OA19473A - Novel insect inhibitory proteins. - Google Patents

Novel insect inhibitory proteins. Download PDF

Info

Publication number
OA19473A
OA19473A OA1201900135 OA19473A OA 19473 A OA19473 A OA 19473A OA 1201900135 OA1201900135 OA 1201900135 OA 19473 A OA19473 A OA 19473A
Authority
OA
OAPI
Prior art keywords
seq
axmi
plant
protein
nucleic acid
Prior art date
Application number
OA1201900135
Inventor
Arlene R. Howe
David J. Bowen
Catherine A. Chay
Uma Kesanapalli
Original Assignee
Monsanto Technology Llc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Monsanto Technology Llc filed Critical Monsanto Technology Llc
Publication of OA19473A publication Critical patent/OA19473A/en

Links

Abstract

Pesticidal proteins exhibiting toxic activity against Lepidopteran pest species are disclosed, and include, but are not limited to, TIC4472, TIC4472PL, TIC1425, TIC2613, and TIC2613PL. DNA constructs are provided which contain a recombinant nucleic acid sequenee encoding one or more of the disclosed pesticidal proteins. Transgenic plants, plant cells, seed, and plant parts résistant to Lepidopteran infestation are provided which contain recombinant nucleic acid sequences encoding the pesticidal proteins of the present invention. Methods for detecting the presence of the recombinant nucleic acid sequences or the proteins of the present invention in a biological sample, and methods of controlling Lepidopteran species pests using any of the TIC4472, TIC4472PL, TIC1425, TIC2613, and TIC2613PL pesticidal proteins are also provided.

Description

[035] The problem in the art of agricultural pest control can be characterized as a need for new toxin proteins that are efficacious against target pests, exhibit broad spectrum toxicity against target pest species, are capable of being expressed in plants without causing undesirable agronomie issues, and provide an alternative mode of action compared to current toxins that are used commercially in plants.
[036] Novel pesticidal proteins exemplified by TIC4472, TIC4472PL, TIC1425, TIC2613, and TIC2613PL are disclosed herein, and address each of these needs, particularly against a broad spectrum of Lepidopteran insect pests, and more particularly against Beet armyworm (Spodoptera exigua), Corn earworm (Helicoverpa zed), Cotton leaf worm (Alabama argillacea), European corn borer (Ostrinia nubilalis), Fall armyworm (Spodoptera frugiperda), Old World bollworm (Helicoverpa armigera), Oriental leaf worm (Spodoptera liturd), Pink bollworm (Pectinophora gossypielld), CrylAc résistant Pink bollworm (Pectinophora gossypiella), Soybean looper (Chrysodeixis includens), Southern armyworm (Spodoptera eridania), Southwestern corn borer (Diatraea grandioselld), Spotted bollworm (Earias vittella), Sugarcane borer (Diatraea saccharalis), Tobacco budworm (Heliothis virescens), and Velvet bean Caterpillar (Anticarsia gemmatalis).
[037] Reference in this application to TIC4472, “TIC4472 protein”, “TIC4472 protein toxin”, “T1C4472 toxin protein”, “TIC4472 pesticidal protein”, “TIC4472-related toxins”, “TIC4472related toxin proteins”, TIC4472PL, “TIC4472PL protein”, “TIC4472PL protein toxin”, “TIC4472PL toxin protein”, “TIC4472PL pesticidal protein”, “TIC4472PL-related toxins”, “TIC4472PL-related toxin proteins”, TIC1425, “TIC1425 protein”, “TIC1425 protein toxin”, “TIC1425 toxin protein”, “TIC1425 pesticidal protein”, “TIC1425-related toxins”, “TIC1425related toxin proteins”, TIC2613, “TIC2613protein”, “TIC2613protein toxin”, “TIC2613toxin protein”, “TIC2613pesticidal protein”, “TIC26l3-related toxins”, “TIC2613-related toxin proteins”, TIC2613PL, “TIC2613PL protein”, “TIC2613PL protein toxin”, “TIC2613PL toxin protein”, “TIC2613PL pesticidal protein”, “TIC2613PL-related toxins”, “TIC2613PL-related toxin proteins”, and the like, refer to any novel pesticidal protein or insect inhibitory protein, that comprises, that consists of, that is substantially homologous to, that is similar to, or that is derived from any pesticidal protein or insect inhibitory protein sequence of TIC4472 (SEQ ID NO:2), TIC4472PL (SEQ ID NO:4), TIC1425 (SEQ ID NO:6), TIC2613 (SEQ ID NO:8), or TIC2613PL (SEQ ID NO: 10) and pesticidal or insect inhibitory segments thereof, or combinations thereof, that confer activity against Lepidopteran pests, including any protein exhibiting pesticidal or insect inhibitory activity if alignment of such protein with TIC4472, TIC4472PL, or TIC 1425 results in amino acid sequence identity of any fraction percentage from about 93% to about 100% percent; or if alignment of such protein with TIC2613 or TIC2613PL results in amino acid sequence identity of any fraction percentage from about 73 /o to about 100% percent. The TIC4472, TIC4472PL, TIC1425, TIC2613, or TIC2613PL proteins include both the plastid-targeted and non-plastid targeted form of the proteins.
[038] The term “segment” or “fragment” is used in this application to describe consecutive amino acid or nucleic acid sequences that are shorter than the complété amino acid or nucleic acid sequence describing a TIC4472, TIC4472PL, TIC1425, TIC2613, or TIC2613PL protein. A segment or fragment exhibiting insect inhibitory activity is also disclosed in this application if alignment of such segment or fragment, with the corresponding section of the TIC4472 protein set forth in SEQ ID NO:2, TIC4472PL protein set forth in SEQ ID NO:4, TIC 1425 protein set forth in SEQ ID NO:6, results in amino acid sequence identity of any fraction percentage from about 93 to about 100 percent between the segment or fragment and the corresponding section of the TIC4472, TIC4472PL, or TIC 1425 protein; or if alignment of such segment or fragment, with the corresponding section ofthe TIC2613 set forth in SEQ ID NO:8, or TIC2613PL protein set forth in SEQ ID NO: 10, results in amino acid sequence identity of any fraction percentage from about 73 to about 100 percent between the segment or fragment and the corresponding section of the TIC2613 or TIC2613PL protein.
[039] In still further spécifie embodiments, a fragment of a TIC4472, TIC4472PL, TIC1425, TIC2613, or TIC2613PL protein may be defined as exhibiting pesticidal activity possessed by the starting protein molécule from which it is derived. A fragment of a nucleic acid sequence encoding a TIC4472, TIC4472PL, TIC1425, TIC2613, or TIC2613PL protein may be defined as encoding a protein exhibiting the pesticidal activity possessed by the protein molécule encoded by the starting nucleic acid sequence from which it is derived. A fragment or variant described herein may further comprise a domain identified herein which is responsible for the pesticidal activity of a protein.
[040] In spécifie embodiments, fragments of a TIC4472, TIC4472PL, TIC1425, TIC2613, or TIC2613PL protein are provided comprising at least about 50, at least about 75, at least about 95, at least about 100, at least about 125, at least about 150, at least about 175, at least about 200, at least about 225, at least about 250, at least about 275, at least about 300, at least about 500, at least about 600, at least about 700, at least about 750, at least about 800, at least about 900, at least about 1000, at least about 1100, at least about 1150, or at least about 1175 contiguous amino acids, or longer, of a TIC4472, TIC4472PL, TIC1425, TIC2613, or TIC2613PL protein having pesticidal activity as disclosed herein. In certain embodiments, the invention provides fragments of any one of SEQ ID NOs: 2, 4, 6, 8, or 10, having the activity of the full length sequence. Methods for producing such fragments from a starting molécule are well known in the art.
[041] Reference in this application to the terms “active” or “activity”, “pesticidal activity” or “pesticidal” or “insecticidal activity”, “insect inhibitory” or “insecticidal” refer to effîcacy of a toxic agent, such as a protein toxin, in inhibiting (inhibiting growth, feeding, fecundity, or viability), suppressing (suppressing growth, feeding, fecundity, or viability), controlling (controlling the pest infestation, controlling the pest feeding activities on a particular crop containing an effective amount of the TIC4472, TIC4472PL, TIC 1425, TIC2613, or TIC2613PL protein) or killing (causing the morbidity, mortality, or reduced fecundity of) a pest. These terms are intended to include the resuit of providing a pesticidally effective amount of a toxic protein to a pest where the exposure of the pest to the toxic protein results in morbidity, mortality, reduced fecundity, or stunting. These terms also include repulsion of the pest from the plant, a tissue of the plant, a plant part, seed, plant cells, or from the particular géographie location where the plant may be growing, as a resuit of providing a pesticidally effective amount of the toxic protein in or on the plant. In general, pesticidal activity refers to the ability of a toxic protein to be effective in inhibiting the growth, development, viability, feeding behavior, mating behavior, fecundity, or any measurable decrease in the adverse effects caused by an insect feeding on this protein, protein fragment, protein segment or polynucleotide of a particular target pest, including but not limited to insects of the order Lepidoptera. The toxic protein can be produced by the plant or can be applied to the plant or to the environment within the location where the plant is located. The terms “bioactivity”, “effective”, “efficacious” or variations thereof are also terms interchangeably utilized in this application to describe the effects of proteins of the présent invention on target insect pests.
[042] A pesticidally effective amount of a toxic agent, when provided in the diet of a target pest, exhibits pesticidal activity when the toxic agent contacts the pest. A toxic agent can be a pesticidal protein or one or more Chemical agents known in the art. Pesticidal or insecticidal Chemical agents and pesticidal or insecticidal protein agents can be used alone or in combinations with each other. Chemical agents include but are not limited to dsRNA molécules targeting spécifie genes for suppression in a target pest, organochlorides, organophosphates, carbamates, pyrethroids, neonicotinoids, and ryanoids. Pesticidal or insecticidal protein agents include the protein toxins set forth in this application, as well as other proteinaceous toxic agents including those that target Lepidopterans, as well as protein toxins that are used to control other plant pests such as Cry and Cyt proteins available in the art for use in controlling Coleopteran, Hemipteran and Homopteran species.
[043] It is intended that reference to a pest, particularly a pest of a crop plant, means insect pests of crop plants, particularly those Lepidoptera insect pests that are controlled by the TIC4472, TIC4472PL, TIC1425, TIC2613, or TIC2613PL protein toxin class. However, reference to a pest can also include Coleopteran, Hemipteran and Homopteran insect pests of plants, as well as nematodes and fungi when toxic agents targeting these pests are co-localized or présent together with the TIC4472, TIC4472PL, or TIC 1425 protein or a protein that is 93 to about 100 percent identical to TIC4472, TIC4472PL, or TIC1425; or the TIC2613, or TIC2613PL protein or a protein that is 73 to about 100 percent identical to TIC2613, or TIC2613PL.
[044] The TIC4472, TIC4472PL, TIC 1425, TIC2613, or TIC2613PL proteins are related by a common function and exhibit insecticidal activity towards insect pests from the Lepidoptera insect species, including adults, pupae, larvae, and neonates.
[045] The insects of the order Lepidoptera include, but are not limited to, armyworms, cutworms, loopers, and heliothines in the Family Noctuidae, e.g., Fall armyworm (Spodoptera frugiperda), Beet armyworm (Spodoptera exigua), Black armyworm (Spodoptera exempta), Southern armyworm (Spodoptera eridania), bertha armyworm (Mamestra configurata), black cutworm (Agrotis ipsilon), cabbage looper (Trichoplusia ni), soybean looper (Pseudoplusia includens), velvetbean Caterpillar (Anticarsia gemmatalis), green cloverworm (Hypena scabra), tobacco budworm (Heliothis virescens), granulate cutworm (Agrotis subterranea), armyworm (Pseudaletia unipuncta), western cutworm (Agrotis orthogonia)·, borers, casebearers, webworms, coneworms, cabbageworms and skeletonizers from the Family Pyralidae, e.g., European corn borer (Ostrinia nubilalis), navel orangeworm (Amyelois transitella), corn root webworm (Crambus caliginosellus), sod webworm (Herpetogramma licarsisalis), sunflower moth (Homoeosoma electellum), lesser comstalk borer (Elasmopalpus lignosellus)·, leafrollers, budworms, seed worms, and fruit worms in the Family Tortricidae, e.g., codling moth (Cydia pomonella), grape berry moth (Endopiza viteana), oriental fruit moth (Grapholita molesta), sunflower bud moth (Suleima helianthana)', and many other economically important Lepidoptera, e.g., diamondback moth (Plutella xylostella), pink bollworm (Pectinophora gossypiella), and gypsy moth (Lymantria dispar). Other insect pests of order Lepidoptera include, e.g., cotton leaf worm (Alabama argillacea), fruit tree leaf roller (Archips argyrospila), European leafroller (Archips rosana) and other Archips species, (Chilo suppressalis, Asiatic rice borer, or rice stem borer), rice leafroller (Cnaphalocrocis medinalis), corn root webworm (Crambus caliginosellus), bluegrass webworm (Crambus teterrellus), southwestern corn borer (Diatraea grandiosella), surgarcane borer (Diatraea saccharalis), spiny bollworm (Earias insulana), spotted bollworm (Earias vittella), American bollworm (Helicoverpa armigera), corn earworm (Helicoverpa zea, also known as soybean podworm and cotton bollworm), tobacco budworm (Heliothis virescens), sod webworm (Herpetogramma licarsisalis), Western bean cutworm (Striacosta albicosta), European grape vine moth (Lobesia botrana), citrus leafminer (Phyllocnistis citrella), large white butterfly (Pieris brassicae), small white butterfly (Pieris rapae, also known as imported cabbageworm), beet armyworm (Spodoptera exigua), tobacco cutworm (Spodoptera litura, also known as cluster Caterpillar), and tomato leafminer (Tuta absoluta).
[046] Reference in this application to an “isolated DNA molécule”, or an équivalent term or phrase, is intended to mean that the DNA molécule is one that is présent alone or in combination with other compositions, but not within its natural environment. For example, nucleic acid éléments such as a coding sequence, intron sequence, untranslated leader sequence, promoter sequence, transcriptional termination sequence, and the like, that are naturally found within the DNA of the genome of an organism are not considered to be “isolated” so long as the element is within the genome of the organism and at the location within the genome in which it is naturally found. However, each of these éléments, and subparts of these éléments, would be “isolated” within the scope of this disclosure so long as the element is not within the genome of the organism and at the location within the genome in which it is naturally found. Similarly, a nudeotide sequence encoding an insecticidal protein or any naturally occurring insecticidal variant of that protein would be an isolated nudeotide sequence so long as the nudeotide sequence was not within the DNA of the bacterium from which the sequence encoding the protein is naturally found. A synthetic nudeotide sequence encoding the amino acid sequence of the naturally occurring insecticidal protein would be considered to be isolated for the purposes of this disclosure. For the purposes of this disclosure, any transgenic nudeotide sequence, i.e., the nudeotide sequence of the DNA inserted into the genome of the cells of a plant or bacterium, or présent in an extrachromosomal vector, would be considered to be an isolated nudeotide sequence whether it is présent within the plasmid or similar structure used to transform the cells, within the genome of the plant or bacterium, or présent in détectable amounts in tissues, progeny, biological samples or commodity products derived from the plant or bacterium.
[047] As described further in this application, an open reading frame (ORF) encoding TIC4747 (SEQ ID NO:1) was discovered in DNA obtained from Bacillus thuringiensis strain EG10742. The coding sequence was cloned and expressed in microbial host cells to produce recombinant proteins used in bioassays. An open reading frame (ORF) encoding TIC 1425 (SEQ ID NO:5) was discovered in DNA obtained from Bacillus thuringiensis strain EG10731. An open reading frame (ORF) encoding TIC2613 (SEQ ID NO:7) was discovered in DNA obtained from Bacillus thuringiensis strain EG5408. Bioassay using microbial host cell-derived proteins of TIC4472 demonstrated activity against the Lepidopteran species Beet armyworm (Spodoptera exigua), Corn earworm (Helicoverpa zea), Cotton leaf worm (Alabama argillaced), European corn borer (Ostrinia nubilalis), Fall armyworm (Spodoptera frugiperdd), Old World bollworm (Helicoverpa armigera), Oriental leaf worm (Spodoptera litura), Pink bollworm (Pectinophora gossypiella), CrylAc résistant Pink bollworm (Pectinophora gossypiella), Soybean looper (Chrysodeixis includens), Southern armyworm (Spodoptera eridania), Southwestem corn borer (Diatraea grandiosella), Spotted bollworm (Earias vittella), Sugarcane borer (Diatraea saccharalis),
Tobacco budworm (Heliothis virescens), and Velvet bean Caterpillar (Anticarsia gemmatalis). In addition, activity was also observed against Yellow fever mosquito (Aedes aegypti). Bioassay using microbial host cell-derived proteins of TIC 1425 demonstrated activity against the Lepidopteran species Cotton leaf worm (Alabama argillacea), European corn borer (Ostrinia nubilalis), Fall armyworm (Spodoptera frugiperda), Sugarcane borer (Diatraea saccharalis), and Southwestern corn borer (Diatraea grandiosella. Bioassay using microbial host cell-derived proteins of TIC2613 demonstrated activity against the Lepidopteran species Corn earworm (Helicoverpa zea), Cotton leaf worm (Alabama argillacea), European corn borer (Ostrinia nubilalis), Fall armyworm (Spodoptera frugiperda), Soybean looper (Chrysodeixis includens), Southwestern corn borer (Diatraea grandiosella), and Tobacco budworm (Heliothis virescens). [048] For expression in plant cells, the TIC4472, TIC4472PL, TIC 1425, TIC2613, or TIC2613PL proteins can be expressed to résidé in the cytosol or targeted to various organelles of the plant cell. For example, targeting a protein to the chloroplast may resuit in increased levels of expressed protein in a transgenic plant while preventing off-phenotypes from occurring. Targeting may also resuit in an increase in pest résistance efficacy in the transgenic event. A target peptide or transit peptide is a short (3-70 amino acids long) peptide chain that directs the transport of a protein to a spécifie région in the cell, including the nucléus, mitochondria, endoplasmic réticulum (ER), chloroplast, apoplast, peroxisome and plasma membrane. Some target peptides are cleaved from the protein by signal peptidases after the proteins are transported. For targeting to the chloroplast, proteins contain transit peptides which are around 40-50 amino acids. For descriptions of the use of chloroplast transit peptides, see U.S. Patent Nos. 5,188,642 and 5,728,925. Many chloroplast-localized proteins are expressed from nuclear genes as precursors and are targeted to the chloroplast by a chloroplast transit peptide (CTP). Examples of such isolated chloroplast proteins include, but are not limited to, those associated with the small subunit (SSU) of ribulose-l,5,-bisphosphate carboxylase, ferredoxin, ferredoxin oxidoreductase, the light-harvesting complex protein I and protein II, thioredoxin F, enolpyruvyl shikimate phosphate synthase (EPSPS), and transit peptides described in U.S. Patent No. 7,193,133. It has been demonstrated in vivo and in vitro that non-chloroplast proteins may be targeted to the chloroplast by use of protein fusions with a heterologous CTP and that the CTP is sufficient to target a protein to the chloroplast. Incorporation of a suitable chloroplast transit peptide such as the Arabidopsis thaliana EPSPS CTP (CTP2) (see, Klee et al., Mol. Gen. Genet.
210:437-442, 1987) or the Pétunia hybrida EPSPS CTP (CTP4) (see, della-Cioppa et al., Proc. Natl. Acad. Sci. USA 83:6873-6877, 1986) has been shown to target heterologous EPSPS protein sequences to chloroplasts in transgenic plants (see, U.S. Patent Nos. 5,627,061; 5,633,435; and 5,312,910; and EP 0218571; EP 189707; EP 508909; and EP 924299). For targeting the TIC6757 or TIC6757PL toxin protein to the chloroplast, a sequence encoding a chloroplast transit peptide is placed 5' in opérable linkage and in frame to a synthetic coding sequence encoding the TIC6757 or TIC6757PL toxin protein that has been designed for optimal expression in plant cells.
[049] It is contemplated that additional toxin protein sequences related to TIC4472, TIC 1425, or TIC2613 can be created by using the amino acid sequence of TIC4472, TIC 1425, or TIC2613 to create novel proteins with novel properties. The TIC4472, TIC1425, or TIC2613 toxin proteins can be aligned to combine différences at the amino acid sequence level into novel amino acid sequence variants and making appropriate changes to the recombinant nucleic acid sequence encoding the variants.
[050] This disclosure further contemplâtes that improved variants of the TIC4472 protein toxin class can be engineered in planta by using various gene editing methods known in the art. Such technologies used for genome editing include, but are not limited to, ZFN (zinc-finger nuclease), meganucleases, TALEN (Transcription activator-like effector nucleases), and CRISPR (Clustered Regularly Interspaced Short Palindromie Repeats)/Cas (CRISPR-associated) Systems. These genome editing methods can be used to alter the toxin protein coding sequence transformed within a plant cell to a different toxin coding sequence. Specifïcally, through these methods, one or more codons within the toxin coding sequence are altered to engineer a new protein amino acid sequence. Alternatively, a fragment within the coding sequence is replaced or deleted, or additional DNA fragments are inserted into the coding sequence, to engineer a new toxin coding sequence. The new coding sequence can encode a toxin protein with new properties such as increased activity or spectrum against insect pests, as well as provide activity against an insect pest species wherein résistance has developed against the original insect toxin protein. The plant cell comprising the gene edited toxin coding sequence can be used by methods known in the art to generate whole plants expressing the new toxin protein.
[051] It is also contemplated that fragments of TIC4472, TIC1425, or TIC2613 or protein variants thereof can be truncated forms wherein one or more amino acids are deleted from the N terminal end, C-terminal end, the middle of the protein, or combinations thereof wherein the fragments and variants retain insect inhibitory activity. These fragments can be naturally occurring or synthetic variants of TIC4472, TIC1425, or TIC2613 or derived protein variants, but should retain the insect inhibitory activity of at least TIC4472, TIC 1425, or TIC2613. A fragment or variant described herein may further comprise a domain identified herein which is responsible for the pesticidal activity of a protein.
[052] Proteins that resemble the TIC4472, TIC4472PL, TIC1425, TIC2613, and TIC2613PL proteins can be identified and compared to each other using various computer based algorithms known in the art (see Tables 1 and 2). Amino acid sequence identities reported in this application are a resuit of a Clustal W alignment using these default parameters: Weight matrix: blosum, Gap opening penalty: 10.0, Gap extension penalty: 0.05, Hydrophilic gaps: On, Hydrophilic residues: GPSNDQERK, Residue-specific gap penalties: On (Thompson, et al (1994) Nucleic Acids Research, 22:4673-4680). Percent amino acid identity is further calculated by the product of 100% multiplied by (amino acid identities/length of subject protein). Other alignment algorithms are also available in the art and provide results similar to those obtained using a Clustal W alignment and are contemplated herein.
[053] It is intended that a protein exhibiting insect inhibitory activity against a Lepidopteran insect species is related to TIC4472, TIC4472PL, or TIC 1425 if the protein is used in a query, e.g., in a Clustal W alignment, and the proteins of the présent invention as set forth as SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:6 are identified as hits in such alignment in which the query protein exhibits at least 93% to about 100% amino acid identity along the length of the query protein that is about 93%, 94%, 95%, 96%, 97%, 98%, 99%, 100%, or any fraction percentage in this range. It is also intended that a protein exhibiting insect inhibitory activity against a Lepidopteran insect species is related to TIC2613 or TIC2613PL if the protein is used in a query, e.g., in a Clustal W alignment, and the proteins of the présent invention as set forth as SEQ ID NO:8, or SEQ ID NO: 10 are identified as hits in such alignment in which the query protein exhibits at least 73% to about 100% amino acid identity along the length of the query protein that is about 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 100%, or any fraction percentage in this range
[054] Exemplary proteins TIC4472, TIC4472PL, TIC 1425, TIC2613, and TIC2613PL were aligned with each other using a Clustal W algorithm. A pair-wise matrix of percent amino acid sequence identities for each of the full-length proteins was created, as reported in Table 1.
Table 1. Pair-wise matrix display of exemplary proteins TIC4472, TIC4472PL, TIC1425, TIC2613, and TIC2613PL. _________________________________________
Toxin TIC4472 (SEQ ID NO:2) TIC4472PL (SEQ ID NO:4) TIC1425 (SEQ ID NO: 6) TIC2613 (SEQ ID NO:8) TIC2613PL (SEQ ID NO: 10)
TIC4472 (SEQ ID NO:2) - 99.9 (1186) 99.9 (1186) 68.1 (808) 68 (807)
TIC4472PL (SEQ ID NO:4) 99.8 (1186) - 99.7 (1185) 67.9 (807) 68.1 (809)
TIC1425 (SEQ ID NO:6) 99.9 (1186) 99.8 (1185) - 68.2 (809) 68.1 (808)
TIC2613 (SEQ ID NO:8) 68.6 (808) 68.5 (807) 68.7 (809) - 99.9 (1177)
TIC2613PL (SEQ ID NO: 10) 68.4 (807) 68.6 (809) 68.5 (808) 99.8 (1177) -
Table Description: Clustal W alignment between (X) and (Y) are reported in a pair-wise matrix. The percent amino acid identity between ail pairs is calculated and is represented by the first number in each 10 box. The second number (in parenthèses) in each box represents the number of identical amino acids between the pair.
[055] In addition to percent identity, TIC4472, TIC4472PL, TIC1425, TIC2613, and
TIC2613PL and related proteins can also be related by primary structure (conserved amino acid 15 motifs), by length (about 1187 amino acids), and by other characteristics. Characteristics of the
TIC4472, TIC4472PL, TIC1425, TIC2613, and TIC2613PL protein toxins are reported in Table
2.
Table 2. Selected characteristics of the TIC4472, TIC4472PL, TIC1425, TIC2613, and TIC2613PL proteins.
Protein Molecular Amino Isoelectric Charge No. of No. of No. of No. of
Weight Acid Point at PH Stronglv Stronglv Hydrophobie Polar
fin Length 7.0 Basic (-) Acidic Amino Acids Amino
Daltons) Amino Amino Acids
Acids Acids
TIC4472 134446.86 1187 4.7545 -36 137 162 611 576
TIC4472PL 134517.94 1188 4.7545 -36 137 162 612 576
TIC 1425 134460.88 1187 4.7545 -36 137 162 611 576
TIC2613 134636.07 1178 4.6653 -42 132 162 588 590
TIC2613PL 134707.15 1179 4.6653 -42 132 162 589 590
[056] As described further in the Examples of this application, synthetic nucleic acid molécule sequences encoding a variant of TIC4472, TIC4472PL, and a variant of TIC2613, TIC2613PL, were designed for use in plants. An exemplary recombinant nucleic acid molécule sequence that was designed for use in plants encoding the TIC4472PL protein is presented as SEQ ID NO:3. An exemplary recombinant nucleic acid molécule sequence that was designed for use in plants encoding the TIC2613PL protein is presented as SEQ ID NO:9. The TIC4472PL and TIC2613PL proteins hâve an additional alanine amino acid immediately following the initiating méthionine relative to the TIC4472 and TIC2613 proteins, respectively. The additional alanine residue inserted into the TIC4472 and TIC2613 amino acid sequences are believed to improve expression of the protein in planta. Likewise, synthetic nucleic acid molécule sequences encoding variants of TIC 1425 and can designed for use in plants.
[057] Leaf dise assay using Ro cotton leaf tissue expressing TIC4472PL protein demonstrated high activity against Soybean looper (Chrysodeixis includens) and Tobacco budworm (Heliothis virescens) and low activity against Cotton bollworm (Helicoverpa zea) and Fall armyworm (Spodoptera frugiperdd). Leaf dise assay using Ro soybean leaf tissue expressing TIC4472PL protein demonstrated activity against Southern armyworm (Spodoptera eridanid) and Soybean looper (Chrysodeixis includens).
[058] Leaf samples from Ro soybean plants expressing TIC4472PL and TIC2613PL proteins demonstrated activity against Southern armyworm (Spodoptera eridanid) and Soybean looper (Chrysodeixis includens).
[059] Expression cassettes and vectors containing a recombinant nucleic acid molécule sequence can be constructed and introduced into corn, soybean, cotton or other plant cells in accordance with transformation methods and techniques known in the art. For example, Agrobacterium-meài&Xed transformation is described in U.S. Patent Application Publications 2009/0138985A1 (soybean), 2008/0280361A1 (soybean), 2009/0142837A1 (corn), 2008/0282432 (cotton), 2008/0256667 (cotton), 2003/0110531 (wheat), 2001/0042257 Al (sugar beet), U.S. Patent Nos. 5,750,871 (canola), 7,026,528 (wheat), and 6,365,807 (rice), and in Arencibia et al. (1998) Transgenic Res. 7:213-222 (sugarcane) ail of which are incorporated herein by reference in their entirety. Transformed cells can be regenerated into transformed plants that express TIC4472, TIC4472PL, TIC1425, TIC2613, and TIC2613PL proteins and demonstrate pesticidal activity through bioassays performed in the presence of Lepidopteran pest larvae using plant leaf disks obtained from the transformed plants. Plants can be derived from the plant cells by régénération, seed, pollen, or meristem transformation techniques. Methods for transforming plants are known in the art.
[060] As an alternative to traditional transformation methods, a DNA sequence, such as a transgene, expression cassette(s), etc., may be inserted or integrated into a spécifie site or locus within the genome of a plant or plant cell via site-directed intégration. Recombinant DNA construct(s) and molecule(s) of this disclosure may thus include a donor template sequence comprising at least one transgene, expression cassette, or other DNA sequence for insertion into the genome of the plant or plant cell. Such donor template for site-directed intégration may further include one or two homology arms flanking an insertion sequence (i.e., the sequence, transgene, cassette, etc., to be inserted into the plant genome). The recombinant DNA construct(s) of this disclosure may further comprise an expression cassette(s) encoding a sitespecific nuclease and/or any associated protein(s) to carry out site-directed intégration. These nuclease expressing cassette(s) may be présent in the same molécule or vector as the donor template (in cis) or on a separate molécule or vector (in trans). Several methods for site-directed intégration are known in the art involving different proteins (or complexes of proteins and/or guide RNA) that eut the genomic DNA to produce a double strand break (DSB) or nick at a desired genomic site or locus. Briefly as understood in the art, during the process of repairing the DSB or nick introduced by the nuclease enzyme, the donor template DNA may become integrated into the genome at the site of the DSB or nick. The presence of the homology arm(s) in the donor template may promote the adoption and targeting of the insertion sequence into the plant genome during the repair process through homologous recombination, although an insertion event may occur through non-homologous end joining (NHEJ). Examples of sitespecific nucleases that may be used include zinc-finger nucleases, engineered or native meganucleases, TALE-endonucleases, and RNA-guided endonucleases (e.g., Cas9 or Cpfl). For methods using RNA-guided site-specific nucleases (e.g., Cas9 or Cpfl), the recombinant DNA construct(s) will also comprise a sequence encoding one or more guide RNAs to direct the nuclease to the desired site within the plant genome.
[061] As used herein, a “recombinant DNA molécule” is a DNA molécule comprising a combination of DNA molécules that would not naturally occur together without human intervention. For instance, a recombinant DNA molécule may be a DNA molécule that is comprised of at least two DNA molécules heterologous with respect to each other, a DNA molécule that comprises a DNA sequence that deviates from DNA sequences that exist in nature, or a DNA molécule that has been incorporated into a host cell’s DNA by genetic transformation or gene editing. Similarly, a recombinant protein molécule is a protein molécule comprising a combination of amino acids that would not naturally occur together without human intervention. For example, a recombinant protein molécule may be a protein molécule that is comprised of at least two amino acid molécules heterologous with respect to each other, a protein molécule that comprises an amino acid sequence that deviates from amino acid sequences that exist in nature, or a protein molécule that is expressed in a host cell as a resuit of genetic transformation of the host cell or by gene editing of the host cell genome.
[062] Recombinant nucleic acid molécule compositions that encode TIC4472, TIC4472PL, TIC 1425, TIC2613, and TIC2613PL are contemplated. For example, TIC4472, TIC4472PL, TIC1425, TIC2613, and TIC2613PL proteins can be expressed with recombinant DNA constructs in which a polynucleotide molécule with an ORF encoding the protein is operably linked to genetic expression éléments such as a promoter and any other regulatory element necessary for expression in the System for which the construct is intended. Non-limiting examples include a plant-functional promoter operably linked to a TIC4472, TIC4472PL, TIC1425, TIC2613, or TIC2613PL protein encoding sequence for expression of the protein in plants or a ^/-functional promoter operably linked to a TIC4472, TIC4472PL, TIC 1425, TIC2613, or TIC2613PL protein encoding sequence for expression of the protein in a Bt bacterium or other Bacillus species. Other éléments can be operably linked to the TIC4472, TIC4472PL, TIC1425, TIC2613, or TIC2613PL protein encoding sequence including, but not limited to, enhancers, introns, untranslated leaders, encoded protein immobilization tags (HIStag), translocation peptides (i.e., plastid transit peptides, signal peptides), polypeptide sequences for post-translational modifying enzymes, ribosomal binding sites, and RNAi target sites. Exemplary recombinant polynucleotide molécules provided herewith include, but are not limited to, a heterologous promoter operably linked to a polynucleotide such as SEQ ID NO:3, SEQ ID NO:1, SEQ ID NO:5, SEQ ID NO:7, and SEQ ID NO:9 that encodes the respective polypeptides or proteins having the amino acid sequence as set forth in SEQ ID NO:4, SEQ ID NO:2, SEQ ID NO:6, SEQ ID NO:8, and SEQ ID NO:10. A heterologous promoter can also be operably linked to synthetic DNA coding sequences encoding a plastid targeted TIC4472PL or TIC2613PL; or an untargeted TIC4472PL or TIC2613PL. The codons of a recombinant nucleic acid molécule encoding for proteins disclosed herein can be substituted by synonymous codons (known in the art as a silent substitution).
[063] A recombinant DNA construct comprising TIC4472, TIC4472PL, TIC1425, TIC2613, or TIC2613PL protein encoding sequences can further comprise a région of DNA that encodes for one or more insect inhibitory agents which can be configured to concomitantly express or coexpress with a DNA sequence encoding a TIC4472, TIC4472PL, TIC1425, TIC2613, or TIC2613PL protein, a protein different from a TIC4472, TIC4472PL, TIC1425, TIC2613, or TIC2613PL protein, an insect inhibitory dsRNA molécule, or an ancillary protein. Ancillary proteins include, but are not limited to, co-factors, enzymes, binding-partners, or other agents that fùnction to aid in the effectiveness of an insect inhibitory agent, for example, by aiding its expression, influencing its stability in plants, optimizing free energy for oligomérization, augmenting its toxicity, and increasing its spectrum of activity. An ancillary protein may facilitate the uptake of one or more insect inhibitory agents, for example, or potentiate the toxic effects of the toxic agent.
[064] A recombinant DNA construct can be assembled so that ail proteins or dsRNA molécules are expressed from one promoter or each protein or dsRNA molécules is under separate promoter control or some combination thereof. The proteins of this invention can be expressed from a multi-gene expression system in which one or more proteins of TIC4472, TIC4472PL, TIC 1425, TIC2613, or TIC2613PL are expressed from a common nudeotide segment which also contains other open reading frames and promoters, depending on the type of expression system selected. For example, a bacterial multi-gene expression system can utilize a single promoter to drive expression of multiply-linked/tandem open reading frames from within a single operon (i.e., polycistronic expression). In another example, a plant multi-gene expression system can utilize multiply-unlinked or linked expression cassettes, each cassette expressing a different protein or other agent such as one or more dsRNA molécules.
[065] Recombinant polynucleotides or recombinant DNA constructs comprising a TIC4472, TIC4472PL, TIC 1425, TIC2613, or TIC2613PL protein encoding sequence can be delivered to host cells by vectors, e.g., a plasmid, baculovirus, synthetic chromosome, virion, cosmid, phagemid, phage, or viral vector. Such vectors can be used to achieve stable or transient expression of a TIC4472, T1C4472PL, TIC1425, TIC2613, or TIC2613PL protein encoding sequence in a host cell, or subséquent expression of the encoded polypeptide. An exogenous recombinant polynucleotide or recombinant DNA construct that comprises a TIC4472, TIC4472PL, TIC1425, TIC2613, or TIC2613PL protein encoding sequence and that is introduced into a host cell is referred in this application as a “transgene”.
[066] Transgenic bacteria, transgenic plant cells, transgenic plants, and transgenic plant parts that contain a recombinant polynucleotide that expresses any one or more of TIC4472 or a related family toxin protein encoding sequence are provided herein. The term “bacterial cell” or “bacterium” can include, but is not limited to, an Agrobacterium, a Bacillus, an Escherichia, a Salmonella, a Pseudomonas, a Brevibacillus, a Klebsiella, an Erwinia, or a Rhizobium cell. The term “plant cell” or “plant” can include but is not limited to a dicotyledonous or monocotyledonous plant. The term “plant cell” or “plant” can also include but is not limited to an alfalfa, banana, barley, bean, broccoli, cabbage, brassica, carrot, cassava, castor, cauliflower, celery, chickpea, Chinese cabbage, citrus, coconut, coffee, corn, clover, cotton, a cucurbit, cucumber, Douglas fir, eggplant, eucalyptus, flax, garlic, grape, hops, leek, lettuce, Loblolly pine, millets, melons, nut, oat, olive, onion, ornamental, palm, pasture grass, pea, peanut, pepper, pigeonpea, pine, potato, poplar, pumpkin, Radiata pine, radish, rapeseed, rice, rootstocks, rye, safflower, shrub, sorghum, Southern pine, soybean, spinach, squash, strawberry, sugar beet, sugarcane, sunflower, sweet corn, sweet gum, sweet potato, switchgrass, tea, tobacco, tomato, triticale, turf grass, watermelon, and wheat plant cell or plant. In certain embodiments, transgenic plants and transgenic plant parts regenerated from a transgenic plant cell are provided. In certain embodiments, the transgenic plants can be obtained from a transgenic seed, by cutting, snapping, grinding or otherwise disassociating the part from the plant. In certain embodiments, the plant part can be a seed, a boll, a leaf, a flower, a stem, a root, or any portion thereof, or a non-regenerable portion of a transgenic plant part. As used in this context, a “non-regenerable” portion of a transgenic plant part is a portion that cannot be induced to form a whole plant or that cannot be induced to form a whole plant that is capable of sexual and/or asexual reproduction. In certain embodiments, a non-regenerable portion of a plant part is a portion of a transgenic seed, boll, leaf, flower, stem, or root.
[067] Methods of making transgenic plants that comprise insect, Lepidoptera-inhibitory amounts of a TIC4472, TIC4472PL, TIC1425, T1C2613, or TIC2613PL protein are provided. Such plants can be made by introducing a recombinant polynucleotide that encodes any of the proteins provided in this application into a plant cell, and selecting a plant derived from said plant cell that expresses an insect, Lepidoptera-inhibitory amount of the proteins. Plants can be derived from the plant cells by régénération, seed, pollen, or meristem transformation techniques. Methods for transforming plants are known in the art.
[068] Processed plant products, wherein the processed product comprises a détectable amount of a TIC4472, TIC4472PL, TIC1425, TIC2613, or TIC2613PL protein, an insect inhibitory segment or fragment thereof, or any distinguishing portion thereof, are also disclosed herein. In certain embodiments, the processed product is selected from the group consisting of plant parts, plant biomass, oil, meal, sugar, animal feed, flour, flakes, bran, lint, hulls, processed seed, and seed. In certain embodiments, the processed product is non-regenerable. The plant product can comprise commodity or other products of commerce derived from a transgenic plant or transgenic plant part, where the commodity or other products can be tracked through commerce by detecting nucléotide segments or expressed RNA or proteins that encode or comprise distinguishing portions of a TIC4472, TIC4472PL, TIC1425, TIC2613, or TIC2613PL protein. [069] Plants expressing the TIC4472, TIC4472PL, TIC1425, TIC2613, or TIC2613PL proteins can be crossed by breeding with transgenic events expressing other toxin proteins and/or expressing other transgenic traits such as herbicide tolérance genes, genes conferring yield or stress tolérance traits, and the like, or such traits can be combined in a single vector so that the traits are ail linked.
[070] Reference in this application to an “isolated DNA molécule or amino acid molécule, or an équivalent term or phrase, is intended to mean that the DNA molécule or amino acid molécule is one that is présent alone or in combination with other compositions, but not within its natural environment. For example, a DNA molécule or amino acid molécule would be “isolated” within the scope of this disclosure so long as the element is not within the genome of the organism and at the location within the genome in which it is naturally found. For the purposes of this disclosure, any transgenic nucléotide sequence, i.e., the nucléotide sequence of the DNA inserted into the genome of the cells of a plant or bacterium, or présent in an extrachromosomal vector, would be considered to be an isolated nucléotide sequence whether it is présent within the plasmid or similar structure used to transform the cells, within the genome of the plant or bacterium, or présent in détectable amounts in tissues, progeny, biological samples or commodity products derived from the plant or bacterium.
[071] As further described in the Examples, TIC4472, TIC4472PL, TIC1425, TIC2613, or TIC2613PL protein-encoding sequences and sequences having a substantial percentage identity to TIC4472, TIC4472PL, TIC1425, TIC2613, or TIC2613PL can be identified using methods known to those of ordinary skill in the art such as polymerase chain reaction (PCR), thermal amplification and hybridization. For example, the proteins TIC4472, TIC4472PL, TIC1425, TIC2613, or TIC2613PL can be used to produce antibodies that bind specifically to related proteins, and can be used to screen for and to find other protein members that are closely related. [072] Furthermore, nucléotide sequences encoding the TIC4472, TIC4472PL, TIC1425, TIC2613, and TIC2613PL toxin proteins can be used as probes and primers for screening to identify other members of the class using thermal-cycle or isothermal amplification and hybridization methods. For example, oligonucleotides derived from the sequence as set forth in SEQ ID NO:3 can be used to détermine the presence or absence of a TIC4472PL transgene in a deoxyribonucleic acid sample derived from a commodity product. Oligonucleotides derived from the sequence as set forth in SEQ ID NO:7 can be used to détermine the presence or absence of a TIC2613PL transgene in a deoxyribonucleic acid sample derived from a commodity product. Given the sensitivity of certain nucleic acid détection methods that employ oligonucleotides, it is anticipated that oligonucleotides derived from sequences as set forth in SEQ ID NO:3 or SEQ ID NO:9 can be used to detect a TIC4472PL or TIC2613PL transgene in commodity products derived from pooled sources where only a fraction of the commodity product is derived from a transgenic plant containing any of the transgenes. It is further recognized that such oligonucleotides can be used to introduce nucléotide sequence variation in each of SEQ ID NO:3 and SEQ ID NO:9. Such “mutagenesis” oligonucleotides are useful for identification of TIC4472PL and TIC2613PL amino acid sequence variants exhibiting a range of insect inhibitory activity or varied expression in transgenic plant host cells.
[073] Nucléotide sequence homologs, e.g., insecticidal proteins encoded by nucléotide sequences that hybridize to each or any of the sequences disclosed in this application under stringent hybridization conditions, are also an embodiment of the présent invention. The invention also provides a method for detecting a first nucléotide sequence that hybridizes to a second nucléotide sequence, wherein the first nucléotide sequence (or its reverse complément sequence) encodes a pesticidal protein or pesticidal fragment thereof and hybridizes to the second nucléotide sequence. In such case, the second nucléotide sequence can be any of the nucléotide sequences presented as SEQ ID NO:3, SEQ ID NO:1, SEQ ID NO:5, SEQ ID NO:7, or SEQ ID NO:9 under stringent hybridization conditions. Nucléotide coding sequences hybridize to one another under appropriate hybridization conditions, such as stringent hybridization conditions, and the proteins encoded by these nucléotide sequences cross react with antiserum raised against any one of the other proteins. Stringent hybridization conditions, as defined herein, comprise at least hybridization at 42°C followed by two washes for five minutes each at room température with 2X SSC, 0.1% SDS, followed by two washes for thirty minutes each at 65°C in 0.5X SSC, 0.1% SDS. Washes at even higher températures constitute even more stringent conditions, e.g., hybridization conditions of 68°C, followed by washing at 68°C, in 2xSSC containing 0.1% SDS.
[074] One skilled in the art will recognize that, due to the redundancy of the genetic code, many other sequences are capable of encoding such related proteins, and those sequences, to the extent that they function to express pesticidal proteins either in Bacillus strains or in plant cells, are embodiments of the présent invention, recognizing of course that many such redundant coding sequences will not hybridize under these conditions to the native Bacillus sequences encoding TIC4472, TIC4472PL, TIC1425, TIC2613, and TIC2613PL. This application contemplâtes the use of these and other identification methods known to those of ordinary skill in the art, to identify TIC4472, TIC1425, and TIC2613 protein-encoding sequences and sequences having a substantial percentage identity to TIC4472, TIC 1425, and TIC2613 protein-encoding sequences. [075] This disclosure also contemplâtes the use of molecular methods known in the art to engineer and clone commercially useful proteins comprising chimeras of proteins from pesticidal proteins; e.g., the chimeras may be assembled from segments of the TIC4472, TIC4472PL, TIC 1425, TIC2613, or TIC2613PL, proteins to dérivé additional useful embodiments including assembly of segments of TIC4472, TIC4472PL, TIC1425, TIC2613, and TIC2613PL proteins with segments of diverse proteins different from TIC4472, TIC4472PL, TIC 1425, TIC2613, and TIC2613PL and related proteins. The TIC4472, TIC4472PL, TIC1425, TIC2613, and TIC2613PL proteins may be subjected to alignment to each other and to other Bacillus thuringiensis or other pesticidal proteins (whether or not these are closely or distantly related phylogenetically), and segments of each such protein may be identified that are useful for substitution between the aligned proteins, resulting in the construction of chimeric proteins. Such chimeric proteins can be subjected to pest bioassay analysis and characterized for the presence or absence of increased bioactivity or expanded target pest spectrum compared to the parent proteins from which each such segment in the chimera was derived. The pesticidal activity of the polypeptides may be further engineered for activity to a particular pest or to a broader spectrum of pests by swapping domains or segments with other proteins or by using directed évolution methods known in the art.
[076] Methods of controlling insects, in particular Lepidoptera infestations of crop plants, with the TIC4472, TIC4472PL, TIC1425, TIC2613, and TIC2613PL proteins are also disclosed in this application. Such methods can comprise growing a plant comprising an insect- or Lepidoptera-inhibitory amount of a TIC4472, TIC4472PL, TIC1425, TIC2613, and TIC2613PL toxin protein. In certain embodiments, such methods can further comprise any one or more of: (i) applying any composition comprising or encoding a TIC4472, TIC4472PL, TIC 1425, TIC2613, and TIC2613PL toxin protein to a plant or a seed that gives rise to a plant; and (ii) transforming a plant or a plant cell that gives rise to a plant with a polynucleotide encoding a TIC4472,
TIC4472PL, TIC1425, TIC2613, and TIC2613PL toxin protein. In general, it is contemplated that a TIC4472, TIC4472PL, TIC1425, TIC2613, and TIC2613PL toxin protein can be provided in a composition, provided in a microorganism, or provided in a transgenic plant to confer insect inhibitory activity against Lepidopteran insects.
[077] In certain embodiments, a recombinant nucleic acid molécule of TIC4472, TIC4472PL, TIC1425, TIC2613, and TIC2613PL toxin proteins is the insecticidally active ingrédient of an insect inhibitory composition prepared by culturing recombinant Bacillus or any other recombinant bacterial cell transformed to express a TIC4472, TIC4472PL, TIC1425, TIC2613, and TIC2613PL toxin protein under conditions suitable to express the TIC4472, TIC4472PL, TIC 1425, TIC2613, and TIC2613PL toxin protein. Such a composition can be prepared by desiccation, lyophilization, homogenization, extraction, filtration, centrifugation, sédimentation, or concentration of a culture of such recombinant cells expressing/producing said recombinant polypeptide. Such a process can resuit in a Bacillus or other entomopathogenic bacterial cell extract, cell suspension, cell homogenate, cell lysate, cell supematant, cell filtrate, or cell pellet. By obtaining the recombinant polypeptides so produced, a composition that includes the recombinant polypeptides can include bacterial cells, bacterial spores, and parasporal inclusion bodies and can be formulated for various uses, including as agricultural insect inhibitory spray products or as insect inhibitory formulations in diet bioassays.
[078] In one embodiment, to reduce the likelihood of résistance development, an insect inhibitory composition comprising TIC4472, TIC4472PL, TIC1425, TIC2613, and TIC2613PL can further comprise at least one additional polypeptide that exhibits insect inhibitory activity against the same Lepidopteran insect species, but which is different from the TIC4472, TIC4472PL, TIC1425, TIC2613, and TIC2613PL toxin protein. Possible additional polypeptides for such a composition include an insect inhibitory protein and an insect inhibitory dsRNA molécule. One example for the use of such ribonucleotide sequences to control insect pests is described in Baum, et al. (U.S. Patent Publication 2006/0021087 Al). Such additional polypeptide for the control of Lepidopteran pests may be selected from the group consisting of an insect inhibitory protein, such as, but not limited to, CrylA (U.S. Patent No. 5,880,275), CrylAb, CrylAc, CrylA.105, CrylAe, CrylB (U.S. Patent Publication No. 10/525,318), CrylC (U.S. Patent No. 6,033,874), CrylD, CrylDa and variants thereof, CrylE, CrylF, and CrylA/F chimeras (U.S. Patent Nos. 7,070,982; 6,962,705; and 6,713,063), CrylG, CrylH, Cryll, CrylJ, CrylK, CrylL, Cryl-type chimeras such as, but not limited to, TIC836, TIC860, TIC867, TIC869, and TIC 1100 (International Application Publication WO2016/061391 (A2)), TIC2160 (International Application Publication WO2016/061392(A2)), Cry2A, Cry2Ab (U.S. Patent No. 7,064,249), Cry2Ae, Cry4B, Cry6, Cry7, Cry8, Cry9, Cryl5, Cry43A, Cry43B, Cry51Aal, ET66, TIC400,, TIC800, TIC834, TIC1415, Vip3A, VIP3Ab, VIP3B, AXMI-001, AXMI-002, AXMI030, AXMI-035, AND AXMI-045 (U.S. Patent Publication 2013-0117884 Al), AXMI-52, AXMI-58, AXMI-88, AXMI-97, AXMI-102, AXMI-112, AXMI-117, AXMI-100 (U.S. Patent Publication 2013-0310543 Al ), AXMI-115, AXMI-113, AXMI-005 (U.S. Patent Publication 2013-0104259 Al), AXMI-134 (U.S. Patent Publication 2013-0167264 Al), AXMI-150 (U.S. Patent Publication 2010-0160231 Al), AXMI-184 (U.S. Patent Publication 2010-0004176 Al), AXMI-196, AXMI-204, AXMI-207, axmi209 (U.S. Patent Publication 2011-0030096 Al), AXMI-218, AXMI-220 (U.S. Patent Publication 2014-0245491 Al), AXMI-221z, AXMI-222z, AXMI-223z, AXMI-224z, AXMI-225z (U.S. Patent Publication 2014-0196175 Al), AXMI-238 (U.S. Patent Publication 2014-0033363 Al), AXMI-270 (U.S. Patent Publication 2014-0223598 Al), AXMI-345 (U.S. Patent Publication 2014-0373195 Al), AXMI-335 (International Application Publication WO2013/134523(A2)), DIG-3 (U.S. Patent Publication 2013-0219570 Al), DIG-5 (U.S. Patent Publication 2010-0317569 Al), DIG-11 (U.S. Patent Publication 20100319093 Al), AIIP-1A and dérivatives thereof (U.S. Patent Publication 2014-0033361 Al), AfIP-lB and dérivatives thereof (U.S. Patent Publication 2014-0033361 Al), PIP-1APIP-1B (U.S. Patent Publication 2014-0007292 Al), PSEEN3174 (U.S. Patent Publication 20140007292 Al), AECFG-592740 (U.S. Patent Publication 2014-0007292 Al), Pput_1063 (U.S. Patent Publication 2014-0007292 Al), DIG-657 (International Application Publication WO2015/195594(A2)), Pput_1064 (U.S. Patent Publication 2014-0007292 Al), GS-135 and dérivatives thereof (U.S. Patent Publication 2012-0233726 Al), GS153 and dérivatives thereof (U.S. Patent Publication 2012-0192310 Al), GS154 and dérivatives thereof (U.S. Patent Publication 2012-0192310 Al), GS155 and dérivatives thereof (U.S. Patent Publication 20120192310 Al), SEQ ID NO:2 and dérivatives thereof as described in U.S. Patent Publication 2012-0167259 Al, SEQ ID NO:2 and dérivatives thereof as described in U.S. Patent Publication 2012-0047606 Al, SEQ ID NO:2 and dérivatives thereof as described in U.S. Patent Publication 2011-0154536 Al, SEQ ID NO:2 and dérivatives thereof as described in U.S. Patent Publication
2011-0112013 Al, SEQ ID NO:2 and 4 and dérivatives thereof as described in U.S. Patent
Publication 2010-0192256 Al, SEQ ID NO:2 and dérivatives thereof as described in U.S. Patent
Publication 2010-0077507 Al, SEQ ID NO:2 and dérivatives thereof as described in U.S. Patent
Publication 2010-0077508 Al, SEQ ID NO:2 and dérivatives thereof as described in U.S. Patent
Publication 2009-0313721 Al, SEQ ID NO:2 or 4 and dérivatives thereof as described in U.S.
Patent Publication 2010-0269221 Al, SEQ ID NO:2 and dérivatives thereof as described in U.S. Patent No. 7,772,465 (B2), CF161_0085 and dérivatives thereof as described in WO2014/008054 A2, Lepidopteran toxic proteins and their dérivatives as described in US Patent Publications US2008-0172762 Al, US2011-0055968 Al, and US2012-0117690 Al; SEQ ID NO:2 and dérivatives thereof as described in US7510878(B2), SEQ ID NO:2 and dérivatives thereof as described in U.S. Patent No. 7812129(B1); and the like.
[079] In other embodiments, such composition/formulation can further comprise at least one additional polypeptide that exhibits insect inhibitory activity to an insect that is not inhibited by an otherwise insect inhibitory protein of the présent invention to expand the spectrum of insect inhibition obtained. For example, for the control of Hemipteran pests, combinations of insect inhibitory proteins of the présent invention can be used with Hemipteran-active proteins such as TIC1415 (US Patent Publication 2013-0097735 Al), TIC807 (U.S. Patent No. 8609936), TIC834 (U.S. Patent Publication 2013-0269060 Al), AXMI-036 (U.S. Patent Publication 20100137216 Al), and AXMI-171 (U.S. Patent Publication 2013-0055469 Al). Further a polypeptide for the control of Coleopteran pests may be selected from the group consisting of an insect inhibitory protein, such as, but not limited to, Cry3Bb (U.S. Patent No. 6,501,009), CrylC variants, Cry3A variants, Cry3, Cry3B, Cry34/35, 5307, AXMI134 (U.S. Patent Publication 2013-0167264 Al) AXMI-184 (U.S. Patent Publication 2010-0004176 Al), AXMI-205 (U.S. Patent Publication 2014-0298538 Al), axmi207 (U.S. Patent Publication 2013-0303440 Al), AXMI-218, AXMI-220 (U.S. Patent Publication 20140245491A1), AXMI-221z, AXMI-223z (U.S. Patent Publication 2014-0196175 Al), AXMI-279 (U.S. Patent Publication 2014-0223599 Al), AXMI-R1 and variants thereof (U.S. Patent Publication 2010-0197592 Al, TIC407, TIC417, TIC431, TIC807, TIC853, TIC901, TIC1201, TIC3131, DIG-10 (U.S. Patent Publication 2010-0319092 Al), eHIPs (U.S. Patent Application Publication No. 2010/0017914), IP3 and variants thereof (U.S. Patent Publication 2012-0210462 Al), and w-Hexatoxin-Hvla (U.S. Patent Application Publication US2014-0366227 Al).
[080] Additional polypeptides for the control of Coleopteran, Lepidopteran, and Hemipteran insect pests can be found on the Bacillus thuringiensis toxin nomenclature website maintained by
Neil Crickmore (on the world wide web at btnomenclature.info).
[081] The possibility for insects to develop résistance to certain insecticides has been documented in the art. One insect résistance management strategy is to employ transgenic crops that express two distinct insect inhibitory agents that operate through different modes of action. Therefore, any insects with résistance to either one of the insect inhibitory agents can be controlled by the other insect inhibitory agent. Another insect résistance management strategy employs the use of plants that are not protected to the targeted Lepidopteran pest species to provide a refuge for such unprotected plants. One particular example is described in U.S. Patent No. 6,551,962, which is incorporated by reference in its entirety.
[082] Other embodiments such as topically applied pesticidal chemistries that are designed for controlling pests that are also controlled by the proteins disclosed herein to be used with proteins in seed treatments, spray on, drip on, or wipe on formulations can be applied directly to the soil (a soil drench), applied to growing plants expressing the proteins disclosed herein, or formulated to be applied to seed containing one or more transgenes encoding one or more of the proteins disclosed. Such formulations for use in seed treatments can be applied with various stickers and tackifiers known in the art. Such formulations can contain pesticides that are synergistic in mode of action with the proteins disclosed, so that the formulation pesticides act through a different mode of action to control the same or similar pests that can be controlled by the proteins disclosed, or that such pesticides act to control pests within a broader host range or plant pest species that are not effectively controlled by the TIC4472, TIC4472PL, TIC1425, TIC2613, and TIC2613PL pesticidal proteins.
[083] The aforementioned composition/formulation can further comprise an agriculturallyacceptable carrier, such as a bait, a powder, dust, pellet, granule, spray, émulsion, a colloïdal suspension, an aqueous solution, a Bacillus spore/crystal préparation, a seed treatment, a recombinant plant cell/plant tissue/seed/plant transformed to express one or more of the proteins, or bacterium transformed to express one or more of the proteins. Depending on the level of insect inhibitory or insecticidal inhibition inhérent in the recombinant polypeptide and the level of formulation to be applied to a plant or diet assay, the composition/formulation can include various by weight amounts of the recombinant polypeptide, e.g. from 0.0001% to 0.001% to
0.01% to 1% to 99% by weight of the recombinant polypeptide.
[084] In view of the foregoing, those of skill in the art should appreciate that changes can be made in the spécifie aspects which are disclosed and still obtain a like or similar resuit without departing from the spirit and scope of the invention. Thus, spécifie structural and functional details disclosed herein are not to be interpreted as limiting. It should be understood that the entire disclosure of each reference cited herein is incorporated within the disclosure of this application.
EXAMPLES
Example 1
Discovery, cloning, and expression of TIC4472, TIC1425, and TIC2613
[085] Sequences encoding three novel Bacillus thuringiensis pesticidal proteins were identified, cloned, sequence confirmed, and tested in insect bioassay. The pesticidal proteins, TIC4472, TIC1425 and TIC2613, isolated from the Bacillus thuringiensis strains EG10742, EG10731, and EG5408, respectively, represent novel CrylCa-like proteins.
[086] Polymerase chain reaction (PCR) primers were designed to amplify a full length copy of the coding région for TIC4472, TIC 1425 and TIC2613 from total genomic DNA isolated from the Bacillus thuringiensis strains EG10742, EG10731, and EG5408, respectively. The PCR amplicons also included the translational initiation and termination codons of each coding sequence.
[087] Each of the amplicons were cloned using methods known in the art into Bt (Bacillus thuringiensis) expression vectors in opérable linkage with a Bt expressible promoter.
Example 2
TIC4472, TIC1425, and TIC2613 demonstrates Lepidopteran activity in insect bioassay
[088] Bioactivity of the pesticidal proteins TIC4472, TIC 1425 and TIC2613 was evaluated by producing the protein in a Bt expression host. A Bt strain expressing TIC4472, TIC 1425 and TIC2613 was grown for twenty four (24) hours and then either a spore crystal préparation or solubilized protein préparation was added to insect diet. Mortality and stunting were evaluated by comparing the growth and development of insects on a diet with a culture from the Bt strain expressing TIC4472, TIC 1425 and TIC2613 to insects on a diet with an untreated control culture. [089] Préparations of TIC4472 were assayed against the Lepidopteran species Corn earworm (two colonies (CEW and CEWUC), Helicoverpa zea, also herein referred to as Cotton bollworm and Soybean pod worm), Cotton leaf worm (CLW, Alabama argillaced), European corn borer (ECB, Ostrinia nubilalis), Fall armyworm (FAW, Spodoptera frugiperdd), Soybean looper (SBL, Chrysodeixis includens), Southern armyworm (SAW, Spodoptera eridanid), Southwestem corn borer (SWCB, Diatraea grandiosella), Sugarcane borer (SCB, Diatraea saccharalis), a Cry2Ab résistant colony of Sugarcane borer (SCB2R), Tobacco budworm (TBW, Heliothis virescens), and Velvet bean Caterpillar (VBW, Anticarsia gemmatalis): the Coleopteran species Colorado potato beetle (CPB, Leptinotarsa decemlineata) and Western corn rootworm (WCB, Diabrotica virgifera virgifera)·, the Hemipteran species Tamished plant bug (TPB, Lygus lineolaris), Western tamished plant bug (WTP, Lygus hesperus): and the Dipteran species Yellow fever mosquito (Aedes aegypti). Préparations of TIC 1425 were assayed against the Lepidopteran species Black cutworm (BCW, Agrotis ipsilon), Cotton leaf worm (CLW, Alabama argillaced), European corn borer (ECB, Ostrinia nubilalis), Fall armyworm (FAW, Spodoptera frugiperdd), Black cutworm (BCW, Agrotis ipsilon), Southwestem com borer (SWCB, Diatraea grandiosella), and Sugarcane borer (SCB, Diatraea saccharalis)·, and the Coleopteran species Western com rootworm (WCB, Diabrotica virgifera virgifera) and Southern com rootworm (Diabrotica undecimpunctata howardi). Préparations of T1C2613 were assayed against the Lepidopteran species Com earworm (two colonies (CEW and CEWUC), Helicoverpa zea, also herein referred to as Cotton bollworm and Soybean pod worm), Cotton leaf worm (CLW, Alabama argillacea), European corn borer (ECB, Ostrinia nubilalis), Fall armyworm (FAW, Spodoptera frugiperdd), Soybean looper (SBL, Chrysodeixis includens), Southern armyworm (SAW, Spodoptera eridanid), Black cutworm (BCW, Agrotis ipsilon), Southwestem com borer (SWCB, Diatraea grandiosella), Tobacco budworm (TBW, Heliothis virescens), and Velvet bean Caterpillar (VBW, Anticarsia gemmatalis)·, the Coleopteran species Colorado potato beetle (CPB, Leptinotarsa decemlineata)·, Western com rootworm (WCB, Diabrotica virgifera virgifera) and Southern com rootworm (Diabrotica undecimpunctata howardi)·, and the Hemipteran species Tamished plant bug (TPB, Lygus lineolaris), Western tamished plant bug (WTP, Lygus hesperus).
[090] The bioassay activity observed for each protein grown in the Bt host is presented in
Tables 3 and 4 below, wherein “+” indicates activity, “NT” indicates the toxin was not assayed against that spécifie insect pest, “S” indicates stunting, and “M” indicates mortality.
Préparations of TIC4472, TIC 1425, and TIC2613 did not demonstrate activity against the
Coleopteran or the Hemipteran insect pests assayed for each protein. TIC4472 also demonstrated activity against Yellow fever mosquito (Aedes aegypti). Ail three toxins demonstrated résistance to multiple Lepidopteran insect pests as shown in Tables 3 and 4.
Table 3. Bioassay activity of TIC4472, TIC1425, and TIC2613 against insect pests.
CEW CEWUC CLW ECB FAW SBL SAW
Toxin S M S M S M S M S M S M S M
TIC4472 + + + + + + + + + + + + +
TIC 1425 NT NT + + + + NT NT
TIC2613 + + + + + + + + + +
Table 4. Bioassay activity of TIC4472, TIC1425, and TIC2613 against insect pests.
BCW SCB SCB2R SWCB TBW VBC YFM
Toxin S M S M S M S M S M S M S M
TIC4472 NT NT + + + + + + + + + + +
TIC 1425 + NT NT + NT NT NT NT NT NT
TIC2613 + + NT NT + + + + NT NT
[091] As can be seen in Tables 3 and 4 above, the insect toxin TIC4472 demonstrated activity against ail Lepidopteran insect pests assayed (CEW, CEWUC, CLW, ECB, FAW, SBL, SAW, SCB, SCB2R, SWCB, TBW, and VBC); as well as YFM. The insect toxin TIC 1425 demonstrated activity against CLW, ECB, FAW, SCB, and SWCB. The insect toxin TIC2613 20 demonstrated activity against CEW, CLW, ECB, FAW, SBL, SAW, SCB, SWCB, TBW, and
VBC. Activity was not observed for TIC1425 and TIC2613 when assayed against BCW.
[092] In a separate sériés of experiments, protein préparations of TIC4472 were assayed using a diet overlay assay against the Lepidopteran insect pests Beet armyworm (BAW, Spodoptera exigua), Pink bollworm (PBW, Pectinophora gossypiella), CrylAc résistant Pink bollworm (PBW_CrylAcr, Pectinophora gossypiella), Old world bollworm (OWB, Helicoverpa armigera), Oriental leaf worm (OLW, Spodoptera litura), and Spotted bollworm (SBW, Earias vittella). Table 5 shows the activity observed against each of these Lepidopteran insect pests assayed in the diet overlay bioassay, wherein “+” indicates activity.
Table 5. Bioassay activity of TIC4472 against Lepidopteran insect pests.
Lepidopteran Insect Pest
BAW PBW PBW_CrylAcr OWB OLW SBW
+ + + + + +
[093] As can be seen in Table 5 above, TIC4472 demonstrated activity against ail of the Lepidopteran insect pests assayed in the diet overlay bioassay, including the CrylAc résistant colony of Pink bollworm.
[094] As demonstrated in Tables 3-5, TIC4472, TIC1425, and TIC2613 demonstrate activity across a wide range of Lepidopteran insect pest species.
Example 3
Design of synthetic coding sequences encoding TIC4472PL and TIC2613PL for expression in plant cells
[095] Synthetic coding sequences were constructed for use in expression of the encoded protein in plants, cloned into a binary plant transformation vectors, and used to transform plant cells. The synthetic sequences were synthesized according to methods generally described in U.S. Patent 5,500,365, avoiding certain inimical problem sequences such as ATTTA and A/T rich plant polyadenylation sequences. The synthetic coding sequences encode TIC4472PL and TIC2613PL proteins which comprise an additional alanine residue immediately following the initiating méthionine relative to the TIC4472 and TIC2613 proteins, respectively. The additional alanine residue is incorporated into the synthetic coding sequence to improve expression of the insect toxin protein.
[096] The synthetic coding sequence encoding TIC4472PL (SEQ ID NO:4) is presented herein as SEQ ID NO:3. The synthetic coding sequence encoding TIC2613PL (SEQ ID NO: 10) is presented as SEQ ID NO:9. The synthetic coding sequences were used in binary plant transformation vectors to generate transgenic plants expressing the TIC4472PL and TIC2613PL proteins and assayed for activity against Lepidopteran insect pests.
Example 4
Assay of TIC4472PL activity against Lepidopteran pests in stably transformed cotton plants
[097] Binary plant transformation vectors comprising transgene cassettes designed to express untargeted TIC4472PL pesticidal protein were cloned using methods known in the art. The resulting vectors were used to stably transform cotton plants. Tissues were harvested from the transformants and used in insect bioassay against various Lepidopteran insect pests.
[098] Synthetic coding sequences were constructed for use in expression of the encoded protein in plants, cloned into a binary plant transformation vector, and used to transform cotton plant cells. The resulting plant transformation vectors comprised a first transgene cassette for expression of the TIC4472PL pesticidal protein which comprised a constitutive promoter, operably linked 5' to a leader, operably linked 5' to a synthetic coding sequence encoding an untargeted TIC4472PL protein, which was in tum operably linked 5' to a 3' UTR; and a second transgene cassette for the sélection of transformed plant cells using spectinomycin sélection.
[099] Three binary plant transformation vector constructs were constructed as described above and comprised different constitutive promoters. Two constructs, Construct 1 and Construct 3 also comprised an intron sequence that was operably linked 3' to the leader and 5' to the synthetic coding sequence encoding an untargeted TIC4472PL protein. Construct 2 was intronless. Cotton plants were transformed with the three different binary transformation vectors using an Agrobacterium-meàiateà transformation method. The transformed cells were induced to form plants by methods known in the art. Bioassays using plant leaf disks were performed analogous to those described in U.S. Patent No. 8,344,207. A single freshly hatched neonate larvae less than one day old was placed on each leaf dise sample and allowed to feed for approximately four days. A non-transformed cotton plant was used to obtain tissue to be used as a négative control. Multiple transformation Ro single-copy insertion events from each binary vector were assessed against Cotton bollworm (CBW, Helicoverpa zed), Fall armyworm (FAW, Spodoptera frugiperda), Soybean looper (SBL, Chrysodeixis includens), and Tobacco budworm (TBW, Heliothis virescens). Leaf Damage Rating (LDR) scores ranging from one (1) to four (4) were applied to event. The LDR scores are based upon the percentage of damage observed for each leaf dise. Table 6 below shows the LDR scores and corresponding range of percent damage associated with each score. For LDR scores of one (1), the penetrance of the trait is also assessed. High penetrance (as indicated by “(H)”) is defined as greater than fifty (50) percent of the assayed events for each construct having less than or equal to ten (10) percent leaf damage. Low penetrance (as indicated by “(L)”) is defined as less than or equal to fifty (50) percent of the assayed events for each construct having less than or equal to ten (10) percent leaf damage. Penetrance is not applied to LDR scores greater than one (1).
Table 6. Cotton Leaf Damage Rating (LDR) scores and corresponding percentage damage and Penetrance.
LDR Score Leaf Damage Rating (LDR) range Penetrance
1 LDR<10% High = > 50% of events
1 Low = < 50% of events
2 10%<LDR< 17.5% n/a
3 17.5% < LDR <35% n/a
4 LDR > 35% n/a
[0100] The leaf damage rating scores for transformed Ro cotton plants expressing TIC4472PL are presented in Table 7 below. The number of events demonstrating the LDR score out of the total number events assayed is shown in parenthesis, followed by the penetrance for those LDR scores of one (1).
Table 7. Leaf Damage Rating (LDR) scores, number of events demonstrating the LDR, and penetrance for transformed Ro cotton plants expressing TIC4472PL.
Construct CBW FAW SBL TBW
Construct 1 3 (1/25) 2 (2/25) 1 (25/25) H 1 (24/25)H
Construct 2 3 (3/25) 2(1/25) 1 (24/25)H 1 (16/25) H
Construct 3 4 (23/23) 1 (1/23)L 1 (21/23) H 1 (6/23)L
[0101] Transformed Ro cotton plants expressing TIC4472PL were highly efficacious (defined as having less than or equal to ten percent leaf damage) against SBL and TBW as shown in Table 7. Activity against CBW and FAW was also observed in several events.
[0102] Ri cotton events were selected from the transformed Ro cotton plants assayed above and were used in a leaf dise assay against FAW, SBL, and TBW. Table 8 shows the leaf damage rating scores for transformed Ri cotton plants expressing TIC4472PL.
Table 8. Leaf Damage Rating (LDR) scores, number of events demonstrating the LDR, and penetrance for transformed Ri cotton plants expressing TIC4472PL.
Construct FAW SBL TBW
Construct 1 1 (3/4) H 1 (4/4) H 1 (4/4) H
Construct 2 1 (1/4) L 1 (4/4) H 1 (1/4) L
[0103] As can be seen in Table 8 above, the selected events showed high efficacy against FAW, SBL, and TBW. Penetrance was high for Construct 1 transformed events for ail three insect pest species. With respect to Construct 2 transformed events, penetrance was high for SBL.
[0104] The forgoing demonstrates that transformed cotton plants expressing TIC4472PL protein provide résistance to Fall armyworm(FAW, Spodoptera frugiperda), Soybean looper (SBL, Chrysodeixis includens) and Tobacco budworm (TBW, Heliothis virescens).
Example 5
Assay of TIC4472PL and TIC2613PL activity against Lepidopteran pests in stably transformed soybean plants
[0105] A binary plant transformation vector comprising a transgene cassette designed to express a plastid targeted TIC4472PL or TIC2613PL untargeted pesticidal protein was cloned using methods known in the art. The resulting vector was used to stably transform soybean plants.
Tissues were harvested from the transformants and used in insect bioassay against various
Lepidopteran insect pests.
[0106] The synthetic coding sequences designed for plant expression described in Example 3 were cloned into binary plant transformation vector constructs, and used to transform soybean plant cells. Three binary vector constructs were constructed using methods known in the art to express plastid targeted and untargeted TIC4472PL. Construct 4 comprised a first transgene cassette for expression of the untargeted TIC4472PL which comprised a constitutive promoter, operably linked 5' to a leader, operably linked 5' to a synthetic coding sequence encoding an untargeted TIC4472PL protein, which was in tum operably linked 5 ' to a 3 ' UTR and; a second transgene cassette for the sélection of transformed plant cells using spectinomycin sélection. Construct 5 comprised a first transgene cassette for expression of the targeted TIC4472PL which comprised a constitutive promoter, operably linked 5' to a leader, operably linked 5' to an intron, operably linked 5' to a synthetic coding sequence encoding a plastid targeted TIC4472PL protein, which was in turn operably linked 5' to a 3' UTR and; a second transgene cassette for the sélection of transformed plant cells using spectinomycin sélection. Construct 6 comprised a first transgene cassette for expression of the untargeted TIC4472PL which comprised a constitutive promoter, operably linked 5' to a leader, operably linked 5' to an intron, operably linked 5' to a synthetic coding sequence encoding an untargeted TIC4472PL protein, which was in tum operably linked 5' to a 3' UTR and; a second transgene cassette for the sélection of transformed plant cells using spectinomycin sélection.
[0107] Two binary vector constructs were constructed using methods known in the art to express untargeted TIC2613PL. Construct 7 comprised a first transgene cassette for expression of the untargeted TIC2613PL which comprised a constitutive promoter, operably linked 5' to a leader, operably linked 5' to a synthetic coding sequence encoding an untargeted TIC2613PL protein, which was in turn operably linked 5' to a 3' UTR and; a second transgene cassette for the sélection of transformed plant cells using spectinomycin sélection. Construct 8 comprised a first transgene cassette for expression of the untargeted TIC2613PL which comprised a constitutive promoter, operably linked 5' to a leader, operably linked 5' to an intron, operably linked 5' to a synthetic coding sequence encoding an untargeted TIC2613PL protein, which was in tum operably linked 5 ' to a 3 ' UTR and; a second transgene cassette for the sélection of transformed plant cells using spectinomycin sélection.
[0108] The resulting binary transformation vector constructs were used to transform soybean cells using an Agrobacterium-mQàïateà transformation method. The transformed soybean cells were induced to form plants by methods known in the art. Bioassays using plant leaf disks were performed analogous to those described in U.S. Patent No. 8,344,207. A non-transformed 5 soybean plant was used to obtain tissue to be used as a négative control. Multiple Ro soybean transformation events derived from the binary vectors were assessed against Southern armyworm (SAW, Spodoptera eridania), Soybean looper (SBL, Chrysodeixis includens), and Soybean podworm (SPW, Helicoverpa zea). The Leaf Damage Rating (LDR) scores were similar to those as for cotton but differed in the range of percentage damage used to détermine the score.
The Leaf Damage Rating scores and their corresponding percent leaf damage rating range are presented in Table 9 below.
Table 9. Soybean Leaf Damage Rating (LDR) scores and corresponding percentage damage range.
LDR Score Leaf Damage Rating (LDR) range
1 LDR < 20%
2 20% < LDR < 35%
3 35% < LDR < 70%
4 LDR > 70%
[0109] The leaf damage rating scores for transformed Ro cotton plants expressing TIC4472PL and TIC2613PL are presented in Table 10 below. The number of events demonstrating the LDR score out ofthe total number events assayed is shown in parenthesis.
Table 10. Leaf Damage Rating (LDR) scores and number of events demonstrating the
LDR for transformed Ro soybean plants expressing TIC4472PL and TIC2613PL.
Toxin Construct SAW SBL SPW
TIC4472PL Construct 4 1 (23/29) 1 (29/29) 3 (8/29)
TIC4472PL Construct 5 1 (20/29) 1 (28/29) 1 (1/29)
TIC4472PL Construct 6 1 (10/29) 1 (15/15) 3 (3/15)
TIC2613PL Construct 7 1 (22/30) 1 (24/30) 3 (1/30)
TIC2613PL Construct 8 1 (14/25) 1 (22/25) 2 (2/25)
[0110] As can be seen in Table 10 above, both expression of both TIC4472PL and TIC2613PL demonstrated high efficacy against SAW and SBL. Activity was lower for both proteins against SPW.
[0111] Ri soybean events were selected from the transformed Ro soybean plants expressing TIC4472PL and TIC2613PL assayed above and were used in a leaf dise assay against SAW, SBL, and SPW. A Ri soybean event expressing TIC4472PL was also assessed against Velvet bean Caterpillar (VBW, Anticarsia gemmatalis). Table 11 shows the leaf damage rating scores for transformed Ri soybean plants expressing TIC4472PL and TIC2613PL.
Table 11. Leaf Damage Rating (LDR) scores and number of events demonstrating the LDR for transformed Ri soybean plants expressing TIC4472PL and TIC2613PL.
Toxin Construct SAW SBL SPW VBC
TIC4472PL Construct 5 1 (3/8) 1 (5/8) 3 (2/8)
TIC4472PL Construct 6 1 (1/9) 1 (6/9) 3 (1/9) 1 (3/9)
TIC2613PL Construct 8 2(2/10) 1 (9/10) 4(4/10)
[0112] As can be seen in Table 11, a number of Ri soybean events transformed with TIC4472PL demonstrated high efficacy against SAW and SBL. In addition, several Ri soybean events transformed using Construct 6 demonstrated high efficacy against VBC. Ri soybean events transformed with TIC2613PL demonstrated high efficacy against SBL.
[0113] The forgoing demonstrates that transformed soybean plants expressing TIC4472PL or
TIC2613PL provide résistance to Lepidopteran insects, in particular Southern armyworm (Spodoptera eridania) and Soybean looper (Chrysodeixis includens) and Velvet bean Caterpillar (Anticarsia gemmatalis).
Example 6
Assay of TIC4472PL and TIC2613PL activity against Lepidopteran pests in stably transformed corn plants
[0114] Binary plant transformation vectors comprising transgene cassettes designed to express both plastid targeted and untargeted TIC4472PL or TIC2613PL pesticidal protein are cloned using methods known in the art. The resulting vectors are used to stably transform corn plants. Tissues are harvested from the transformants and used in insect bioassay against various Lepidopteran insect pests.
[0115] The synthetic coding sequence encoding TIC4472PL (SEQ ID NO:3) or TIC2613 (SEQ ID NO:9) protein are cloned into binary transformation vectors. For plastid targeted protein, the synthetic TIC4472PL or TIC2613PL pesticidal protein coding sequence is operably linked in frame with a chloroplast targeting signal peptide encoding sequence. The resulting plant transformation vectors comprise a first transgene cassette for expression of the TIC4472PL or TIC2613PL pesticidal protein which comprise a constitutive promoter, operably linked 5'to a leader, operably linked 5' to an intron, operably linked 5' to a synthetic coding sequence encoding a plastid targeted or untargeted TIC4472PL or TIC2613PL protein, which is in turn operably linked 5 ' to a 3 ' UTR; and a second transgene cassette for the sélection of transformed plant cells using glyphosate sélection.
[0116] Corn plants are transformed with the binary transformation vectors described above using an Agrobacterium-mQ&ïateà transformation method. The transformed cells are induced to form plants by methods known in the art. Bioassays using plant leaf disks are performed analogous to those described in U.S. Patent No. 8,344,207. A non-transformed corn plant is used to obtain tissue to be used as a négative control. Multiple transformation events from each binary vector are assessed against Beet armyworm (BAW, Spodoptera exigua), Black cutworm (BCW, Agrotis ipsilon), Corn earworm (CEW, Helicoverpa zed), Cotton leaf worm (CLW, Alabama argillacea), European corn borer (ECB, Ostrinia nubilalis), Fall armyworm (FAW, Spodoptera frugiperda),
Old world bollworm (OWB, Helicoverpa armigera), Oriental leaf worm (OLW, Spodoptera liturd), Pink bollworm (PBW, Pectinophora gossypiella), Soybean looper (SBL, Chrysodeixis includens), Spotted bollworm (SBW, Earias vittella), Southwestem corn borer (SWCB, Diatraea grandie sella), Sugarcane borer (SCB, Diatraea saccharalis), Tobacco budworm (TBW, Heliothis virescens), and Velvet bean Caterpillar (VBW, Anticarsia gemmatalis), as well as other Lepidopteran insect pests.
[0117] The insect pests are observed for mortality and stunting caused by ingestion of the presented leaf dises expressing TIC4472PL or TIC2613PL and compared to leaf dises derived from non-transformed corn plants.
[0118] Ail ofthe compositions disclosed and claimed herein can be made and executed without undue expérimentation in light of the présent disclosure. While the compositions of this invention hâve been described in terms of the foregoing illustrative embodiments, it will be apparent to those of skill in the art that variations, changes, modifications, and alterations may be applied to the composition described herein, without departing from the true concept, spirit, and scope of the invention. More specifically, it will be apparent that certain agents that are both chemically and physiologically related may be substituted for the agents described herein while the same or similar results would be achieved. Ail such similar substitutes and modifications apparent to those skilled in the art are deemed to be within the spirit, scope, and concept of the invention as defined by the appended claims.
[0119] Ail publications and published patent documents cited in the spécification are incorporated herein by reference to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.

Claims (27)

  1. l. A recombinant nucleic acid molécule comprising a heterologous promoter operably linked to a polynucleotide segment encoding a pesticidal protein or pesticidal fragment thereof, wherein:
    a. said pesticidal protein comprises the amino acid sequence of SEQ ID NO:4, SEQ ID NO:2, SEQ ID NO:6, SEQ ID NO:8, or SEQ ID NO:10; or
    b. said pesticidal protein comprises an amino acid sequence having:
    i. at least 93%, or 95%, or 98% or 99%, or about 100% amino acid sequence identity to SEQ ID NO:4, SEQ ID NO:2, or SEQ ID NO:6;
    or ii. at least 73%, or 75%, or 80%, or 85%, or 90%, or 95%, or about 100% amino acid sequence identity to SEQ ID NO:8 or SEQ ID NO: 10; or c. said polynucleotide segment hybridizes under stringent hybridization conditions to a polynucleotide having the nucléotide sequence of SEQ ID NO:3, SEQ ID NO:1, SEQ ID NO:5, SEQ ID NO:7, or SEQ ID NO:9.
  2. 2. The recombinant nucleic acid molécule of claim 1, wherein:
    a. the recombinant nucleic acid molécule comprises a sequence that functions to express the pesticidal protein in a plant; or
    b. the recombinant nucleic acid molécule is expressed in a plant cell to produce a pesticidally effective amount of the pesticidal protein; or
    c. the recombinant nucleic acid molécule is in opérable linkage with a vector, and said vector is selected from the group consisting of a plasmid, phagemid, bacmid, cosmid, and a bacterial or yeast artificial chromosome.
  3. 3. The recombinant nucleic acid molécule of claim 1, defined as présent within a host cell, wherein said host cell is selected from the group consisting of a bacterial and a plant cell.
  4. 4. The recombinant nucleic acid molécule of claim 3, wherein the bacterial host cell is from a genus of bacteria selected from the group consisting of: Agrobacterium,
    Rhizobium, Bacillus, Brevibacillus, Escherichia, Pseudomonas, Klebsiella, Pantoea, and Erwinia.
  5. 5. The recombinant nucleic acid molécule of claim 1 wherein the Bacillus species is
    Bacillus cereus or Bacillus thuringiensis, said Brevibacillus is Brevibacillus laterosperous, and said Escherichia is Escherichia coli.
  6. 6. The recombinant nucleic acid of claim 3, wherein said plant cell is a dicotyledonous or a monocotyledonous plant cell.
  7. 7. The recombinant nucleic acid of claim 6, wherein said plant host cell is selected from the group consisting of an alfalfa, banana, barley, bean, broccoli, cabbage, brassica, carrot, cassava, castor, cauliflower, celery, chickpea, Chinese cabbage, citrus, coconut, coffee, com, clover, cotton, a cucurbit, cucumber, Douglas fir, eggplant, eucalyptus, flax, garlic, grape, hops, leek, lettuce, Loblolly pine, millets, melons, nut, oat, olive, onion, omamental, palm, pasture grass, pea, peanut, pepper, pigeonpea, pine, potato, poplar, pumpkin, Radiata pine, radish, rapeseed, rice, rootstocks, rye, safflower, shrub, sorghum, Southern pine, soybean, spinach, squash, strawberry, sugar beet, sugarcane, sunflower, sweet com, sweet gum, sweet potato, switchgrass, tea, tobacco, tomato, triticale, turf grass, watermelon, and wheat plant cell.
  8. 8. The recombinant nucleic acid molécule of claim 1, wherein said protein exhibits activity against a Lepidopteran insect.
  9. 9. The recombinant nucleic acid molécule of claim 8, wherein said insect is selected from the group consisting of: Beet armyworm (Spodoptera exigua), Com earworm (Helicoverpa zea), Cotton leaf worm (Alabama argillaced), European com borer (Ostrinia nubilalis), Fall armyworm (Spodoptera frugiperdd), Old World bollworm (Helicoverpa armigera), Oriental leaf worm (Spodoptera litura), Pink bollworm (Pectinophora gossypiella), CrylAc résistant Pink bollworm (Pectinophora gossypiella), Soybean looper (Chrysodeixis includens), Southern armyworm (Spodoptera eridania), Southwestem corn borer (Diatraea grandiosella), Spotted bollworm (Earias vittella), Sugarcane borer (Diatraea saccharalis), Tobacco budworm (Heliothis virescens), and Velvet bean Caterpillar (Anticarsia gemmatalis).
  10. 10. A plant or part thereof comprising the recombinant nucleic acid molécule of claim 1.
  11. 11. The plant or part thereof of claim 10, wherein said plant is a monocot plant or a dicot plant.
  12. 12. The plant of claim 10, wherein the plant is selected from the group consisting of an alfalfa, banana, barley, bean, broccoli, cabbage, brassica, carrot, cassava, castor, cauliflower, celery, chickpea, Chinese cabbage, citrus, coconut, coffee, corn, clover, cotton, a cucurbit, cucumber, Douglas fir, eggplant, eucalyptus, flax, garlic, grape, hops, leek, lettuce, Loblolly pine, millets, melons, nut, oat, olive, onion, omamental, palm, pasture grass, pea, peanut, pepper, pigeon pea, pine, potato, poplar, pumpkin, Radiata pine, radish, rapeseed, rice, rootstocks, rye, safflower, shrub, sorghum, Southern pine, soybean, spinach, squash, strawberry, sugar beet, sugarcane, sunflower, sweet corn, sweet gum, sweet potato, switchgrass, tea, tobacco, tomato, triticale, turf grass, watermelon, and wheat.
  13. 13. A seed of the plant of claim 10, wherein said seed comprises said recombinant nucleic acid molécule.
  14. 14. An insect inhibitory composition comprising the recombinant nucleic acid molécule of claim 1.
  15. 15. The insect inhibitory composition of claim 14, further comprising a nucléotide sequence encoding at least one other pesticidal agent that is different from said pesticidal protein.
  16. 16. The insect inhibitory composition of claim 15, wherein said at least one other pesticidal agent is selected from the group consisting of an insect inhibitory protein, an insect inhibitory dsRNA molécule, and an ancillary protein.
  17. 17. The insect inhibitory composition of claim 16, wherein said at least one other pesticidal agent exhibits activity against one or more pest species of the orders Lepidoptera, Coleoptera, or Hemiptera.
  18. 18. The insect inhibitory composition of claim 17, wherein said at least one other pesticidal protein is selected from the group consisting of a CrylA, CrylAb, CrylAc, CrylA.105, CrylAe, CrylB, CrylC, CrylC variants, CrylD, CrylE, CrylF, CrylA/F chimeras, CrylG, CrylH, Cryll, CrylJ, CrylK, CrylL, Cry2A, Cry2Ab, Cry2Ae, Cry3, Cry3A variants, Cry3B, Cry4B, Cry6, Cry7, Cry8, Cry9, Cryl5, Cry34, Cry35,
    Cry43A, Cry43B, Cry51Aal, ET29, ET33, ET34, ET35, ET66, ET70, TIC400, TIC407, TIC417, TIC431, TIC800, TIC807, TIC834, TIC853, TIC900, TIC901, TIC1201, TIC1415, TIC2160, TIC3131, TIC836, TIC860, TIC867, TIC869, TICl 100, VIP3A, VIP3B, VIP3Ab, AXMI-AXMI-, AXMI-88, AXMI-97, AXMI-102, AXMI112, AXMI-117, AXMI-100, AXM1-115, AXMI-113, and AXMI-005, AXMI134, AXMI-150, AXMI-171, AXMI-184, AXMI-196, AXMI-204, AXMI-207, AXMI-209, AXMI-205, AXMI-218, AXMI-220, AXMI-221z, AXMI-222z, AXMI-223z, AXMI224z and AXMI-225z, AXMI-238, AXMI-270, AXMI-279, AXMI-345, AXMI335,AXMI-R1 and variants thereof, IP3 and variants thereof, DIG-3, DIG-5, D1G-10, DIG-657 and a DIG-11 protein.
  19. 19. The insect inhibitory composition of claim 14, defined as comprising a plant cell that expresses said recombinant nucleic acid molécule.
  20. 20. A commodity product produced from the plant or part thereof of claim 10, wherein the commodity product comprises a détectable amount of said recombinant nucleic acid molécule or a pesticidal protein.
  21. 21. The commodity product of claim 20, selected from the group consisting of commodity corn bagged by a grain handler, corn flakes, corn cakes, corn flour, corn meal, corn syrup, corn oil, corn silage, corn starch, corn cereal, and the like, and corresponding soybean, rice, wheat, sorghum, pigeon pea, peanut, fruit, melon, and vegetable commodity products including, where applicable, juices, concentrâtes, jams, jellies, marmalades, and other edible forms of such commodity products containing a détectable amount of such polynucleotides and or polypeptides of this application, whole or processed cotton seed, cotton oil, lint, seeds and plant parts processed for feed or food, fiber, paper, biomasses, and fuel products such as fuel derived from cotton oil or pellets derived from cotton gin waste, whole or processed soybean seed, soybean oil, soybean protein, soybean meal, soybean flour, soybean flakes, soybean bran, soybean milk, soybean cheese, soybean wine, animal feed comprising soybean, paper comprising soybean, cream comprising soybean, soybean biomass, and fuel products produced using soybean plants and soybean plant parts.
  22. 22. A method of producing seed comprising:
    a. planting a first seed according to claim 13;
    b. growing a plant from the seed; and
    c. harvesting seed from the plants, wherein said harvested seed comprises said recombinant nucleic acid molécule.
  23. 23. A plant résistant to insect infestation, wherein the cells of said plant comprise the recombinant nucleic acid molécule of claim l.
  24. 24. A method for controlling a Lepidopteran species pest or pest infestation, said method comprising:
    a. contacting the pest with an insecticidally effective amount of a pesticidal protein as set forth in SEQ ID NO:4, SEQ ID NO:2, SEQ ID NO:6, SEQ ID NO:8, or SEQ ID NO: 10; or
    b. contacting the pest with an insecticidally effective amount of one or more pesticidal proteins comprising an amino acid sequence having:
    i. at least 93%, or 95%, or 98%, or 99%, or about 100% amino acid sequence identity to SEQ ID NO:4, SEQ ID NO:2, or SEQ ID NO:6; or ii. at least 73%, or 75%, or 80%, or 85%, or 90%, or 95%, or about 100% amino acid sequence identity to SEQ ID NO:8 or SEQ ID NO: 10.
  25. 25. A method of detecting the presence of the recombinant nucleic acid molécule of claim 1 in a sample comprising plant genomic DNA, comprising:
    a. contacting the sample with a nucleic acid probe that hybridizes under stringent hybridization conditions with genomic DNA from a plant comprising the DNA molécule of claim 1, and does not hybridize under such hybridization conditions with genomic DNA from an otherwise isogenic plant that does not comprise the recombinant nucleic acid molécule of claim 1, wherein the probe is homologous or complementary to SEQ ID NO:3 or SEQ ID NO:9, or a sequence that encodes a pesticidal protein comprising an amino acid sequence having:
    i. at least 93%, or 95%, or 98%, or 99%, or about 100% amino acid sequence identity to SEQ ID NO:4, SEQ ID NO:2, or SEQ ID NO:6;
    or ii. at least 73%, or 75%, or 80%, or 85%, or 90%, or 95%, or about 100% amino acid sequence identity to SEQ ID NO:8 or SEQ ID NO: 10;
    b. subjecting the sample and probe to stringent hybridization conditions; and c. detecting hybridization of the probe with DNA of the sample.
  26. 26. A method of detecting the presence of a pesticidal protein or fragment thereof in a sample comprising protein, wherein said pesticidal protein comprises the amino acid sequence of SEQ ID NO:4, SEQ ID NO:2, SEQ ID NO:6, SEQ ID NO:8, or SEQ ID NO: 10; or said pesticidal protein comprises an amino acid sequence having:
    a. at least 93%, or 95%, or 98%, or 99% or about 100% amino acid sequence identity to SEQ ID NO:4, SEQ ID NO:2, or SEQ ID NO:6; or
    b. at least 73%, or 75%, or 80%, or 85%, or 90%, or 95%, or about 100% amino acid sequence identity to SEQ ID NO:8 or SEQ ID NO: 10; comprising:
    c. contacting the sample with an immunoreactive antibody; and
    d. detecting the presence of the protein.
  27. 27. The method of claim 26, wherein the step of detecting comprises an ELISA, or a Western blot.
OA1201900135 2016-10-10 2017-10-09 Novel insect inhibitory proteins. OA19473A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US62/406,082 2016-10-10

Publications (1)

Publication Number Publication Date
OA19473A true OA19473A (en) 2020-10-23

Family

ID=

Similar Documents

Publication Publication Date Title
US11807864B2 (en) Insect inhibitory proteins
US11312752B2 (en) Insect inhibitory proteins
US11225672B2 (en) Insect inhibitory proteins
US11673922B2 (en) Insect inhibitory proteins
CA3206363A1 (en) Novel insect inhibitory proteins
WO2017019787A1 (en) Novel insect inhibitory proteins
US10036037B2 (en) Insect inhibitory proteins
CA3206159A1 (en) Novel insect inhibitory proteins
OA19473A (en) Novel insect inhibitory proteins.
OA21316A (en) Novel insect inhibitory proteins.
OA18594A (en) Novel insect inhibitory proteins