT AGCTCCTACTATTGGTCATGGATAAGGCA GCCCCCCGGGAAGGGATTGGAATGGATCG GCTATATTTACTACAGT GGGAGCACCAAT T AC AAC C C CT CAC T GAAGT CT AGAGT T AC AAT CAGC GT T GACACCT CAAAGAAT CAGT TCAGTTTGAAATTGTCTAGCGTCACAGCA GCTGATACAGCCGTCTATTATTGTGTTTC TCTGGTCTATTGCGGTGGGGATTGTTACA GTGGCTTTGACTATTGGGGGCAGGGTACT CTGGTTACAGTTTCTTCCGGGGGGGGAGG CTCTGGGGGCGGAGGCTCAGGTGGTGGAG GCAGC GACAT C CAGT T GACACAGAG C C C G AGTTCCTTGTCCGCCTCCGTCGGGGATAG AGTGTCATTTACCTGTCAGGCCTCTCAGG ATATTAATAACTTTCTGAATTGGTATCAG CAAAAGCCCGGAAAGGCACCCAAGCTGTT GATTTACGACGCCAGTAACCTGGAGACAG GCGTGCCCTCCCGGTTTAGTGGTAGCGGA AGCGGTACGGATTTTACCTTTACTATCAG CTCTCTCCAACCCGAAGACATTGCAACCT ACT ATT GT CAACAATAT GGAAACCT GCCT TTTACATTTGGCGGCGGCACCAAGGTGGA GATTAAGCGGGCGGCAGCTATTGAGGTGA TGTATCCACCGCCTTACCTGGATAACGAA AAGAGTAACGGTACCATCATTCACGTGAA AGGTAAACACCTGTGTCCTTCTCCCCTCT TCCCCGGGCCATCAAAGCCCTTCTGGGTT CTTGTGGTCGTGGGAGGCGTGCTTGCTTG TTATTCTCTGCTCGTTACCGTGGCGTTTA T CATTTTTT GGGTTAGATCCAAAAGAAGC CGCCTGCTCCATAGCGATTACATGAATAT GACTCCACGCCGCCCTGGCCCCACAAGGA AACACTACCAGCCTTACGCACCACCTAGA GATTTCGCTGCCTATCGGAGCAGGGTGAA GTTTTCCAGATCTGCAGATGCACCAGCGT AT CAGCAGGGC CAGAAC CAACT GTATAAC GAGCT CAACCT GGGACGCAGGGAAGAGTA TGACGTTTTGGACAAGCGCAGAGGACGGG ACCCTGAGATGGGTGGCAAACCAAGACGA AAAAACCCCCAGGAGGGTCTCTATAATGA GCT GCAGAAGGATAAGAT GGCT GAAGCCT 171 QVQLQESGPGLVKPSE TLSLTCTVSGGSISSY YWSWIRQPPGKGLEWI GYIYYSGSTNYNPSLK SRVTISVDTSKNQFSL KLSSVTAADTAVYYCV SLVYCGGDCYSGFDYW GQGTLVTVSSGGGGSG GGGSGGGGSDIQLTQS P S S L SASVGDRVS FT C QASQDINNFLNWYQQK PGKAPKLLIYDASNLE TGVPSRFSGSGSGTDF TFTISSLQPEDIATYY CQQYGNLPFTFGGGTK VEIKRAAAIEVMYPPP YLDNEKSNGTIIHVKG KHLCPSPLFPGPSKPF WVLVWGGVLACYS LL VTVAFIIFWVRSKRSR LLHSDYMNMTPRRPGP TRKHYQPYAPPRDFAA YRS RVKFS RSADAPAY QQGQNQLYNELNLGRR EEYDVLDKRRGRDPEM GGKPRRKNPQEGLYNE LQKDKMAEAYSElGMK GERRRGKGHDGLYQGL STATKDTYDALHMQAL PPR 172
ATT CT GAAATAGGCAT GAAAGGAGAGC GG AGAAGGGGAAAAGGGCACGACGGTTTGTA C CAGGGACT CAGCACT GCTAC GAAGGATA CTTATGACGCTCTCCACATGCAAGCCCTG CCACCTAGG
(CARI.3) Clone 24C1 CD8 CAR DNA HxL ATGGCACTCCCCGTAACTGCTCTGCTGCT GCCGTTGGCATTGCTCCTGCACGCCGCAC GCCCGCAGGTGCAATTGCAAGAGTCCGGC CCCGGACTCGTTAAACCCAGTGAGACGCT TAGCCTGACCTGTACCGTCTCAGGGGGCA GCAT CT C CT CTTATTACT GGAGCT GGATC AGGCAGCCTCCAGGAAAAGGCCTTGAATG GATTGGGTACATCTACTACTCTGGCTCAA CAAATTATAATCCATCCCTGAAGTCCCGC GT GACT AT CT CT GTGGACACCAGCAAGAA TCAGTTTTCACTGAAGTTGTCTAGTGTTA CCGCGGCCGACACCGCCGTATACTACTGT GTGTCTCTTGTGTACTGTGGCGGCGACTG CTATTCCGGGTTCGACTACTGGGGCCAAG GGACTCTGGTAACCGTGTCCTCAGGCGGC GGCGGGTCAGGAGGAGGCGGCAGTGGAGG TGGCGGCTCCGACATCCAGCTGACACAAT CACCATCTTCCCTTTCAGCTTCAGTCGGG GACAGAGTGTCCTTCACATGCCAGGCCAG C CAGGATAT CAATAACT T C CT GAACTGGT AC CAACAGAAAC C CGGAAAGGCT C CAAAG CTCCTGATCTATGATGCTTCCAACCTGGA GACCGGCGTGCCCTCCAGGTTCAGTGGTT CAGGATCAGGCACTGACTTTACGTTCACC ATATCCAGTCTTCAGCCCGAAGACATTGC AACCTATTACTGCCAACAATACGGGAACC TTCCCTTTACATTCGGAGGCGGCACCAAG GT GGAAATCAAAAGGGCTGCAGCATTGAG CAACTCAATAATGTATTTTAGTCACTTTG TACCAGTGTTCTTGCCGGCTAAGCCTACT ACCACACCCGCTCCACGGCCACCTACCCC AGCTCCTACCATCGCTTCACAGCCTCTGT CCCTGCGCCCAGAGGCTTGCCGACCGGCC GCAGGGGGCGCTGTTCATACCAGAGGACT GGATTTCGCCTGCGATATCTATATCTGGG CACCCCTGGCCGGAACCTGCGGCGTACTC CTGCTGTCCCTGGTCATCACGCTCTATTG TAATCACAGGAACAGATCCAAAAGAAGCC GCCT GCT CCATAGCGATTACAT GAATATG ACTCCACGCCGCCCTGGCCCCACAAGGAA ACACTACCAGCCTTACGCACCACCTAGAG ATTTCGCTGCCTATCGGAGCAGGGTGAAG TTTTCCAGATCTGCAGATGCACCAGCGTA TCAGCAGGGCCAGAACCAACTGTATAACG AGCTCAACCTGGGACGCAGGGAAGAGTAT GACGTTTTGGACAAGCGCAGAGGACGGGA CCCTGAGATGGGTGGCAAACCAAGACGAA AAAACCCCCAGGAGGGTCTCTATAATGAG CTGCAGAAGGATAAGATGGCTGAAGCCTA TT CT GAAATAGGCATGAAAGGAGAGCGGA GAAGGGGAAAAGGGCACGACGGTTTGTAC CAGGGACTCAGCACTGCTACGAAGGATAC TTATGACGCTCTCCACATGCAAGCCCTGC CACCTAGGTAA 173 MALPVTALLLPLALLL HAARPQVQLQESGPGL VKPSETLSLTCTVSGG SISSYYWSWIRQPPGK GLEWIGYIYYSGSTNY NPSLKSRVTISVDTSK NQFSLKLSSVTAADTA VYYCVSLVYCGGDCYS GFDYWGQGTLVTVSSG GGGSGGGGSGGGGSDI QLTQSPSSLSASVGDR VS FT CQASQDINN FLN WYQQKPGKAPKLLIYD ASNLETGVPSRFSGSG SGTDFTFTISSLQPED IAT YYCQQYGNL P FT F GGGTKVEIKRAAALSN SIMYFSHFVPVFLPAK PTTTPAPRPPTPAPTI ASQPLSLRPEACRPAA GGAVHTRGLDFACDIY IWAPLAGTCGVLLLSL VITLYCNHRNRSKRSR LLHSDYMNMTPRRPGP TRKHYQPYAPPRDFAA YRSRVKFSRSADAPAY QQGQNQLYNELNLGRR EEYDVLDKRRGRDPEM GGKPRRKNPQEGLYNE LQKDKMAEAYSEIGMK GERRRGKGHDGLYQGL S TAT KDTYDALHMQAL PPR 174
(CARI.3 ) Clone 24C1 CD8 CAR DNA HxL CAGGTGCAATTGCAAGAGTCCGGCCCCGG ACTCGTTAAACCCAGTGAGACGCTTAGCC TGACCTGTACCGTCTCAGGGGGCAGCATC T CCT CTTATTACT GGAGCT GGAT CAGGCA GC CT C CAGGAAAAGGCCTT GAATGGATTG GGTACATCTACTACT CT GGCT CAACAAAT TATAATCCATCCCTGAAGTCCCGCGTGAC T AT CT CT GT GGACACCAGCAAGAAT CAGT TTTCACTGAAGTTGTCTAGTGTTACCGCG GCCGACACCGCCGTATACTACTGTGTGTC TCTTGTGTACTGTGGCGGCGACTGCTATT CCGGGTTCGACTACTGGGGCCAAGGGACT CTGGTAACCGTGTCCTCAGGCGGCGGCGG GTCAGGAGGAGGCGGCAGTGGAGGTGGCG GCTCCGACATCCAGCTGACACAATCACCA TCTTCCCTTTCAGCTTCAGTCGGGGACAG AGTGTCCTTCACATGCCAGGCCAGCCAGG ATAT CAATAACTT CCTGAACTGGTACCAA CAGAAACCCGGAAAGGCTCCAAAGCTCCT GATCTATGATGCTTCCAACCTGGAGACCG GCGTGCCCTCCAGGTTCAGTGGTTCAGGA TCAGGCACTGACTTTACGTTCACCATATC CAGTCTTCAGCCCGAAGACATTGCAACCT A.TTACTGCCAACAATACGGGAACCTTCCC TTTACATTCGGAGGCGGCACCAAGGTGGA AATCAAAAGGGCTGCAGCATTGAGCAACT CAATAATGTATTTTAGTCACTTTGTACCA GTGTTCTTGCCGGCTAAGCCTACTACCAC ACCCGCTCCACGGCCACCTACCCCAGCTC CTACCATCGCTTCACAGCCTCTGTCCCTG CGCCCAGAGGCTTGCCGACCGGCCGCAGG GGGCGCTGTTCATACCAGAGGACTGGATT TCGCCTGCGATATCTATATCTGGGCACCC CTGGCCGGAACCTGCGGCGTACTCCTGCT GTCCCTGGTCATCACGCTCTATTGTAATC ACAGGAACAGATCCAAAAGAAGCCGCCTG CTCCATAGCGATTACATGAATATGACTCC ACGCCGCCCTGGCCCCACAAGGAAACACT ACCAGCCTTACGCACCACCTAGAGATTTC GCTGCCTATCGGAGCAGGGTGAAGTTTTC CAGAT CT GCAGAT GCAC CAGCGTAT CAGC AGGGCCAGAACCAACTGTATAACGAGCTC AACCTGGGACGCAGGGAAGAGTATGACGT TTTGGACAAGCGCAGAGGACGGGACCCTG AGATGGGTGGCAAACCAAGACGAAAAAAC CCCCAGGAGGGTCTCTATAATGAGCTGCA GAAGGATAAGATGGCTGAAGCCTATTCTG AAATAGGCATGAAAGGAGAGCGGAGAAGG GGAAAAGGGCACGACGGTTTGTACCAGGG ACTCAGCACTGCTACGAAGGATACTTATG ACGCTCTCCACATGCAAGCCCTGCCACCT AGG 175 QVQLQESGPGLVKPSE TLSLTCTVSGGSISSY YWSWIRQPPGKGLEWI GYIYYSGSTNYNPSLK SRVTISVDTSKNQFSL KL S SVTAADTAVYYCV SLVYCGGDCYSGFDYW GQGTLVTVSSGGGGSG GGGSGGGGSDIQLTQS PSSLSASVGDRVSFTC QASQDINNFLNWYQQK PGKAPKLLIYDASNLE TGVPSRFSGSGSGTDF TFTISSLQPEDIATYY CQQYGNLPFTFGGGTK VETKRAAALSNSIMYF SHFVPVFLPAKPTTTP APRPPTPAPTIASQPL SLRPEACRPAAGGAVH TRGLDFACDIYIWAPL AGTCGVLLLSLVITLY CNHRNRSKRSRLLHSD YMNMTPRRPGPTRKHY QPYAPPRDFAAYRSRV KFSRSADAPAYQQGQN QLYNELNLGRREEYDV LDKRRGRDPEMGGKPR RKNPQEGLYNELQKDK MAEAYSElGMKGERRR GKGHDGLYQGLSTATK DTYDALHMQALPPR 176
(CARI.4 ) Clone 24C1 THD CAR DNA LxH ATGGCACTCCCCGTAACTGCTCTGCTGCT GCCGTTGGCATTGCTCCTGCACGCCGCAC GCCCGGATATCCAGCTCACGCAATCCCCC TCAAGCTTGAGTGCCTCCGTGGGCGACCG GGTGTCCTTCACATGTCAGGCAAGCCAAG ACATAAATAATTTCCTGAATTGGTACCAA CAAAAACCCGGCAAGGCTCCCAAACTCCT 177 MALPVTALLLPLALLL HAARPDIQLTQSPSSL SASVGDRVSFTCQASQ DINNFLNWYQQKPGKA PKLLIYDASNLETGVP SRFSGSGSGTDFTFTI SSLQPEDIATYYCQQY 178
GATTTATGATGCCTCCAATCTGGAGACCG GGGTCCCTTCTAGATTCAGCGGAAGTGGC AGCGGCACAGACTTTACATTTACTATCTC TTCTCTGCAACCAGAGGACATCGCCACAT ACTATTGCCAGCAATACGGCAATCTGCCC TTCACCTTCGGAGGCGGAACCAAGGTAGA AATTAAAAGGGGCGGTGGAGGCTCCGGAG GGGGGGGCTCTGGCGGAGGGGGCTCCCAA GTACAATT GCAGGAGT CAGGGCCT GGACT CGTGAAGCCTTCAGAAACTTTGTCACTGA CATGTACAGTGTCCGGCGGAAGCATTTCC AGTTACTATTGGTCCTGGATTAGACAGCC ACCCGGCAAAGGACTGGAATGGATTGGAT ATATCTACTACTCTGGATCTACAAACTAT AATC C CAGC CT CAAATCCAGGGTCACTAT TAGT GT GGATACAT CAAAGAAT CAGTT CT CCTTGAAGCTGAGCTCAGTCACTGCTGCC GACACC GCAGT GTACTATT GT GT GAGCCT GGTCTACTGCGGCGGAGATTGCTACAGCG GTTTCGATTACTGGGGCCAGGGCACCCTG GTTACCGTTAGTTCCGCGGCTGCTCTTGA TAACGAGAAGTCCAACGGTACGATTATCC ACGTTAAGGGTAAGCACCTTTGCCCTAGC CCGCTGTTCCCAGGCCCCAGTAAGCCCTT TTGGGTCCTCGTTGTGGTAGGTGGGGTAC TCGCCTGCTACTCCCTGCTCGTCACTGTC GCATT CAT CAT CTTCTGGGT CAGAT C CAA AAGAAGCCGCCTGCTCCATAGCGATTACA TGAATATGACTCCACGCCGCCCTGGCCCC ACAAGGAAACACTACCAGCCTTACGCACC ACCTAGAGATTTCGCTGCCTATCGGAGCA GGGTGAAGTTTTCCAGATCTGCAGATGCA CCAGCGTATCAGCAGGGCCAGAACCAACT GTATAACGAGCTCAACCTGGGACGCAGGG AAGAGTATGACGTTTTGGACAAGCGCAGA GGACGGGACCCTGAGATGGGTGGCAAACC AAGACGAAAAAACCCCCAGGAGGGTCTCT ATAAT GAGCT GCAGAAGGATAAGAT GGCT GAAGCCTATTCTGAAATAGGCATGAAAGG AGAGCGGAGAAGGGGAAAAGGGCACGACG GTTTGTACCAGGGACTCAGCACTGCTACG AAGGATACTTAT GACGCT CT CCACAT GCA AGCCCTGCCACCTAGGTAA GNLPFTFGGGTKVEIK RGGGGSGGGGS GGGGS QVQLQESGPGLVKPSE TLSLTCTVSGGSISSY YWSWIRQPPGKGLEWI GYIYYSGSTNYNPSLK SRVTISVDTSKNQFSL KL S SVTAADTAVYYCV SLVYCGGDCYSGFDYW GQGTLVTVS SAAALDN EKSNGTIIHVKGKHLC PSPLFPGPSKPFWVLV WGGVLACYSLLVTVA FIIFWVRSKRSRLLHS DYMNMTPRRPGPTRKH YQPYAPPRDFAAYRSR VKFSRSADAPAYQQGQ NQLYNELNLGRREEYD VLDKRRGRD P EMGGKP RRKNPQEGLYNELQKD KMAEAYSElGMKGERR RGKGHDGLYQGLSTAT KDTYDALHMQALPPR
(CARI.4 ) Clone 24C1 THD CAR DNA LxH GATATCCAGCTCACGCAATCCCCCTCAAG CTTGAGTGCCTCCGTGGGCGACCGGGTGT CCTTCACATGTCAGGCAAGCCAAGACATA AATAATTTCCTGAATTGGTACCAACAAAA ACCCGGCAAGGCTCCCAAACTCCTGATTT ATGATGCCTCCAATCTGGAGACCGGGGTC CCTTCTAGATTCAGCGGAAGTGGCAGCGG CACAGACTTTACATTTACTATCTCTTCTC T GCAAC CAGAGGACAT CGCCACATACTAT TGCCAGCAATACGGCAATCTGCCCTTCAC CTTCGGAGGCGGAACCAAGGTAGAAATTA AAAGGGGCGGTGGAGGCTCCGGAGGGGGG GGCTCTGGCGGAGGGGGCTCCCAAGTACA AT T GCAGGAGT CAGGGCCT GGACT CGT GA AGCCTTCAGAAACTTTGTCACTGACATGT ACAGTGTCCGGCGGAAGCATTTCCAGTTA 179 DIQLTQSPSSLSASVG DRVSFTCQASQDINNF LNWYQQKPGKAPKLLI YDASNLETGVPSRFSG SGSGTDFTFTISSLQP EDIATYYCQQYGNLPF TFGGGTKVEIKRGGGG SGGGGSGGGGSQVQLQ ESGPGLVKPSETLSLT CTVSGGSISSYYWSWI RQPPGKGLEWIGYIYY SGSTNYNPSLKSRVTI SVDTSKNQFSLKLSSV TAADTAVYYCVSLVYC GGDCYSGFDYWGQGTL VTVSSAAALDNEKSNG 180
CTATTGGTCCTGGATTAGACAGCCACCCG GCAAAGGACTGGAATGGATTGGATATATC TACTACTCTGGATCTACAAACTATAATCC CAGCCT CAAAT CCAGGGT CACTATTAGT G TGGATACATCAAAGAATCAGTTCTCCTTG AAGCT GAGCT CAGT CACT GCT GCCGACAC C GCAGT GTACTATT GT GT GAGCCTGGTCT ACTGCGGCGGAGATTGCTACAGCGGTTTC GATTACTGGGGCCAGGGCACCCTGGTTAC CGTTAGTTCCGCGGCTGCTCTTGATAACG AGAAGTCCAACGGTACGATTATCCACGTT AAGGGTAAGCACCTTTGCCCTAGCCCGCT GTTCCCAGGCCCCAGTAAGCCCTTTTGGG TCCTCGTTGTGGTAGGTGGGGTACTCGCC TGCTACTCCCTGCTCGTCACTGTCGCATT CAT CAT CTTCTGGGT CAGAT CCAAAAGAA GCCGCCTGCTCCATAGCGATTACATGAAT ATGACTCCACGCCGCCCTGGCCCCACAAG GAAACACTACCAGCCTTACGCACCACCTA GAGATTTCGCTGCCTATCGGAGCAGGGTG AAGTTTTCCAGATCTGCAGATGCACCAGC GTATCAGCAGGGCCAGAACCAACTGTATA AC GAGCT CAACCT GGGACGCAGGGAAGAG TATGACGTTTTGGACAAGCGCAGAGGACG GGACCCTGAGATGGGTGGCAAACCAAGAC GAAAAAACCCCCAGGAGGGTCTCTATAAT GAGCT GCAGAAGGATAAGAT GGCT GAAGC CTATT CT GAAAT AGGCAT GAAAGGAGAGC GGAGAAGGGGAAAAGGGCACGACGGTTTG TACCAGGGACTCAGCACTGCTACGAAGGA TACTTATGACGCTCTCCACATGCAAGCCC TGCCACCTAGG TIIHVKGKHLCPSPLF P GP S KP FWVLVWGGV LACY S LLVTVAFIIFW VRSKRSRLLHSDYMNM TPRRPGPTRKHYQPYA PPRDFAAYRSRVKFSR SADAPAYQQGQNQLYN ELNLGRREEYDVLDKR RGRDPEMGGKPRRKNP QEGLYNELQKDKMAEA YS ElGMKGERRRGKGH DGLYQGLSTATKDTYD ALHMQALPPR
(CARI.5) Clone 24C1 CHD CAR DNA LxH ATGGCACTCCCCGTAACTGCTCTGCTGCT GCCGTTGGCATTGCTCCTGCACGCCGCAC GCCCGGATATCCAGCTGACCCAGTCTCCA TCCTCTTTGAGTGCCTCCGTGGGTGACCG CGTCTCTTTCACTTGCCAAGCCAGCCAAG ACATCAACAACTTTCTGAATTGGTACCAG CAGAAACCAGGCAAAGCACCAAAGCTCCT CATCTACGACGCCTCCAACCTGGAAACCG GGGTGCCCAGCAGGTTTAGCGGGAGCGGT TCTGGCACGGATTTTACGTTCACCATCTC CTCTCTGCAGCCCGAGGATATAGCTACTT ATTACT GT CAGCAGTACGGGAATCTGCCA TTTACTTTTGGGGGTGGAACTAAGGTGGA AATCAAAAGGGGCGGCGGGGGAAGCGGGG GCGGGGGCTCAGGTGGCGGAGGGAGCCAG GT GCAACTCCAGGAAAGTGGCCCAGGATT GGTGAAGCCCAGCGAGACCCTTTCCCTTA CTTGTACTGTTAGCGGAGGCAGCATAAGC AGCTACTATTGGTCCTGGATCAGACAGCC ACCAGGGAAAGGGCTTGAATGGATTGGCT ACATTTACTATTCCGGGTCCACCAACTAC AACCCATCCCTCAAGTCCCGCGTGACAAT TTCCGTCGACACAAGCAAGAACCAGTTCT CCCTGAAACTTAGTAGCGTCACTGCTGCA GATACAGCAGT GTACTATT GT GT CAGC CT TGTCTACTGTGGCGGCGACTGCTACAGTG GCTTTGATTACTGGGGACAGGGCACGCTC 181 MALPVTALLLPLALLL HAARPDIQLTQSPSSL SASVGDRVS FTCQASQ DINNFLNWYQQKPGKA PKLLIYDASNLETGVP SRFSGSGSGTDFTFTI SSLQPEDIATYYCQQY GNLPFTFGGGTKVEIK RGGGGSGGGGSGGGGS QVQLQESGPGLVKPSE TLSLTCTVSGGSISSY YWSWIRQPPGKGLEWI GYIYYSGSTNYNPSLK SRVTISVDTSKNQFSL KLS SVTAADTAVYYCV SLVYCGGDCYSGFDYW GQGTLVTVS SAAAIEV MYPPPYLDNEKSNGTI IHVKGKHLCPSPLFPG P S KP FWVLVVVGGVLA CYSLLVTVAFIIFWVR S KRS RLLH S DYMNMT P RRPGPTRKHYQPYAPP RDFAAYRSRVKFSRSA DAPAYQQGQNQLYNEL NLGRREEYDVLDKRRG RDPEMGGKPRRKNPQE
182
GTGACAGTGTCCAGCGCTGCGGCTATCGA GGTAATGTATCCGCCACCGTATCTGGACA ACGAGAAGT CTAAT GGGACAAT CATT CAC GTGAAGGGGAAGCACCTGTGTCCATCCCC CCTGTTTCCGGGTCCCAGTAAACCCTTCT GGGTGCTTGTTGTCGTTGGCGGGGTGCTG GCCTGCTATTCCCTGCTGGTGACCGTCGC GTTTATTATTTTCTGGGTTAGATCCAAAA GAAGCCGCCTGCTCCATAGCGATTACATG AATATGACTCCACGCCGCCCTGGCCCCAC AAGGAAACACTACCAGCCTTACGCACCAC CTAGAGATTTCGCTGCCTATCGGAGCAGG GT GAAGT T TT CCAGAT CT GCAGAT GCACC AGCGTATCAGCAGGGCCAGAACCAACTGT ATAACGAGCTCAACCTGGGACGCAGGGAA GAGTATGACGTTTTGGACAAGCGCAGAGG AC GGGAC C CT GAGAT GGGT GGCAAACCAA GACGAAAAAACCCCCAGGAGGGTCTCTAT AAT GAGCT GCAGAAGGATAAGATGGCTGA AGCCTATT CT GAAATAGGCAT GAAAGGAG AGCGGAGAAGGGGAAAAGGGCACGACGGT TTGTACCAGGGACTCAGCACTGCTACGAA GGATACTTAT GACGCT CT CCACAT GCAAG CCCTGCCACCTAGGTAA GLYNELQKDKMAEAYS EIGMKGERRRGKGHDG LYQGLSTATKDTYDAL HMQALPPR
(CARI.5) Clone 24C1 CHD CAR DNA LxH GATAT C CAGCT GAC CCAGT CT C CAT CCT C TTTGAGTGCCTCCGTGGGTGACCGCGTCT CTTTCACTTGCCAAGCCAGCCAAGACATC AACAACTTT CT GAATT GGTAC CAGCAGAA ACCAGGCAAAGCACCAAAGCT CCT CAT CT ACGACGCCTCCAACCTGGAAACCGGGGTG CCCAGCAGGTTTAGCGGGAGCGGTTCTGG CACGGATTTTACGTTCACCATCTCCTCTC TGCAGCCCGAGGATATAGCTACTTATTAC TGTCAGCAGTACGGGAATCTGCCATTTAC TTTTGGGGGTGGAACTAAGGTGGAAATCA AAAGGGGCGGCGGGGGAAGCGGGGGCGGG GGCTCAGGTGGCGGAGGGAGCCAGGTGCA ACTCCAGGAAAGTGGCCCAGGATTGGTGA AGCCCAGCGAGACCCTTTCCCTTACTTGT ACTGTTAGCGGAGGCAGCATAAGCAGCTA CTATTGGTCCTGGATCAGACAGCCACCAG GGAAAGGGCTTGAATGGATTGGCTACATT TACTATTCCGGGTCCACCAACTACAACCC ATCCCTCAAGTCCCGCGTGACAATTTCCG TCGACACAAGCAAGAACCAGTTCTCCCTG AAACTTAGTAGCGTCACTGCTGCAGATAC AGCAGT GTACTATT GT GT CAGC CT T GT CT ACTGTGGCGGCGACTGCTACAGTGGCTTT GATTACTGGGGACAGGGCACGCTCGTGAC AGTGTCCAGCGCTGCGGCTATCGAGGTAA TGTATCCGCCACCGTATCTGGACAACGAG AAGTCTAATGGGACAATCATTCACGTGAA GGGGAAGCACCTGTGTCCATCCCCCCTGT TTCCGGGTCCCAGTAAACCCTTCTGGGTG CTTGTTGTCGTTGGCGGGGTGCTGGCCTG CTATTCCCTGCTGGTGACCGTCGCGTTTA TTATTTTCTGGGTTAGATCCAAAAGAAGC CGCCTGCTCCATAGCGATTACATGAATAT GACTCCACGCCGCCCTGGCCCCACAAGGA 183 DIQLTQSPSSLSASVG DRVSFTCQASQDINNF LNWYQQKPGKAPKLLI YDASNLETGVPSRFSG SGSGTDFTFTISSLQP EDIATYYCQQYGNLPF TFGGGTKVEIKRGGGG SGGGGSGGGGSQVQLQ ESGPGLVKPSETLSLT CTVS GGSISSYYWSWI RQPPGKGLEWIGYIYY SGSTNYNPSLKSRVTI SVDTSKNQFSLKLSSV TAADTAVYYCVS LVYC GGDCYS GFDYWGQGTL VTVSSAAAIEVMYP P P YLDNEKSNGTIIHVKG KHLCPSPLFPGPSKPF WVLVWGGVLACYS LL VTVAFIIFWVRSKRSR LLH S D YMNMT P RRP GP TRKHYQPYAPPRDFAA YRSRVKFSRSADAPAY QQGQNQLYNELNLGRR EEYDVLDKRRGRDPEM GGKPRRKNPQEGLYNE LQKDKMAEAYSEIGMK GERRRGKGHDGLYQGL STATKDTYDALHMQAL PPR 184
AACACTACCAGCCTTACGCACCACCTAGA GATTTCGCTGCCTATCGGAGCAGGGTGAA GTTTTCCAGATCTGCAGATGCACCAGCGT ATCAGCAGGGCCAGAACCAACTGTATAAC GAGCTCAACCTGGGACGCAGGGAAGAGTA TGACGTTTTGGACAAGCGCAGAGGACGGG ACCCTGAGATGGGTGGCAAACCAAGACGA AAAAACCCCCAGGAGGGTCTCTATAATGA GCT GCAGAAG GATAAGAT GGCT GAAGC CT ATTCT GAAATAGGCAT GAAAGGAGAGCGG AGAAGGGGAAAAGGGCACGACGGTTTGTA CCAGGGACTCAGCACTGCTACGAAGGATA CTTATGACGCTCTCCACATGCAAGCCCTG CCACCTAGG
(CARI.6 ) Clone 24C1 CD8 CAR DNA LxH ATGGCACTCCCCGTAACTGCTCTGCTGCT GCCGTTGGCATTGCTCCTGCACGCCGCAC GCCCGGACATTCAATTGACCCAGTCCCCT AGCAGT CT CT CAGCAAGT GT GGGAGATAG GGTGTCATTCACCTGTCAGGCTTCACAGG ACAT CAACAACTTC CT CAATT GGTAT CAG CAGAAGCCAGGGAAGGCACCAAAGCTGCT CATATATGACGCTTCAAACCTTGAAACCG GAGTACCTAGCCGCTTCAGCGGAAGCGGA TCAGGGACTGACTTCACTTTTACCATCTC TTCACTGCAGCCCGAAGACATCGCCACAT ACTACTGCCAGCAGTACGGAAACTTGCCT TTTACATTTGGGGGCGGCACCAAAGTGGA GATTAAGCGAGGGGGAGGCGGCTCAGGAG GCGGTGGCTCCGGAGGCGGGGGTTCCCAG GTCCAGCTCCAGGAATCCGGCCCAGGTCT GGTTAAGCCCAGTGAAACTTTGTCCCTCA CGTGTACTGTGAGCGGTGGTTCAATCTCC TCATACTATTGGTCTTGGATACGGCAACC TCCTGGAAAGGGCCTCGAGTGGATCGGCT ATATCTACTATAGTGGCTCCACTAATTAC AACCCTTCCCTCAAGTCCAGAGTCACCAT TTCCGTGGACACATCTAAGAACCAGTTCA GTCTGAAGTTGTCCAGCGTTACAGCCGCA GACACAGCCGTTTATTACTGTGTGTCTCT TGTTTACTGCGGGGGAGACTGTTATAGCG GCTTCGATTACTGGGGCCAGGGCACCTTG GTCACAGTCTCTTCCGCGGCCGCCCTCTC TAACAGTATTATGTACTTTTCTCATTTTG TACCCGTGTTCCTTCCCGCTAAGCCAACT ACTACCCCGGCCCCACGGCCGCCTACCCC TGCACCCACAATAGCCAGTCAGCCTTTGA GCCTGAGACCTGAGGCTTGTCGGCCGGCT GCTGGGGGTGCAGTGCACACACGAGGTCT TGATTTTGCTTGCGACATATACATCTGGG CCCCTCTGGCCGGGACCTGTGGGGTGCTG CTTCTGAGCTTGGTCATCACGCTCTATTG CAACCATCGCAACAGATCCAAAAGAAGCC GCCTGCTCCATAGCGATTACATGAATATG ACTCCACGCCGCCCTGGCCCCACAAGGAA ACACTACCAGCCTTACGCACCACCTAGAG ATTTCGCTGCCTATCGGAGCAGGGTGAAG TTTTCCAGATCTGCAGATGCACCAGCGTA TCAGCAGGGCCAGAACCAACTGTATAACG AGCTCAACCTGGGACGCAGGGAAGAGTAT 185 MALPVTALLLPLALLL HAARPDIQLTQSPSSL SASVGDRVSFTCQASQ DINNFLNWYQQKPGKA PKLLIYDASNLETGVP SRFSGSGSGTDFTFTI SSLQPEDIATYYCQQY GNLPFTFGGGTKVEIK RGGGGSGGGGSGGGGS QVQLQESGPGLVKPSE TLSLTCTVSGGSISSY YWSWIRQPPGKGLEWI GYIYYSGSTNYNPSLK SRVTISVDTSKNQFSL KLS SVTAADTAVYYCV SLVYCGGDCYSGFDYW GQGTLVTVSSAAALSN SIMYFSHFVPVFLPAK PTTTPAPRPPTPAPTI ASQPLSLRPEACRPAA GGAVHTRGLDFACDIY IWAPLAGTCGVLLLSL VITLYCNHRNRSKRSR LLHSDYMNMTPRRPGP TRKHYQPYAPPRDFAA YRSRVKFSRSADAPAY QQGQNQLYNELNLGRR EEYDVLDKRRGRDPEM GGKPRRKNPQEGLYNE LQKDKMAEAYSElGMK GERRRGKGHDGLYQGL STATKDTYDALHMQAL PPR 186
GACGTT T T GGACAAGC GCAGAGGACGGGA CCCTGAGATGGGTGGCAAACCAAGACGAA AAAACCCCCAGGAGGGTCTCTATAATGAG CT GCAGAAGGATAAGATGGCTGAAGCCTA T T CT GAAATAGGCAT GAAAGGAGAGCGGA GAAGGGGAAAAGGGCACGACGGTTTGTAC CAGGGACTCAGCACTGCTACGAAGGATAC TTATGACGCTCTCCACATGCAAGCCCTGC CACCTAGGTAA
(CARI.6) Clone 24C1 CD8 CAR DNA LxH GACATTCAATTGACCCAGTCCCCTAGCAG T CT CT CAGCAAGTGTGGGAGATAGGGTGT CATTCACCTGTCAGGCTTCACAGGACATC AACAACTTCCTCAATTGGTATCAGCAGAA GCCAGGGAAGGCACCAAAGCTGCTCATAT ATGACGCTTCAAACCTTGAAACCGGAGTA CCTAGCCGCTTCAGCGGAAGCGGATCAGG GACTGACTTCACTTTTACCATCTCTTCAC TGCAGCCCGAAGACATCGCCACATACTAC TGCCAGCAGTACGGAAACTTGCCTTTTAC ATTTGGGGGCGGCACCAAAGTGGAGATTA AGCGAGGGGGAGGCGGCTCAGGAGGCGGT GGCTCCGGAGGCGGGGGTTCCCAGGTCCA GCTCCAGGAATCCGGCCCAGGTCTGGTTA AGCCCAGTGAAACTTTGTCCCTCACGTGT ACTGTGAGCGGTGGTTCAATCTCCTCATA CTATTGGTCTTGGATACGGCAACCTCCTG GAAAGGGC CT C GAGT GGAT CGGCTATAT C TACTATAGTGGCTCCACTAATTACAACCC TTCCCTCAAGTCCAGAGTCACCATTTCCG T GGACACAT CTAAGAACCAGTTCAGT CTG AAGTTGTCCAGCGTTACAGCCGCAGACAC AGCCGTTTATTACTGTGTGTCTCTTGTTT ACTGCGGGGGAGACTGTTATAGCGGCTTC GATTACTGGGGCCAGGGCACCTTGGTCAC AGTCTCTTCCGCGGCCGCCCTCTCTAACA GTATTATGTACTTTTCTCATTTTGTACCC GTGTTCCTTCCCGCTAAGCCAACTACTAC CCCGGCCCCACGGCCGCCTACCCCTGCAC CCACAATAGCCAGTCAGCCTTTGAGCCTG AGACCTGAGGCTTGTCGGCCGGCTGCTGG GGGT GCAGT GCACACACGAGGT CTT GATT TTGCTTGCGACATATACATCTGGGCCCCT CTGGCCGGGACCTGTGGGGTGCTGCTTCT GAGCTTGGTCATCACGCTCTATTGCAACC ATCGCAACAGATCCAAAAGAAGCCGCCTG CTCCATAGCGATTACATGAATATGACTCC ACGCCGCCCTGGCCCCACAAGGAAACACT ACCAGCCTTACGCACCACCTAGAGATTTC GCTGCCTATCGGAGCAGGGTGAAGTTTTC CAGAT CT GCAGAT GCACCAGC GTAT CAGC AGGGCCAGAACCAACTGTATAACGAGCTC AACCTGGGACGCAGGGAAGAGTATGACGT TTTGGACAAGCGCAGAGGACGGGACCCTG AGATGGGTGGCAAACCAAGACGAAAAAAC CCCCAGGAGGGT CT CTATAAT GAGCT GCA GAAGGATAAGATGGCTGAAGCCTATTCTG AAATAGGCATGAAAGGAGAGCGGAGAAGG GGAAAAGGGCACGACGGTTTGTACCAGGG ACTCAGCACTGCTACGAAGGATACTTATG 187 DIQLTQSPSSLSASVG DRVSFTCQASQDINNF LNWYQQKPGKAP KLLI YDASNLETGVPSRFSG SGSGTDFTFTISSLQP EDIATYYCQQYGNLPF TFGGGTKVEIKRGGGG SGGGGSGGGGSQVQLQ ESGPGLVKPSETLSLT CTVSGGSISSYYWSWI RQPPGKGLEWIGYIYY SGSTNYNPSLKSRVTI SVDTSKNQFSLKLSSV T AADTAVYYC VS LVYC GGDCYSGFDYWGQGTL VTVSSAAALSNSIMYF SHFVPVFLPAKPTTTP APRPPTPAPTIASQPL SLRPEACRPAAGGAVH TRGLDFACDIYIWAPL AGTCGVLLLSLVITLY CNHRNRSKRSRLLHSD YMNMTPRRPGPTRKHY QPYAPPRDFAAYRSRV KFSRSADAPAYQQGQN QLYNELNLGRREEYDV LDKRRGRDPEMGGKPR RKNPQEGLYNELQKDK MAEAYSEIGMKGERRR GKGHDGLYQGLSTATK DTYDALHMQALPPR 188
ACGCTCTCCACATGCAAGCCCTGCCACCT AGG
(CAR2.1) Clone 24C8 THD CAR DNA HxL ATGGCACTCCCCGTAACTGCTCTGCTGCT GCCGTTGGCATTGCTCCTGCACGCCGCAC GCCCGCAGGTACAGCTGCAGGAATCTGGG CCCGGACTT GT CAAGCCAAGTCAGACACT TTCTCTTACATGTACCGTGAGCGGCGGAA GTATAAGCAGTGGAGGCTTTTACTGGTCT TGGATACGGCAGCACCCAGGCAAAGGCTT GGAGTGGATTGGATACATTCATCATTCAG GAT CT ACAC ACTATAAT C CAT C C CT T AAG TCCCGGGTCACCATTAGCATTGATACGTC TAAGAATCTGTTCAGTCTCAGGCTGTCCT CCGTCACTGCTGCCGACACAGCCGTGTAC TACTGCGCCTCCTTGGTTTACTGCGGAGG CGACTGTTATAGCGGCTTTGATTATTGGG GGCAGGGGACCCTCGTAACCGTGAGCTCT GGAGGGGGTGGGAGCGGGGGAGGAGGTTC AGGGGGGGGCGGCTCCGATATCCAGCTCA CTCAAAGCCCCTCTAGTCTCTCTGCCTCA GTGGGGGATCGGGTCAGTTTTACTTGTCA AGCTT CACAGGATAT CAACAACTT CCTTA ATTGGTATCAGCAGAAGCCAGGAAAAGCA CCCAAGCTGCTCATCTATGATGCCTCAAA TTTGGAGACGGGTGTTCCCAGTCGATTCT CTGGGTCAGGGTCCGGGACCGACTTTACG TTTACGATCTCCTCTCTGCAGCCCGAAGA CATCGCCACATACTATTGTCAACAGTACG GCAACTTGCCTTTCACATTTGGGGGCGGG ACTAAGGTTGAAATCAAGAGGGCCGCTGC ACTGGACAATGAGAAGTCCAACGGCACCA T CAT CCACGT GAAGGGCFAGCACCTGTGC CCTAGTCCTCTGTTCCCAGGCCCATCCAA ACCTTTTTGGGTTCTTGTTGTGGTCGGGG GGGTGCTGGCCTGCTATTCTCTGCTGGTC ACGGTGGCCTTCATAATTTTCTGGGTTAG ATCCAAAAGAAGCCGCCTGCTCCATAGCG ATTACATGAATATGACTCCACGCCGCCCT GGCCCCACAAGGAAACACTACCAGCCTTA CGCACCACCTAGAGATTTCGCTGCCTATC GGAGCAGGGTGAAGTTTTCCAGATCTGCA GATGCACCAGCGTATCAGCAGGGCCAGAA CCAACTGTATAACGAGCTCAACCTGGGAC GCAGGGAAGAGTATGACGTTTTGGACAAG CGCAGAGGACGGGACCCTGAGAT GGGT GG CAAAC CAAGACGAAAAAACC CCCAGGAGG GT CT CTATAAT GAGCT GCAGAAGGATAAG AT GGCT GAAGCCTATT CT GAAAT AGGCAT GAAAGGAGAGCGGAGAAGGGGAAAAGGGC ACGACGGTTTGTACCAGGGACTCAGCACT GCTACGAAGGATACTTATGACGCTCTCCA CATGCAAGCCCTGCCACCTAGGTAA 189 MALPVTALLLPLALLL HAARPQVQLQESGPGL VKPSQTLSLTCTVSGG SIS S GGFYWSWIRQHP GKGLEWIGYIHHSGST HYNPSLKSRVTISIDT SKNLFSLRLSSVTAAD TAVYYCASLVYCGGDC YSGFDYWGQGTLVTVS SGGGGSGGGGSGGGGS DIQLTQSPSSLSASVG DRVSFTCQASQDINNF LNWYQQKPGKAPKLLI YDASNLETGVPSRFSG SGSGTDFTFTISSLQP EDIATYYCQQYGNLPF TFGGGTKVEIKRAAAL DNEKSNGTIIHVKGKH LCPSPLFPGPSKPFWV LWVGGVLACYSLLVT VAFIIFWVRSKRSRLL HSDYMNMTPRRPGPTR KHYQPYAPPRDFAAYR S RVKFS RSADAPAYQQ GQNQLYNELNLGRREE YDVLDKRRGRDPEMGG KPRRKNPQEGLYNELQ KDKMAEAYSEIGMKGE RRRGKGHDGLYQGLST AT KDTYDALHMQALP P R 190
(CAR2.1) Clone 24C8 THD CAR DNA HxL CAGGTACAGCTGCAGGAATCTGGGCCCGG ACTTGTCAAGCCAAGTCAGACACTTTCTC T T AC AT GT AC C GT GAG C GGC GGAAGT AT A AGCAGTGGAGGCTTTTACTGGTCTTGGAT ACGGCAGCACCCAGGCAAAGGCTTGGAGT GGATTGGATACATTCATCATTCAGGATCT ACACACTATAATCCATCCCTTAAGTCCCG 191 QVQLQESGPGLVKPSQ TLSLTCTVSGGSISSG GFYWSWIRQHPGKGLE WIGYIHHSGSTHYNPS LKS RW ISI DT S KNL F SLRLSSVTAADTAVYY CASLVYCGGDCYSGFD 192
GGTCACCATTAGCATTGATACGTCTAAGA ATCTGTTCAGTCTCAGGCTGTCCTCCGTC ACT GCT GCCGACACAGCCGT GTACTACT G CGCCTCCTTGGTTTACTGCGGAGGCGACT GTTATAGCGGCTTTGATTATTGGGGGCAG GGGACCCTCGTAACCGTGAGCTCTGGAGG GGGTGGGAGCGGGGGAGGAGGTTCAGGGG GGGGCGGCTCCGATATCCAGCTCACTCAA AGCCCCTCTAGTCTCTCTGCCTCAGTGGG GGATCGGGTCAGTTTTACTTGTCAAGCTT CACAGGATATCAACAACTTCCTTAATTGG TATCAGCAGAAGCCAGGAAAAGCACCCAA GCTGCTCATCTATGATGCCTCAAATTTGG AGACGGGTGTTCCCAGTCGATTCTCTGGG TCAGGGTCCGGGACCGACTTTACGTTTAC GATCTCCTCTCTGCAGCCCGAAGACATCG CCACATACTATTGTCAACAGTACGGCAAC TTGCCTTTCACATTTGGGGGCGGGACTAA GGTT GAAAT CAAGAGGGC C GCT GCACT GG AC AAT GAGAAGT C C AAC GG CAC CAT CAT C CACGTGAAGGGCAAGCACCTGTGCCCTAG TCCTCTGTTCCCAGGCCCATCCAAACCTT TTTGGGTTCTTGTTGTGGTCGGGGGGGTG CTGGCCTGCTATTCTCTGCTGGTCACGGT GGCCTTCATAATTTTCTGGGTTAGATCCA AAAGAAGCCGCCTGCTCCATAGCGATTAC ATGAATATGACTCCACGCCGCCCTGGCCC CACAAGGAAACACTACCAGCCTTACGCAC CACCTAGAGATTTCGCTGCCTATCGGAGC AGGGTGAAGTTTTCCAGATCTGCAGATGC ACCAGCGTATCAGCAGGGCCAGAACCAAC TGTATAACGAGCTCAACCTGGGACGCAGG GAAGAGTAT GAC GTT TT GGACAAGC GCAG AGGACGGGACCCTGAGATGGGTGGCAAAC CAAGACGAAAAAACCCCCAGGAGGGTCTC T AT AAT GAGCT GCAGAAGGATAAGAT GGC T GAAGCCTATT CT GAAATAGGCAT GAAAG GAGAGCGGAGAAGGGGAAAAGGGCACGAC GGTTTGTACCAGGGACTCAGCACTGCTAC GAAGGATACTTATGACGCTCTCCACATGC AAGCCCTGCCACCTAGG YWGQGT LVTVS S GGGG SGGGGSGGGGSDIQLT QSPSSLSASVGDRVSF TCQASQDINNFLNWYQ QKPGKAPKLLIYDASN LETGVPSRFSGSGSGT dftftisslqpediat YYCQQYGNLPFTFGGG TKVEIKRAAALDNEKS NGTIIHVKGKHLCPSP LFPGPSKPFWVLVWG GVLACYSLLVTVAFII FWVRSKRSRLLHSDYM NMTPRRPGPTRKHYQP YAPPRDFAAYRSRVKF SRSADAPAYQQGQNQL YNELNLGRREEYDVLD KRRGRD P EMGGK P RRK NPQEGLYNELQKDKMA EAYSEIGMKGERRRGK GHDGLYQGLSTATKDT YDALHMQALPPR
(CAR2.2) Clone 24C8 CHD CAR DNA HxL ATGGCACTCCCCGTAACTGCTCTGCTGCT GCCGTTGGCATTGCTCCTGCACGCCGCAC GCCCGCAGGTGCAGCTGCAGGAAAGCGGT CCGGGACTTGTCAAGCCGTCCCAAACGCT GAGT CT GACGT GTACT GTCTCTGGTGGCT CTATTTCTTCCGGGGGCTTTTATTGGTCT T GGAT CAGACAACACCCT GGCAAAGGGCT GGAGTGGATAGGGTATATTCACCACTCTG GGTCCACTCACTACAACCCATCATTGAAA T C C AGAGT GAC TAT CT CAAT C GACACAT C CAAGAACCTTTTCAGCCTGAGGTTGTCAT CAGTTACCGCCGCTGACACCGCGGTGTAT TATTGCGCCTCTCTCGTGTACTGCGGTGG CGATTGTTATAGTGGCTTTGACTACTGGG GGCAGGGGACATTGGTTACCGTTTCAAGT GGAGGCGGTGGGTCTGGCGGGGGCGGTAG CGGAGGTGGGGGGAGCGACATACAGCTTA CGCAGAGCCCCTCCAGCCTTTCAGCCTCC 193 MALPVTALLLPLALLL HAARPQVQLQESGPGL VKPSQTLSLTCTVSGG SISSGGFYWSWIRQHP GKGLEWIGYIHHSGST HYNPSLKSRVTISIDT SKNLFSLRLSSVTAAD TAVYYCASLVYCGGDC YSGFDYWGQGTLVTVS SGGGGSGGGGSGGGGS DIQLTQSPSSLSASVG DRVSFTCQASQDINNF LNWYQQKPGKAPKLLI YDASNLETGVPSRFSG SGSGTDFTFTISSLQP EDIATYYCQQYGNLPF TFGGGTKVEIKRAAAI EVMYPPPYLDNEKSNG 194
GTGGGGGATAGGGTGTCCTTTACCTGCCA GGCTTCCCAGGACATAAACAACTTCCTCA ATTGGTATCAGCAAAAGCCCGGGAAAGCA CCAAAGCT GCT CAT CTACGAT GCCAGCAA CCTGGAAACCGGAGTGCCGTCTCGCTTCT CTGGAAGTGGCAGTGGGACCGATTTCACT TTTACAATCTCAAGTTTGCAGCCAGAAGA CATT GCAACATACT ACT GT CAACAGTACG GCAATCTCCCCTTTACATTTGGGGGGGGA ACTAAAGTGGAGATTAAGCGCGCTGCAGC CATTGAAGTTATGTATCCGCCCCCGTATC TGGATAACGAGAAATCTAATGGTACCATA AT ACATGTGAAGGGGAAGCACCTCTGTCC ATCACCGCTGTTCCCCGGCCCTTCAAAAC CTTTCTGGGTACTCGTTGTCGTGGGTGGA GTTCTGGCCTGCTATAGTCTGCTGGTGAC CGTGGCGTTTATCATCTTCTGGGTAAGAT CCAAAAGAAGCCGCCTGCTCCATAGCGAT TACATGAATATGACTCCACGCCGCCCTGG CCCCACAAGGAAACACTACCAGCCTTACG CACCACCTAGAGATTTCGCTGCCTATCGG AGCAGGGTGAAGTTTTCCAGATCTGCAGA TGCACCAGCGTATCAGCAGGGCCAGAACC AACTGTATAACGAGCTCAACCTGGGACGC AGGGAAGAGTATGACGTTTTGGACAAGCG CAGAGGAC GGGACCCT GAGAT GGGT GGCA AACCAAGACGAAAAAACCCCCAGGAGGGT CT CTATAAT GAGCT GCAGAAGGATAAGAT GGCT GAAGCCTATT CT GAAATAGGCAT GA AAGGAGAGC GGAGAAGGGGAAAAGGGCAC GACGGTTTGTACCAGGGACTCAGCACTGC TACGAAGGATACTTATGACGCTCTCCACA TGCAAGCCCTGCCACCTAGGTAA TIIHVKGKHLCPSPLF PGPSKPFWVLVWGGV LACYSLLVTVAFIIFW VRSKRSRLLHSDYMNM TPRRPGPTRKHYQPYA PPRDFAAYRSRVKFSR SADAPAYQQGQNQLYN ELNLGRREEYDVLDKR RGRDPEMGGKPRRKNP QEGLYNELQKDKMAEA YSEIGMKGERRRGKGH DGLYQGLSTATKDTYD ALHMQALPPR
(CAR2.2) Clone 24C8 CHD CAR DNA HxL CAGGTGCAGCTGCAGGAAAGCGGTCCGGG ACTTGTCAAGCCGTCCCAAACGCTGAGTC TGACGTGTACTGTCTCTGGTGGCTCTATT TCTTCCGGGGGCTTTTATTGGTCTTGGAT CAGACAACACCCT GGCAAAGGGCT GGAGT GGATAGGGTATATTCACCACTCTGGGTCC ACTCACTACAACCCATCATTGAAATCCAG AGT GACTAT CT CAAT CGACACAT CCAAGA ACCTTTTCAGCCTGAGGTTGTCATCAGTT ACCGCCGCTGACACCGCGGTGTATTATTG CGCCTCTCTCGTGTACTGCGGTGGCGATT GTTATAGTGGCTTTGACTACTGGGGGCAG GGGACATTGGTTACCGTTTCAAGTGGAGG CGGTGGGTCTGGCGGGGGCGGTAGCGGAG GTGGGGGGAGCGACATACAGCTTACGCAG AGCCCCTCCAGCCTTTCAGCCTCCGTGGG GGATAGGGTGTCCTTTACCTGCCAGGCTT CCCAGGACATAAACAACTTCCTCAATTGG TATCAGCAAAAGCCCGGGAAAGCACCAAA GCTGCTCATCTACGATGCCAGCAACCTGG AAACCGGAGTGCCGTCTCGCTTCTCTGGA AGTGGCAGTGGGACCGATTTCACTTTTAC AATCTCAAGTTTGCAGCCAGAAGACATTG CAACATACTACTGTCAACAGTACGGCAAT CTCCCCTTTACATTTGGGGGGGGAACTAA AGTGGAGATTAAGCGCGCTGCAGCCATTG 195 QVQLQESGPGLVKPSQ TLSLTCTVSGGSISSG GFYWSWIRQHPGKGLE WIGYIHHSGSTHYNPS LKSR VTISIDTSKNLF SLRLSSVTAADTAVYY CASLVYCGGDCYSGFD YWGQGTLVTVSSGGGG SGGGGSGGGGSDIQLT QSPSSLSASVGDRVSF T CQAS QDINNFLNWYQ QKPGKAPKLLIYDASN LETGVPSRFSGSGSGT DFTFTISSLQPEDIAT YYCQQYGNLP FT FGGG T KVEIKRAAAIEVMYP PPYLDNEKSNGTIIHV KGKHLCPSPLFPGPSK P FWVLVVVGGVLACYS LLVTVAFIIFWVRSKR SRLLHSDYMNMTPRRP GPTRKHYQPYAPPRDF AAYRSRVKFSRSADAP AYQQGQNQLYNELNLG RREEYDVLDKRRGRDP EMGGKPRRKNPQEGLY 196
AAGTTATGTATCCGCCCCCGTATCTGGAT AACGAGAAATCTAATGGTACCATAATACA T GT GAAGGGGAAGCACCTCTGTCCATCAC CGCTGTTCCCCGGCCCTTCAAAACCTTTC TGGGTACTCGTTGTCGTGGGTGGAGTTCT GGCCTGCTATAGTCTGCTGGTGACCGTGG CGTTTATCATCTTCTGGGTAAGATCCAAA AGAAGCCGCCTGCTCCATAGCGATTACAT GAATATGACTCCACGCCGCCCTGGCCCCA CAAGGAAACACTACCAGCCTTACGCACCA CCTAGAGATTTCGCTGCCTATCGGAGCAG GGTGAAGTTTTCCAGATCTGCAGATGCAC CAGCGTATCAGCAGGGCCAGAACCAACTG TATAACGAGCTCAACCTGGGACGCAGGGA AGAGTATGACGTTTTGGACAAGCGCAGAG GACGGGACCCTGAGATGGGTGGCAAACCA AGACGAAAAAACCCCCAGGAGGGTCTCTA TAATGAGCTGCAGAAGGATAAGATGGCTG AAGCCTATTCTGAAATAGGCATGAAAGGA GAGCGGAGAAGGGGAAAAGGGCACGACGG TTTGTACCAGGGACTCAGCACTGCTACGA AGGATACTTATGACGCTCTCCACATGCAA GCCCTGCCACCTAGG NELQKDKMAEAYSElG MKGERRRGKGHDGLYQ GLSTATKDTYDALHMQ ALPPR
(CAR2.3) Clone 24C8 CD 8 CAR DNA HxL ATGGCACTCCCCGTAACTGCTCTGCTGCT GCCGTTGGCATTGCTCCTGCACGCCGCAC GCCCGCAGGTGCAGTTGCAGGAAAGCGGG CCTGGCCTTGTGAAACCAAGCCAGACACT GAGCCTGACATGCACTGTGTCCGGCGGGT CCATATCTTCCGGGGGTTTTTATTGGTCC TGGATACGCCAGCATCCCGGGAAAGGACT T GAAT G GAT T G GATATAT C CAC CAT T C C G GAAGCACCCACTACAATCCAAGCCTTAAA TCCCGGGTGACAATCTCCATCGACACCTC AAAGAATCTTTTTTCCCTGCGGTTGTCTT CAGTAACTGCCGCCGATACCGCTGTGTAC TACTGTGCCAGCCTCGTCTATTGCGGCGG AGATTGTTATTCTGGGTTCGATTATTGGG GT CAAGGCACACT GGTAACT GTCAGCAGC GGAGGCGGCGGTTCCGGGGGCGGGGGCAG T GGAGGGGGCGGAT CT GACATT CAGCTTA CGCAGTCCCCATCTTCACTTAGCGCCAGC GTTGGCGATCGGGTCAGCTTCACGTGTCA AGCAAGTCAGGATATCAACAACTTTCTTA ACTGGTACCAGCAGAAGCCAGGCAAGGCA CCCAAGTTGCTGATTTACGATGCTTCTAA CCTCGAGACGGGAGTGCCTAGCCGCTTCT CCGGGAGCGGCAGCGGCACAGACTTTACC TTTACGATTTCCAGTCTGCAGCCAGAGGA TATAGCAACTTATTACTGTCAGCAGTATG GCAACCTCCCTTTTACCTTCGGTGGTGGC ACAAAGGTCGAGATTAAAAGAGCCGCAGC GTTGTCCAACTCCATAATGTATTTTTCTC ATTTTGTGCCCGTCTTTCTGCCTGCCAAA CCTACCACCACCCCCGCCCCACGACCACC TACTCCAGCCCCCACCATCGCCTCCCAGC CCCTCAGCCTGAGGCCAGAGGCTTGTCGC CCTGCTGCGGGGGGCGCTGTCCATACCAG AGGACTCGACTTCGCCTGCGATATTTATA TATGGGCCCCCCTCGCCGGCACCTGCGGA 197 MALPVTALLLPLALLL HAARPQVQLQESGPGL VKPSQTLSLTCTVSGG SISSGGFYWSWIRQHP GKGLEWIGYIHHSGST HYNPSLKSRVTISIDT SKNLFSLRLSSVTAAD TAVYYCASLVYCGGDC YSGFDYWGQGTLVTVS SGGGGSGGGGSGGGGS DIQLTQSPSSLSASVG DRVSFTCQASQDINNF LNWYQQKPGKAPKLLI YDASNLETGVPSRFSG SGSGTDFTFTISSLQP EDIATYYCQQYGNLPF T FGGGT KVEIKRAAAL SNSIMYFSHFVPVFLP AKPTTTPAPRPPTPAP TIASQPLSLRPEACRP AAGGAVHTRGLD FACD IYIWAPLAGTCGVLLL SLVITLYCNHRNRSKR SRLLHSDYMNMTPRRP GPTRKHYQPYAPPRDF AAYRSRVKFSRSADAP AYQQGQNQLYNELNLG RREEYDVLDKRRGRDP EMGGKPRRKNPQEGLY NELQKDKMAEAYSEIG MKGERRRGKGHDGLYQ GLSTATKDTYDALHMQ ALPPR 198
GTCTTGCTCCTGAGCCTTGTGATCACGCT TTATTGTAACCATCGGAATAGATCCAAAA GAAGCCGCCTGCTCCATAGCGATTACATG AATATGACTCCACGCCGCCCTGGCCCCAC AAGGAAACACTACCAGCCTTACGCACCAC CTAGAGATTTCGCTGCCTATCGGAGCAGG GTGAAGTTTTCCAGATCTGCAGATGCACC AGC GTAT CAGCAGGGCCAGAACCAACTGT ATAACGAGCTCAACCTGGGACGCAGGGAA GAGTATGACGTTTTGGACAAGCGCAGAGG ACGGGACCCTGAGATGGGTGGCAAACCAA GACGAAAAAACCCCCAGGAGGGTCTCTAT AAT GAGCT GCAGAAGGATAAGAT GGCT GA AGCCTATTCTGAAATAGGCATGAAAGGAG AGCGGAGAAGGGGAAAAGGGCACGACGGT TTGTACCAGGGACT CAGCACT GCTACGAA GGATACTTAT GAC GCT CT C CACAT GCAAG CCCTGCCACCTAGGTAA
(CAR2.3) Clone 24C8 CD8 CAR DNA HxL CAGGTGCAGTTGCAGGAAAGCGGGCCTGG CCTTGTGAAACCAAGCCAGACACTGAGCC TGACATGCACTGTGTCCGGCGGGTCCATA TCTTCCGGGGGTTTTTATTGGTCCTGGAT ACGCCAGCATCCCGGGAAAGGACTTGAAT GGATTGGATATATCCACCATTCCGGAAGC ACCCACTACAATCCAAGCCTTAAATCCCG GGT GACAAT CT C CAT C GACACCT CAAAGA ATCTTTTTTCCCTGCGGTTGTCTTCAGTA ACTGCCGCCGATACCGCTGTGTACTACTG TGCCAGCCTCGTCTATTGCGGCGGAGATT GTTATTCTGGGTTCGATTATTGGGGTCAA GGCACACTGGTAACTGTCAGCAGCGGAGG CGGCGGTTCCGGGGGCGGGGGCAGTGGAG GGGGCGGATCTGACATTCAGCTTACGCAG TCCCCATCTTCACTTAGCGCCAGCGTTGG CGATCGGGTCAGCTTCACGTGTCAAGCAA GTCAGGATATCAACAACTTTCTTAACTGG TACCAGCAGAAGCCAGGCAAGGCACCCAA GTTGCTGATTTACGATGCTTCTAACCTCG AGACGGGAGTGCCTAGCCGCTTCTCCGGG AGCGGCAGCGGCACAGACTTTACCTTTAC GATTTCCAGTCTGCAGCCAGAGGATATAG CAACT TATTACT GT CAGCAGTAT GGCAAC CTCCCTTTTACCTTCGGTGGTGGCACAAA GGTCGAGATTAAAAGAGCCGCAGCGTTGT CCAACTCCATAATGTATTTTTCTCATTTT GTGCCCGTCTTTCTGCCTGCCAAACCTAC CACCACCCCCGCCCCACGACCACCTACTC CAGCCCCCACCATCGCCTCCCAGCCCCTC AGCCTGAGGCCAGAGGCTTGTCGCCCTGC TGCGGGGGGCGCTGTCCATACCAGAGGAC TCGACTTCGCCTGCGATATTTATATATGG GCCCCCCTCGCCGGCACCTGCGGAGTCTT GCTCCTGAGCCTTGTGATCACGCTTTATT GTAACCATCGGAATAGATCCAAAAGAAGC CGCCTGCTCCATAGCGATTACATGAATAT GACTCCACGCCGCCCTGGCCCCACAAGGA AACACTACCAGCCTTACGCACCACCTAGA GATTTCGCTGCCTATCGGAGCAGGGTGAA GTTTTCCAGATCTGCAGATGCACCAGCGT 199 QVQLQESGPGLVKPSQ TLSLTCTVSGGSISSG GFYWSWIRQHPGKGLE WIGYIHHSGSTHYNPS LKSRVTISIDTSKNLF SLRLSSVTAADTAVYY CASLVYCGGDCYSGFD YWGQGTLVTVSSGGGG SGGGGSGGGGSDIQLT QSPSSLSASVGDRVSF TCQASQDINNFLNWYQ QKPGKAPKLLIYDASN LETGVPSRFSGSGSGT dftftisslqpediat YYCQQYGNL P FT FGGG TKVEIKRAAALSNSIM YFSHFVPVFLPAKPTT T PAP RP P T PAPTI AS Q PLSLRPEACRPAAGGA VHTRGLDFACDIYIWA PLAGTCGVLLLSLVIT LYCNHRNRS KRS RLLH SDYMNMTPRRPGPTRK HYQ PYAP P RD FAAYRS RVKFSRSADAPAYQQG QNQLYNELNLGRREEY DVLDKRRGRDPEMGGK PRRKNPQEGLYNELQK DKMAEAYSEIGMKGER RRGKGHDGLYQGLSTA TKDTYDALHMQALPPR 200
ATCAGCAGGGCCAGAACCAACTGTATARC GAGCT CAAC CTGGGACGCAGGGAAGAGTA TGACGTTTTGGACAAGCGCAGAGGACGGG ACCCTGAGATGGGTGGCAAACCAAGACGA YAAAACCCCCAGGAGGGTCTCTATAATGA GCT GCAGAAGGATAAGAT GGCT GAAGCCT ATTCTGAAATAGGCATGAAAGGAGAGCGG AGAAGGGGAAAAGGGCACGACGGTTTGTA CCAGGGACT CAGCACT GCTAC GAAGGATA CTTATGACGCTCTCCACATGCAAGCCCTG CCACCTAGG
(CAR3.1) Clone 20C5.1 THD CAR DNA HxL ATGGCACTCCCCGTAACTGCTCTGCTGCT GCCGTTGGCATTGCTCCTGCACGCCGCAC GCCCGCAGGTCCAACTGGTGCAGTCCGGA GCCGAAGTCAAGAAACCAGGTGCCTCCGT TAAAGTGAGTTGCAAAGTCTCTGGATACA CTCTGACCGAGCTCTCTATGCACTGGGTC CGGCAGGCCCCCGGCAAGGGATTGGAATG GATGGGCGGGTTCGATCCTGAGGACGGAG AGACTATCTACGCTCAAAAATTCCAGGGA CGAGTGACTGTGACCGAAGACACTAGTAC CGACACTGCCTACATGGAACTTTCCTCTC T GC GAT CAGAAGATAC C GCAGT GTACTAC TGTGCTACTGAATCTAGGGGCATTGGATG GCCCTACTTCGATTACTGGGGTCAGGGAA CTCTGGTGACTGTCTCCAGCGGTGGAGGT GGCAGCGGTGGTGGCGGAAGCGGGGGGGG CGGCTCTGATATTCAGATGACTCAATCTC CTTCTTCTCTGTCCGCTTCCGTGGGCGAT AGAGTGACCATTACTTGTAGGGCGTCCCA GTCAATCTCCAGTTATTTGAATTGGTATC AGCAGAAGC CC GGGAAAGCAC CTAAGCT G TT GAT CAGC GGGGCTT CTAGCCT GAAGAG TGGGGTACCTTCACGGTTCAGCGGAAGCG GAAGCGGAACCGATTTCACCCTGACTATC AGCAGC CT GCCACCT GAGGACTTT GCAAC TTACTACTGCCAACAGTCATACAGCACTC CGATCACTTTCGGCCAGGGCACCCGGCTC GAAATCAAGCGCGCTGCTGCTTTGGACAA TGAGAAGTCAAACGGCACCATCATACATG TTAAAGGTAAACATCTGTGTCCCTCCCCG CTGTTCCCCGGCCCTTCCAAACCGTTCTG GGTTCTGGTGGTGGTCGGAGGCGTACTCG CTTGCTATAGTCTGCTGGTAACTGTCGCC TTCATCATCTTTTGGGTGAGATCCAAAAG AAGC CGCCTGCTC CATAGC GATTACAT GA ATATGACTCCACGCCGCCCTGGCCCCACA AGGAAACACTACCAGCCTTACGCACCACC TAGAGATTTCGCTGCCTATCGGAGCAGGG TGAAGTTTTCCAGATCTGCAGATGCACCA GCGTATCAGCAGGGCCAGAACCAACTGTA TAACGAGCTCAACCTGGGACGCAGGGAAG AGTAT GAC GT T TT GGACAAGCGCAGAGGA CGGGACCCTGAGATGGGTGGCAAACCAAG A.CGAAAAAACCCCCAGGAGGGTCTCTATA AT GAGCT GCAGAAGGATAAGAT GGCT GAA GCCTATTCTGAAATAGGCATGAAAGGAGA GCGGAGAAGGGGAAAAGGGCACGACGGTT TGTACCAGGGACTCAGCACTGCTACGAAG 201 MALPVTALLLPLALLL HAARPQVQLVQS GAEV KKPGAS VKVS CKVS GY TLTELSMHWVRQAPGK GLEWMGGFDPEDGETI YAQKFQGRVTVTEDTS TDTAYMELSSLRSEDT AVYYCATESRGIGWPY FDYWGQGTLVTVS SGG GGSGGGGSGGGGSDIQ MTQSPSSLSASVGDRV TITCRASQSISSYLNW YQQKPGKAPKLLISGA SSLKSGVPSRFSGSGS GTDFTLTISSLPPEDF ATYYCQQSYSTPITFG QGTRLEIKRAAALDNE KSNGTIIHVKGKHLCP SPLFPGPSKPFWVLVV VGGVLACYS LLVTVAF IIFWVRSKRSRLLHSD YMNMTPRRPGPTRKHY QPYAPPRDFAAYRSRV KFS RSADAPAYQQGQN QLYNELNLGRREEYDV LDKRRGRDPEMGGKPR RKNPQEGLYNELQKDK MAEAY S EIGMKGERRR GKGHDGLYQGLSTATK DTYDALHMQALP PR 202
GATACTTATGACGCTCTCCACATGCAAGC CCTGCCACCTAGGTAA
(CAR3.1 ) Clone 20C5.1 THD CAR DNA HxL CAGGTCCAACTGGTGCAGTCCGGAGCCGA AGTCAAGAAACCAGGTGCCTCCGTTAAAG T GAGTT GCAAAGT CT CT GGATACACT CTG ACCGAGCTCTCTATGCACTGGGTCCGGCA GGCCCCCGGCAAGGGATTGGAATGGATGG GCGGGTTCGATCCTGAGGACGGAGAGACT ATCTACGCTCAAAAATTCCAGGGACGAGT GACTGTGACCGAAGACACTAGTACCGACA CTGCCTACATGGAACTTTCCTCTCTGCGA T CAGAAGATAC CGCAGT GTACTACT GT GC TACTGAATCTAGGGGCATTGGATGGCCCT ACTTCGATTACTGGGGTCAGGGAACTCTG GT GACT GT CT C CAGCGGT GGAGGT GGCAG CGGTGGTGGCGGAAGCGGGGGGGGCGGCT CT GATATT CAGAT GACT CAAT CTCCTTCT TCTCTGTCCGCTTCCGTGGGCGATAGAGT GACCATTACTTGTAGGGCGTCCCAGTCAA TCTCCAGTTATTTGAATTGGTATCAGCAG AAGCCCGGGAAAGCACCTAAGCTGTTGAT CAGCGGGGCTTCTAGCCTGAAGAGTGGGG TACCTTCACGGTTCAGCGGAAGCGGAAGC GGAACCGATTTCACCCTGACTATCAGCAG CCTGCCACCTGAGGACTTTGCAACTTACT ACTGCCAACAGTCATACAGCACTCCGATC ACTTTCGGCCAGGGCACCCGGCTCGAAAT CAAGCGCGCTGCTGCTTTGGACAATGAGA AGTCAAACGGCACCATCATACATGTTAAA GGTAAACATCTGTGTCCCTCCCCGCTGTT CCCCGGCCCTTCCAAACCGTTCTGGGTTC TGGTGGTGGTCGGAGGCGTACTCGCTTGC TATAGTCTGCTGGTAACTGTCGCCTTCAT CATCTTTTGGGTGAGATCCAAAAGAAGCC GCCT GCT CCATAGC GATTACAT GAATAT G ACTCCACGCCGCCCTGGCCCCACAAGGAA ACACTAC CAGC CT TACGCAC CAC CTAGAG ATTTCGCTGCCTATCGGAGCAGGGTGAAG TTTTCCAGATCTGCAGATGCACCAGCGTA TCAGCAGGGCCAGAACCAACTGTATAACG AGCTCAACCTGGGACGCAGGGAAGAGTAT GACGTTTTGGACAAGCGCAGAGGACGGGA CCCTGAGATGGGTGGCAAACCAAGACGAA AAAACCCCCAGGAGGGTCTCTATAATGAG CTGCAGAAGGATAAGATGGCTGAAGCCTA TTCTGAAATAGGCATGAAAGGAGAGCGGA GAAGGGGAAAAGGGCACGACGGTTTGTAC CAGGGACTCAGCACTGCTACGAAGGATAC TTATGACGCTCTCCACATGCAAGCCCTGC CACCTAGG 203 Q VQLVQ S GAEVKKP GA SVKVSCKVSGYTLTEL SMHWVRQAPGKGLEWM GGFDPEDGETIYAQKF QGRVTVTEDTSTDTAY MELSSLRSEDTAVYYC ATESRGIGWPYFDYWG QGTLVTVSSGGGGSGG GGSGGGGSDIQMTQSP SSLSASVGDRVTITCR ASQSISSYLNWYQQKP GKAPKLLISGASSLKS GVPSRFSGSGSGTDFT LTISSLPPEDFATYYC QQSYSTPITFGQGTRL ElKRAAALDNEKSNGT IIHVKGKHLCPSPLFP GP S KP FWVLVWGGVL ACYSLLVTVAFIIFWV RSKRSRLLHSDYMNMT PRRPGPTRKHYQPYAP PRDFAAYRSRVKFSRS ADAPAYQQGQNQLYNE LNLGRREEYDVLDKRR GRDPEMGGKPRRKNPQ EGLYNELQKDKMAEAY SEIGMKGERRRGKGHD GLYQGLSTATKDTYDA LHMQALPPR 204
(CAR3.2) Clone 20C5.1 CHD CAR DNA HxL ATGGCACTCCCCGTAACTGCTCTGCTGCT GCCGTTGGCATTGCTCCTGCACGCCGCAC GCCCGCAGGTGCAGCTTGTGCAGAGCGGG GCCGAGGTGAAGAAGCCCGGGGCCAGCGT CAAAGTGTCCTGTAAGGTCAGCGGTTACA CCCTCACCGAGCTGAGCATGCACTGGGTA CGGCAGGCTCCCGGCAAAGGTCTTGAGTG GATGGGTGGATTTGATCCAGAAGATGGAG AGACTATCTACGCCCAGAAGTTCCAGGGC 205 MALPVTALLLP LALLL HAARPQVQLVQSGAEV KKPGASVKVSCKVSGY TLTELSMHWVRQAPGK GLEWMGGFDPEDGETI YAQKFQGRVTVTEDTS TDTAYMELSSLRSEDT AVYYCATESRGIGWPY FDYWGQGTLVTVSSGG 206
CGGGTCACCGTAACAGAAGACACCTCAAC TGACACCGCTTACATGGAGCTGAGTTCAC TGCGGTCCGAGGACACGGCCGTGTATTAT TGTGCCACCGAGAGCCGCGGAATCGGATG GCCTTACTTCGACTACTGGGGACAGGGTA CACTTGTTACAGTATCATCCGGGGGTGGC GGCTCTGGTGGGGGCGGCTCCGGAGGGGG T GGAT CAGATAT CCAAAT GACT CAAAGT C CAAGTT CC CT GT CT GC CT CAGT CGGAGAT AGAGT CAC CATAACCT GCAGGGCAAGTCA GTCCATCTCCTCCTATCTGAACTGGTACC AACAGAAACCTGGAAAGGCGCCTAAGCTC CT GAT CT C C GGAGCCT CAT CTTT GAAAT C CGGTGTCCCATCTCGCTTCAGTGGCTCTG GAAGCGGTACAGATTTTACTTTGACCATT AGCAGCCTCCCACCGGAAGACTTTGCTAC ATATTACT GCCAGCAGT CTTACT CAACCC CAATCACCTTCGGGCAAGGCACCAGACTC GAAATAAAAAGAGCAGCTGCTATCGAGGT TATGTACCCACCGCCGTACTTGGATAACG AAAAAAGCAATGGGACCATCATTCATGTG AAGGGTAAGCACCTTTGCCCTAGCCCACT GTTTCCTGGCCCGAGTAAACCCTTTTGGG TACTTGTGGTCGTCGGCGGCGTGCTGGCC TGCTACTCACTCCTGGTTACCGTCGCATT CAT CAT CTTTTGGGT GAGAT CCAAAAGAA GCCGCCTGCTCCATAGCGATTACATGAAT ATGACTCCACGCCGCCCTGGCCCCACAAG GAAACACTACCAGCCTTACGCACCACCTA GAGATTTCGCTGCCTATCGGAGCAGGGTG AAGTTTTCCAGATCTGCAGATGCACCAGC GTAT CAGCAGGGCCAGAAC CAACT GTATA ACGAGCTCAACCTGGGACGCAGGGAAGAG TATGACGTTTTGGACAAGCGCAGAGGACG GGACCCTGAGATGGGTGGCAAACCAAGAC GAAAAAACCCCCAGGAGGGTCTCTATAAT GAGCT GCAGAAGGATAAGAT GGCT GAAGC CTAT T CT GAAATAGGCAT GAAAGGAGAGC GGAGAAGGGGAAAAGGGCACGACGGTTTG TACCAGGGACTCAGCACTGCTACGAAGGA TACTTATGACGCTCTCCACATGCAAGCCC TGCCACCTAGGTAA GGSGGGGSGGGGSDIQ MTQS P S S L SASVGDRV TITCRASQSISSYLNW YQQKPGKAPKLLISGA SSLKSGVPSRFSGSGS GTDFTLTISSLPPEDF ATYYCQQSYSTPITFG QGTRLElKRAAAIEVM YPPPYLDNEKSNGTII HVKGKHLCPSPLFPGP S KP FWVLVWGGVLAC YSLLVTVAFIIFWVRS KRS RLLH S DYMNMTP R RPGPTRKHYQPYAPPR D FAAYRS RVKF S RS AD APAYQQGQNQLYNELN LGRREEYDVLDKRRGR DPEMGGKPRRKNPQEG LYNELQKDKMAEAYSE IGMKGERRRGKGHDGL YQGLSTATKDTYDALH MQALPPR
(CAR3.2) Clone 20C5.1 CHD CAR DNA HxL CAGGTGCAGCTTGTGCAGAGCGGGGCCGA GGTGAAGAAGCCCGGGGCCAGCGTCAAAG TGTCCTGTAAGGTCAGCGGTTACACCCTC ACCGAGCTGAGCATGCACTGGGTACGGCA GGCTCCCGGCAAAGGTCTTGAGTGGATGG GTGGATTTGATCCAGAAGATGGAGAGACT ATCTACGCCCAGAAGTTCCAGGGCCGGGT CACCGTAACAGAAGACACCTCAACTGACA CCGCTTACATGGAGCTGAGTTCACTGCGG TCCGAGGACACGGCCGTGTATTATTGTGC CACCGAGAGCCGCGGAATCGGATGGCCTT ACTTCGACTACTGGGGACAGGGTACACTT GTTACAGTATCATCCGGGGGTGGCGGCTC TGGTGGGGGCGGCTCCGGAGGGGGTGGAT CAGATATCCAAATGACTCAAAGTCCAAGT TCCCTGTCTGCCTCAGTCGGAGATAGAGT CACCATAACCTGCAGGGCAAGTCAGTCCA 207 QVQLVQSGAEVKKPGA SVKVSCKVSGYTLTEL SMHWVRQAPGKGLEWM GGFDPEDGETIYAQKF QGRVTVTEDTSTDTAY MELSSLRSEDTAVYYC ATESRGIGWPYFDYWG QGTLVTVSSGGGGSGG GGSGGGGSDIQMTQSP SSLSASVGDRVTITCR AS Q SIS S YLNWYQQ KP GKAPKLLISGASSLKS GVPSRFSGSGSGTDFT LTISSLPPEDFATYYC QQSYSTPITFGQGTRL EIKRAAAIEVMYPPPY LDNEKSNGTIIHVKGK 208
T CT CCT CCTAT CT GAACTGGTACCAACAG AAACCTGGAAAGGCGCCTAAGCTCCTGAT CTCCGGAGCCTCATCTTTGAAATCCGGTG TCCCATCTCGCTTCAGTGGCTCTGGAAGC GGTACAGATTTTACTTTGACCATTAGCAG CCTCCCACCGGAAGACTTTGCTACATATT ACTGCCAGCAGTCTTACTCAACCCCAATC ACCTTCGGGCAAGGCACCAGACTCGAAAT AAAAAGAGCAGCTGCTATCGAGGTTATGT ACCCACCGCCGTACTTGGATAACGAAAAA AGCAAT G GGAC CAT CAT T CAT GT GAAGGG TAAGCACCTTTGCCCTAGCCCACTGTTTC CTGGCCCGAGTAAACCCTTTTGGGTACTT GTGGTCGTCGGCGGCGTGCTGGCCTGCTA CTCACTCCTGGTTACCGTCGCATTCATCA TCTTTTGGGTGAGATCCAAAAGAAGCCGC CTGCTCCATAGCGATTACATGAATATGAC TCCACGCCGCCCTGGCCCCACAAGGAAAC ACTACCAGCCTTACGCACCACCTAGAGAT TTCGCTGCCTATCGGAGCAGGGTGAAGTT TTCCAGATCTGCAGATGCACCAGCGTATC AGCAGGGCCAGAACCAACTGTATAACGAG CT CAACCT GGGACGCAGGGAAGAGTAT GA CGTTTTGGACAAGCGCAGAGGACGGGACC CT GAGAT GGGTGGCAAACCAAGACGAAAA AACCCCCAGGAGGGTCTCTATAATGAGCT GCAGAAGGATAAGAT GGCT GAAGC CTATT CTGAAATAGGCATGAAAGGAGAGCGGAGA AGGGGAAAAGGGCAC GACGGTTT GTAC CA GGGACTCAGCACTGCTACGAAGGATACTT ATGACGCTCTCCACATGCAAGCCCTGCCA CCTAGG HLCPSPLFPGPSKPFW VLWVGGVLACYSLLV TVAFIIFWVRSKRSRL LHSDYMNMTPRRPGPT RKHYQPYAPPRDFAAY RS RVKFS RSADAPAYQ QGQNQLYNELNLGRRE EYDVLDKRRGRDPEMG GKPRRKNPQEGLYNEL QKDKMAEAYSEIGMKG ERRRGKGHDGLYQGLS TATKDTYDALHMQALP PR
(CAR3.3) Clone 20C5.1 CD8 CAR DNA HxL ATGGCACTCCCCGTAACTGCTCTGCTGCT GCCGTTGGCATTGCTCCTGCACGCCGCAC GCCCGCAGGTGCAGTTGGTGCAAAGCGGC GCAGAAGTTAAGAAACCT GGGGCGT CAGT TAAGGT GT CTT GCAAAGTATCTGGCTATA CCCTCACTGAGCTGTCCATGCATTGGGTA AGGCAGGCTCCTGGAAAGGGGCTCGAATG GATGGGAGGATTTGACCCTGAAGACGGAG AGACCAT CTACGCCCAGAAATTCCAGGGT AGAGTAACAGT GACT GAGGACACTAGCAC T GACACAGCGTACAT GGAGCT GAGTT CT C TGAGAAGTGAGGACACAGCCGTTTACTAC TGCGCTACCGAGTCCAGAGGTATTGGCTG GCCATACTTCGACTATTGGGGTCAGGGCA CCCT GGT TACAGT GAGT T CAGGAGGC GGG GGCTCTGGGGGGGGCGGTTCCGGAGGGGG GGGCT CAGATAT ACAGAT GACGCAGAGT C CATCAAGTCTCTCAGCCAGCGTGGGAGAT CGCGTGACTATTACTTGCCGCGCCAGCCA GAGTATTAGCTCCTATCTGAATTGGTACC AGCAAAAGCCCGGGAAGGCCCCTAAGCTT CTGATTTCTGGCGCCTCCTCTTTGAAGTC AGGTGTGCCAAGCAGATTTAGCGGGTCTG GAAGTGGCACTGACTTTACACTTACTATC TCCAGCCTGCCCCCAGAGGATTTTGCCAC ATATTACTGTCAGCAAAGCTACTCTACTC I CAATCACTTTCGGCCAGGGCACAAGATTG 209 MALPVTALLLPLALLL HAARPQVQLVQSGAEV KKPGASVKVSCKVSGY TLTELSMHWVRQAPGK GLEWMGGFDPEDGETI YAQKFQGRVTVTEDTS TDTAYMELSSLRSEDT AVYYCATESRGIGWPY FDYWGQGTLVTVSSGG GGSGGGGSGGGGSDIQ MTQSPSSLSASVGDRV TITCRASQSISSYLNW YQQKPGKAPKLLISGA SSLKSGVPSRFSGSGS GTDFTLTISSLPPEDF ATYYCQQSYSTPITFG QGTRLEIKRAAALSNS IMYFSHFVPVFLPAKP TTTPAPRPPTPAPTIA SQPLSLRPEACRPAAG GAVHT RGLD FACDIYI WAPLAGTCGVLLLSLV ITLYCNHRNRSKRSRL LHSDYMNMTPRRPGPT RKHYQ P YAP P RD FAAY RS RVKFS RSADAPAYQ QGQNQLYNELNLGRRE 210
GAGATTAAGAGGGCTGCCGCACTTTCAAA TTCCATCATGTATTTCAGCCATTTTGTGC CTGTTTTTCTTCCGGCCAAACCTACAACC ACTCCCGCCCCACGCCCACCTACTCCCGC CCCTACCATTGCCTCCCAGCCTCTGTCTC TTAGACCTGAGGCTTGTAGACCTGCTGCC GGCGGAGCCGTGCACACTCGCGGTCTGGA CTTCGCCTGCGACATCTATATCTGGGCCC CTCTGGCCGGCACCTGCGGCGTTCTCCTT CTCTCACTCGTAATCACACTCTATTGCAA T CACAG GAACAGAT C CAAAAGAAGC C GC C TGCTCCATAGCGATTACATGAATATGACT CCACGCCGCCCTGGCCCCACAAGGAAACA CTACCAGCCTTACGCACCACCTAGAGATT TCGCTGCCTATCGGAGCAGGGTGAAGTTT T CCAGAT CT GCAGAT GCAC CAGCGTAT CA GCAGGGCCAGAACCAACTGTATAACGAGC TCAACCTGGGACGCAGGGAAGAGTATGAC GTTTTGGACAAGCGCAGAGGACGGGACCC T GAGAT GGGT GGCAAACCAAGACGAAAAA ACCCCCAGGAGGGTCTCTATAATGAGCTG CAGAAGGATAAGAT GGCT GAAGCCTATTC T GAAAT AGGCAT GAAAGGAGAGC GGAGAA GGGGAAAAGGGCACGACGGTTT GTACCAG GGACTCAGCACTGCTACGAAGGATACTTA TGACGCTCTCCACATGCAAGCCCTGCCAC CTAGGTAA EYDVLDKRRGRDPEMG GKPRRKNPQEGLYNEL QKDKMAEAYSEIGMKG ERRRGKGHDGLYQGLS T AT KDTYDALHMQALP PR
(CAR3.3 ) Clone 20C5.1 CD8 CAR DNA HxL CAGGTGCAGTTGGTGCAAAGCGGCGCAGA AGTTAAGAAACCTGGGGCGTCAGTTAAGG TGTCTTGCAAAGTATCTGGCTATACCCTC ACTGAGCTGTCCATGCATTGGGTAAGGCA GGCTCCTGGAAAGGGGCTCGAATGGATGG GAGGATTTGACCCTGAAGACGGAGAGACC ATCTACGCCCAGAAATTCCAGGGTAGAGT AACAGTGACTGAGGACACTAGCACTGACA CAGCGTACAT GGAGCT GAGTT CT CT GAGA AGTGAGGACACAGCCGTTTACTACTGCGC TACCGAGTCCAGAGGTATTGGCTGGCCAT ACTTCGACTATTGGGGTCAGGGCACCCTG GTTACAGTGAGTTCAGGAGGCGGGGGCTC TGGGGGGGGCGGTTCCGGAGGGGGGGGCT CAGATATACAGATGACGCAGAGTCCATCA AGTCTCTCAGCCAGCGTGGGAGATCGCGT GACTATTACTTGCCGCGCCAGCCAGAGTA TTAGCTCCTATCTGAATTGGTACCAGCAA AAGCCCGGGAAGGCCCCTAAGCTTCTGAT TTCTGGCGCCTCCTCTTTGAAGTCAGGTG TGCCAAGCAGATTTAGCGGGTCTGGAAGT GGCACTGACTTTACACTTACTATCTCCAG CCTGCCCCCAGAGGATTTTGCCACATATT ACT GT CAGCAAAGCTACT CTACT CCAAT C ACTTT CGGCCAGGGCACAAGATTGGAGAT TAAGAGGGCTGCCGCACTTTCAAATTCCA TCATGTATTTCAGCCATTTTGTGCCTGTT TTTCTTCCGGCCAAACCTACAACCACTCC CGCCCCACGCCCACCTACTCCCGCCCCTA CCATTGCCTCCCAGCCTCTGTCTCTTAGA CCTGAGGCTTGTAGACCTGCTGCCGGCGG AGCCGTGCACACTCGCGGTCTGGACTTCG 211 QVQLVQ S GAEVKKP GA SVKVSCKVSGYTLTEL SMHWVRQAPGKGLEWM GGFDPEDGETIYAQKF QGRVTVTEDTSTDTAY MELSSLRSEDTAVYYC ATESRGIGWPYFDYWG QGTLVTVSSGGGGSGG GGSGGGGSDIQMTQSP SSLSASVGDRVTITCR ASQSIS SYLNWYQQKP GKAPKLLISGASSLKS GVPSRFSGSGSGTDFT LTISSLPPEDFATYYC QQSYSTPITFGQGTRL EIKRAAALSNSIMYFS HFVPVFLPAKPTTTPA PRPPTPAPTIASQPLS LRPEACRPAAGGAVHT RGLDFACDIYIWAPLA GTCGVLLLSLVITLYC NHRNRSKRSRLLHSDY MNMTPRRPGPTRKHYQ PYAPPRDFAAYRSRVK FSRSADAPAYQQGQNQ LYNELNLGRREEYDVL DKRRGRD P EMGGKP RR KNPQEGLYNELQKDKM AEAYSEIGMKGERRRG KGHDGLYQGLSTATKD TYDALHMQALPPR 212
CCTGCGACATCTATATCTGGGCCCCTCTG GCCGGCACCTGCGGCGTTCTCCTTCTCTC ACT CGT AAT CACACT CTATTGCAAT CACA GGAACAGATCCAAAAGAAGCCGCCTGCTC CATAGCGATTACATGAATATGACTCCACG CCGCCCTGGCCCCACAAGGAAACACTACC AGCCTTACGCACCACCTAGAGATTTCGCT GCCTATCGGAGCAGGGTGAAGTTTTCCAG ATCTGCAGATGCACCAGCGTATCAGCAGG GCCAGAACCAACTGTATAACGAGCTCAAC CTGGGACGCAGGGAAGAGTATGACGTTTT GGACAAGCGCAGAGGACGGGACCCTGAGA TGGGTGGCAAACCAAGACGAAAAAACCCC CAGGAGGGT CT CTATAAT GAGCT GCAGAA GGATAAGAT GGCT GAAGC CTATT CT GAAA TAGGCATGAAAGGAGAGCGGAGAAGGGGA AAAGGGCACGACGGTTTGTACCAGGGACT CA.GCACTGCTACGAAGGATACTTATGACG CTCTCCACATGCAAGCCCTGCCACCTAGG
(CAR4.1 ) Clone 20C5.2 THD CAR DNA HxL ATGGCACTCCCCGTAACTGCTCTGCTGCT GCCGTTGGCATTGCTCCTGCACGCCGCAC GCCCGCAGGTCCAGTTGGTCGAAAGTGGC GGTGGTGTAGTGCAGCCGGGCCGCAGTTT GAGGCTTTCCTGTGCGGCTTCAGGCTTTA CTTTTTCCAGCTATGGAATGCACTGGGTG CGGCAGGCCCCCGGCAAAGGACTTGAGTG GGTGGCCGTCATTTCTTATGACGGATCAG ATAAGTACTACGTGGACAGCGTCAAGGGC AGATT CAC CAT CT CTAGGGACAACAGTAA AAATAGACTCTACCTCCAGATGAATAGCC TCAGAGCTGAAGACACGGCCGTCTACTAT T GT GCT CGGGAGCGGTATAGT GGCAGAGA CTACTGGGGGCAGGGCACACTCGTTACAG TGAGTAGCGGCGGAGGAGGGAGTGGGGGC GGTGGCTCCGGTGGAGGAGGTTCTGAGAT TGTTATGACCCAGAGTCCTGCGACCCTCT CAGTCAGCCCCGGGGAGCGCGCAACTTTG TCTTGCAGAGCTAGTCAGTCCGTGTCCTC TCTTCTGACATGGTACCAGCAAAAGCCCG GGCAGGCTCCGCGCCTTTTGATCTTTGGG GCTTCAACAAGAGCCACTGGGATTCCCGC ACGATTCTCTGGCTCCGGGAGCGGTACTG GTTTCACCCTGACGATTAGCAGTCTCCAG AGCGAGGACTTCGCCGTATACTACTGCCA GCAGTACGATACGTGGCCATTCACTTTTG GACCAGGGACTAAAGTGGATTTTAAGCGC GCCGCCGCTCTCGATAACGAAAAGTCAAA T GGCACCAT AAT C CACGT CAAAGGCAAGC ACCTGTGCCCTTCCCCGCTCTTCCCCGGA CCCAGTAAACCATTTTGGGTGCTGGTTGT TGTGGGGGGCGTGCTGGCCTGCTATAGCC TTTTGGTCACTGTAGCCTTCATTATTTTT TGGGTCAGATCCAAAAGAAGCCGCCTGCT CCATAGCGATTACATGAATATGACTCCAC GCCGCCCTGGCCCCACAAGGAAACACTAC CAGCCTTACGCACCACCTAGAGATTTCGC TGCCTATCGGAGCAGGGTGAAGTTTTCCA GAT CT GCAGAT GCACCAGCGTAT CAGCAG GGCCAGAACCAACTGTATAACGAGCTCAA 213 MALPVTALLLPLALLL HAARPQVQLVESGGGV VQPGRSLRLSCAASGF T FS S YGMHWVRQAPGK GLEWVAVISYDGSDKY YVD SVKGRFTIS RDN S KNRLYLQMNSLRAEDT AVYYCARERYS GRDYW GQGTLVTVSSGGGGSG GGGSGGGGSEIVMTQS PATLSVSPGERATLSC RASQSVSSLLTWYQQK PGQAPRLLIFGASTRA TGIPARFSGSGSGTGF T LT IS S LQ S E D FAVY Y CQQYDTWPFTFGPGTK VDFKRAAALDNEKSNG TIIHVKGKHLCPSPLF PGP S KP FWVLWVGGV LACYSLLVTVAFIIFW VRSKRSRLLHSDYMNM TPRRPGPTRKHYQPYA PPRDFAAYRSRVKFSR SADAPAYQQGQNQLYN ELNLGRREEYDVLDKR RGRDPEMGGKPRRKNP QEGLYNELQKDKMAEA YS EIGMKGERRRGKGH DGLYQGLSTATKDTYD ALHMQALPPR 214
CCTGGGACGCAGGGAAGAGTATGACGTTT TGGACAAGCGCAGAGGACGGGACCCTGAG ATGGGTGGCAAACCAAGACGAAAAAACCC CCAGGAGGGT CT CTA.TAAT GAGCTGCAGA AGGATAAGATGGCTGAAGCCTATTCTGAA ATAGGCATGAAAGGAGAGCGGAGAAGGGG AAAAGGGCACGACGGTTTGTACCAGGGAC TCAGCACTGCTACGAAGGATACTTATGAC GCTCTCCACATGCAAGCCCTGCCACCTAG GTAA
(CAR4.1 ) Clone 20C5.2 THD CAR DNA HxL CAGGT CCAGTT GGT CGAAAGT GGC GGT GG TGTAGTGCAGCCGGGCCGCAGTTTGAGGC TTTCCTGTGCGGCTTCAGGCTTTACTTTT TCCAGCTATGGAATGCACTGGGTGCGGCA GGCCCCCGGCAAAGGACTTGAGTGGGTGG CCGTCATTTCTTATGACGGATCAGATAAG TACTACGTGGACAGCGTCAAGGGCAGATT CACCATCTCTAGGGACAACAGTAAAAATA GACTCTACCTCCAGATGAATAGCCTCAGA GCTGAAGACACGGCCGTCTACTATTGTGC TCGGGAGCGGTATAGTGGCAGAGACTACT GGGGGCAGGGCACACTCGTTACAGTGAGT AGCGGCGGAGGAGGGAGTGGGGGCGGTGG CTCCGGTGGAGGAGGTTCTGAGATTGTTA TGACCCAGAGTCCTGCGACCCTCTCAGTC AGCCCCGGGGAGCGCGC7XACTTTGTCTTG CAGAGCTAGTCAGTCCGTGTCCTCTCTTC TGACATGGTACCAGCAAAAGCCCGGGCAG GCTCCGCGCCTTTTGATCTTTGGGGCTTC AACAAGAGCCACTGGGATTCCCGCACGAT TCTCTGGCTCCGGGAGCGGTACTGGTTTC ACCCTGACGATTAGCAGTCTCCAGAGCGA GGACTTCGCCGTATACTACTGCCAGCAGT ACGATACGTGGCCATTCACTTTTGGACCA GGGACTAAAGTGGATTTTAAGCGCGCCGC CGCTCTCGATAACGAAAAGTCAAATGGCA CCAT AAT C CACGT CAAAGGCAAGCACCT G TGCCCTTCCCCGCTCTTCCCCGGACCCAG TAAACCATTTTGGGTGCTGGTTGTTGTGG GGGGCGTGCTGGCCTGCTATAGCCTTTTG GTCACTGTAGCCTTCATTATTTTTTGGGT CAGATCCAAAAGAAGCCGCCTGCTCCATA GCGATTACATGAATATGACTCCACGCCGC CCTGGCCCCACAAGGAAACACTACCAGCC TTACGCACCACCTAGAGATTTCGCTGCCT ATCGGAGCAGGGTGAAGTTTTCCAGATCT GCAGAT GCACCAGCGTAT CAGCAGGGCCA GAACCAACTGTATAACGAGCTCAACCTGG GACGCAGGGAAGAGTATGACGTTTTGGAC AAGCGCAGAGGACGGGACCCTGAGATGGG TGGCAAACCAAGACGAAAAAACCCCCAGG AGGGT CT CTATAAT GAGCT GCAGAAGGAT AAGATGGCTGAAGCCTATTCTGAAATAGG CAT GAAAGGAGAGC GGAGAAGGGGAAAAG GGCACGACGGTTTGTACCAGGGACTCAGC ACT GCTAC GAAGGATACTTAT GAC GCT CT CCACATGCAAGCCCTGCCACCTAGG 215 QVQLVESGGGWQPGR SLRLSCAASGFTFSSY GMHWVRQAPGKGLEWV AVISYDGSDKYYVDSV KGRFTISRDNSKNRLY LQMNSLRAEDTAVYYC ARERYSGRDYWGQGTL VTVSSGGGGSGGGGSG GGGSEIVMTQSPATLS VSPGERATLSCRASQS VSSLLTWYQQKPGQAP RLLIFGASTRATGIPA RFSGSGSGTGFTLTIS SLQSEDFAVYYCQQYD TWPFTFGPGTKVDFKR AAALDNEKSNGTIIHV KGKHLCPSPLFPGPSK PFWVLVVVGGVLACYS LLVTVAFII FWVRS KR SRLLHSDYMNMTPRRP GPTRKHYQPYAPPRDF AAYRSRVKFSRSADAP AYQQGQNQLYNELNLG RREEYDVLDKRRGRDP EMGGKPRRKNPQEGLY NELQKDKMAEAYSEIG MKGERRRGKGHDGLYQ GLSTATKDTYDALHMQ ALPPR 216
(CAR4.2) Clone ATGGCACTCCCCGTAACTGCTCTGCTGCT GCCGTTGGCATTGCTCCTGCACGCCGCAC 217 MALPVTALLLPLALLL HAARPQVQLVESGGGV 218
20C5.2 CHD CAR DNA HxL GCCCGCAGGTGCAGCTCGTGGAGTCTGGC GGCGGCGTGGTCCAGCCCGGCCGGTCCCT GCGCCTGTCCTGCGCCGCCAGCGGGTTTA CTTTTTCCTCCTACGGCATGCACTGGGTG CGCCAGGCTCCCGGCAAGGGCCTCGAGTG GGTCGCCGT GAT CT CATAC GAT GGGT CAG ACAAATACTATGTCGATTCTGTTAAAGGG CGGTTTACCATTTCAAGAGATAACTCTAA GAATAGGCTGTATTTGCAGATGAACAGCC TGAGGGCTGAAGATACCGCAGTGTACTAT TGCGCTAGGGAGCGGTATAGTGGCCGCGA TTACTGGGGACAGGGTACACTGGTGACCG TGAGCTCTGGGGGTGGCGGAAGCGGGGGT GGCGGAAGCGGCGGAGGGGGTAGTGAAAT TGTGATGACCCAGTCTCCGGCTACACTTT CAGTCTCCCCTGGGGAGAGAGCTACACTG TCATGCAGAGCGTCCCAGTCCGTCTCTTC TCTCCTTACCTGGTATCAGCAGAAGCCCG GCCAGGCTCCTCGACTGCTGATCTTCGGT GCCTCCACAAGGGCGACCGGGATTCCAGC CCGCTTCTCAGGTTCTGGGAGCGGAACTG GTTTCACTTTGACAATCAGTTCACTGCAG TCAGAGGATTTCGCCGTGTACTACTGCCA GCAATACGACACAT GGC GATT CACT T T C G GACCCGGTACCAAAGTCGATTTCAAGAGA GCCGCGGCCATCGAGGTTATGTACCCACC AC CAT AT CT GGACAAT GAGAAAAGCAAT G GAACCATTAT C CAT GT GAAGGGTAAACAC CTCTGCCCTAGCCCACTTTTCCCTGGCCC ATCAAAGCCCTTCTGGGTCTTGGTGGTCG TGGGGGGTGTGCTGGCCTGTTACAGCCTT CTGGTGACGGTTGCTTTCATTATCTTCTG GGTTAGATCCAAAAGAAGCCGCCTGCTCC ATAGCGATTACATGAATATGACTCCACGC CGCCCTGGCCCCACAAGGAAACACTACCA GCCTTACGCACCACCTAGAGATTTCGCTG CCTATCGGAGCAGGGTGAAGTTTTCCAGA T CT GCAGAT GCACCAGCGTAT CAGCAGGG CCAGAACCAACTGTATAACGAGCTCAACC TGGGACGCAGGGAAGAGTATGACGTTTTG GACAAGCGCAGAGGACGGGACCCTGAGAT GGGTGGCAAACCAAGACGAAAAAACCCCC AGGAGGGT CT CTATAAT GAGCT GCAGAAG GATAAGATGGCTGAAGCCTATTCTGAAAT AGGCATGAAAGGAGAGCGGAGAAGGGGAA AAGGGCACGACGGTTTGTACCAGGGACTC AGCACT GCTACGAAGGATACT TAT GAC GC TCTCCACATGCAAGCCCTGCCACCTAGGT AA VQPGRSLRLSCAASGF TFSSYGMHWVRQAPGK GLEWVAVISYDGSDKY YVDSVKGRFTIS RDN S KNRLYLQMNSLRAEDT AVYYCARERYS GRDYW GQGTLVTVSSGGGGSG GGGSGGGGSEIVMTQS PATLSVSPGERATLSC RASQSVSSLLTWYQQK PGQAPRLLIFGASTRA TGIPARFSGSGSGTGF TLTISSLQSEDFAVYY CQQYDTWPFTFGPGTK VDFKRAAAIEVMYPPP YLDNEKSNGTIIHVKG KHLCPSPLFPGPSKPF WVLVWGGVLACYS LL VTVAFIIFWVRSKRS R LLHSDYMNMTPRRPGP TRKHYQPYAPPRDFAA YRSRVKFSRSADAPAY QQGQNQLYNELNLGRR EEYDVLDKRRGRD P EM GGKPRRKNPQEGLYNE LQKDKMAEAYSEIGMK GERRRGKGHDGLYQGL STATKDTYDALHMQAL PPR
(CAR4.2 ) Clone 20C5.2 CHD CAR DNA HxL CAGGTGCAGCTCGTGGAGTCTGGCGGCGG CGTGGTCCAGCCCGGCCGGTCCCTGCGCC TGTCCTGCGCCGCCAGCGGGTTTACTTTT TCCTCCTACGGCATGCACTGGGTGCGCCA GGCTCCCGGCAAGGGCCTCGAGTGGGTCG CCGTGATCTCATACGATGGGTCAGACAAA TACTATGTCGATTCTGTTAAAGGGCGGTT TACCATTTCAAGAGATAACTCTAAGAATA GGCTGTATTTGCAGATGAACAGCCTGAGG GCTGAAGATACCGCAGTGTACTATTGCGC 219 QVQLVESGGGWQPGR SLRLSCAASGFTFSSY GMHWVRQAPGKGLEWV AVISYDGSDKYYVDSV KGRFTIS RDNS KNRLY LQMNSLRAEDTAVYYC ARERYSGRDYWGQGTL VTVS S GGGGS GGGGS G GGGSEIVMTQSPATLS VSPGERATLSCRASQS 220
TAGGGAGCGGTATAGTGGCCGCGATTACT GGGGACAGGGTACACTGGTGACCGTGAGC TCTGGGGGTGGCGGAAGCGGGGGTGGCGG AAGCGGCGGAGGGGGTAGTGAAATTGT GA TGACCCAGTCTCCGGCTACACTTTCAGTC T CCCCTGGGGAGAGAGCTACACTGTCATG CAGAGCGTCCCAGTCCGTCTCTTCTCTCC TTACCTGGTATCAGCAGAAGCCCGGCCAG GCTCCTCGACTGCTGATCTTCGGTGCCTC CACAAGGGCGACCGGGATTCCAGCCCGCT TCTCAGGTTCTGGGAGCGGAACTGGTTTC ACTTTGACAATCAGTTCACTGCAGTCAGA GGATTTCGCCGTGTACTACTGCCAGCAAT ACGACACATGGCCATTCACTTTCGGACCC GGTACCAAAGTCGATTTCAAGAGAGCCGC GGCCATCGAGGTTATGTACCCACCACCAT AT CT GGACAAT GAAAAAAGCAATGGAACC AT TAT CCAT GT GAAGGGTAAACAC CT CT G CCCTAGCCCACTTTTCCCTGGCCCATCAA AGCCCTTCTGGGTCTTGGTGGTCGTGGGG GGTGTGCTGGCCTGTTACAGCCTTCTGGT GACGGTTGCTTTCATTATCTTCTGGGTTA GATCCAAAAGAAGCCGCCTGCTCCATAGC GATTACATGAATATGACTCCACGCCGCCC TGGCCCCACAAGGAAACACTACCAGCCTT ACGCACCACCTAGAGATTTCGCTGCCTAT CGGAGCAGGGTGAAGTTTTCCAGATCTGC AGATGCACCAGCGTATCAGCAGGGCCAGA A.CCAACTGTATAACGAGCTCAACCTGGGA CGCAGGGAAGAGTATGACGTTTTGGACAA GCGCAGAGGACGGGACCCTGAGATGGGTG GCAAACCAAGACGAAAAAACCCCCAGGAG GGT CT CTATAATGAGCTGCAGAAGGATAA GATGGCTGAAGCCTATTCTGAAATAGGCA TGAAAGGAGAGCGGAGAAGGGGAAAAGGG CACGACGGTTTGTACCAGGGACTCAGCAC TGCTACGAAGGATACTTATGACGCTCTCC ACATGCAAGCCCTGCCACCTAGG VS S LLTWYQQKPGQAP RLLIFGASTRATGIPA RFSGSGSGTGFTLTIS SLQSEDFAVYYCQQYD TWPFTFGPGTKVDFKR AAAIEVMYPPPYLDNE KSNGTIIHVKGKHLCP SPLFPGPSKPFWVLW VGGVLACYSLLVTVAF IIFWVRSKRSRLLHSD YMNMTPRRPGPTRKHY QPYAPPRDFAAYRSRV KFSRSADAPAYQQGQN QLYNELNLGRREEYDV LDKRRGRDPEMGGKPR RKNPQEGLYNELQKDK MAEAYSElGMKGERRR GKGHDGLYQGLSTATK DTYDALHMQALPPR
(CAR4.3 ) Clone 20C5.2 CD8 CAR DNA HxL ATGGCACTCCCCGTAACTGCTCTGCTGCT GCCGTTGGCATTGCTCCTGCACGCCGCAC GCCCGCAGGTGCAGTTGGTTGAATCAGGA GGGGGTGTGGTGCAACCCGGTCGGTCACT GCGCCTCAGTTGTGCTGCTTCCGGGTTTA CTTTCAGCTCATATGGGATGCACTGGGTA CGGCAGGCTCCAGGTAAAGGCTTGGAATG GGTGGCGGTGATCAGCTATGACGGCTCTG ACAAATATTATGTGGACTCCGTGAAAGGC AGATTCACCATCAGTCGAGACAACTCAAA GAATAGACT CTACTT GCAGAT GAAT AGCC TCCGGGCCGAAGATACTGCAGTCTATTAT TGCGCCCGGGAGCGCTACAGTGGAAGAGA CTATTGGGGGCAAGGAACTCTTGTCACAG TCTCATCTGGCGGCGGCGGCAGCGGTGGG GGCGGATCTGGCGGGGGCGGCAGCGAAAT CGTTATGACTCAGAGTCCTGCCACACTGA GCGTTAGCCCTGGTGAGAGAGCAACACTT AGCT GCAGAGCTAGT CAGAGT GTTT CCAG TCTTTTGACATGGTACCAACAGAAGCCCG GTCAAGCTCCACGACTGCTCATCTTCGGT 221 MALPVTALLLPLALLL HAARPQVQLVES GGGV VQPGRSLRLSCAASGF T FS S YGMHWVRQAPGK GLEWVAVISYDGSDKY YVD SVKGRFTIS RDN S KNRLYLQMNSLRAEDT AVYYCARERYS GRDYW GQGT LVTVS S GGGGS G GGGSGGGGSEIVMTQS PATLSVSPGERATLSC RASQSVSSLLTWYQQK PGQAPRLLIFGASTRA TGIPARFSGSGSGTGF TLTISSLQSEDFAVYY CQQYDTWPFTFGPGTK VDFKRAAALSNSIMYF SHFVPVFLPAKPTTTP APRPPTPAPTIASQPL SLRPEACRPAAGGAVH TRGLDFACDIYIWAPL 222
GCATCCACCCGCGCAACCGGGATACCCGC CCGGTTTTCCGGTTCTGGAAGTGGCACAG GATTCACGCTCACCATTTCTTCTCTGCAG TCTGAAGACTTTGCCGTGTATTACTGCCA GCAGTACGATACCTGGCCCTTTACCTTTG GCCCAGGTACTAAAGT GGATTTTAAACGA GCTGCTGCACTTTCCAATAGTATTATGTA CTTTTCACATTTTGTGCCCGTGTTCCTGC CTGCGAAGCCTACGACAACCCCAGCCCCT AGGCCGCCCACACCGGCCCCAACTATTGC CTCCCAGCCATTGTCTCTGAGACCCGAAG CTTGCAGACCTGCTGCTGGAGGCGCCGTT CACACCCGAGGATTGGATTTCGCATGTGA CATTTACATCTGGGCCCCTTTGGCCGGAA CCTGCGGTGTGCTGCTGCTGTCACTCGTG ATTACACTTTACTGCAACCACCGAAACAG ATCCAAAAGAAGCCGCCTGCTCCATAGCG ATTACATGAATATGACTCCACGCCGCCCT GGCCCCACAAGGAAACACTACCAGCCTTA CGCACCACCTAGAGATTTCGCTGCCTATC GGAGCAGGGTGAAGTTTTCCAGATCTGCA GAT GCAC CAGC GTAT CAGCAGGGCCAGAA CCAACTGTATAACGAGCTCAACCTGGGAC GCAGGGAAGAGTATGACGTTTTGGACAAG CGCAGAGGACGGGACCCTGAGATGGGTGG CAAAC CAAGAC GAAAAAAC C C C CAGGAGG GT CT CTATAAT GAGCT GCAGAAGGATAAG ATGGCTGAAGCCTATTCTGAAATAGGCAT GAAAGGAGAGCGGAGAAGGGGAAAAGGGC ACGACGGTTTGTACCAGGGACTCAGCACT GCTACGAAGGATACTTATGACGCTCTCCA CATGCAAGCCCTGCCACCTAGGTAA AGTCGVLLLSLVITLY CNHRNRSKRSRLLHSD YMNMTPRRPGPTRKHY QPYAPPRDFAAYRSRV KFSRSADAPAYQQGQN QLYNELNLGRREEYDV LD KRRGRD P EMGGK P R RKNPQEGLYNELQKDK MAEAYSElGMKGERRR GKGHDGLYQGLSTATK DTYDALHMQALPPR
(CAR4.3 ) Clone 20C5.2 CD8 CAR DNA HxL CAGGT GCAGTT GGTT GAAT CAGGAGGGGG TGTGGTGCAACCCGGTCGGTCACTGCGCC TCAGTTGTGCTGCTTCCGGGTTTACTTTC AGCTCATATGGGATGCACTGGGTACGGCA GGCTCCAGGTLAAGGCTTGGAATGGGTGG CGGTGATCAGCTATGACGGCTCTGACAAA TATTATGTGGACTCCGTGAAAGGCAGATT CAC CAT CAGT C GAGACAACT CAAAGAATA GACTCTACTTGCAGATGAATAGCCTCCGG GCCGAAGATACTGCAGTCTATTATTGCGC CCGGGAGCGCTACAGTGGAAGAGACTATT GGGGGCAAGGAACTCTTGTCACAGTCT CA TCTGGCGGCGGCGGCAGCGGTGGGGGCGG ATCTGGCGGGGGCGGCAGCGAAATCGTTA TGACTCAGAGTCCTGCCACACTGAGCGTT AGC C CT GGT GAGAGAGCAACACTTAGCTG CAGAGCTAGTCAGAGTGTTTCCAGTCTTT TGACATGGTACCAACAGAAGCCCGGTCAA GCTCCACGACTGCTCATCTTCGGTGCATC CACCCGCGCAACCGGGATACCCGCCCGGT TTTCCGGTTCTGGAAGTGGCACAGGATTC ACGCTCACCATTTCTTCTCTGCAGTCTGA AGACTTTGCCGTGTATTACTGCCAGCAGT ACGATACCTGGCCCTTTACCTTTGGCCCA GGTACTAAAGTGGATTTTAAACGAGCTGC TGCACTTTCCAATAGTATTATGTACTTTT CACATTTTGTGCCCGTGTTCCTGCCTGCG 223 QVQLVESGGGWQPGR SLRLSCAASGFTFSSY GMHWVRQAPGKGLEWV AVISYDGSDKYYVDSV KGRFTISRDNSKNRLY LQMNSLRAEDTAVYYC ARERYSGRDYWGQGTL VTVSSGGGGSGGGGSG GGGSEIVMTQSPATLS VSPGERATLSCRASQS VS S LLTWYQQKPGQAP RL LIFGAS T RAT GIP A RFSGSGSGTGFTLTIS SLQSEDFAVYYCQQYD TWPFTFGPGTKVDFKR AAALSNSIMYFSHFVP VFLPAKPTTT PAP RP P TPAPTIASQPLSLRPE ACRPAAGGAVHTRGLD FACDIYIWAPLAGTCG VLLLSLVITLYCNHRN RS KRS RLLHS DYMNMT PRRPGPTRKHYQPYAP PRDFAAYRSRVKFSRS ADAPAYQQGQNQLYNE LNLGRREEYDVLDKRR GRDPEMGGKPRRKNPQ 224
AAGCCTACGACAACCCCAGCCCCTAGGCC GCCCACACCGGCCCCAACTATTGCCTCCC AGCCATTGTCTCTGAGACCCGAAGCTTGC AGACCTGCTGCTGGAGGCGCCGTTCACAC CCGAGGATTGGATTTCGCATGTGACATTT ACATCTGGGCCCCTTTGGCCGGAACCTGC GGTGTGCTGCTGCTGTCACTCGTGATTAC ACTTTACTGCAACCACCGAAACAGATCCA AAAGAAGCCGCCTGCTCCATAGCGATTAC ATGAATATGACTCCACGCCGCCCTGGCCC CACAAGGAAACACTACCAGCCTTACGCAC CACCTAGAGATTTCGCTGCCTATCGGAGC AGGGTGAAGTTTTCCAGATCTGCAGATGC ACCAGCGTATCAGCAGGGCCAGAACCAAC T GT AT AAC GAGCT CAACCT GGGACGCAGG GAAGAGTATGACGTTTTGGACAAGCGCAG AGGAC GGGACCCT GAGAT GGGT GGCAAAC CAAGACGAAAAAACCCCCAGGAGGGTCTC TATAAT GAGCT GCAGAAGGATAAGAT GGC TGAAGCCTATTCTGAAATAGGCATGAAAG GAGAGCGGAGAAGGGGAAAAGGGCACGAC GGTT T GTACCAGGGACT CAGCACT GCTAC GAAGGATACTTATGACGCTCTCCACATGC AAGCCCTGCCACCTAGG EGLYNELQKDKMAEAY S ElGMKGERRRGKGHD GLYQGLSTATKDTYDA LHMQALPPR
(CAR4.4 ) Clone 20C5.2 THD CAR DNA LxH ATGGCACTCCCCGTAACTGCTCTGCTGCT GCCGTTGGCATTGCTCCTGCACGCCGCAC GCCCGGAGATTGTGATGACCCAGTCCCCT GCTACCCTGTCCGTCAGTCCGGGCGAGAG AGCCACCTTGTCATGCCGGGCCAGCCAGT CCGTCAGCAGTCTCCTGACTTGGTATCAG CAAAAACCAGGGCAGGCACCGCGGCTTTT GATTTTTGGTGCAAGCACACGCGCCACTG GCATTCCAGCTAGGTTTTCTGGAAGTGGA T CT GGGACAGGCTT CACT CT GACAAT CAG TAGCCTGCAGAGTGAGGACTTTGCTGTTT ACTACT GT CAACAGTACGACACCTGGCCA TTCACATTCGGGCCCGGCACCAAGGTCGA CTTCAAGAGGGGCGGTGGAGGTTCAGGTG GTGGCGGGTCAGGCGGCGGTGGGTCTCAG GTTCAACTGGTGGAATCAGGTGGCGGCGT TGTCCAACCGGGGCGATCACTTCGACTTT CCTGTGCTGCCTCAGGCTTTACTTTTTCA TCCTATGGGATGCACTGGGTTCGGCAGGC TCCCGGAAAAGGACTCGAGTGGGTTGCAG TGATCTCTTACGATGGCTCAGACAAGTAT TAT GT GGACT CAGT CAAGGGGAGAT T CAC AATAAGCCGAGACAACTCCAAAAACCGGC TTTATCTCCAGATGAACAGCCTTAGAGCG GAAGATACCGCGGTATACTACTGTGCCCG CGAGAGGTATTCCGGCAGAGACTACTGGG GACAGGGCACACTGGTCACCGTGAGTTCT GCCGCAGCGCTCGATAACGAAAAGAGCAA CGGAACCATTATCCACGTTAAGGGCAAGC ACCTGTGCCCCAGTCCCCTCTTCCCAGGA CCATCTAAACCCTTCTGGGTTCTGGTAGT AGTTGGAGGGGTCCTTGCATGTTACTCCC TTTTGGTCACCGTCGCCTTCATTATTTTC TGGGTGAGATCCAAAAGAAGCCGCCTGCT CCATAGCGATTACATGAATATGACTCCAC 225 MALPVTALLLPLALLL HAARPEIVMTQSPATL SVSPGERATLSCRASQ SVS S LLTWYQQKP GQA PRLLIFGASTRATGIP ARFSGSGSGTGFTLTI SSLQSEDFAVYYCQQY DTWPFTFGPGTKVDFK RGGGGSGGGGSGGGGS QVQLVESGGGWQPGR SLRLSCAASGFTFSSY GMHWVRQAPGKGLEWV AVISYDGSDKYYVDSV KGRFTIS RDNS KNRLY LQMNSLRAEDTAVYYC ARERYSGRDYWGQGTL VTVS SAAALDNEKSNG TIIHVKGKHLCPSPLF PGP S KP FWVLVWGGV LACYSLLVTVAFIIFW VRS KRS RLLH S DYMNM TPRRPGPTRKHYQPYA PPRDFAAYRSRVKFSR SADAPAYQQGQNQLYN ELNLGRREEYDVLDKR RGRD P EMGGKP RRKN P QEGLYNELQKDKMAEA YSEIGMKGERRRGKGH DGLYQGLSTATKDTYD ALHMQALPPR 226
GCCGCCCTGGCCCCACAAGGAAACACTAC CAGCCTTACGCACCACCTAGAGATTTCGC TGCCTATCGGAGCAGGGTGAAGTTTTCCA GAT CT GCAGAT GCACCAGC GTAT CAGCAG GGCCAGAACCAACTGTATAACGAGCTCAA CCTGGGACGCAGGGAAGAGTATGACGTTT TGGACAAGCGCAGAGGACGGGACCCTGAG ATGGGTGGCAAACCAAGACGAAAAAACCC C CAGGAGGGT CT CTATAATGAGCTGCAGA AGGATAAGATGGCTGAAGCCTATTCTGAA ATAGGCAT GAAAGGAGAGCGGAGAAGGGG AAAAGGGCACGACGGTTTGTACCAGGGAC T CAGCACT GCTAC GAAGGATACT TAT GAC GCTCTCCACATGCAAGCCCTGCCACCTAG GTAA
(CAR4.4 ) Clone 20C5.2 THD CAR DNA LxH GAGATTGTGATGACCCAGTCCCCTGCTAC CCTGTCCGTCAGTCCGGGCGAGAGAGCCA CCTTGTCATGCCGGGCCAGCCAGTCCGTC AGCAGT CT CCT GACTT GGTAT CAGCAAAA ACCAGGGCAGGCACCGCGGCTTTTGATTT TTGGTGCAAGCACACGCGCCACTGGCATT CCAGCTAGGTTTTCTGGAAGTGGATCTGG GACAGGCTTCACTCTGACAATCAGTAGCC TGCAGAGTGAGGACTTTGCTGTTTACTAC TGTCAACAGTACGACACCTGGCCATTCAC ATTCGGGCCCGGCACCAAGGTCGACTTCA AGAGGGGCGGTGGAGGTTCAGGTGGTGGC GGGTCAGGCGGCGGTGGGTCTCAGGTTCA ACT GGT GGAAT CAGGT GGCGGCGTTGTCC AACCGGGGCGATCACTTCGACTTTCCTGT GCTGCCTCAGGCTTTACTTTTTCATCCTA TGGGATGCACTGGGTTCGGCAGGCTCCCG GAAAAGGACT CGAGT GGGTT GCAGT GAT C T CTT AC GAT GGCT CAGACAAGTATTAT GT GGACT CAGT CAAGGGGAGATT CACAATAA GCCGAGACAACTCCAAAAACCGGCTTTAT CTCCAGATGAACAGCCTTAGAGCGGAAGA TACCGCGGTATACTACTGTGCCCGCGAGA GGTATTCCGGCAGAGACTACTGGGGACAG GGCACACTGGTCACCGTGAGTTCTGCCGC AGCGCTCGATAACGAAAAGAGCAACGGAA CCATTATCCACGTTZ\AGGGCAAGCACCTG TGCCCCAGTCCCCTCTTCCCAGGACCATC TAAACCCTTCTGGGTTCTGGTAGTAGTTG GAGGGGTCCTTGCATGTTACTCCCTTTTG GTCACCGTCGCCTTCATTATTTTCTGGGT GAGAT C CAAAAGAAGC C GCCT GCT CCATA GCGATTACATGAATATGACTCCACGCCGC CCTGGCCCCACAAGGAAACACTACCAGCC TTACGCACCACCTAGAGATTTCGCTGCCT ATCGGAGCAGGGTGAAGTTTTCCAGATCT GCAGATGCACCAGCGTATCAGCAGGGCCA GAACCAACTGTATAACGAGCTCAACCTGG GACGCAGGGAAGAGTATGACGTTTTGGAC AAGCGCAGAGGACGGGACCCTGAGATGGG TGGCAAACCAAGACGAAAAAACCCCCAGG AGGGT CT CTATAAT GAGCT GCAGAAGGAT AAGAT GGCT GAAGCCTATT CT GAAATAGG CATGAAAGGAGAGCGGAGAAGGGGAAAAG 227 EIVMTQSPATLSVSPG ERATLSCRASQSVSSL LTWYQQKPGQAP RLLI FGASTRATGIPARFSG SGSGTGFTLTISSLQS EDFAVYYCQQYDTWPF TFGPGTKVDFKRGGGG SGGGGSGGGGSQVQLV ESGGGWQPGRSLRLS CAASGFTFSSYGMHWV RQAPGKGLEWVAVISY DGSDKYYVDSVKGRFT ISRDNSKNRLYLQMNS LRAEDTAVYYCARERY SGRDYWGQGTLVTVSS AAALDNEKSNGT11HV KGKHLCPSPLFPGPSK P FWVLVVVGGVLACYS LLVTVAFIIFWVRSKR S RL LH S DYMNMT P RRP GPTRKHYQPYAPPRDF AAYRSRVKFSRSADAP AYQQGQNQLYNELNLG RREEYDVLDKRRGRD P EMGGKPRRKNPQEGLY NELQKDKMAEAYSEIG MKGERRRGKGHDGLYQ GLSTATKDTYDALHMQ ALPPR 228
GGCACGACGGTTTGTACCAGGGACTCAGC ACTGCTACGAAGGATACTTATGACGCTCT CCACATGCAAGCCCTGCCACCTAGG
(CAR4.5 ) Clone 20C5.2 CHD CAR DNA LxH ATGGCACTCCCCGTAACTGCTCTGCTGCT GCCGTTGGCATTGCTCCTGCACGCCGCAC GCCCGGAGATCGTCATGACACAGAGTCCA GCTACCCTGAGCGTGTCCCCTGGAGAGAG AGCCAC CCTGTCCT GTAGGGCTAGT CAGA GTGTGTCCAGCCTCCTCACCTGGTATCAA CAGAAGCCTGGTCAAGCTCCCCGGCTGCT TATCTTCGGGGCCAGCACGCGAGCCACAG GCATCCCGGCCAGATTCTCTGGCTCTGGC AGT GGCACC GGGTT CACT CT CAC GAT CT C ATCCCTGCAGTCAGAGGATTTCGCTGTGT ATTACTGTCAGCAGTACGATACATGGCCC TTCACCTTCGGCCCGGGCACAAAAGTAGA TTTCAAGCGCGGCGGCGGGGGTAGTGGGG GCGGGGGATCAGGAGGAGGGGGCTCCCAA GTACAGCTGGTTGAGAGCGGCGGCGGGGT GGTTCAGCCCGGGCGCAGCCTCAGGCTGA GTT GC GCAGCAT CAGGATT CACATT CAGT TCTTATGGAATGCATTGGGTCAGACAGGC TCCCGGGAAGGGCCTTGAATGGGTGGCAG TCATTAGCTACGACGGAAGCGATAAGTAC TATGTGGACTCAGTTAAAGGGAGATTTAC TATCAGCCGCGACAATTCCAAAAACAGAT TGTATTTGCAGATGAACTCCCTCAGGGCG GAGGACACTGCTGTATATTACTGCGCACG AGAGAGATACTCCGGCCGAGACTATTGGG GCCAAGGAACATTGGTAACTGTGAGCTCC GCCGCAGCTATTGAGGTCATGTACCCCCC ACCTTATCTCGATAATGAGAAGAGTAATG GGACTATAATTCACGTAAAGGGCAAACAC CTGTGCCCTTCCCCGCTGTTTCCAGGTCC AAGTAAGCCGTTCTGGGTCCTGGTTGTGG TGGGAGGGGTGCTGGCCTGCTATTCTCTG TTGGTTACCGTGGCCTTTATCATTTTCTG GGTGAGATCCAAAAGAAGCCGCCTGCTCC ATAGCGATTACAT GAATAT GACT CCACGC CGCCCTGGCCCCACAAGGAAACACTACCA GCCTTACGCACCACCTAGAGATTTCGCTG CCTATCGGAGCAGGGTGAAGTTTTCCAGA TCTGCAGATGCACCAGCGTATCAGCAGGG CCAGAACCAACTGTATAACGAGCTCAACC TGGGACGCAGGGAAGAGTATGACGTTTTG GACAAGCGCAGAGGACGGGACCCTGAGAT GGGTGGCAAACCAAGACGAAAAAACCCCC AGGAGGGT CT CTATAAT GAGCT GCAGAAG GATAAGATGGCTGAAGCCTATTCTGAAAT AGGCATGAAAGGAGAGCGGAGAAGGGGAA AAGGGCACGACGGTTTGTACCAGGGACTC AGCACTGCTACGAAGGATACTTATGACGC TCTCCACATGCAAGCCCTGCCACCTAGGT AA 229 MALPVTALLLPLALLL HAARPEIVMTQSPATL SVSPGERATLSCRASQ SVSSLLTWYQQKPGQA PRLLIFGASTRATGIP ARFSGSGSGTGFTLTI SSLQSEDFAVYYCQQY DTWPFTFGPGTKVDFK RGGGGSGGGGSGGGGS QVQLVESGGGWQPGR SLRLSCAASGFTFSSY GMHWVRQAPGKGLEWV AVISYDGSDKYYVDSV KGRFTIS RDN S KNRLY LQMNSLRAEDTAVYYC ARERYSGRDYWGQGTL VTVSSAAAIEVMYP P P YLDNEKSNGTIIHVKG KHLCPSPLFPGPSKPF WVLWVGGVLACYS LL VTVAFIIFWRS KRS R LLH S DYMNMT P RRP G P TRKHYQPYAPPRDFAA YRS RVKFS RSADAPAY QQGQNQLYNELNLGRR EEYDVLDKRRGRDPEM GGKPRRKNPQEGLYNE LQKDKMAEAYSEIGMK GERRRGKGHDGLYQGL S TAT KDT YDALHMQAL PPR 230
(CAR4.5 ) Clone 20C5.2 CHD CAR DNA LxH GAGAT CGT CAT GACACAGAGT CCAGCTAC CCTGAGCGTGTCCCCTGGAGAGAGAGCCA CCCTGTCCT GTAGGGCTAGT CAGAGT GT G TCCAGCCTCCTCACCTGGTATCAACAGAA GCCTGGTCAAGCTCCCCGGCTGCTTATCT 231 EIVMTQSPATLSVSPG ERATLSCRASQSVSSL LTWYQQKPGQAPRLLI FGASTRATGIPARFSG SGSGTGFTLTISSLQS 232
TCGGGGCCAGCACGCGAGCCACAGGCATC CCGGCCAGATTCTCTGGCTCTGGCAGTGG CACCGGGTTCACTCTCACGATCTCATCCC TGCAGTCAGAGGATTTCGCTGTGTATTAC T GT CAGCAGTACGATACAT GGC C CTT CAC CTTCGGCCCGGGCACAAAAGTAGATTTCA AGCGCGGCGGCGGGGGTAGTGGGGGCGGG GGATCAGGAGGAGGGGGCTCCCAAGTACA GCTGGTTGAGAGCGGCGGCGGGGTGGTTC AGCCCGGGCGCAGCCTCAGGCTGAGTTGC GCAGCAT CAGGATT CACATT CAGTT CTTA TGGAATGCATTGGGTCAGACAGGCTCCCG GGAAGGGCCTTGAATGGGTGGCAGTCATT AGCTACGACGGAAGCGATAAGTACTATGT GGACTCAGTTAAAGGGAGATTTACTATCA GCCGCGACAATTCCAAAAACAGATTGTAT TTGCAGATGAACTCCCTCAGGGCGGAGGA CACTGCTGTATATTACTGCGCACGAGAGA GATACTCCGGCCGAGACTATTGGGGCCAA GGAACATTGGTAACTGTGAGCTCCGCCGC AGCTATTGAGGTCATGTACCCCCCACCTT AT CT CGATAAT GAGAAGAGTAATGGGACT ATAATTCACGTAAAGGGCAAACACCTGTG CCCTTCCCCGCTGTTTCCAGGTCCAAGTA AGCCGTTCTGGGTCCTGGTTGTGGTGGGA GGGGTGCTGGCCTGCTATTCTCTGTTGGT TACCGTGGCCTTTATCATTTTCTGGGTGA GATCCAAAAGAAGCCGCCTGCTCCATAGC GATTACATGAATATGACTCCACGCCGCCC TGGCCCCACAAGGAAACACTACCAGCCTT ACGCACCACCTAGAGATTTCGCTGCCTAT CGGAGCAGGGTGAAGTTTTCCAGATCTGC AGATGCACCAGCGTATCAGCAGGGCCAGA AC CAACT GTATAACGAGCTCAACCTGGGA CGCAGGGAAGAGTATGACGTTTTGGACAA GCGCAGAGGACGGGACCCTGAGATGGGTG GCAAACCAAGACGAAAAAACCCCCAGGAG GGT CT CTATAAT GAGCT GCAGAAGGATAA GATGGCTGAAGCCTATTCTGAAATAGGCA TGAAAGGAGAGCGGAGAAGGGGAAAAGGG CACGACGGTTTGTACCAGGGACTCAGCAC T GCTAC GAAGGATACTTAT GACGCT CT CC ACATGCAAGCCCTGCCACCTAGG EDFAVYYCQQYDTWPF TFGPGTKVDFKRGGGG S GGGGS GGGGSQVQLV ESGGGWQPGRSLRLS CAASGFTFSSYGMHWV RQAPGKGLEWVAVISY DGSDKYYVDSVKGRFT ISRDNSKNRLYLQMNS LRAEDTAVYYCARERY SGRDYWGQGTLVTVSS AAAIEVMYPPPYLDNE KSNGTIIHVKGKHLCP SPLFPGPSKPFWVLW VGGVLACYSLLVTVAF IIFWVRSKRSRLLHSD YMNMTPRRPGPTRKHY QPYAPPRDFAAYRSRV KFSRSADAPAYQQGQN QLYNELNLGRREEYDV LDKRRGRDPEMGGKPR RKNPQEGLYNELQKDK MAEAYS ElGMKGERRR GKGHDGLYQGLSTATK DTYDALHMQALPPR
(CAR4.6 ) Clone 20C5.2 CD8 CAR DNA LxH ATGGCACTCCCCGTAACTGCTCTGCTGCT GCCGTTGGCATTGCTCCTGCACGCCGCAC GCCCGGAAATAGTGATGACTCAGTCCCCG GCCACCCTCAGCGTGTCCCCCGGGGAGCG AGCGACCCTGTCATGCAGGGCTTCCCAGA GTGTCAGCTCCCTGCTCACTTGGTATCAG CAAAAGCCGGGGCAGGCTCCCCGCCTCCT CATCTTCGGGGCATCAACTAGGGCCACCG GCATTCCTGCAAGATTTTCCGGGTCTGGC AGCGGCACCGGCTTCACCCTTACCATTAG CTCTCTGCAGTCTGAGGACTTCGCCGTTT ACTATTGTCAGCAGTATGATACTTGGCCC TTTACCTTCGGTCCCGGAACTAAGGTGGA CTTCAAGCGCGGGGGGGGTGGATCTGGAG GTGGTGGCTCCGGGGGCGGTGGAAGCCAG GTCCAGTTGGTTGAGAGCGGCGGCGGAGT 233 MALPVTALLLPLALLL HAARPEIVI4TQSPATL SVSPGERATLSCRASQ SVSSLLTWYQQKPGQA PRLLIFGASTRATGIP ARFSGSGSGTGFTLTI SSLQSEDFAVYYCQQY DTWPFTFGPGTKVDFK RGGGGSGGGGSGGGGS QVQLVE S GGGWQ P GR SLRLSCAASGFTFSSY GMHWVRQAPGKGLEWV AVISYDGSDKYYVDSV KGRFTIS RDNS KNRLY LQMNSLRAEDTAVYYC ARERYSGRDYWGQGTL 234
GGTGCAGCCCGGGAGGTCCTTGCGGCTGA GCTGTGCAGCCTCCGGTTTTACTTTTTCT AGCTAT GGAAT GCATT GGGTAAGACAGGC TCCCGGAAAAGGCCTCGAGTGGGTGGCGG T CATTAGCTAT GAT GGAT CTGATAAATAC TATGTGGACTCAGTTAAGGGGCGCTTCAC AAT CT CAAGAGACAAT AG CAAAAATAGAC TGTACCTGCAGATGAATAGTCTGCGCGCC GAGGACACTGCCGTGTACTACTGCGCCCG CGAGAGATACAGCGGACGGGATTACTGGG GCCAGGGTACCCTCGTAACGGTGTCCTCC GCTGCCGCCCTTAGCAACAGCATTATGTA CTTTTCTCATTTCGTGCCAGTCTTTCTCC CAGCAAAGCCCACCACTACCCCGGCCCCC AGGCCGCCTACTCCTGCCCCCACTATCGC GTCTCAGCCTCTCTCCTTGCGGCCCGAGG CCTGCCGGCCAGCCGCAGGGGGCGCCGTA CATACTCGGGGTTTGGATTTCGCTTGCGA CATATATATTTGGGCCCCCCTCGCCGGCA CATGTGGAGTGCTGCTCCTGAGTCTCGTT ATAACCCTCTATTGCAACCATAGAAACAG ATCCAAAAGAAGCCGCCTGCTCCATAGCG ATTACATGAATATGACTCCACGCCGCCCT GGCCCCACAAGGAAACACTACCAGCCTTA CGCACCACCTAGAGATTTCGCTGCCTATC GGAGCAGGGTGAAGTTTTCCAGATCTGCA GATGCACCAGCGTATCAGCAGGGCCAGAA CCAA. CT GT AT AAC GAGCT CAACCT GGGAC GCAGGGAAGAGTATGACGTTTTGGACAAG CGCAGAGGACGGGACCCT GAGAT GGGT GG CAAACCAAGACGAAAAAACCCCCAGGAGG GT CT CTATAAT GAGCT GCAGAAGGATAAG ATGGCTGAAGCCTATTCTGAAATAGGCAT GAAAGGAGAGCGGAGAAGGGGAAAAGGGC ACGACGGTTTGTACCAGGGACTCAGCACT GCTACGAAGGATACTTATGACGCTCTCCA CATGCAAGCCCTGCCACCTAGGTAA VTVSSAAAIjSNSIMYF SHFVPVFLPAKPTTTP APRPPTPAPTIASQPL S LRPEACRPAAGGAVH TRGLDFACDIYIWAPL AGTCGVLLLSLVITLY CNHRNRSKRSRLLHSD YMNMTPRRPGPTRKHY Q P YAP P RD FAAYRS RV KFSRSADAPAYQQGQN QLYNELNLGRREEYDV LDKRRGRDPEMGGKPR RKNPQEGLYNELQKDK MAEAYSElGMKGERRR GKGHDGLYQGLSTATK DTYDALHMQALPPR
(CAR4.6) Clone 20C5.2 CD8 CAR DNA LxH GAAATAGTGATGArCTCAGTCCCCGGCCAC CCTCAGCGTGTCCCCCGGGGAGCGAGCGA CCCTGTCATGCAGGGCTTCCCAGAGTGTC AGCTCCCTGCTCACTTGGTATCAGCAAAA GCCGGGGCAGGCTCCCCGCCTCCTCATCT TCGGGGCATCAACTAGGGCCACCGGCATT CCTGCAAGATTTTCCGGGTCTGGCAGCGG CACCGGCTTCACCCTTACCATTAGCTCTC TGCAGTCTGAGGACTTCGCCGTTTACTAT TGTCAGCAGTATGATACTTGGCCCTTTAC CTTCGGTCCCGGAACTAAGGTGGACTTCA AGCGCGGGGGGGGTGGATCTGGAGGTGGT GGCTCCGGGGGCGGTGGAAGCCAGGTCCA GTTGGTTGAGAGCGGCGGCGGAGTGGTGC AGCCCGGGAGGTCCTTGCGGCTGAGCTGT GCAGCCTCCGGTTTTACTTTTTCTAGCTA TGGAATGCATTGGGTAAGACAGGCTCCCG GAAAAGGCCTCGAGTGGGTGGCGGTCATT AGCTAT GAT GGAT CT GATAAATACTAT GT GGACTCAGTTAAGGGGCGCTTCACAiATCT CAAGAGACAATAGCAAAAATAGACTGTAC CTGCAGATGAATAGTCTGCGCGCCGAGGA 235 EIVMTQSPATLSVSPG ERATLSCRASQSVSSL LTWYQQKPGQAPRLLI FGASTRATGIPARFSG SGSGTGFTLTISSLQS EDFAVYYCQQYDTWPF TFGPGTKVDFKRGGGG SGGGGSGGGGSQVQLV ESGGGWQPGRSLRLS CAiASGFTFS S YGMHWV RQAPGKGLEWAVISY DGSDKYYVDSVKGRFT ISRDNSKNRLYLQMNS LRAEDTAVYYCARERY SGRDYWGQGTLVTVSS AAALSNSIMYFSHFVP VFLPAKPTTTPAPRPP TPAPTIASQPLSLRPE ACRPAAGGAVHTRGLD FACDIYIWAPLAGTCG VLLLSLVITLYCNHRN RSKRSRLLHSDYMNMT 236
CACTGCCGTGTACTACTGCGCCCGCGAGA GATACAGCGGACGGGATTACT GGGGCCAG GGTACCCTCGTAACGGTGTCCTCCGCTGC CGCCCTTAGCAACAGCATTAT GTACTTTT CTCATTTCGTGCCAGTCTTTCTCCCAGCA AAGCCCACCACTACCCCGGCCCCCAGGCC GCCTACTCCTGCCCCCACTATCGCGTCTC AGCCTCTCTCCTTGCGGCCCGAGGCCTGC CGGCCAGCCGCAGGGGGCGCCGTACATAC TCGGGGTTTGGATTTCGCTTGCGACATAT ATATTTGGGCCCCCCTCGCCGGCACATGT GGAGTGCTGCTCCTGAGTCTCGTTATAAC CCTCTATTGCAACCATAGAAACAGATCCA AAAGAAGCCGCCTGCTCCATAGCGATTAC ATGAATATGACTCCACGCCGCCCTGGCCC CACAAGGAAACACTACCAGCCTTACGCAC CACCTAGAGATTTCGCTGCCTATCGGAGC AGGGTGAAGTTTTCCAGATCTGCAGATGC ACCAGCGTATCAGCAGGGCCAGAACCAAC TGTATAACGAGCTCAACCTGGGACGCAGG GAAGAGTATGACGTTTTGGACAAGCGCAG AGGACGGGACCCTGAGATGGGTGGCAAAC CAAGACGAAAAAACCCCCAGGAGGGTCTC TATAAT GAGCT GCAGAAGGATAAGATGGC T GAAGC CT AT T CT GAAATAG G C AT GAAAG GAGAGCGGAGAAGGGGAAAAGGGCACGAC GGTTTGTACCAGGGACTCAGCACTGCTAC GAAGGATACTTATGACGCTCTCCACATGC AAGCCCTGCCACCTAGG PRRPGPTRKHYQPYAP PRDFAAYRSRVKFSRS ADAPAYQQGQNQLYNE LNLGRREEYDVLDKRR GRDPEMGGKPRRKNPQ EGLYNELQKDKMAEAY S ElGMKGERRRGKGHD GLYQGLSTATKDTYDA LHMQALPPR
[0217] In some embodiments, the polynucleotide of the présent invention encodes a CAR, wherein the CAR comprises an amino acid sequence at least about 75%, at least about 85%, at least about 85%, at least about 90%, at least about 95%, at least about 96%, at least 5 about 97%, at least about 98%, at least about 99%, or 100% identical to an amino acid sequence selected from the group consisting of SEQ ID NOs: 134, 136, 138, 140, 142, 144, 146, 148, 150, 152, 154, 156, 158, 160, 162, 164, 166, 168, 178, 180, 190, 192, 202, 204, 214, 216, 226, and 228. In certain embodiments, the CAR comprises an amino acid sequence selected from the group consisting of SEQ ID NOs: 134, 136, 138, 140, 142, 144, 146, 148, 150, 152, 154, 10 156, 158, 160, 162, 164, 166, 168, 178, 180, 190, 192, 202, 204, 214, 216, 226, and 228.
[0218] In some embodiments, the polynucleotide of the présent invention comprises an nucieotide sequence at least about 50%, at least about 60%, at least about 65%, at least about 70%, at least about 75%, at least about 85%, at least about 85%, at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or 15 100%o identical to an amino acid sequence selected from the group consisting of SEQ ID NOs:
133, 135, 137, 139, 141, 143, 145, 147, 149, 151, 153, 155, 157, 159, 161, 163, 165, 167, 177, 179, 189, 191, 201, 203, 213, 215, 225, and 227. In certain embodiments, the polynucleotide 100 comprises a nucléotide sequence selected from the group consisting of SEQ ID NOs: 133, 135, 137, 139, 141, 143, 145, 147, 149, 151, 153, 155, 157, 159, 161, 163, 165, 167, 177, 179, 189, 191, 201, 203, 213, 215, 225, and 227.
IL Vectors, Cells, and Pharmaceutical Compositions
[0219] In certain aspects, provided herein are vectors comprising a polynucleotide of the présent invention. In some embodiments, the présent invention is directed to a vector or a set of vectors comprising a polynucleotide encoding a CAR or a TCR comprising the truncated hinge domain (“THD”) domain, as described above.
[0220] Any vector known in the art can be suitable for the présent invention. In some embodiments, the vector is a viral vector. In some embodiments, the vector is a retroviral vector, a DNA vector, a murine leukemia virus vector, an SFG vector, a plasmid, a RNA vector, an adénoviral vector, a baculoviral vector, an Epstein Barr viral vector, a papovaviral vector, a vaccinia viral vector, a herpes simplex viral vector, an adenovirus associated vector (AAV), a lentiviral vector, or any combination thereof.
[0221] In an embodiment, a vector that can be employed in the context of the présent invention is pGAR and has the coding sequence:
CTGACGCGCCCTGTAGCGGCGCATTAAGCGCGGCGGGTGTGGTGGTTACGCGCA GCGTGACCGCTACACTTGCCAGCGCCCTAGCGCCCGCTCCTTTCGCTTTCTTCCCT TCCTTTCTCGCCACGTTCGCCGGCTTTCCCCGTCAAGCTCTAAATCGGGGGCTCCC TTTAGGGTTCCGATTTAGTGCTTTACGGCACCTCGACCCCAAAAAACTTGATTAG GGTGATGGTTCACGTAGTGGGCCATCGCCCTGATAGACGGTTTTTCGCCCTTTGA CGTTGGAGTCCACGTTCTTTAATAGTGGACTCTTGTTCCAAACTGGAACAACACT CAACCCTATCTCGGTCTATTCTTTTGATTTATAAGGGATTTTGCCGATTTCGGCCT ATTGGTTAAAAAATGAGCTGATTTAACAAAAATTTAACGCGAATTTTAACAAAAT ATTAACGCTTACAATTTGCCATTCGCCATTCAGGCTGCGCAACTGTTGGGAAGGG CGATCGGTGCGGGCCTCTTCGCTATTACGCCAGCTGGCGAAAGGGGGATGTGCTG CAAGGCGATTAAGTTGGGTAACGCCAGGGTTTTCCCAGTCACGACGTTGTAAAAC GACGGCCAGTGAATTGTAATACGACTCACTATAGGGCGACCCGGGGATGGCGCG CCAGTAATCAATTACGGGGTCATTAGTTCATAGCCCATATATGGAGTTCCGCGTT ACATAACTTACGGTAAATGGCCCGCCTGGCTGACCGCCCAACGACCCCCGCCCAT TGACGTCAATAATGACGTATGTTCCCATAGTAACGCCAATAGGGACTTTCCATTG ACGTCAATGGGTGGAGTATTTACGGTAAACTGCCCACTTGGCAGTACATCAAGTG TATCATATGCCAAGTACGCCCCCTATTGACGTCAATGACGGTAAATGGCCCGCCT GGCATTATGCCCAGTACATGACCTTATGGGACTTTCCTACTTGGCAGTACATCTA CGTATTAGTCATCGCTATTACCATGCTGATGCGGTTTTGGCAGTACATCAATGGG CGTGGATAGCGGTTTGACTCACGGGGATTTCCAAGTCTCCACCCCATTGACGTCA ATGGGAGTTTGTTTTGGCACCAAAATCAACGGGACTTTCCAAAATGTCGTAACAA CTCCGCCCCATTGACGCAAATGGGCGGTAGGCGTGTACGGTGGGAGGTCTATAT AAGCAGAGCTGGTTTAGTGAACCGGGGTCTCTCTGGTTAGACCAGATCTGAGCCT
101
GGGAGCTCTCTGGCTAACTAGGGAACCCACTGCTTAAGCCTCAATAAAGCTTGCC TTGAGTGCTTCAAGTAGTGTGTGCCCGTCTGTTGTGTGACTCTGGTAACTAGAGA TCCCTCAGACCCTTTTAGTCAGTGTGGAAAATCTCTAGCAGTGGCGCCCGAACAG GGACTTGAAAGCGAAAGGGAAACCAGAGGAGCTCTCTCGACGCAGGACTCGGCT TGCTGAAGCGCGCACGGCAAGAGGCGAGGGGCGGCGACTGGTGAGTACGCCAA AAATTTTGACTAGCGGAGGCTAGAAGGAGAGAGATGGGTGCGAGAGCGTCAGTA TTAAGCGGGGGAGAATTAGATCGCGATGGGAAAAAATTCGGTTAAGGCCAGGGG GAAAGAAAAAATATAAATTAAAACATATAGTATGGGCAAGCAGGGAGCTAGAA CGATTCGCAGTTAATCCTGGCCTGTTAGAAACATCAGAAGGCTGTAGACAAATAC TGGGACAGCTACAACCATCCCTTCAGACAGGATCAGAAGAACTTAGATCATTAT ATAATACAGTAGCAACCCTCTATTGTGTGCATCAAAGGATAGAGATAAAAGACA CCAAGGAAGCTTTAGACAAGATAGAGGAAGAGCAAAACAAAAGTAAGACCACC GCACAGCAAGCCGCCGCTGATCTTCAGACCTGGAGGAGGAGATATGAGGGACAA TTGGAGAAGTGAATTATATAAATATAAAGTAGTAAAAATTGAACCATTAGGAGT AGCACCCACCAAGGCAAAGAGAAGAGTGGTGCAGAGAGAAAAAAGAGCAGTGG GAATAGGAGCTTTGTTCCTTGGGTTCTTGGGAGCAGCAGGAAGCACTATGGGCGC AGCGTCAATGACGCTGACGGTACAGGCCAGACAATTATTGTCTGGTATAGTGCA GCAGCAGAACAATTTGCTGAGGGCTATTGAGGCGCAACAGCATCTGTTGCAACT CACAGTCTGGGGCATCAAGCAGCTCCAGGCAAGAATCCTGGCTGTGGAAAGATA CCTAAAGGATCAACAGCTCCTGGGGATTTGGGGTTGCTCTGGAAAACTCATTTGC ACCACTGCTGTGCCTTGGAATGCTAGTTGGAGTAATAAATCTCTGGAACAGATTT GGAATCACACGACCTGGATGGAGTGGGACAGAGAAATTAACAATTACACAAGCT TAATACACTCCTTAATTGAAGAATCGCAAAACCAGCAAGAAAAGAATGAACAAG AATTATTGGAATTAGATAAATGGGCAAGTTTGTGGAATTGGTTTAACATAACAAA TTGGCTGTGGTATATAAAATTATTCATAATGATAGTAGGAGGCTTGGTAGGTTTA AGAATAGTTTTTGCTGTACTTTCTATAGTGAATAGAGTTAGGCAGGGATATTCAC CATTATCGTTTCAGACCCACCTCCCAACCCCGAGGGGACCCGACAGGCCCGAAG GAATAGAAGAAGAAGGTGGAGAGAGAGACAGAGACAGATCCATTCGATTAGTG AACGGATCTCGACGGTATCGGTTAACTTTTAAAAGAAAAGGGGGGATTGGGGGG TACAGTGCAGGGGAAAGAATAGTAGACATAATAGCAACAGACATACAAACTAA AGAATTACAAAAACAAATTACAAAATTCAAAATTTTATCGCGATCGCGGAATGA AAGACCCCACCTGTAGGTTTGGCAAGCTAGCTTAAGTAACGCCATTTTGCAAGGC ATGGAAAATACATAACTGAGAATAGAGAAGTTCAGATCAAGGTTAGGAACAGAG AGACAGCAGAATATGGGCCAAACAGGATATCTGTGGTAAGCAGTTCCTGCCCCG GCTCAGGGCCAAGAACAGATGGTCCCCAGATGCGGTCCCGCCCTCAGCAGTTTCT AGAGAACCATCAGATGTTTCCAGGGTGCCCCAAGGACCTGAAAATGACCCTGTG CCTTATTTGAACTAACCAATCAGTTCGCTTCTCGCTTCTGTTCGCGCGCTTCTGCT CCCCGAGCTCAATAAAAGAGCCCACAACCCCTCACTCGGCGCGCCAGTCCTTCGA AGTAGATCTTTGTCGATCCTACCATCCACTCGACACACCCGCCAGCGGCCGCTGC CAAGCTTCCGAGCTCTCGAATTAATTCACGGTACCCACCATGGCCTAGGGAGACT AGTCGAATCGATATCAACCTCTGGATTACAAAATTTGTGAAAGATTGACTGGTAT TCTTAACTATGTTGCTCCTTTTACGCTATGTGGATACGCTGCTTTAATGCCTTTGT ATCATGCTATTGCTTCCCGTATGGCTTTCATTTTCTCCTCCTTGTATAAATCCTGGT TGCTGTCTCTTTATGAGGAGTTGTGGCCCGTTGTCAGGCAACGTGGCGTGGTGTG CACTGTGTTTGCTGACGCAACCCCCACTGGTTGGGGCATTGCCACCACCTGTCAG CTCCTTTCCGGGACTTTCGCTTTCCCCCTCCCTATTGCCACGGCGGAACTCATCGC CGCCTGCCTTGCCCGCTGCTGGACAGGGGCTCGGCTGTTGGGCACTGACAATTCC GTGGTGTTGTCGGGGAAGCTGACGTCCTTTTCATGGCTGCTCGCCTGTGTTGCCA CCTGGATTCTGCGCGGGACGTCCTTCTGCTACGTCCCTTCGGCCCTCAATCCAGC
102
GGACCTTCCTTCCCGCGGCCTGCTGCCGGCTCTGCGGCCTCTTCCGCGTCTTCGCC TTCGCCCTCAGACGAGTCGGATCTCCCTTTGGGCCGCCTCCCCGCCTGGTTAATTA AAGTACCTTTAAGACCAATGACTTACAAGGCAGCTGTAGATCTTAGCCACTTTTT AAAAGAAAAGGGGGGACTGGAAGGGCGAATTCACTCCCAACGAAGACAAGATC TGCTTTTTGCTTGTACTGGGTCTCTCTGGTTAGACCAGATCTGAGCCTGGGAGCTC TCTGGCTAACTAGGGAACCCACTGCTTAAGCCTCAATAAAGCTTGCCTTGAGTGC TTCAAGTAGTGTGTGCCCGTCTGTTGTGTGACTCTGGTAACTAGAGATCCCTCAG ACCCTTTTAGTCAGTGTGGAAAATCTCTAGCAGGCATGCCAGACATGATAAGATA CATTGATGAGTTTGGACAAACCACAACTAGAATGCAGTGAAAAAAATGCTTTATT TGTGAAATTTGTGATGCTATTGCTTTATTTGTAACCATTATAAGCTGCAATAAACA AGTTAACAACAACAATTGCATTCATTTTATGTTTCAGGTTCAGGGGGAGGTGTGG GAGGTTTTTTGGCGCGCCATCGTCGAGGTTCCCTTTAGTGAGGGTTAATTGCGAG CTTGGCGTAATCATGGTCATAGCTGTTTCCTGTGTGAAATTGTTATCCGCTCACAA TTCCACACAACATACGAGCCGGAAGCATAAAGTGTAAAGCCTGGGGTGCCTAAT GAGTGAGCTAACTCACATTAATTGCGTTGCGCTCACTGCCCGCTTTCCAGTCGGG AAACCTGTCGTGCCAGCTGCATTAATGAATCGGCCAACGCGCGGGGAGAGGCGG TTTGCGTATTGGGCGCTCTTCCGCTTCCTCGCTCACTGACTCGCTGCGCTCGGTCG TTCGGCTGCGGCGAGCGGTATCAGCTCACTCAAAGGCGGTAATACGGTTATCCAC AGAATCAGGGGATAACGCAGGAAAGAACATGTGAGCAAAAGGCCAGCAAAAGG CCAGGAACCGTAAAAAGGCCGCGTTGCTGGCGTTTTTCCATAGGCTCCGCCCCCC TGACGAGCATCACAAAAATCGACGCTCAAGTCAGAGGTGGCGAAACCCGACAGG ACTATAAAGATACCAGGCGTTTCCCCCTGGAAGCTCCCTCGTGCGCTCTCCTGTT CCGACCCTGCCGCTTACCGGATACCTGTCCGCCTTTCTCCCTTCGGGAAGCGTGG CGCTTTCTCATAGCTCACGCTGTAGGTATCTCAGTTCGGTGTAGGTCGTTCGCTCC AAGCTGGGCTGTGTGCACGAACCCCCCGTTCAGCCCGACCGCTGCGCCTTATCCG GTAACTATCGTCTTGAGTCCAACCCGGTAAGACACGACTTATCGCCACTGGCAGC AGCCACTGGTAACAGGATTAGCAGAGCGAGGTATGTAGGCGGTGCTACAGAGTT CTTGAAGTGGTGGCCTAACTACGGCTACACTAGAAGAACAGTATTTGGTATCTGC GCTCTGCTGAAGCCAGTTACCTTCGGAAAAAGAGTTGGTAGCTCTTGATCCGGCA AACAAACCACCGCTGGTAGCGGTGGTTTTTTTGTTTGCAAGCAGCAGATTACGCG CAGAAAAAAAGGATCTCAAGAAGATCCTTTGATCTTTTCTACGGGGTCTGACGCT CAGTGGAACGAAAACTCACGTTAAGGGATTTTGGTCATGAGATTATCAAAAAGG ATCTTCACCTAGATCCTTTTAAATTAAAAATGAAGTTTTAAATCAATCTAAAGTA TATATGAGTAAACTTGGTCTGACAGTTACCAATGCTTAATCAGTGAGGCACCTAT CTCAGCGATCTGTCTATTTCGTTCATCCATAGTTGCCTGACTCCCCGTCGTGTAGA TAACTACGATACGGGAGGGCTTACCATCTGGCCCCAGTGCTGCAATGATACCGCG AGACCCACGCTCACCGGCTCCAGATTTATCAGCAATAAACCAGCCAGCCGGAAG GGCCGAGCGCAGAAGTGGTCCTGCAACTTTATCCGCCTCCATCCAGTCTATTAAT TGTTGCCGGGAAGCTAGAGTAAGTAGTTCGCCAGTTAATAGTTTGCGCAACGTTG TTGCCATTGCTACAGGCATCGTGGTGTCACGCTCGTCGTTTGGTATGGCTTCATTC AGCTCCGGTTCCCAACGATCAAGGCGAGTTACATGATCCCCCATGTTGTGCAAAA AAGCGGTTAGCTCCTTCGGTCCTCCGATCGTTGTCAGAAGTAAGTTGGCCGCAGT GTTATCACTCATGGTTATGGCAGCACTGCATAATTCTCTTACTGTCATGCCATCCG TAAGATGCTTTTCTGTGACTGGTGAGTACTCAACCAAGTCATTCTGAGAATAGTG TATGCGGCGACCGAGTTGCTCTTGCCCGGCGTCAATACGGGATAATACCGCGCCA CATAGCAGAACTTTAAAAGTGCTCATCATTGGAAAACGTTCTTCGGGGCGAAAA CTCTCAAGGATCTTACCGCTGTTGAGATCCAGTTCGATGTAACCCACTCGTGCAC CCAACTGATCTTCAGCATCTTTTACTTTCACCAGCGTTTCTGGGTGAGCAAAAAC AGGAAGGCAAAATGCCGCAAAAAAGGGAATAAGGGCGACACGGAAATGTTGAA
103
TACTCATACTCTTCCTTTTTCAATATTATTGAAGCATTTATCAGGGTTATTGTCTC ATGAGCGGATACATATTTGAATGTATTTAGAAAAATAAACAAATAGGGGTTCCG CGCACATTTCCCCGAAAAGTGCCAC
[0222] The pGAR vector map is set forth below:
Suitable additional exemplary vectors include e.g., pBABE-puro, pBABE-neo largeTcDNA, pBABE-hygro-hTERT, pMKO.l GFP, MSCV-IRES-GFP, pMSCV PIG (Puro IRES GFP empty plasmid), pMSCV-loxp-dsRed-loxp-eGFP-Puro-WPRE, MSCV IRES Luciferase, pMIG, MDH1-PGK-GFP_2.O, TtRMPVIR, pMSCV-IRES-mCherry FP, pRetroX GFP T2A Cre, pRXTN, pLncEXP, and pLXIN-Luc.
[0223] In other aspects, provided herein are cells comprising a polynucleotide or a vector of the présent invention. In some embodiments, the présent invention is directed to cells, e.g., in vitro cells, comprising a polynucleotide encoding a CAR or a TCR comprising a TCD described herein. In other embodiments, the présent invention is directed to cells, e.g., in vitro cells, comprising a polypeptide encoded by a CAR or a TCR comprising a TCD described herein.
[0224] Any cell may be used as a host cell for the polynucleotides, the vectors, or the polypeptides of the présent invention. In some embodiments, the cell can be a prokaryotic cell, fungal cell, yeast cell, or higher eukaryotic cells such as a mammalian cell. Suitable prokaryotic cells include, without limitation, eubacteria, such as Gram-negative or Gram-positive organisms, for example, Enterobactehaceae such as Escherichia, e.g., E. coli’, Enterobacter, Erwinia, Klebsiella’, Proteus, Salmonella, e.g., Salmonella typhimurium, Serratia, e.g., 104
Serratia marcescans, and Shigella, Bacilli such as B. subtilis and B. licheniformis', Pseudomonas such as P. aeruginosa, and Streptomyces. In some embodiments, the cell is a human cell. In some embodiments, the cell is an immune cell. In some embodiments, the immune cell is selected from the group consisting of a T cell, a B cell, a tumor infiltrating lymphocyte (TIL), a TCR expressing cell, a natural killer (NK) cell, a dendritic cell, a granulocyte, an innate lymphoid cell, a megakaryocyte, a monocyte, a macrophage, a platelet, a thymocyte, and a myeloid cell. In one embodiment, the immune cell is a T cell. In another embodiment, the immune cell is an NK cell. In certain embodiments, the T cell is a tumorinfiltrating lymphocyte (TIL), autologous T cell, engineered autologous T cell (eACT™), an allogeneic T cell, a heterologous T cell, or any combination thereof.
[0225] The cell of the présent invention may be obtained through any source known in the art. For example, T cells can be differentiated in vitro from a hematopoietic stem cell population, or T cells can be obtained from a subject. T cells can be obtained from, e.g., peripheral blood mononuclear cells, bone marrow, lymph node tissue, cord blood, thymus tissue, tissue from a site of infection, ascites, pleural effusion, spleen tissue, and tumors. In addition, the T cells can be derived from one or more T cell lines available in the art. T cells can also be obtained from a unit of blood collected from a subject using any number of techniques known to the skilled artisan, such as FICOLL™ séparation and/or apheresis. In certain embodiments, the cells collected by apheresis are washed to remove the plasma fraction, and placed in an appropriate buffer or media for subséquent processing. In some embodiments, the cells are washed with PBS. As will be appreciated, a washing step can be used, such as by using a semiautomated flowthrough centrifuge, e.g., the Cobe™ 2991 cell processor, the Baxter CytoMate™, or the like. In some embodiments, the washed cells are resuspended in one or more biocompatible buffers, or other saline solution with or without buffer. In certain embodiments, the undesired components of the apheresis sample are removed. Additional methods of isolating T cells for a T cell therapy are disclosed in U.S. Patent Publication No. 2013/0287748, which is herein incorporated by references in its entirety.
[0226] In certain embodiments, T cells are isolated from PBMCs by lysing the red blood cells and depleting the monocytes, e.g., by using centrifugation through a PERCOLL™ gradient. In some embodiments, a spécifie subpopulation of T cells, such as CD4+, CD8 \ CD28+, CD45RA+, and CD45RO+ T cells is further isolated by positive or négative sélection techniques known in the art. For example, enrichment of a T cell population by négative sélection can be accomplished with a combination of antibodies directed to surface markers 105 unique to the negatively selected cells. In some embodiments, cell sorting and/or sélection via négative magnetic immunoadherence or flow cytometry that uses a cocktail of monoclonal antibodies directed to cell surface markers présent on the cells negatively selected can be used. For example, to enrich for CD4+ cells by négative sélection, a monoclonal antibody cocktail typically includes antibodies to CD8, CDllb, CD14, CD16, CD20, and HLA-DR. In certain embodiments, flow cytometry and cell sorting are used to isolate cell populations of interest for use in the présent invention.
[0227] In some embodiments, PBMCs are used directly for genetic modification with the immune cells (such as CARs or TCRs) using methods as described herein. In certain embodiments, after isolating the PBMCs, T lymphocytes are further isolated, and both cytotoxic and helper T lymphocytes are sorted into naïve, memory, and effector T cell subpopulations either before or after genetic modification and/or expansion.
[0228] In some embodiments, CD8+ cells are further sorted into naïve, central memory, and effector cells by identifying cell surface antigens that are associated with each of these types of CD8+ cells. In some embodiments, the expression of phenotypic markers of central memory T cells includes CCR7, CD3, CD28, CD45RO, CD62L, and CD127 and are négative for granzyme B. In some embodiments, central memory T cells are CD8 r, CD45RO , and CD62L+ T cells. In some embodiments, effector T cells are négative for CCR7, CD28, CD62L, and CD127 and positive for granzyme B and perforin. In certain embodiments, CD4+ T cells are further sorted into subpopulations. For example, CD4+ T helper cells can be sorted into naïve, central memory, and effector cells by identifying cell populations that hâve cell surface antigens.
[0229] In some embodiments, the immune cells, e.g., T cells, are genetically rnodified following isolation using known methods, or the immune cells are activated and expanded (or differentiated in the case of progenitors) in vitro prior to being genetically rnodified. In another embodiment, the immune cells, e.g, T cells, are genetically rnodified with the chimeric antigen receptors described herein (e.g., transduced with a viral vector comprising one or more nucieotide sequences encoding a CAR) and then are activated and/or expanded in vitro. Methods for activating and expanding T cells are known in the art and are described, e.g., in U.S. Patent Nos. 6,905,874; 6,867,041; and 6,797,514; and PCT Publication No. WO 2012/079000, the contents of which are hereby incorporated by reference in their entirety. Generally, such methods include contacting PBMC or isolated T cells with a stimulatory agent and costimulatory agent, such as anti-CD3 and anti-CD28 antibodies, generally attached to a 106 bead or other surface, in a culture medium with appropriate cytokines, such as IL-2. Anti-CD3 and anti-CD28 antibodies attached to the same bead serve as a “surrogate” antigen presenting cell (APC). One example is The Dynabeads® System, a CD3/CD28 activâtor/stimulator system for physiological activation of human T cells. In other embodiments, the T cells are activated and stimulated to proliferate with feeder cells and appropriate antibodies and cytokines using methods such as those described in U.S. Patent Nos. 6,040,177 and 5,827,642 and PCT Publication No. WO 2012/129514, the contents of which are hereby incorporated by reference in their entirety.
[0230] In certain embodiments, the T cells are obtained from a donor subject. In some embodiments, the donor subject is human patient afflicted with a cancer or a tumor. In other embodiments, the donor subject is a human patient not afflicted with a cancer or a tumor.
[0231] Other aspects of the présent invention are directed to compositions comprising a polynucleotide described herein, a vector described herein, a polypeptide described herein, or an in vitro cell described herein. In some embodiments, the composition comprises a pharmaceutically acceptable carrier, diluent, solubilizer, emulsifier, preservative and/or adjuvant. In some embodiments, the composition comprises an excipient. In one embodiment, the composition comprises a polynucleotide encoding a CAR or a TCR comprising a truncated hinge domain (“THD”) described herein. In another embodiment, the composition comprises a CAR or a TCR comprising a TCD encoded by a polynucleotide of the présent invention. In another embodiment, the composition comprises a T cell comprising a CAR or a TCR comprising a TCD described herein.
[0232] In other embodiments, the composition is selected for parentéral delivery, foiinhalation, or for delivery through the digestive tract, such as orally. The préparation of such pharmaceutically acceptable compositions is within the ability of one skilled in the art. In certain embodiments, buffers are used to maintain the composition at physiological pH or at a slightly lower pH, typically within a pH range of from about 5 to about 8. In certain embodiments, when parentéral administration is contemplated, the composition is in the form of a pyrogen-free, parenterally acceptable aqueous solution comprising a composition described herein, with or without additional therapeutic agents, in a pharmaceutically acceptable vehicle. In certain embodiments, the vehicle for parentéral injection is stérile distilled water in which composition described herein, with or without at least one additional therapeutic agent, is formulated as a stérile, isotonie solution, properly preserved. In certain embodiments, the préparation involves the formulation of the desired molécule with polymeric 107 compounds (such as polylactic acid or polyglycolic acid), beads or liposomes, that provide for the controlled or sustained release of the product, which are then be delivered via a depot injection. In certain embodiments, implantable drug delivery devices are used to introduce the desired molécule.
III. Methods of the Invention
[0233] Another aspect of the invention is directed to a method of making a cell expressing a CAR or a TCR comprising transducing a cell with a polynucleotide disclosed herein under suitable conditions. In some embodiments, the method comprises transducing a cell with a polynucleotide encoding a CAR or a TCR, as disclosed herein. In some embodiments, the method comprises transducing a cell with a vector comprising the polynucleotide encoding a CAR or a TCR.
[0234] Another aspect of the présent invention is directed to a method of inducing an immunity against a tumor comprising administering to a subject an effective amount of a cell comprising a polynucleotide described herein, a vector described herein, or a CAR or a TCR described herein. In one embodiment, the method comprises administering to a subject an effective amount of a cell comprising a polynucleotide encoding a CAR or a TCR disclosed herein. In another embodiment, the method comprises administering to a subject an effective amount of a cell comprising a vector comprising a polynucleotide encoding a CAR or a TCR disclosed herein. In another embodiment, the method comprises administering to a subject an effective amount of a cell comprising a CAR or a TCR encoded by a polynucleotide disclosed herein.
[0235] Another aspect of the présent invention is directed to a method of inducing an immune response in a subject comprising administering an effective amount of the engineered immune cells of the présent application. In some embodiments, the immune response is a T cell-mediated immune response. In some embodiments, the T cell-mediated immune response is directed against one or more target cells. In some embodiments, the engineered immune cell comprises a CAR or a TCR, wherein the CAR or the TCR comprises a THD described in the présent disclosure. In some embodiments, the target cell is a tumor cell.
[0236] Another aspect of the présent invention is directed to a method for treating or preventing a malignancy, said method comprising administering to a subject in need thereof an effective amount of at least one immune cell, wherein the immune cell comprises at least one CAR or TCR, and wherein the CAR or the TCR comprises a THD described herein.
108
[0237] Another aspect of the présent invention is directed to a method of treating a cancer in a subject in need thereof comprising administering to the subject a polynucleotide, a vector, a CAR or a TCR, a cell, or a composition disclosed herein. In one embodiment, the method comprises administering a polynucleotide encoding a CAR or a TCR. In another embodiment, the method comprises administering a vector comprising a polynucleotide encoding a CAR or a TCR. In another embodiment, the method comprises administering a CAR or a TCR encoded by a polynucleotide disclosed herein. In another embodiment, the method comprises administering a cell comprising the polynucleotide, or a vector comprising the polynucleotide, encoding a CAR or a TCR.
[0238] In some embodiments, the methods of treating a cancer in a subject in need thereof comprise a T cell therapy. In one embodiment, the T cell therapy of the présent invention is engineered Autologous Cell Therapy (eACT™). According to this embodiment, the method can include collecting blood cells from the patient. The isolated blood cells (e.g., T cells) can then be engineered to express a CAR or a TCR of the présent invention. In a particular embodiment, the CAR T cells or the TCR T cells are administered to the patient. In some embodiments, the CAR T cells or the TCR T cells treat a tumor or a cancer in the patient. In one embodiment the CAR T cells or the TCR T cells reduce the size of a tumor or a cancer.
[0239] In some embodiments, the donor T cells for use in the T cell therapy are obtained from the patient (e.g., for an autologous T cell therapy). In other embodiments, the donor T cells for use in the T cell therapy are obtained from a subject that is not the.patient.
[0240] The T cells can be administered at a therapeutically effective amount. For example, a therapeutically effective amount of the T cells can be at least about 104 cells, at least about 105 cells, at least about 106 cells, at least about 107 cells, at least about 108 cells, at least about 109, or at least about 1010. In another embodiment, the therapeutically effective amount of the T cells is about 104 cells, about 105 cells, about 106 cells, about 107 cells, or about 108 cells. In one particular embodiment, the therapeutically effective amount of the CAR T cells or the TCR T cells is about 2 X 106 cells/kg, about 3 X 106 cells/kg, about 4 X 106 cells/kg, about 5 X 106 cells/kg, about 6 X 106 cells/kg, about 7 X 106 cells/kg, about 8 X10 cells/kg, about 9 X 106 cells/kg, about 1 X 107 cells/kg, about 2 X 107 cells/kg, about 3 X10 cells/kg, about 4 X 107 cells/kg, about 5 X 107 cells/kg, about 6 X 107 cells/kg, about 7 X10 cells/kg, about 8 X 107 cells/kg, or about 9 X 107 cells/kg.
109
IV Cancer Treatment
[0241] The methods of the invention can be used to treat a cancer in a subject, reduce the size of a tumor, kill tumor cells, prevent tumor cell prolifération, prevent growth of a tumor, eliminate a tumor from a patient, prevent relapse of a tumor, prevent tumor metastasis, induce remission in a patient, or any combination thereof. In certain embodiments, the methods induce a complété response. In other embodiments, the methods induce a partial response.
[0242] Cancers that may be treated include tumors that are not vascularized, not yet substantially vascularized, or vascularized. The cancer may also include solid or non-solid tumors. In some embodiments, the cancer is a hématologie cancer. In some embodiments, the cancer is ofthe white blood cells. In other embodiments, the cancer is ofthe plasma cells. In some embodiments, the cancer is leukemia, lymphoma, or myeloma. In certain embodiments, the cancer is acute lymphoblastic leukemia (ALL) (including non T cell ALL), acute lymphoid leukemia (ALL), and hemophagocytic lymphohistocytosis (HLH)), B cell prolymphocytic leukemia, B-cell acute lymphoid leukemia (“BALL”), blastic plasmacytoid dendritic cell neoplasm, Burkitt's lymphoma, chronic lymphocytic leukemia (CLL), chronic myelogenous leukemia (CML), chronic myeloid leukemia (CML), chronic or acute granulomatous disease, chronic or acute leukemia, diffuse large B cell lymphoma, diffuse large B cell lymphoma (DLBCL), follicular lymphoma, follicular lymphoma (FL), hairy cell leukemia, hemophagocytic syndrome (Macrophage Activating Syndrome (MAS), Hodgkin's Disease, large cell granuloma, leukocyte adhesion deficiency, malignant lymphoproliférative conditions, MALT lymphoma, mantle cell lymphoma, Marginal zone lymphoma, monoclonal gammapathy of undetermined signifïcance (MGUS), multiple myeloma, myelodysplasia and myelodysplastic syndrome (MDS), myeloid diseases including but not limited to acute myeloid leukemia (AML), non-Hodgkin's lymphoma (NHL), plasma cell proliférative disorders (e.g., asymptomatic myeloma (smoldering multiple myeloma or indolent myeloma), plasmablastic lymphoma, plasmacytoid dendritic cell neoplasm, plasmacytomas (e.g., plasma cell dyscrasia; solitary myeloma; solitary plasmacytoma; extramedullary plasmacytoma; and multiple plasmacytoma), POEMS syndrome (Crow-Fukase syndrome; Takatsuki disease; PEP syndrome), primary médiastinal large B cell lymphoma (PMBC), small cell- or a large cellfollicular lymphoma, splenic marginal zone lymphoma (SMZL), systemic amyloid light chain amyloidosis, T-cell acute lymphoid leukemia (“TALL”), T-cell lymphoma, transformed follicular lymphoma, Waldenstrom macroglobulinemia, or a combination thereof.
110
[0243] In one embodiment, the cancer is a myeloma. In one particular embodiment, the cancer is multiple myeloma. In another embodiment, the cancer is a leukemia. In one embodiment, the cancer is acute myeloid leukemia.
[0244] In some embodiments, the methods further comprise administering a chemotherapeutic. In certain embodiments, the chemotherapeutic selected is a lymphodepleting (preconditioning) chemotherapeutic. Bénéficiai preconditioning treatment regimens, along with corrélative bénéficiai biomarkers are described in U.S. Provisional Patent Applications 62/262,143 and 62/167,750 which are hereby incorporated by reference in their entirety herein. These describe, e.g., methods of conditioning a patient in need of a T cell therapy comprising administering to the patient specified bénéficiai doses of cyclophosphamide (between 200 mg/m2/day and 2000 mg/m2/day) and specified doses of fludarabine (between 20 mg/m2/day and 900 mg/m2/day). One such dose regimen involves treating a patient comprising administering daily to the patient about 500 mg/m2/day of cyclophosphamide and about 60 mg/m2/day of fludarabine for three days prior to administration of a therapeutically effective amount of engineered T cells to the patient.
[0245] In other embodiments, the antigen binding molécule, transduced (or otherwise engineered) cells (such as CARs or TCRs), and the chemotherapeutic agent are administered each in an amount effective to treat the disease or condition in the subject.
[0246] In certain embodiments, compositions comprising CAR- and/or TCRexpressing immune effector cells disclosed herein may be administered in conjunction with any number of chemotherapeutic agents. Examples of chemotherapeutic agents include alkylating agents such as thiotepa and cyclophosphamide (CYTOXAN™); alkyl sulfonates such as busulfan, improsulfan and piposulfan; aziridines such as benzodopa, carboquone, meturedopa, and uredopa; ethylenimines and methylamelamines including altretamine, triethylenemelamine, trietylenephosphoramide, triethylenethiophosphaoramide and trimethylolomelamine résumé; nitrogen mustards such as chlorambucil, chlornaphazine, cholophosphamide, estramustine, ifosfamide, mechlorethamine, mechlorethamine oxide hydrochloride, melphalan, novembichin, phenesterine, prednimustine, trofosfamide, uracil mustard; nitrosureas such as carmustine, chlorozotocin, fotemustine, lomustine, nimustine, ranimustine; antibiotics such as aclacinomysins, actinomycin, authramycin, azaserine, bleomycins, cactinomycin, calicheamicin, carabicin, carminomycin, carzinophilin, chromomycins, dactinomycin, daunorubicin, detorubicin, 6-diazo-5-oxo-L-norleucine, doxorubicin, epirubicin, esorubicin, idarubicin, marcellomycin, mitomycins, mycophenolic 111 acid, nogalamycin, olivomycins, peplomycin, potfiromycin, puromycin, quelamycin, rodorubicin, streptonigrin, streptozocin, tubercidin, ubenimex, zinostatin, zorubicin; antimetabolites such as methotrexate and 5-fluorouracil (5-FU); folie acid analogues such as denopterin, methotrexate, pteropterin, trimetrexate; purine analogs such as fludarabine, 6mercaptopurine, thiamiprine, thioguanine; pyrimidine analogs such as ancitabine, azacitidine, 6-azauridine, carmofur, cytarabine, dideoxyuridine, doxifluridine, enocitabine, floxuridine, 5FU; androgens such as calusterone, dromostanolone propionate, epitiostanol, mepitiostane, testolactone; anti-adrenals such as aminoglutéthimide, mitotane, trilostane; folie acid replenisher such as frolinic acid; aceglatone; aldophosphamide glycoside; aminolevulinic acid; amsacrine; bestrabucil; bisantrene; edatraxate; defofamine; demecolcine; diaziquone; elformithine; elliptinium acetate; etoglucid; gallium nitrate; hydroxyurea; lentinan; lonidamine; mitoguazone; mitoxantrone; mopidamol; nitracrine; pentostatin; phenamet; pirarubicin; podophyllinic acid; 2-ethylhydrazide; procarbazine; PSK®; razoxane; sizofiran; spirogermanium; tenuazonic acid; triaziquone; 2, 2',2-trichlorotriethylamine; urethan; vindesine; dacarbazine; mannomustine; mitobronitol; mitolactol; pipobroman; gacytosine; arabinoside (“Ara-C”); cyclophosphamide; thiotepa; taxoids, e.g. paclitaxel (TAXOL™, Bristol-Myers Squibb) and doxetaxel (TAXOTERE®, Rhone-Poulenc Rorer); chlorambucil; gemcitabine; 6-thioguanine; mercaptopurine; methotrexate; platinum analogs such as cisplatin and carboplatin; vinblastine; platinum; etoposide (VP-16); ifosfamide; mitomycin C; mitoxantrone; vincristine; vinorelbine; navelbine; novantrone; teniposide; daunomycin; aminopterin; xeloda; ibandronate; CPT-11; topoisomerase inhibitor RFS2000; difluoromethylomithine (DMFO); retinoic acid dérivatives such as Targretin™ (bexarotene), Panretin™, (alitretinoin); ONTAK™ (denileukin diftitox); esperamicins; capecitabine; and pharmaceutically acceptable salts, acids or dérivatives of any of the above. In some embodiments, compositions comprising CAR- and/or TCR-expressing immune effector cells disclosed herein may be administered in conjunction with an anti-hormonal agent that acts to regulate or inhibit hormone action on tumors such as anti-estrogens including for example tamoxifen, raloxifene, aromatase inhibiting 4(5)-imidazoles, 4-hydroxytamoxifen, trioxifene, keoxifene, LY117018, onapristone, and toremifene (Fareston); and anti-androgens such as flutamide, nilutamide, bicalutamide, leuprolide, and goserelin; and pharmaceutically acceptable salts, acids or dérivatives of any of the above. Combinations of chemotherapeutic agents are also administered where appropriate, including, but not limited to CHOP, i.e.,
112
Cyclophosphamide (Cytoxan®), Doxorubicin (hydroxydoxorubicin), Vincristine (Oncovin®), and Prednisone.
[0247] In some embodiments, the chemotherapeutic agent is administered at the same time or within one week after the administration of the engineered cell or nucleic acid. In other embodiments, the chemotherapeutic agent is administered from 1 to 4 weeks or from 1 week to 1 month, 1 week to 2 months, 1 week to 3 months, 1 week to 6 months, 1 week to 9 months, or 1 week to 12 months after the administration of the engineered cell or nucleic acid. In some embodiments, the chemotherapeutic agent is administered at least 1 month before administering the cell or nucleic acid. In some embodiments, the methods further comprise administering two or more chemotherapeutic agents.
[0248] A variety of additional therapeutic agents may be used in conjunction with the compositions described herein. For example, potentially useful additional therapeutic agents include PD-1 inhibitors such as nivolumab (OPDIVO®), pembrolizumab (KEYTRUDA®), pembrolizumab, pidilizumab (CureTech), and atezolizumab (Roche).
[0249] Additional therapeutic agents suitable for use in combination with the invention include, but are not limited to, ibrutinib (IMBRUVICA®), ofatumumab (ARZERRA®), rituximab (RITUXAN®), bevacizumab (AVASTIN®), trastuzumab (ECERCEPTIN®), trastuzumab emtansine (KADCYLA®), imatinib (GLEEVEC®), cetuximab (ERBITUX®), panitumumab (VECTIBIX®), catumaxomab, ibritumomab, ofatumumab, tositumomab, brentuximab, alemtuzumab, gemtuzumab, erlotinib, gefitinib, vandetanib, afatinib, lapatinib, neratinib, axitinib, masitinib, pazopanib, sunitinib, sorafenib, toceranib, lestaurtinib, axitinib, cediranib, lenvatinib, nintedanib, pazopanib, regorafenib, semaxanib, sorafenib, sunitinib, tivozanib, toceranib, vandetanib, entrectinib, cabozantinib, imatinib, dasatinib, nilotinib, ponatinib, radotinib, bosutinib, lestaurtinib, ruxolitinib, pacritinib, cobimetinib, selumetinib, trametinib, binimetinib, alectinib, ceritinib, crizotinib, aflibercept,adipotide, denileukin diftitox, mTOR inhibitors such as Everolimus and Temsirolimus, hedgehog inhibitors such as sonidegib and vismodegib, CDK inhibitors such as CDK inhibitor (palbociclib).
[0250] In additional embodiments, the composition comprising CAR- and/or TCRcontaining immune are administered with an anti-inflammatory agent. Anti-inflammatory agents or drugs can include, but are not limited to, steroids and glucocorticoids (including betamethasone, budesonide, dexamethasone, hydrocortisone acetate, hydrocortisone, hydrocortisone, méthylprednisolone, prednisolone, prednisone, triamcinolone), nonsteroidal anti-inflammatory drugs (NSAIDS) including aspirin, ibuprofen, naproxen, methotrexate, 113 sulfasalazine, leflunomide, anti-TNF médications, cyclophosphamide and mycophenolate. Exemplary NSAIDs include ibuprofen, naproxen, naproxen sodium, Cox-2 inhibitors, and sialylates. Exemplary analgésies include acetaminophen, oxycodone, tramadol of proporxyphene hydrochloride. Exemplary glucocorticoids include cortisone, dexamethasone, hydrocortisone, méthylprednisolone, prednisolone, or prednisone. Exemplary biological response modifiers include molécules directed against cell surface markers (e.g, CD4, CD5, etc.), cytokine inhibitors, such as the TNF antagonists, (e.g., etanercept (ENBREL®), adalimumab (HUMIRA®) and infliximab (REMICADE®), chemokine inhibitors and adhesion molécule inhibitors. The biological response modifiers include monoclonal antibodies as well as recombinant forms of molécules. Exemplary DMARDs include azathioprine, cyclophosphamide, cyclosporine, methotrexate, penicillamine, leflunomide, sulfasalazine, hydroxychloroquine, Gold (oral (auranofm) and intramuscular), and minocycline.
[0251] In certain embodiments, the compositions described herein are administered in conjunction with a cytokine. “Cytokine” as used herein is meant to refer to proteins released by one cell population that act on another cell as intercellular mediators. Examples of cytokines are lymphokines, monokines, and traditional polypeptide hormones. Included among the cytokines are growth hormones such as human growth hormone, N-methionyl human growth hormone, and bovine growth hormone; parathyroid hormone; thyroxine; insulin; proinsulin; relaxin; prorelaxin; glycoprotein hormones such as follicle stimulating hormone (FSH), thyroid stimulating hormone (TSH), and luteinizing hormone (LH); hepatic growth factor (HGF); fibroblast growth factor (FGF); prolactin; placental lactogen; mullerian-inhibiting substance; mouse gonadotropin-associated peptide; inhibin; activin; vascular endothélial growth factor; integrin; thrombopoietin (TPO); nerve growth factors (NGFs) such as NGF-beta; plateletgrowth factor; transforming growth factors (TGFs) such as TGF-alpha and TGF-beta; insulinlike growth factor-I and -II; erythropoietin (EPO); osteoinductive factors; interferons such as interferon-alpha, beta, and -gamma; colony stimulating factors (CSFs) such as macrophageCSF (M-CSF); granulocyte-macrophage-CSF (GM-CSF); and granulocyte-CSF (G-CSF); interleukins (ILs) such as JL-Ι, IL-1 alpha, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-11, IL-12; IL-15, a tumor necrosis factor such as TNF-alpha or TNF-beta; and other polypeptide factors including LIF and kit ligand (KL). As used herein, the term cytokine includes proteins from natural sources or from recombinant cell culture, and biologically active équivalents of the native sequence cytokines.
114
[0252] Ail publications, patents, and patent applications mentioned in this spécification are herein incorporated by reference to the same extent as if each individual publication, patent, or patent application was specifically and individually indicated to be incorporated by reference. However, the citation of a reference herein should not be construed as an acknowledgement that such reference is prior art to the présent invention. To the extent that any of the définitions or ternis provided in the references incorporated by reference differ from the terms and discussion provided herein, the présent terms and définitions control.
[0253] The présent invention is further illustrated by the following examples which should not be construed as further limiting. The contents of ail references cited throughout this application are expressly incorporated herein by reference.
EXAMPLES
EXAMPLE 1
[0254] Plasmids encoding a T7 promoter, CAR construct and a beta globin stabilizing sequence were linearized by overnight digestion of 10 pg DNA with EcoRI and BamHI (NEB). DNA was then digested for 2 hours at 50°C with protéinase K (Thermo Fisher, 600 U/ml) purified with phenol/chloroform and precipitated by adding sodium acetate and two volumes of éthanol. Pellets were then dried, resuspended in RNAse/DNAse-free water and quantified using NanoDrop. One pg of the linear DNA was then used for in vitro transcription using the mMESSAGE mMACHINE T7 Ultra (Thermo Fisher) following the manufacturer’s instructions. RNA was further purified using the MEGAClear Kit (Thermo Fisher) following the manufacturer’s instructions and quantified using NanoDrop. mRNA integrity was assessed using mobility on an agarose gel. PBMCs were isolated from healthy donor leukopaks (Hemacare) using ficoll-paque density centrifugation per manufacturer’s instructions. PBMCs were stimulated using OKT3 (50 ng/ml, Miltenyi Biotec) in RIO medium + IL-2 (300 lU/ml, Proleukin®, Prometheus® Therapeutics and Diagnostics). Seven days post-stimulation, T cells were washed twice in Opti-MEM medium (Thermo Fisher Scientific) and resuspended at a final concentration of 2.5xl07 cells/ml in Opti-MEM medium. Ten pg of mRNA was used per electroporation. Electroporation of cells was performed using a Gemini X2 System (Harvard Apparatus BTX) to deliver a single 400 V puise for 0.5 ms in 2 mm cuvettes (Harvard Apparatus BTX). Cells were immediately transferred to RIO + IL-2 medium and allowed to recover for 6 hours. To examine CAR expression, T cells were stained with FLT-=3-HIS (Sino
115
Biological Inc.) or biotinylated Protein L (Thermo Scientific) in stain buffer (BD Pharmingen) for 30 minutes at 4°C. Cells were then washed and stained with anti-HIS-PE (Miltenyi Biotec) or PE Streptavidin (BD Pharmingen) in stain buffer for 30 minutes at 4°C. Cells were then washed and resuspended in stain buffer with propidium iodide (BD Pharmingen) prior to data acquisition. Expression of FLT3 CARs in electroporated T cells is shown in FIG. 3.
[0255] T cells were electroporated with plasmids encoding an anti-FLT3 CAR. comprising a 10E3, 2E7, 8B5, 4E9, or 11F11 anti-FLT3 binding molécule and a hinge région selected from the full length hinge domain (a complété hinge domain or “CHD”) or a truncated hinge domain (“THD”). The electroporated anti-FLT3 CAR T cells were then co-cultured with Namalwa (FLT3 négative), EoLl (FLT3 positive), HL60 (FLT3 positive), or MV4;11 (FLT3 positive) target cells at a 1:1 E:T ratio in RIO medium. Sixteen hours post-co-culture, supematants from Namalwa (FIGs. 4A-4F), EoLl (FIGs. 4G-4L), HL60 (FIGs. 4M-4R, and MV4; 11 (4S-4X) were analyzed by Luminex (EMD Millipore) for production of IFNy (FIGs. 4A, 4B, 4G, 4H, 4M, 4N, 4S, and 4T), IL-2 (FIGs. 4C, 4D, 41, 4J, 40, 4P, 4U, and 4V), and TNFa (FIGs. 4E, 4F, 4K, 4L, 4Q, 4R, 4W, and 4X).
[0256] Target cell viability was assessed by flow cytométrie analysis of propidium iodide (PI) uptake by CD3-negative cells. The electroporated anti-FLT3 CAR T cells were cocultured with Namalwa (FIGs. 5A-5B), EoLl (FIGs. 5C-5D), HL60 (FIGs. 5E-5F, and MV4;11 (5G-5H) target cells at 16 hours post-co-culture.
EXAMPLE 2
[0257] A third génération lentiviral transfer vector containing the different CAR constructs was used along with the ViraPower Lentiviral Packaging Mix (Life Technologies) to generate the lentiviral supematants. Briefly, a transfection mix was generated by mixing 15 ug of DNA and 22.5 μΐ of polyethileneimine (Polysciences, 1 mg/ml) in 600 μΐ of OptiMEM medium. The mix was incubated for 5 minutes at room température. Simultaneously, 293T cells (ATCC) were trypsinized, counted and a total of 10xl06 total cells were plated in a T75 flask along the transfection mix. Three days after the transfection, supematants were collected and filtered through a 0.45 pm filter and stored at -80°C until used. PBMCs were isolated from healthy donor leukopaks (Hemacare) using ficoll-paque density centrifùgation per manufacturer’s instructions. PBMCs were stimulated using OKT3 (50 ng/ml, Miltenyi Biotec) in RIO medium + IL-2 (300 lU/ml, PROLEUKIN®, PROMETHEUS® Therapeutics and Diagnostics). Forty eight hours post-stimulation, cells were transduced using lentivirus at an
116
MOI = 10. Cells were maintained at 0.5-2.0 x 106 cells/ml prior to use in activity assays. To examine CAR expression, T cells were stained with FLT-3-HIS (Sino Biological Inc.) or biotinylated Protein L (Thermo Scientific) in stain buffer (BD Pharmingen) for 30 minutes at 4°C. Cells were then washed and stained with anti-HIS-PE (Miltenyi Biotec) or PE Streptavidin (BD Pharmingen) in stain buffer for 30 minutes at 4°C. Cells were then washed and resuspended in stain buffer with propidium iodide (BD Pharmingen) prior to data acquisition. Expression of FLT3 CARs in T cells from two healthy donors is shown in FIG. 6A-6B.
[0258] T cells from two healthy donors were transduced with lentiviral vectors encoding anti-FLT3 CAR T cells comprising a 10E3, 8B5, or 11F11 binding molécule and a hinge région selected from the complété hinge domain (“CHD”), a truncated hinge domain (“THD”), and the CD8 hinge région. Transduced T cells were co-cultured with target cells at a 1:1 E:T ratio in RIO medium. Sixteen hours post-co-culture, supematants were analyzed by Luminex (EMD Millipore) for production of IFNy (FIGs. 7A-7B), TNFa (FIGs. 7C-7D), and IL-2 (FIGs. 7E-7F).
[0259] Target cell viability was assessed by flow cytométrie analysis of propidium iodide (PI) uptake by CD3-négative cells. Average cytolytic activity of lentivirus-transduced CAR T cells (from two healthy donors) co-cultured with Namalwa (FIG. 8A), EoLl (FIG. 8B), MV4;11 (FIG. 8C), and HL60 (FIG. 8D) target cells was measured.
[0260] To assess CAR T cell prolifération in response to FLT3 expressing target cells, T cells were labeled with CFSE prior to co-culture with target cells at a 1:1 E:T ratio in RIO medium. Five days later, T cell prolifération was assessed by flow cytométrie analysis of CFSE dilution. Prolifération of FLT3 CAR T cells is shown in FIGs. 9A-9B.
EXAMPLE 3
[0261] To examine in vivo anti-leukemic activity, FLT3 CAR T cells were generated for use in a xenogeneic model of human AML. CAR expression of the various effector lines used in the xenogeneic model of human AML are shown in FIGs. 10A-10D. Luciferase-labeled MV4;11 cells (2 x 106 cells/animal) were injected intravenously into 5 to 6 week-old female NSG mice. After 6 days, 6 x 106 T cells (-50% CAR+) in 200 μΐ PB S were injected intravenously, and the tumor burden of the animais was measured weekly using bioluminescence imaging (FIGs. 10E-10G). Survival analysis was performed by injection of Controls (mock) or 10E3-CHD (FIG. 10H), 10E3-THD (FIG. 101), or 8B5-THD (FIG. 10J) expressing CAR T cells.
117
EXAMPLE 4
[0262] T cells were electroporated with plasmids encoding the anti-CLL-1 CAR constructs 24C8_HL-CHD CAR (comprising a complété hinge domain of the costimulatory protein) and 24C8 HL-THD CAR (comprising a truncated hinge domain of the costimulatory protein). Anti-CLL-1 expression by electroporated T cells is shown in FIGs. 11A-11D. The anti-CLL-1 CAR T cells were then cultured with the target Namalwa (ATCC; CLL-1 négative), U937 (ATCC; CLL-1 positive), HL-60 (ATCC; CLL-1 positive), EoL-1 (Sigma; CLL-1 positive), KGla (ATCC; CLL-1 positive) and MV4;11 (ATCC; CLL-1 positive) cells at a 1:1 E:T ratio in RIO media 6 hours after mRNA electroporation. Sixteen hours post-co-culture, supematants were analyzed by Luminex (EMD Millipore), according to the manufacturées instructions, for production of IL-2 (FIG. 12A), FFNy (FIG. 12B), and TNFa (FIG. 12C).
[0263] Target cell viability was assessed by flow cytométrie analysis of propidium iodide (PI) uptake. The electroporated anti-CLL-1 CAR T cells were co-cultured with Namalwa (FIG. 13A), MV4;11 (FIG. 13B), EoL-1 (FIG. 13C), HL-60 (FIG. 13D), or U937 (FIG. 13E) target cells for 16 hours. As expected, Namalwa cells co-cultured with the antiCLL-1 CAR T cells showed little change in target cell viability, relative to Controls (FIG. 13A). However, increased cytolytic activity was observed in MV;411 cells co-cultured with 24C8 HL-CHD and 24C8_HL-THD T cells, relative to Controls, with a greater target cell cytolytic activity observed in the 24C8_HL-THD T cell co-culture (FIG. 13B). In addition, increased cytolytic activity was observed in EoL-1 cells co-cultured with 24C8 HL-CHD and 24C8_HL-THD T cells, relative to Controls (FIG. 13C). Increased cytolytic activity was observed in HL-60 cells co-cultured with 24C8 HL-CHD and 24C8JHL-THD T cells, relative to Controls (FIG. 13D). Increased cytolytic activity was observed in U937 cells co-cultured with 24C8 HL-CHD and 24C8 E1L-THD T cells, relative to Controls, with a greater target cell cytolytic activity observed in the 24C8 HL-THD T cell co-culture (FIG. 13E).
EXAMPLE 5
[0264] T cells transduced with lentiviral vectors comprising an anti-CLL-1 CAR construct with a truncated hinge domain (“THD”) of the costimulatory protein, 10E3 THD or 24C1_LH_THD, were co-cultured with Namalwa, U937, HL-60, EoL-1, KGla and MV4;I I target cells at a 1:1 E:T ratio in RIO media 12 days after T cell stimulation. Sixteen hours postco-culture, supematants were analyzed by Luminex (EMD Millipore), according to the manufacturées instructions, for production ofthe cytokines IFNy (FIG. 14A), IL-2 (FIG. 14B),
118 and TNFa (FIG. 14C) in co-cultures of effector 10E3 THD CAR T cells and 24C1_LH_THD CAR T cells with target Namalwa, HL-60, or MVA;11 cells, as indicated.
[0265] Target cell viability was assessed by flow cytométrie analysis of propidium iodide (PI) uptake. Transduced effector 24Cf_LH_THD CAR T cells were co-cultured with Namalwa, U937, HL-60, EoL-1, KGla, or MV4;11 target cells for 16 hours or 40 hours. Coculture of Namalwa target cells with transduced C1 _24C 1_LH_THD CAR T cells had no effect on the percent of viable Namalwa target cells at 16 hours and 40 hours, as compared to mock Controls (FIG. 15A). However, C1 24C1 LH THD CAR T cells co-cultured with either MV4;11 (FIG. 15B) or HL-60 (FIG. 15C) target cells resulted in a lower percent of viable target cells at both 16 hours and 40 hours, as compared to mock Controls.
EXAMPLE 6
[0266] CAR T cells transduced with anti-BCMA CAR constructs comprising a truncated hinge domain (“THD”) of the costimulatory protein were cultured with target cells at a 1:1 effector cell to target cell (E:T) ratio in RIO media 12 days after T cell stimulation. Cell lines tested included EoL-1 (Sigma; BCMA négative), NCI-H929 (Molecular Imaging; BCMA positive), and MM1S (Molecular Imaging; BCMA positive). Sixteen hours post-co-culture, supematants were analyzed by Luminex (EMD Millipore), according to the manufacturer's instructions, for production of the cytokines IFNy (FIGs. 16A-16B), TNFa (FIGs. 16C-16D), and IL-2 (FIGs. 16E-16F). IFNy (FIGs. 16A-16B), TNFa (FIGs. 16C-16D), and IL-2 (FIGs. 16E-16F) were observed in the supematant ofNCI-H929 and MM1S target cell co-cultures for each anti-BCMA CAR T cell tested in both donors (FIGs. 16A-16B); however, IFNy (FIGs. 16A-16B), TNFa (FIGs. 16C-16D), and IL-2 (FIGs. 16E-16F) were only observed in the supematant of EoL-1 target cell co-cultures above background for the IR négative control T cells (FIG. 16A).
[0267] Target cell viability was assessed by flow cytométrie analysis of propidium iodide (PI) uptake of CD3 négative cells. The anti-BCMA CAR T cells were co-cultured with EoLl (FIGs. 17A-17B), NCI-H929 (FIGs. 17C-17D), or MM1S (FIGs. 17E-17F) target cells for 16 hours, 40 hours, 64 hours, 88 hours, or 112 hours. Little cytolytic activity was observed in the EoL-1 co-cultures at any time period for the anti-BCMA CAR T cells (FIG. 17A-17B). However, co-culture of the anti-BCMA CAR T cells and the NCI-H929 or MM1S target cells resulted in a decrease in the percentage of viable target cells at each time point measured for each of the anti-BCMA CAR T cells.
119
[0268] To examine prolifération, anti-BCMA CAR T cells were labeled with carboxyfluorescein succinimidyl ester (CFSE) prior to co-culture with EoL-1, NCI-H929, or MM1S target cells at a 1:1 E:T ratio in RIO media. Five days later, T cell prolifération was assessed by flow cytométrie analysis of CFSE dilution (FIGs. 18A-18B).
EXAMPLE 7
[0269] Enhanced stability is a desired property of proteins. This is often assessed by determining the melting température of a protein under various conditions. Proteins with a higher melting température are generally stable for longer times. When a CAR is more thermostable, it may be functionally active for longer periods of time on the surface of a cell.
[0270] Thermal stability of the CAR extracellular domain (ECD) with the longer hinge domain, i.e., the complété hinge domain (“CHD”) and the thermal stability of the CAR ECD with a truncated hinge domain (“THD”) was measured using a Bio-Rad Cl000 thermal cycler, CFx96 Real-Time system. Unfolding of the proteins was monitored using the fluorescent dye SYPRO Orange (Invitrogen) which binds to hydrophobie amino acids that become solvent exposed as the protein unfolds. A température gradient was set up from 25 °C to 95 °C with 1 °C / 1 minute incréments. Each sample contained 10 μΜ recombinant CAR ECD protein and 5X SYPRO Orange (Molecular Probes™ SYPRO™ Orange Protein Gel Stain (5,000X Concentrate in DMSO)). The assay was performed in PBS with or without 50 mM NaCl.
[0271] As shown in FIG. 19A and FIG. 19B, a CAR’s ECD which has a THD shows enhanced thermostability compared to a CAR’s ECD which has a CFID, e.g., including the IEVMYPPPY (SEQ ID NO: 250) motif. These method described in this example is a useful method for testing stability of mRNA encoding a CAR and the CAR itself, because once a T cell has been transduced with the mRNA encoding a CAR, the transduced T cell will express the CAR and the stability of an individual mRNA or protein cannot be readily assessed.

Claims (41)

  1. What is claimed is:
    1. An isolated polynucleotide encoding a chimeric antigen receptor (CAR) or a T cell receptor (TCR), which comprises (i) an antigen binding molécule, (ii) a costimulatory domain, and (iii) an activating domain, wherein the costimulatory domain comprises an extracellular domain, a transmembrane domain, and an intracellular domain, wherein the extracellular domain comprises a truncated hinge domain consisting essentially of or consisting of (i) an amino acid sequence at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or about 100% identical to amino acids 123 to 152 of SEQ Π) NO: 1 and, optionally, (ii) one to six amino acids.
  2. 2. The polynucleotide of claim 1, wherein the one to six amino acids are heterologous amino acids.
  3. 3. The polynucleotide of claim 1 or 2, wherein the truncated hinge domain consists essentially of or consists of an amino acid sequence at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or about 100% identical to amino acids 123 to 152 of SEQ ID NO: 1.
  4. 4. The polynucleotide of claim 1 or 2, wherein the amino acid sequence is encoded by a nucléotide sequence at least about 60%, at least about 70%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or about 100% identical to SEQ ID NO: 2.
  5. 5. The polynucleotide of claim 1 or 2, wherein the transmembrane domain is a transmembrane domain of 4-1BB/CD137, an alpha chain of a T cell receptor, a beta chain of a T cell receptor, CD3 epsilon, CD4, CD5, CD8 alpha, CD9, CD16, CD19, CD22, CD33, CD37, CD45, CD64, CD80, CD86, CD134, CD137, CD154, or a zêta chain of a T cell receptor, or any combination thereof.
  6. 6. The polynucleotide of claim 1 or 2, wherein the transmembrane domain comprises an amino acid sequence at least about 80%, at least about 85%, at least about 90%,
    121 at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or about 100% identical to SEQ ID NO: 5.
  7. 7. The polynucleotide of claim 6, wherein the transmembrane domain is encoded by a nucléotide sequence at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or about 100% identical to SEQ ID NO: 4.
  8. 8. The polynucleotide of claim 1 or 2, wherein the intracellular domain comprises a signaling région of 4-1BB/CD137, activating NK cell receptors, B7-H3, BAFFR, BLAME (SLAMF8), BTLA, CD100 (SEMA4D), CD103, CD160 (BY55), CD18, CD19, CD19a, CD2, CD247, CD27, CD276 (B7-H3), CD29, CD3 delta, CD3 epsilon, CD3 gamma, CD30, CD4, CD40, CD49a, CD49D, CD49f, CD69, CD7, CD84, CD8alpha, CD8beta, CD96 (Tactile), CD1 la, CD1 1b, CD1 le, CD1 Id, CDS, CEACAM1, CRT AM, cytokine receptors, DAP-10, DNAM1 (CD226), Fc gamma receptor, GADS, GTTR, HVEM (LIGHTR), IA4, ICAM-1, ICAM-1, Ig alpha (CD79a), IL2R beta, IL2R gamma, IL7R alpha, Immunoglobulin-like proteins, inducible T cell costimulator (ICOS), integrins, ITGA4, ITGA4, ITGA6, ITGAD, ITGAE, ITGAL, ITGAM, ITGAX, ITGB2, ITGB7, ITGB1, KIRDS2, LAT, LFA-1, LFA-1, a ligand that specifically binds with CD83, LIGHT, LIGHT (tumor necrosis factor superfamily member 14; TNFSF14), LTBR, Ly9 (CD229), lymphocyte function-associated antigen-1 (LFA-1 (CD1 la/CD18), MHC class I molécule, NKG2C, NKG2D, NKp30, NKp44, NKp46, NKp80 (KLRF1), OX-40, PAG/Cbp, programmed death-1 (PD-1), PSGL1, SELPLG (CD 162), signaling lymphocytic activation molécules (SLAM proteins), SLAM (SLAMF1; CD150; IPO-3), SLAMF4 (CD244; 2B4), SLAMF6 (NTB-A; Lyl08), SLAMF7, SLP-76, TNF receptor proteins, TNFR2, a Toll ligand receptor, TRANCE/RANKL, VLA1, or VLA-6, or a combination thereof.
  9. 9. The polynucleotide of claim 1 or 2, wherein the intracellular domain comprises a
    4-1BB/CD137 signaling région.
  10. 10. The polynucleotide of claim 1 or 2, wherein the intracellular domain comprises an amino acid sequence at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or about 100% identical to SEQ ID NO: 7.
    122
  11. 11. The polynucleotide of claim 1 or 2, wherein the intracellular domain comprises an amino acid sequence encoded by a nucieotide sequence at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or about 100% identical to SEQ ED NO: 6.
  12. 12. The polynucleotide of claim 1 or 2, wherein the antigen binding molécule comprises a heavy chain variable région (VH) and a light chain variable région (VL), wherein the VH comprises 3 complementarity determining régions (CDRs) and the VL comprises 3 CDRs.
  13. 13. The polynucleotide of claim 1 or 2, wherein the antigen binding molécule specifically binds an antigen selected from the group consisting of 5T4, alphafetoprotein, B cell maturation antigen (BCMA), CA-125, carcinoembryonic antigen, CD19, CD20, CD22, CD23, CD30 , CD33, CD56, CD123, CD138, c-Met, CSPG4, C-type lectin-like molécule 1 (CLL-1), EGFRvIII, épithélial tumor antigen, ERBB2, FLT3, folate binding protein, GD2, GD3, HER1HER2 in combination, HER2-HER3 in combination, HER2/Neu, HERV-K, HIV-1 envelope glycoprotein gp41, HIV-1 envelope glycoprotein gpl20, DL-llRalpha, kappa chain, lambda chain, melanoma-associated antigen, mesothelin, MUC-1, mutated p53, mutated ras, prostate-specific antigen, R0R1, or VEGFR2, or a combination thereof.
  14. 14. The polynucleotide of claim 1 or 2, wherein the antigen binding molécule specifically binds BCMA, CLL-1, or FLT3.
  15. 15. The polynucleotide of claim 1 or 2, wherein the activation domain comprises an amino acid sequence at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or about 100% identical to SEQ ID NO: 9 or SEQ ID NO: 251.
  16. 16. The polynucleotide of claim 1 or 2, wherein the activation domain is encoded by a nucieotide sequence at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or about 100% identical to SEQ ID NO: 8.
  17. 17. The polynucleotide of any one of claims 1 to 16, wherein the CAR or TCR further comprises a leader peptide.
    123
  18. 18. The polynucleotide of claim 17, wherein the leader peptide comprises an amino acid sequence at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or about 100% identical to SEQIDNO: 11.
  19. 19. The polynucleotide of claim 17, wherein the leader peptide is encoded by a nucléotide sequence at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or about 100% identical to SEQ ID NO: 10.
  20. 20. A vector comprising the polynucleotide of any one of claims 1 to 19.
  21. 21. The vector of claim 20, wherein the vector is an adénoviral vector, an adenovirusassociated vector, a DNA vector, a lentiviral vector, a plasmid, a retroviral vector, or an RNA vector, or any combination thereof.
  22. 22. A polypeptide encoded by the polynucleotide of any one of claims 1 to 19 or the vector of claim 20 or 21.
  23. 23. A cell comprising the polynucleotide of any one of claims 1 to 19, the vector of claim 20 or 21, the polypeptide of claim 22, or any combination thereof.
  24. 24. The cell of claim 23, wherein the cell is a T cell.
  25. 25. The cell of claim 24, wherein the T cell is an allogeneic T cell, an autologous T cell, an engineered autologous T cell (eACT), or a tumor-infiltrating lymphocyte (TIL).
  26. 26. The cell of claim 24 or 25, wherein the T cell is a CD4+ T cell.
  27. 27. The cell of claim 24 or 25, wherein the T cell is a CD8+ T cell.
  28. 28. The cell of claim 24 or 25, wherein the T cell is an in vitro cell.
  29. 29. The cell of claim 24 or 25, wherein the T cell is an autologous T cell.
  30. 30. A composition comprising the polynucleotide of any one of claims 1 to 19, the vector of claim 20 or 21, the polypeptide of claim 22, or the cell of any one of claims 23 to 29.
    124
  31. 31. The composition of claim 30, which is formulated to be delivered to a subject, optionally, comprising at least one pharmaceutically-acceptable excipient.
  32. 32. A method of making a cell expressing a CAR or TCR comprising transducing a cell with the polynucleotide of any one of claims 1 to 19 under suitable conditions.
  33. 33. The method of claim 32, further comprising isolating the cell.
  34. 34. The polynucleotide of any one of claims 1 to 19, the vector of claim 20 or 21, the polypeptide of claim 22, the cell of claim 23, or any combination thereof, for use in inducing an immunity against a tumor.
  35. 35. Use of the polynucleotide of any one of claims 1 to 19, the vector of claim 20 or 21, the polypeptide of claim 22, the cell of any one of claims 23 to 29, or the composition of claim 30 or 31 for the manufacture of a médicament for inducing an immunity against a tumor.
  36. 36. Use of the polynucleotide of any one of claims 1 to 19, the vector of claim 20 or 21, the polypeptide of claim 22, the cell of any one of claims 23 to 29, or the composition of claim 30 or 31 for the manufacture of a médicament for treating a cancer in a subject in need thereof.
  37. 37. The use of claim 36, wherein the cancer is a hématologie cancer.
  38. 38. The use of claim 36, wherein the cancer is of the white blood cells.
  39. 39. The use of claim 36, wherein the cancer is of the plasma cells.
  40. 40. The use of any one of claims 36 to 39, wherein the cancer is leukemia, lymphoma, or myeloma.
  41. 41. The use of any one of claims 36 to 39, wherein the cancer is acute lymphoblastic leukemia (ALL) (including non T cell ALL), acute myeloid leukemia, B cell prolymphocytic leukemia, B-cell acute lymphoid leukemia (“BALL”), blastic plasmacytoid dendritic cell neoplasm, Burkitfs lymphoma, chronic lymphocytic leukemia (CLL), chronic myelogenous leukemia (CML), chronic myeloid leukemia, chronic or acute leukemia, diffuse large B cell lymphoma (DLBCL), follicular lymphoma (FL), hairy cell leukemia, Hodgkin's Disease, malignant lymphoproliférative conditions, MALT lymphoma, mantle cell lymphoma, Marginal 125 zone lymphoma, monoclonal gammapathy of undetermined significance (MGUS), multiple myeloma, myelodysplasia and myelodysplastic syndrome, non-Hodgkin's lymphoma (NHL), plasma cell proliférative disorder (including asymptomatic myeloma (smoldering multiple myeloma or indolent myeloma), plasmablastic lymphoma, plasmacytoid dendritic cell neoplasm, plasmacytomas (including plasma cell dyscrasia; solitary myeloma; solitary plasmacytoma; extramedullary plasmacytoma; and multiple plasmacytoma), POEMS syndrome (also known as Crow-Fukase syndrome; Takatsuki disease; and PEP syndrome), primary médiastinal large B cell lymphoma (PMBC), small cell- or a large cell-follicular lymphoma, splenic marginal zone lymphoma (SMZL), systemic amyloid light chain amyloidosis, T-cell acute lymphoid leukemia (“TALL”), T-cell lymphoma, transformed follicular lymphoma, or Waldenstrom macroglobulinemia, or a combination thereof.
OA1201800373 2016-04-01 2017-03-31 Chimeric antigen and T cell receptors and methods of use. OA19499A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US62/317,258 2016-04-01

Publications (1)

Publication Number Publication Date
OA19499A true OA19499A (en) 2020-11-13

Family

ID=

Similar Documents

Publication Publication Date Title
US10603380B2 (en) Chimeric antigen and T cell receptors and methods of use
JP7434250B2 (en) Humanized antigen-binding domain for CD19 and methods of use
TWI707950B (en) Binding molecules and methods of use thereof
US20210277132A1 (en) CD70 Binding Molecules and Methods of Use Thereof
JP2023169138A (en) Chimeric antigen receptor, t-cell receptor, and use method
US20190144515A1 (en) Modified chimeric antigen receptors and methods of use
OA19499A (en) Chimeric antigen and T cell receptors and methods of use.
TWI835141B (en) Humanized antigen-binding domains and methods of use
JP2024056792A (en) Humanized antigen-binding domains against CD19 and methods of use