OA19422A - Dihydropyrimidine compound and preparation method and use thereof. - Google Patents

Dihydropyrimidine compound and preparation method and use thereof. Download PDF

Info

Publication number
OA19422A
OA19422A OA1201900166 OA19422A OA 19422 A OA19422 A OA 19422A OA 1201900166 OA1201900166 OA 1201900166 OA 19422 A OA19422 A OA 19422A
Authority
OA
OAPI
Prior art keywords
group
compound
alkyl
independently selected
cycloalkyl
Prior art date
Application number
OA1201900166
Inventor
Shuai SONG
Jiaqiang Cai
Qiang Tian
Hong Zeng
Hongmei SONG
Hanwen DENG
Zujian TANG
Xiaofan DUAN
Rongrong LONG
Yao Liu
Lichun WANG
Jingyi Wang
Original Assignee
Sichuan Kelun-Biotech Biopharmaceutical Co., Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sichuan Kelun-Biotech Biopharmaceutical Co., Ltd filed Critical Sichuan Kelun-Biotech Biopharmaceutical Co., Ltd
Publication of OA19422A publication Critical patent/OA19422A/en

Links

Abstract

The present invention relates to a dihydropyrimidine compound having an antiviral activity, a pharmaceutical composition comprising same, a preparation method therefor and the uses thereof in the prevention or treatment of viral diseases including, but not limited to, Hepatitis A, Hepatitis B, Hepatitis C, influenza, herpes and acquired immunodeficiency syndrome (AIDS).

Description

The term “aralkyl” preferably means aryl substituted alkyl, wherein aryl and alkyl are as defined herein. Normally, the aryl group may hâve 6-14 carbon atoms, and the alkyl group may hâve 1-6 carbon atoms. Exemplary aralkyl group includes, but is not limited to, benzyl, phenylethyl, phenylpropyl, phenylbutyl.
As used herein, the term “heteroaryl” refers to a monovalent monocyclic, bicyclic or tricyclic aromatic ring System having 5, 6, 7, 8, 9, 10, 11, 12, 13 or 14 ring atoms, particularly 1 or 2 or 3 or 4 or 5 or 6 or 9 or 10 carbon atoms, and containing at least one heteroatom (such as O, N, or S), which can be same to different. Moreover, in certain instances, it can be benzo-fused. In particular, heteroaryl is selected from the group consisting of thienyl, furyl, pyrrolyl, oxazolyl, thiazolyl, imidazolyl, pyrazolyl, isoxazolyl, isothiazolyl, oxadiazolyl, triazolyl, thiadiazolyl etc., and benzo dérivatives thereof; or pyridinyl, pyridazinyl, pyrimidinyl, pyrazinyl, triazinyl, etc., and benzo dérivatives thereof.
As used herein, the term “halo” or “halogen” are defined to include F, Cl, Br, or I.
As used herein, the term “alkylthio” means an alkyl group as defined above linked to the core molecular moiety via a sulfur atom. Typical examples of alkylthio include, but are not limited to, methylthio, ethylthio, ieri-butylthio, and hexylthio.
As used herein, the term “nitrogen containing heterocyclic System” refers to a saturated or unsaturated monocyclic or bicyclic group having 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 or 13 carbon atoms and at least one nitrogen atom in the ring, which may further optionally comprise one or more (e.g., one, two, three or four) ring members selected from the group consisting of N, O, C=O, S, S=O and S(=O)2. The nitrogen containing heterocyclic System is attached to the rest of the molécule through the nitrogen atom. Particularly, 3- to 14-membered nitrogen containing heterocyclic System is a group having 3-14 carbon atoms and heteroatoms (wherein at least one is nitrogen) in the ring, including, but not limited to, 3-membered nitrogen containing heterocyclic System (such as aziridinyl), 4-membered nitrogen containing heterocyclic System (such as azetidinyl), 5-membered nitrogen containing heterocyclic System (such as pyrrolyl, pyrrolidinyl, pyrrolinyl, pyrrolidone, imidazolyl, imidazolidinyl, imidazolinyl, pyrazolyl, pyrazolinyl), 6-membered nitrogen containing heterocyclic System (such as piperidinyl, morpholinyl, thiomorpholinyl, piperazinyl), 7-membered nitrogen containing heterocyclic System and the like.
The term “substituted” means that one or more (e.g., one, two, three, or four) hydrogens on the designated atom is replaced with a selected group, provided that the designated atom’s normal valency under the existing circumstances is not exceeded, and that the substitution results in a stable compound. The number of the selected substituents is permissible only if such combinations resuit in stable compounds.
If a substituent is described as being “optionally substituted”, the substituent may be either (1) not substituted, or (2) substituted. If a carbon of a substituent is described as being optionally substituted with one or more of a list of substituents, one or more of the hydrogens on the carbon may separately and/or together be replaced with an independently selected optional substituent. If a nitrogen of a substituent is described as being optionally substituted with one or more of a list of substituents, one or more of the hydrogens on the nitrogen may each be replaced with an independently selected optional substituent.
If substituents are described as being “independently selected”, each substituent may be identical to or different from the other substituent(s).
As used herein, the term “one or more” means one or more than one (e.g., 2, 3, 4, 5 or 10) as reasonable.
As used herein, unless specified, the point of attachment of a substituent can be from any suitable position of the substituent.
When a bond to a substituent is shown to cross a ring and the position of the attachment is not specified, then such substituent may be bonded to any of the ring-forming atoms in that ring that are substitutable.
The présent invention also includes ail pharmaceutically acceptable isotopically labeled compounds, which are identical to those of the présent invention except that one or more atoms are replaced by an atom having the same atomic number, but an atomic mass or mass number different from the atomic mass or mass number which prédominâtes in nature. Examples of isotopes suitable for inclusion in the compound of the présent invention include, but are not limited to, isotopes of hydrogen, such as deuterium (D, 2H), tritium (T, 3H); carbon, such as nC, 13C, and 14C; chlorine, such as 36C1; fluorine, such as l8F; iodine, such as 123I and 125I; nitrogen, such as 13N and 15N; oxygen, such as 15O, 17O, and 18O; phosphorus, such as 32P; and sulfur, such as 35S. Certain isotopically labeled compounds of the présent invention are usefül in drug and/or substrate tissue distribution studies (e.g., assays). Pharmaceutically acceptable solvatés in accordance with the invention include those wherein the solvent of crystallization may be isotopically substituted, e.g., D2O, acetone-i4, or DMSO-7.
The term “stereoisomer “refers to isomers with at least one asymmetric center. A compound having one or more (e.g., one, two, three or four) asymmetric centers can give rise to a racemic mixture, single enantiomer, diastereomer mixture and individual diastereomer. Certain individual molécules may exist as géométrie isomers (cis/trans). Similarly, the compound of the présent invention may exist as a mixture of two or more structurally different forms in rapid equilibrium (generally referred to as tautomer). Typical examples of a tautomer include a keto-enol tautomer, phenol-keto tautomer, nitroso-oxime tautomer, imine-enamine tautomer and the like. For example, a dihydropyrimidine group may exist as the following tautomers in equilibrium in a solution:
L J L J
N N . It is to be understood that ail such isomers and mixtures thereof in any proportion (such as 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, and 99%) are encompassed within the scope of the présent invention.
The carbon-carbon bonds of the compound of the présent invention may be depicted herein using a solid line (-------), a solid wedge ( ), a dotted wedge ( ........... ) or a wavy line (^~v ). The use of a solid line to depict bonds to asymmetric carbon atoms is meant to indicate that ail possible stereoisomers (e.g., spécifie enantiomers, racemic mixtures, etc.) at that carbon atom are included. The use of a wavy line to depict bonds to an alkenyl group is meant to indicate that ail possible stereoisomers (e.g., spécifie cis-trans isomer, a mixture of cis and trans isomers in any ration, or racemic mixtures, etc.) at that Chemical bond are included. The use of either a solid or dotted wedge to depict bonds to asymmetric carbon atoms indicates that the stereoisomer shown is présent. When présent in racemic compounds, solid and dotted wedges are used to define relative stereochemistry, rather than absolute stereochemistry. Unless stated otherwise, the compound of the présent invention can exist as stereoisomers, which include cis and trans isomers, optical isomers such as R and S enantiomers, diastereomers, géométrie isomers, rotational isomers, conformational isomers, atropisomers, and mixtures thereof. The compound of the présent invention may exhibit more than one type of isomerism, and consist of mixtures thereof (such as racemates and diastereomeric pairs).
The présent invention includes ail possible crystalline forms or polymorphs of the compound of the présent invention, either as a single polymorph, or as a mixture of more than one polymorphs, in any ratio.
It also should be understood that, the compound of the présent invention can be used for the treatment in a free from, or where appropriate, in a form of a pharmaceutically acceptable dérivative. In the présent invention, the pharmaceutically acceptable dérivative includes, but is not limited to a pharmaceutically acceptable sait, ester, solvaté, métabolite, isotopically labeled compound or prodrug, which can directly or indirectly provide the compound of the présent invention or a métabolite or residue thereof after being administered to a patient in need thereof. Therefore, “the compound of the présent invention” mentioned herein also means to encompass various dérivative forms of the compound as mentioned above.
A pharmaceutically acceptable sait of the compound of the présent invention includes an acid addition sait and a base addition sait thereof.
A suitable acid addition sait is formed from an acid (including suitable inorganic acids and organic acids) which forms a pharmaceutically acceptable sait. Spécifie examples include aspartate, benzoate, bicarbonate/carbonate, bisulfate/sulfate, fnmarate, gluceptate, gluconate, glucuronate, hexafluorophosphate, hydrobromide/bromide, hydroiodide/iodide, maleate, malonate, methylsulfate, naphthylate, nicotinate, nitrate, orotate, oxalate, palmitate and the like.
A suitable base addition sait is formed from a base (including suitable inorganic bases and organic bases) which forms a pharmaceutically acceptable sait. Spécifie examples include aluminum, arginine, choline, diethylamine, lysine, magnésium, meglumine, potassium and the like.
For a review on suitable salts, see “Hand book of Pharmaceutical Salts: Properties, Sélection, and Use” by Stahl and Wermuth (Wiley-VCH, 2002). The method for preparing a pharmaceutically acceptable sait of the compound of the présent invention is known to a person skilled in the art.
As used herein, the term “ester” refers to those derived from the compounds of the various formulae in the présent application, which include physiologically-hydrolyzable esters (which may be hydrolyzed under physiological conditions to release the compounds of the présent invention in the form of free acids or alcohols). The compound of the présent invention itself may be an ester as well.
The compound of the présent invention can exist as a solvaté (e.g., a hydrate), wherein the compound of the présent invention contains a polar solvent, in particular water, methanol or éthanol for example, as a structural element of the crystal lattice of the compound. The amount of the polar solvent, in particular water, may exist in a stoichiometric or non-stoichiometric ratio.
The métabolite of the compound of the présent invention, namely a substance formed in vivo upon administration of the compound of the présent invention, is also included within the scope of the présent invention. Such a product may resuit e.g., from the oxidation, réduction, hydrolysis, amidation, de-amidation, estérification, enzymolysis, and the like, of the administered compound. Accordingly, the présent invention encompasses the métabolite of the compound of the présent invention, including a compound produced by a method comprising contacting the compound of the présent invention with a mammal for a period of time sufficient to resuit in a metabolic product thereof.
Also within the scope of the présent invention is a prodrug of the compound of the invention, which is certain dérivative of the compound of the invention that may hâve or not hâve pharmacological activity itself, but can, when administered into or onto the body, be converted into the compound of the invention having the desired activity, for example, by hydrolytic cleavage. In general, such prodrug will be a fiinctional dérivative of the compound which is readily converted in vivo into the compound with desired therapeutic activity. Further information on the use of the prodrug may be found in “Pro-drugs as Novel Delivery Systems, Vol. 14, ACS Symposium Sériés (T. Higuchi and V. Stella) and “Bioreversible Carriers in Drug Design,” Pergamon Press, 1987 (E. B. Roche ed., American Pharmaceutical Association). The prodrug in accordance with the invention can, for example, be produced by replacing appropriate functionalities présent in the compound of the présent invention with certain moieties known to those skilled in the art as “pro-moieties” as described, for example, in “Design of Prodrugs” by H. Bundgaard (Elsevier, 1985).
The présent invention further encompasses the compound of the présent invention having a protecting group. During any of the processes for préparation of the compound of the présent invention, it may be necessary and/or désirable to protect sensitive or reactive groups on any of the molécules concemed, thereby resulting in the chemically protected form of the compound of the présent invention. This may be achieved by means of conventional protecting groups, e.g., those described in Protective Groups in Organic Chemistry, ed. J.F.W. McOmie, Plénum Press, 1973 and T.W. Greene & P.G.M. Wuts, Protective Groups in Organic Synthesis, John Wiley & Sons, 1991, which is incorporated herein by reference. The protecting groups may be removed at a convenient subséquent stage using methods known from the art.
As used herein, the term “about” refers to a range within ±10%, preferably within ±5%, and more preferably within ±2% of the specified value.
DETAILED DESCRIPTION OF THE INVENTION
Compound and préparation method therefor
In embodiments, the présent invention provides a compound or a pharmaceutically acceptable sait, ester, stereoisomer, tautomer, polymorph, solvaté, métabolite, isotopically labeled compound, or prodrug thereof, wherein the compound has the structure of Formula I or Formula la:
wherein:
Ar1 and Ar2 are each independently selected from the group consisting of C6.i4 aryl and 5- to 14-membered heteroaryl, which are optionally substituted with one or more substituents selected from the group consisting of halogen, -OH, -CN, -NO2, -N(R)2, Ci.6 alkyl, C]_6 haloalkyl, C]_6 alkylthio and C3_6 cycloalkyl;
L is absent or is selected from the group consisting of -O-, -S- and -NR-;
R1 and R2 are each independently selected from the group consisting of H (including !H, 2H, 3H), Ci-6 alkyl (e.g., Ci.6 deuteroalkyl) and C3.6 cycloalkyl;
R3 is a 4-, 5-, 6-, or 7-membered nitrogen containing heterocyclic System having the following structure:
Q is selected from the group consisting of -(CRaRa )g-, -NRa-, -O-, -S-, -S(=O)- and -S(=O)2-;
Ra, Ra, R4, R4, R5, R5 and R6, at each occurrence, are each independently selected from the group consisting of H, halogen, -OH, -COOH, -CN, -NO2, -N(R)2, C].6 alkyl, Ομ6 haloalkyl, -W-Ci.6 alkyl, -Ci_6 alkylene-W-R, -W-Ci_6 alkylene-W’-R, -W-C2.6 alkenyl, -C2.6 alkenylene-W-R, -W-C2.6 alkenylene-W’-R and C3.6 cycloalkyl, wherein the alkylene and alkenylene are optionally further interrupted by one or more W; altematively, each of Ra together with Ra, R4 together with R5 and/or R4 together with R5, at each occurrence, independently forms a group =CH-W-R; provided that when R3 is not a 4-membered nitrogen containing heterocyclic system, Ra, Ra, R4, R4 , R5, R5 and R6 are not H at the same time, and is not a group selected from the group consisting of -COOH, -Ci.6 alkylene-OH and -Ci„6 alkylene-C(=O)OH; and when R3 is a 4-membered nitrogen containing heterocycle, R4, R5 and R6 are not H at the same time;
R6 is attached to the ring carbon atom(s) marked with * and/or ** in the above structure of the nitrogen containing heterocyclic System;
W and W’, at each occurrence, are each independently selected from the group consisting of O, C(=O), C(=O)O, NR, NC(=O), N(S=O), NS(=O)2, S, S=O and S(=O)2;
R, at each occurrence, is each independently selected from the group consisting of H, Ci_6 alkyl and C3.6 cycloalkyl;
g is 1 or 2; and t is 0, 1, 2 or 3, provided that t is not greater than the number of substitutable positions in a corresponding group, and when t is greater than 1, each R6 can be the same or different.
In preferred embodiments, the présent invention provides a compound or a pharmaceutically acceptable sait, ester, stereoisomer, tautomer, polymorph, solvaté, métabolite, isotopically labeled compound, or prodrug thereof, wherein the compound has the structure of Formula II or Formula Ha:
or
lia
In preferred embodiments, the présent invention provides a compound or a pharmaceutically acceptable sait, ester, stereoisomer, tautomer, polymorph, solvaté, métabolite, isotopically labeled compound, or prodrug thereof, wherein Ar1 is selected from the group consisting of:
wherein Rc, at each occurrence, is each independently selected from the group consisting of F, Cl, Br, I, Ci-6 haloalkyl, Ci.6 alkyl and C3.6 cycloalkyl;
Preferably, Rc, at each occurrence, is each independently selected from the group consisting of F, Cl, Br, I, Ci.6 alkyl and C3.6 cycloalkyl;
Ar1 is more preferably selected from the group consisting of
In preferred embodiments, the présent invention provides a compound or a pharmaceutically acceptable sait, ester, stereoisomer, tautomer, polymorph, solvaté, métabolite, isotopically labeled compound, or prodrug thereof, wherein Ar2 is selected from the group consisting of:
Rb, at each occurrence, is each independently selected from the group consisting of H, halogen, Ci.6 haloalkyl, C].6 alkyl and C3_6 cycloalkyl; preferably, Rb, at each occurrence, is each independently selected from the group consisting of H, halogen, Ci.6 alkyl and C3.6 cycloalkyl; and i is 0, 1 or 2;
Ar2 is preferably selected from the group consisting of
In preferred embodiments, L is -O-.
In preferred embodiments, R1 and R2 are each independently selected from the group consisting of H (including ’H, 2H, 3H), methyl, ethyl, n-propyl and isopropyl.
In preferred embodiments, R3 is a 4-, 5-, 6-, or 7-membered nitrogen containing heterocyclic System having the following structure:
R6 is attached to the ring carbon atom(s) marked with * and/or ** in the above structure of the nitrogen containing heterocyclic System.
In preferred embodiments, Ra, Ra, R4, R4, R5, R5’ and R6, at each occurrence, are each independently selected from the group consisting of H, F, Cl, Br, -(CR7R7a)mOH, -O-C/^ alkyl, -(CR7R7a)mCOOH, -C(R7 )=C(R7a )(CR7R7a)mCOOH and -(CR7R7a)m-W-(CR7R7a’)nCOOH, the -(CR7R7a)m-W-(CR7 R7a )nCOOH is preferably -(CR7R7a)mO(CR7R7a’)nCOOH, -(CR7R7a)mNR(CR7 R7a )nCOOH or -(CR7R7a)mS(=O)j(CR7 R7a )nCOOH; altematively, each of Ra together with Ra, R4 together with R5 and/or R4 together with R5, at each occurrence, independently forms a group =CH-W-R;
R7, R7, R7a, R7a, at each occurrence, are each independently selected from the group consisting of H, C|_4 alkyl and C3_6 cycloalkyl;
R is selected from the group consisting of H, methyl, ethyl, propyl and cyclopropyl;
m is 0, 1, 2, 3 or 4;
n is 1, 2, 3 or 4; and j is 0, 1 or 2.
In more preferred embodiments, Ra, Ra, R4, R4, R5, R5’ and R6, at each occurrence, are each independently selected from the group consisting of H, F, -OH, -CH2OH, -OCH3, -COOH, -CH2COOH, -(CH2)2COOH, -(CH2)3COOH, -ch=chcooh, -och2cooh, -sch2cooh, -N(CH3)CH2COOH, -CH2OCH2COOH, -CH2SCH2COOH, -CH2N(CH3)CH2COOH, -C(CH3)=CHCOOH and -CH=C(CH3)COOH.
In particularly preferred embodiments, Ra, Ra, R4, R4, R5, R5 and R6, at each occurrence, are each independently selected from the group consisting of H, F, -OH, -CH2OH, -OCH3, -COOH,
-CH2COOH, -(CH2)2COOH, -(CH2)3COOH, -ch=chcooh, -och2cooh, -sch2cooh, -N(CH3)CH2COOH, -CH2OCH2COOH, -CH2SCH2COOH and -CH2N(CH3)CH2COOH.
In preferred embodiments, R3 is selected from the group consisting of:
In more preferred embodiments, R3 is selected from the group consisting of:
In certain embodiments, the présent invention provides a compound or a pharmaceutically acceptable sait, ester, stereoisomer, tautomer, polymorph, solvaté, métabolite, isotopically labeled compound, or prodrug thereof, wherein the compound has the following structure:
In certain embodiments, the présent invention provides a compound or a pharmaceutically acceptable sait, ester, stereoisomer, tautomer, polymorph, solvaté, métabolite, isotopically labeled compound, or prodrug thereof, wherein the compound has the following structure:
In certain embodiments, the présent invention provides a compound or a pharmaceutically acceptable sait, ester, stereoisomer, tautomer, polymorph, solvaté, métabolite, isotopically labeled compound, or prodrug thereof, wherein the compound has the following structure:
wherein:
R1 and R2 are each independently selected from the group consisting of H (including 'H, 2H, 3H), Cm alkyl (e.g., C].6 deuteroalkyl) and C3.6 cycloalkyl, and R1 is preferably methyl, ethyl, n-propyl, isopropyl or cyclopropyl;
Q is -(CRaRa)g- or -O-;
Ra, Ra, R4, R5 and R6, at each occurrence, are each independently selected from the group consisting of H, halogen (e.g., F), -OH, -COOH, -CN, -NO2, -N(R)2, Ci.6 alkyl, haloalkyl, -W^ alkyl, -Ci.6 alkylene-W-R, -W-Ci.6 alkylene-W’-R, -W-C2.6 alkenyl, -C2.6 alkenylene-W-R, -W-C2.6 alkenylene-W’-R and C3.6 cycloalkyl, wherein the alkylene and alkenylene are optionally further interrupted by one or more W;
Rb, at each occurrence, is each independently selected from the group consisting of H, halogen, C]_6 haloalkyl, C,_6 alkyl and C3_6 cycloalkyl;
Rc, at each occurrence, is each independently selected from the group consisting of F, Cl, Br, I, Ci-6 haloalkyl, Cw alkyl and C3.6 cycloalkyl, and Rc is preferably Cl or Br;
R6 is attached to the ring carbon atom(s) marked with * and/or ** in the general formula;
W and W’, at each occurrence, are each independently selected from the group consisting of O, C(=O), C(=O)O, NR, NC(=O), N(S=O), NS(=O)2, S, S=O and S(=O)2;
R, at each occurrence, is each independently selected from the group consisting of H, Ci.6 alkyl and C3.6 cycloalkyl;
g is 1 or 2;
i is 0, 1 or 2;
m is 0, 1, 2, 3 or 4; and t is 0, 1 or 2, provided that when t is greater than 1, each R6 can be the same or different.
In certain embodiments, Rb, at each occurrence, is each independently selected from the group consisting of H, halogen, Cj.6 alkyl and C3.6 cycloalkyl;
In certain embodiments, Rc, at each occurrence, is each independently selected from the group consisting of F, Cl, Br, I, Ci.6 alkyl and C3.6 cycloalkyl, and Rc is preferably Cl or Br;
In certain embodiments, the présent invention provides a compound or a pharmaceutically acceptable sait, ester, stereoisomer, tautomer, polymorph, solvaté, métabolite, isotopically labeled compound, or prodrug thereof, wherein the compound has the following structure:
The compound obtained by any combination of the various embodiments is encompassed by the invention.
In preferred embodiments, the présent invention provides a compound or a pharmaceutically acceptable sait, ester, stereoisomer, tautomer, polymorph, solvaté, métabolite, isotopically labeled compound, or prodrug thereof, wherein the compound is selected from the group consisting of:
10-159 10-160 10-161
Embodiments of the présent invention provide a method for the préparation of the compound of 5 the présent invention, the method comprises the following steps:
wherein:
Hal is selected from the group consisting of F, Cl, Br and I;
the halogenating reagent is selected from the group consisting of Cl2, Br2, I2 N-chlorosuccinimide, N-bromosuccinimide and N-iodosuccinimide;
the remaining groups are as defined above;
step 1 is performed in a protic solvent (e.g., 2,2,2-trifluoroethanol, 2,2-difluoroethanol, 15 2-fluoroethanol, éthanol, fluoromethanol, hexafluoroisopropanol, etc.) in the presence of an alkali métal sait (e.g., potassium acetate, sodium acetate, potassium carbonate, sodium carbonate, césium carbonate, sodium bicarbonate, etc.)-, step 2 is performed in an aprotic solvent (e.g., carbon tetrachloride, dichloromethane,
1,2-dichloroethane, etc.)·, and step 3 is performed in an aprotic solvent (e.g., dichloromethane, 1,2-dichloroethane, acetonitrile, tetrahydrofuran, 2-methyl tetrahydrofuran, diethyl ether, ZerZ-butyl methyl ether, N,N-dimethylformamide, Ν,Ν-dimethylacetamide, N-methyl pyrrolidone, etc.) in the presence of an organic base (e.g., Ν,Ν-diisopropylethylamine, triethylamine, l,8-diazabicyclo[5.4.0]-7-undecene, 4-dimethylaminopyridine, N-methylmorpholine, N-methylpiperidine, N-methylpyrrolidine, etc.) or inorganic base (e.g., potassium acetate, sodium acetate, potassium carbonate, sodium carbonate, césium carbonate, sodium bicarbonate, sodium hydride, potassium teri-butoxide, etc.)·, when R2 in the compound of formula I or formula la of the présent invention is C]_6 alkyl, the compound can also be synthesized by a method comprising the following steps:
r3-h
Step IV
or
Step II
wherein:
R2 is H or Ci.5 alkyl;
Hal is selected from the group consisting of F, Cl, Br and I;
the halogenating reagent is selected from the group consisting of Cl2, Br2, I2, N-chlorosuccinimide, N-bromosuccinimide and N-iodosuccinimide;
the remaining groups are as defined above;
step I is performed in a nonpolar solvent (e.g., o-xylene, toluene, anisole, etc.) in the presence of a Lewis acid (e.g., triflate sait (such as indium triflate, bismuth triflate, etc.), trifluoromethanesulfonate (such as trimethylsilyl trifluoromethanesulfonate), boron trifluoride, aluminium chloride, etc.)·, step II is performed in an aprotic solvent (e.g., dichloromethane, 1,2-dichloroethane, acetonitrile, tetrahydrofuran, 2-methyl tetrahydrofuran, diethyl ether, terLbutyl methyl ether, N,N-dimethylformamide, Ν,Ν-dimethylacetamide, N-methyl pyrrolidone, etc.) in the presence of an organic base (e.g., Ν,Ν-diisopropylethylamine, triethylamine, l,8-diazabicyclo[5.4.0]-7-undecene, 4-dimethylaminopyridine, N-methylmorpholine, N-methylpiperidine, N-methylpyrrolidine, etc.) or inorganic base (e.g., potassium acetate, sodium acetate, potassium carbonate, sodium carbonate, césium carbonate, sodium bicarbonate, sodium hydride, potassium tert-butoxide, etc.)·, step III is performed in an aprotic solvent (e.g., carbon tetrachloride, dichloromethane, 1,2-dichloroethane, etc.)', and step IV is performed in an aprotic solvent (e.g., dichloromethane, 1,2-dichloroethane, acetonitrile, tetrahydrofuran, 2-methyl tetrahydrofuran, diethyl ether, ZerZ-butyl methyl ether, N,N-dimethylformamide, Ν,Ν-dimethylacetamide, N-methyl pyrrolidone, etc.) in the presence of an organic base (e.g., Ν,Ν-diisopropylethylamine, triethylamine, l,8-diazabicyclo[5.4.0]-7-undecene, 4-dimethylaminopyridine, N-methylmorpholine, N-methylpiperidine, N-methylpyrrolidine, etc.) or inorganic base (e.g., potassium acetate, sodium acetate, potassium carbonate, sodium carbonate, césium carbonate, sodium bicarbonate, sodium hydride, potassium Zeri-butoxide, etc.).
In preferred embodiments, when R2 in the compound of formula I or formula la of the présent invention is methyl, the compound can also be synthesized by a method comprising the following steps:
Step I
Step II
Halogenating Reagent
Step III
R3-H
Step IV
or o o
Step I
NH,
NH
Step II
Halogenating Reagent
Step III
Wherein each group is as defined above, and Step I-IV are conducted as described above.
Pharmaceutical composition and therapeutic method
The présent invention provides a pharmaceutical composition comprising a prophylactically or therapeutically effective amount of the compound of the présent invention or a pharmaceutically acceptable sait, ester, stereoisomer, tautomer, polymorph, solvaté, métabolite, isotopically labeled compound, or prodrug thereof and one or more pharmaceutically acceptable carriers or excipients. In further embodiments, the pharmaceutical composition can further comprise one or more additional therapeutic agents, such as additional therapeutic agents for preventing or treating viral diseases.
The présent invention further provides a method for preparing a pharmaceutical composition comprising combining the compound of the présent invention or a pharmaceutically acceptable sait, ester, stereoisomer, tautomer, polymorph, solvaté, métabolite, isotopically labeled compound, or prodrug thereof and one or more pharmaceutically acceptable carriers or excipients.
The présent invention provides the compound of the présent invention or a pharmaceutically acceptable sait, ester, stereoisomer, tautomer, polymorph, solvaté, métabolite, isotopically labeled compound, or prodrug thereof or the pharmaceutical composition of the présent invention in the manufacture of a médicament for preventing or treating a viral disease.
The présent invention provides the compound of the présent invention or a pharmaceutically acceptable sait, ester, stereoisomer, tautomer, polymorph, solvaté, métabolite, isotopically labeled compound, or prodrug thereof or the pharmaceutical composition of the présent invention for use in the prévention or treatment of a viral disease.
In other embodiments, the présent invention provides a method for the prévention or treatment of a viral disease, comprising administering to a subject in need thereof an effective amount of the compound of the présent invention or a pharmaceutically acceptable sait, ester, stereoisomer, tautomer, polymorph, solvaté, métabolite, isotopically labeled compound, or prodrug thereof or the pharmaceutical composition of the présent invention.
The compound of the présent invention achieves its antiviral effects through inhibiting capsid protein assembly. As such, the compound of the présent invention can be used for the treatment of any viral diseases involving capsid protein assembly when the virus infects a host, including, but not limited to hepatitis type A virus (HAV), hepatitis type B virus (HBV), hepatitis type C virus (HCV), influenza virus, herpes virus (HSV) and human immunodeficiency virus (HIV).
Thus, the viral diseases which can be prevented and treated by a compound of the présent invention include, but are not limited to viral hepatitis type A, viral hepatitis type B, viral hepatitis type C, influenza, herpes and acquired immunodeficiency syndrome (AIDS), as well as associated symptoms or diseases resulted from the above diseases (e.g., inflammation, hepatic fibrosis, cirrhosis of liver and liver cancer, etc.).
The term “pharmaceutically acceptable carrier” in the présent invention refers to a diluent, auxiliary material, excipient, or vehicle with which a therapeutic is administered, and it is, within the scope of sound medical judgment, suitable for contact with the tissues of human beings and animais without excessive toxicity, irritation, allergie response, or other problem or complication, commensurate with a reasonable benefit/risk ratio.
The pharmaceutically acceptable carrier which can be employed in the pharmaceutical composition of the présent invention includes, but is not limited to stérile liquids, such as water and oils, including those of petroleum, animal, vegetable or synthetic origin, such as peanut oil, soybean oil, minerai oil, sesame oil and the like. Water is an exemplary carrier when the pharmaceutical composition is administered intravenously. Physiological salines as well as aqueous dextrose and glycerol solutions can also be employed as liquid carriers, particularly for injectable solutions. Suitable pharmaceutical excipients include starch, glucose, lactose, sucrose, gelatin, maltose, chalk, silica gel, sodium stéarate, glycerol monostearate, talc, sodium chloride, dried skim milk, glycerol, propylene glycol, water, éthanol and the like. The pharmaceutical composition, if desired, can also contain minor amounts of wetting or emulsifying agents, or pH buffering agents. Oral formulations can include standard carriers such as pharmaceutical grades of mannitol, lactose, starch, magnésium stéarate, sodium saccharine, cellulose, magnésium carbonate, etc. Examples of suitable pharmaceutical 28 carriers are described in e.g. Remington’s Pharmaceutical Sciences (1990).
The pharmaceutical composition of the présent invention can act systemically and/or topically. To this end, it can be administered through a suitable route, such as through injection, (intravenous, intraarterial, subcutaneous, intraperitoneal, intramuscular injection, including dripping), or transdermal administration, or administered via oral, buccal, nasal, transmucosal, topical, as an ophthalmic formulation, or via inhalation. For these routes of administration, the administration can be performed with a suitable dosage form.
Such dosage forms include, but are not limited to tablets, capsules, lozenges, hard candies, powders, sprays, creams, salves, suppositories, gels, pastes, lotions, ointments, aqueous suspensions, injectable solutions, élixirs, and syrups.
As used herein, the term “effective amount” refers to the amount of a compound being administered which will relieve to some extent one or more of the symptoms of the disorder being treated.
Dosage regimens may be adjusted to provide the optimum desired response. For example, a single administration can be performed, several divided doses may be administered over time, or the dose may be proportionally reduced or increased in accordance with the therapeutic situation. It is to be noted that dosage values may vary with the type and severity of the condition, and may include single or multiple doses. It is to be further understood that for any particular subject, spécifie dosage regimens should be adjusted over time according to the individual need.
The amount of the compound of the présent invention administered will be dépendent on the subject being treated, the severity of the disorder or condition, the frequency of administration, the disposition of the compound and the discrétion of the prescribing physician. Generally, an effective dosage is in the range of about 0.0001 to about 50 mg per kg body weight per day, for example about 0.01 to about 10 mg/kg/day, in single or divided doses. For a 70 kg human, this would amount to about 0.007 mg to about 3500 mg/day, for example about 0.7 mg to about 700 mg/day. In some instances, dosage levels below the lower limit of the aforesaid range may be more than adéquate, while in other cases, still larger doses may be employed without causing any harmful side effect, provided that such larger doses are first divided into several small doses for administration throughout the day.
The amount or dosage of the compound of the présent invention in the pharmaceutical composition is about 0.01 mg to about 1000 mg, suitably 0.1-500 mg, preferably 0.5-300 mg, more preferably 1-150 mg, particularly preferably 1-50 mg, e.g., 1.5 mg, 2 mg, 4 mg, 10 mg, 25 mg, etc.
Unless otherwise indicated, the term “treating” or “treatment”, as used herein, means reversing, alleviating, inhibiting the progress of, or preventing the disorder or condition to which such term applies, or one or more symptoms of such disorder or condition.
As used herein, the term “subject” includes a human or non-human animal. An exemplary human subject includes a human subject having a disease (such as one described herein) (referred to as a patient), or a normal subject. The term “non-human animal” as used herein includes ail vertebrates, such as non-mammals (e.g. birds, amphibians, reptiles) and mammals, such as non-human primates, livestock and/or domesticated animais (such as sheep, dog, cat, cow, pig and the like).
In other embodiments, the pharmaceutical composition of the présent invention can further comprise one or more additional therapeutic agents or prophylactic agents, which are drugs for treating viral hepatitis type B, including, but not limited to, lamivudine, telbivudine, entecavir, adefovir dipivoxil, tenofovir, tenofovir disoproxil fumarate and tenofovir alafenamide fumarate.
Examples
The présent invention is further described with reference to the following examples, which are not provided to limit the scope of the présent invention in any fashion. Any suitable combination of the conditions is possible.
Unless otherwise noted, commercial anhydrous solvents and HPLC grade solvents were employed without further purification.
'H NMR spectra were recorded at room température on a Bruker instrument (400 MHz) with TMS as an internai standard. Chemical shifts (δ) are given in ppm and coupling constants {J) are reported in hertz (Hz). The splitting multiplicity of !H NMR spectra are reported using the following abbreviations: s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), br (broad).
LC-MS was conducted on Aglient 1200 liquid chromatograph coupled to Aglient 6120 Quadrupole mass spectrometer, with détection at 214 nm and 254 nm. Préparative liquid chromatography was conducted on SHIMADZU CBM-20A and Aglient 1260 préparative liquid chromatograph, C18 OBD 19x150 mm 5 μΜ préparative column, détection at 214 nm, wherein mobile phase A was water, mobile phase B was acetonitrile (added with 0.5%o formic acid), and elution was performed with a linear gradient as follows:
Time (min) A% B%
0 90 10
15 40 60
30 10 90
The abbreviations as used in the présent invention hâve the following meanings:
Abbreviation Meaning Abbreviation Meaning
DAST diethylaminosulfur trifluoride HOAc acetic acid
DEA diethylamine IPA isopropanol
EA ethyl acetate MeOH methanol
EtOH éthanol PE Petroleum ether
HEX hexane TLC thin layer chromatography
Example 1 Synthesis of ethyl
4-(2-chloro-4-fluorophenyl)-6-((3,3-difluoro-4-hydroxypiperidin-l-yl)methyl)-2-(thiazol-2-yl)-l,4
-dihydropyrimidine-5-carboxylate (10-88)
4-(2-chloro-4-fluorophenyl)-6-methyl-2-(thiazoI-2-yl)-l,4-dihydropyrimidine-5-carboxylate (1-1)
At room température, ethyl acetoacetate (4.7 g, 36.0 mmol), thiazole-2-carboximidamide hydrochloride (5.4 g, 36.0 mmol), 2-chloro-4-fluorobenzaldehyde (5.8 g, 36.0 mmol) and potassium acetate (6.0 g, 60.0 mmol) were added to 2,2,2-trifluoroethanol (100 mL), heated to reflux, and the reaction was performed for 16 hours. The reaction solution was cooled to room température, the solvent was distilled off under reduced pressure, and the title compound (6.0 g) was obtained after work-up. ESI-MS (m/z): 380.1 [M + H]+.
Step 2: Synthesis of ethyl
6-(bromomethyl)-4-(2-chloro-4-fluorophenyl)-2-(thiazol-2-yl)-l,4-dihydropyrimidine-5-carboxyI ate (1-2)
Compound (1-1) (5.7 g, 15.0 mmol) was dissolved in carbon tetrachloride (60 mL) and warmed to 50°C, N-bromosuccinimide (2.7 g, 15.0 mmol) was added in one portion, and the reaction was performed for 30 min. The reaction solution was cooled to room température, fdtered to remove insolubles, and concentrated to give a crude product, which was purified to obtain the title compound (6.0 g). ESI-MS (m/z): 458.0 [M + H]+.
Step 3: Synthesis of ethyl
4-(2-chloro-4-lluorophenyl)-6-((3,3-difluoro-4-hydroxypiperidin-l-yl)methyl)-2-(thiazol-2-yl)-l,4 -dihydropyrimidine-5-carboxylate (10-88)
At room température, compound (1-2) (68 mg, 0.14 mmol), 3,3-difluoropiperidin-4-ol hydrochloride (34 mg, 0.2 mmol) and N,N-diisopropylethylamine (50 mg, 0.4 mmol) were added to dichloromethane (3 mL), and the reaction was performed at room température overnight. The reaction solution was concentrated to give a crude product, which was purified to obtain the title compound (10-88) (27 mg).
The structure was characterized as follows:
'H NMR (400 MHz, DMSO-<76): δ 9.54 (s, 1H), 7.99 (d, J= 3.14 Hz, 1H), 7.94 (d, J = 3.14 Hz, 1H), 7.44-7.40 (m, 2H), 7.19 (td, J = 8.44, 2.64 Hz, 1H), 6.05 (s, 1H), 5.62 (t, J= 5.40 Hz, 1H), 4.00-3.92 (m, 4H), 3.76 (s, 1H), 3.06-2.67 (m, 4H), 1.86 (d, J = 3.52 Hz, 1H), 1.74 (d, J= 3.08 Hz, 1H), 1.04 (t, Z = 7.12 Hz, 3H). ESI-MS (m/z): 515.2 [M + H]+.
Example 2 Synthesis of ethyl
4-(2-bromo-4-fluorophenyl)-6-((3,3-difluoro-4-hydroxypiperidin-l-yl)methyl)-2-(thiazol-2-yl)-l,4
-dihydropyrimidine-5-carboxylate (10-93)
According to the above reaction scheme, employing procedures similar to those in Example 1 (except 2-chloro-4-fluorobenzaldehyde in Step 1 was replaced with 2-bromo-4-fluorobenzaldehyde), the title compound (27 mg) was prepared.
The structure was characterized as follows:
'H NMR (400 MHz, DMSO-î/6): δ 9.54 (s, 1H), 7.99 (d, J= 3.14 Hz, 1H), 7.94 (d, J= 3.14 Hz, 1H), 7.44-7.40 (m, 2H), 7.19 (td, J = 8.44, 2.64 Hz, 1H), 6.05 (s, 1H), 5.62 (t, J = 5.40 Hz, 1H), 4.00-3.92 (m, 4H), 3.76 (s, 1H), 3.06-2.67 (m, 4H), 1.86 (d, J= 3.52 Hz, 1H), 1.74 (d, J = 3.08 Hz, 1H), 1.04 (t, J= 7.12 Hz, 3H). ESI-MS (m/z): 559.2 [M + H]+.
Example
Synthesis of (5)-ethyl
4-(2-chloro-4-fluorophenyl)-6-((3,3-difluoro-4-hydroxypiperidin-l-yl)methyl)-2-(thiazol-2-yl)-l,4
-dihydropyrimidine-5-carboxylate - isomer A and (5)-ethyl
4-(2-chloro-4-fluorophenyl)-6-((3,3-difluoro-4-hydroxypiperidin-l-yI)methyl)-2-(thiazol-2-yl)-l,4
-dihydropyrimidine-5-carboxylate - isomer B
Step
Step 2
Step 4 isomer A *
isomer B : Séparation of ethyl
4-(2-chloro-4-fluorophenyl)-6-methyl-2-(thiazol-2-yI)-l,4-dihydropyrimidine-5-carboxylate (3-1)
Compound (3-1) (10 g) was séparaied by chiral chromatography, using the foliowing séparation conditions: Séparation column CHIRALPAK IE 0.46 cm LD. x 15 cm L, mobile phase: MeOH/DEA=l00/0.1 (V/V), flow rate: 1.0 ml/min, wavelength: UV 254 nm, température: 35 °C.
The séparation resulted in
6$)-ethyl
4-(2-chloro-4-fhiorophenyl)-6-methyl-2-(thiazol-2-yl)-l,4-dihydropyrimidine-5-carboxylate (3-2) 4.7 g, ee%=99.9%, Rt=2.642 min. ESI-MS (m/z): 380.1 [M + H]+; and (7?)-ethyl
4-(2-chloro-4-fluorophenyl)-6-methyl-2-(thiazol-2-yl)-l,4-dihydropyrimidine-5-carboxylate (3-2’) 4.5 g, ee%=99.9%, Rt=4.783 min. ESI-MS (m/z): 380.1 [M + H]+.
Step 2 to Step 3 (5)-ethyl
4-(2-chloro-4-fhiorophenyl)-6-((3,3-difhioro-4-hydroxypiperidin-l-yl)methyl)-2-(thiazol-2-yl)-l,4-dih ydropyrimidine-5-carboxylate (3-4) was prepared using compound (3-2) as a starting material and employing procedures similar to those in Step 2 and Step 3 of Example 1. ESI-MS (m/z): 515.2 [M + H]+.
Step 4: Séparation of compound (3-4)
Compound (3-4) (340 mg) was separated by chiral chromatography, using the following séparation conditions: Séparation column CHIRALPAK IE 0.46 cm LD. x 15 cm L, mobile phase: HEX:IPA=100/0.1 (V/V), flow rate: 1.0 ml/min, wavelength: UV 254 nm, température: 35 °C. Among them, the product with Rt=5.961 min was isomer A, ee%=99.3%, 122 mg, the structure was characterized as follows:
'H NMR (400 MHz, DMSO-^): δ 9.54 (s, 1H), 7.99 (d, J = 3.14 Hz, 1H), 7.94 (d, J= 3.14 Hz, 1H), 7.44-7.40 (m, 2H), 7.19 (td, J = 8.44, 2.64 Hz, 1H), 6.05 (s, 1H), 5.62 (t, J = 5.40 Hz, 1H), 4.00-3.92 (m, 4H), 3.76 (s, 1H), 3.06-2.67 (m, 4H), 1.86 (d, J= 3.52 Hz, 1H), 1.74 (d, J= 3.08 Hz, 5 1H), 1.04 (t,J= 7.12 Hz, 3H). ESI-MS (m/z): 515.2 [M + H]+; and
Among them, the product with Rt=7.130 min is isomer B, ee%=99.5%, 131 mg, the structure was characterized as follows:
'H NMR (400 MHz, DMSO-t/6): δ 9.54 (s, 1H), 7.99 (d, J = 3.14 Hz, 1H), 7.94 (d, J= 3.14 Hz, 1H), 7.44-7.40 (m, 2H), 7.19 (td, J = 8.44, 2.64 Hz, 1H), 6.05 (s, 1H), 5.62 (t, J = 5.40 Hz, 1H), 10 4.00-3.92 (m, 4H), 3.76 (s, 1H), 3.06-2.67 (m, 4H), 1.86 (d, J= 3.52 Hz, 1H), 1.74 (d, J = 3.08 Hz,
1H), 1.04 (t, J= 7.12 Hz, 3H). ESI-MS (m/z): 515.2 [M + H]+.
Example 4 Synthesis of (Tî)-ethyl
4-(2-chloro-4-fluorophenyl)-6-((3,3-difluoro-4-hydroxypiperidin-l-yI)methyl)-2-(thiazol-2-yl)-l,4 -dihydropyrimidine-5-carboxylate - isomer A and (7?)-ethyl 15 4-(2-chloro-4-fluorophenyl)-6-((3,3-difluoro-4-hydroxypiperidin-l-yl)methyl)-2-(thiazoI-2-yI)-l,4 -dihydropyrimidine-5-carboxylate - isomer B
The target product was prepared using compound (3-2’) as a starting material and employing procedures similar to those in Example 3. Among them, the product with Rt=8.171 min is isomer A, 20 ee%=99.1%, 137 mg, the structure was characterized as follows:
‘H NMR (400 MHz, DMSO-î/6): <5 9.54 (s, 1H), 7.99 (d, J= 3.14 Hz, 1H), 7.94 (d, J= 3.14 Hz, 1H), 7.44-7.40 (m, 2H), 7.19 (td, J = 8.44, 2.64 Hz, 1H), 6.05 (s, 1H), 5.62 (t, J = 5.40 Hz, 1H), 4.00-3.92 (m, 4H), 3.76 (s, 1H), 3.06-2.67 (m, 4H), 1.86 (d, J= 3.52 Hz, 1H), 1.74 (d, J = 3.08 Hz, 1H), 1.04 (t, J= 7.12 Hz, 3H). ESI-MS (m/z): 515.2 [M + H]+; and
Among them, the product with Rt=7.088 min is isomer B, ee%=99.4%, 128 mg, the structure was characterized as follows:
Ή NMR (400 MHz, DMSO-tZ6): δ 9.54 (s, 1H), 7.99 (d, J= 3.14 Hz, 1H), 7.94 (d, J= 3.14 Hz, 1H), 7.44-7.40 (m, 2H), 7.19 (td, J= 8.44, 2.64 Hz, 1H), 6.05 (s, 1H), 5.62 (t, J = 5.40 Hz, 1H), 4.00-3.92 (m, 4H), 3.76 (s, 1H), 3.06-2.67 (m, 4H), 1.86 (d, J = 3.52 Hz, 1H), 1.74 (d, J= 3.08 Hz, 30 1H), 1.04 (t, J= 7.12 Hz, 3H). ESI-MS (m/z): 515.2 [M + H]+.
Example 5 Synthesis of
2-((l-((6-(2-chloro-4-fluorophenyl)-5-(ethoxycarbonyl)-2-(thiazol-2-yl)-3,6-dihydropyrimidin-4-y l)methyl)-3,3-difluoropiperidin-4-yl)oxy)acetic acid (10-95)
Step 1: Synthesis of benzyl 3,3-difluoro-4-hydroxypiperidine-l-carboxylate (5-2)
3,3-difluoropiperidm-4-ol hydrochloride (5-1) (100 mg, 0.73 mmol) was dissolved in dichloromethane (2 mL), triethylamine (147 mg, 1.46 mmol) was added, a solution of 2V-(benzyloxycarbonyloxy)succinimide (12 mg, 0.48 mmol) in dichloromethane (2 mL) was added dropwise under cooling in an ice bath, and the reaction was warmed to room température and allowed to proceed for Ih. The title compound 100 mg was obtained after work up. ESI-MS (m/z): 272.2 [M + H]+.
Step 2: Synthesis of benzyl 4-(2-ethoxy-2-oxoethoxy)-3,3-difluoropiperidine-l-carboxylate (5-3)
Compound (5-2) (100 mg, 0.37 mmol) was dissolved in tetrahydrofuran (2 mL), sodium hydride (18 mg, 0.74 mmol) was added under cooling in an ice bath, and the reaction was warmed to room température and allowed to proceed for 1 hour. Then, the reaction was placed in an ice bath, a solution of ethyl bromoacetate (94 mg, 0.56 mmol) in tetrahydrofuran was added dropwise, and the reaction was warmed to room température and stirred for additional 5 hours after the completion of the dropwise addition. The solvent was distilled off under reduced pressure, to afford the title compound 150 mg. ESI-MS (m/z): 358.2 [M + H]+.
Step 3: Synthesis of 2-((l-((benzyloxy)carbonyl)-3,3-difluoropiperidin-4-yl)oxy)acetic acid (5-4)
At room température, compound (5-3) (132 mg, 0.37 mmol) was dissolved in tetrahydrofuran (1 mL), sodium hydroxide (89 mg, 2.22 mmol in 0.3 mL H2O) was added, and the reaction was performed at room température ovemight. The reaction System was poured into water, and the title compound 80 mg was obtained after work-up. ESI-MS (m/z): 328.2 [M - H],
Step 4: Synthesis of 2-((3,3-difluoropiperidin-4-yl)oxy)acetic acid (5-5)
At room température, compound (5-4) (80 mg, 0.24 mmol) was dissolved in methanol (2 mL), palladium on carbon (10%, 10 mg) was added, and the reaction was performed under a hydrogen atmosphère at room température for 3 hours. The insoluble material was filtered off, and the solvent was distilled off under reduced pressure, to afford the title compound 40 mg. ESLMS (m/z): 196.2 [M + H]+.
Step 5: Synthesis of
2-((l-((6-(2-chloro-4-fluorophenyl)-5-(ethoxycarbonyl)-2-(thiazol-2-yl)-3,6-dihydropyrimidin-4-y l)methyl)-3,3-difluoropiperidin-4-yl)oxy)acetic acid (10-95)
The title compound 10 mg was prepared by a method similar to that described in Step 3 of Example 1, except 3,3-difluoropiperidin-4-ol hydrochloride was replaced by compound (5-5).
The structure was characterized as follows:
‘H NMR (400 MHz, DMSO-î/6) δ 12.66 (s, 1H), 9.54 (d, J = 2.4 Hz, 1H), 8.07-7.82 (m, 2H), 7.53-7.33 (m, 2H), 7.18 (td, J= 8.5, 2.7 Hz, 1H), 6.05 (s, 1H), 4.30-4.09 (m, 2H), 4.06-3.89 (m, 4H), 3.84 (s, 1H), 3.10-2.81 (m, 3H), 2.72 (s, 1H), 2.00 (s, 1H), 1.85 (s, 1H), 1.04 (t, J = 7.0 Hz, 3H). ESLMS (m/z): 573.2 [M + H]+.
Example 6 Synthesis of (R)-ethyl
4-(2-chloro-4-fluorophenyl)-6-((3,3-difluoroazetidin-l-yl)methyl)-2-(thiazol-2-yl)-l,4-dihydropyri midine-5-carboxylate (10-7)
F
The title compound 4 mg was prepared by a method similar to that described in Step 3 of Example 1 (3,3-difluoropiperidin-4-ol hydrochloride was replaced by 3,3-difluoroazetidine hydrochloride).
The structure was characterized as follows:
‘H NMR (400 MHz, DMSO-î/6) δ 9.46 (s, 1H), 8.06-7.99 (m, 1H), 7.95 (d, J = 3.1 Hz, 1H), 7.46-7.36 (m, 2H), 7.19 (td, J= 8.5, 2.6 Hz, 1H), 6.03 (s, 1H), 4.15 (s, 2H), 3.97 (t, J= 7.1 Hz, 2H), 3.85 (t, J= 12.6 Hz, 4H), 1.05 (t, J= 7.1 Hz, 3H). ESLMS (m/z): 471.1 [M + H]+.
Example 7 Synthesis of (Æ)-l-((6-(2-chloiO-4-fluorophenyl)-5-ethoxycarbonyL2-(thiazol-2-yl)-3,6-dihydropyrimidin-4-yl) methyl)-3-fluoroazetidine-3-carboxylic acid (10-11)
TFA
Step 1
Step 2
Step 1 : Synthesis of 3-fluoroazetidine-3-carboxylic acid l-(tert-butoxycarbonyl)-3-fluoroazetidine-3-carboxylic acid (30 mg, 0.14 mmol) was dissolved in dichloromethane (2 mL), trifluoroacetic acid (0.5 mL) was added at room température, and the reaction was allowed to continue for 1 hour. The solvent was distilled off under reduced pressure, and a trifluoroacetate sait of the title compound 33 mg was obtained. ESI-MS (m/z): 120.1 [M + H]+.
Step 2: Synthesis of (R)-l-((6-(2-chloro-4-fluorophenyl)-5-(ethoxycarbonyl)-2-(thiazol-2-yl)-3,6-dihydropyrimidin-4-y l)methyl)-3-fluoroazetidine-3-carboxylic acid (10-11)
The title compound 6 mg was prepared by a method similar to that described in Step 3 of Example 1 (3,3-difluoropiperidin-4-ol hydrochloride was replaced by a trifluoroacetate sait of 3 -fluoroazetidine-3 -carboxylic acid).
The structure was characterized as follows:
1H NMR (400 MHz, DMSO-rZ6) δ 9.47 (s, 1H), 8.01 (d, J= 3.08 Hz, 1H), 7.95 (d, J= 3.09 Hz, 1H), 7.40 (dd, J = 15.82, 6.61 Hz, 2H), 7.21-7.15 (m, 1H), 6.02 (s, 1H), 4.12 (s, 2H), 3.96 (dd, J = 14.10, 7.12 Hz, 2H), 3.91-3.81 (m, 2H), 3.71 (dd, J= 20.97, 9.47 Hz, 2H), 1.05 (t, J= 7.06 Hz, 3H). ESI-MS (m/z): 497.0 [M + H]+.
Example
Synthesis of (4R)-ethyI
4-(2-chloro-4-fluorophenyl)-6-((3,3-difluoro-4-methoxypiperidin-l-yl)methyl)-2-(thiazol-2-yl)-l,4
-dihydropyrimidine-5-carboxylate (10-98)
Step 1: Synthesis of tert-butyl 3,3-difluoro-4-methoxypiperidine-l-carboxylate (8-2)
Tert-butyl 3,3-difluoro-4-hydroxypiperidine-l-carboxylate (8-1) (100 mg, 0.42 mmol) and tetrahydrofuran (5 mL) were added to a 25 mL flask, and cooled to 0 °C under protection of nitrogen, sodium hydride (20 mg, 0.5 mmol) was added thereto, and the reaction was performed for 30 minutes, lodomethane (120 mg, 0.84 mmol) was then added thereto, and the reaction was performed for 16 5 hours. The reaction solution was slowly poured into water, and a crude product of the title compound 100 mg was obtained after work-up, and was used directly for the next reaction without purification. ESI-MS (m/z): 252.2 [M+H]+.
Step 2: Synthesis of 3,3-difluoro-4-methoxypiperidine trifluoroacetate sait (8-3)
Compound (8-2) (100 mg, 0.4 mmol) and dichloromethane (6 mL) were added to a 25 mL flask, 10 the reaction was cooled to 0 °C, trifluoroacetic acid (2 mL) was then added thereto, and the reaction was performed for 3 hours. The solvent was distilled off under reduced pressure, to afford a crude product 120 mg. ESI-MS (m/z)·. 152.2 [M+H]+.
Step 3: Synthesis of (4R)-ethyl
4-(2-chloro-4-fluorophenyl)-6-((3,3-difluoro-4-methoxypiperidin-l-yl)methyl)-2-(thiazol-2-yl)-l,4 15 -dihydropyrimidine-5-carboxylate (10-98)
The title compound 50 mg was prepared by a method similar to that described in Step 3 of Example 1 (3,3-difluoropiperidin-4-ol hydrochloride was replaced by compound (8-3)).
The structure was characterized as follows:
'H NMR (400 MHz, DMSO-6?6) δ 9.54 (s, 1H), 8.00 (dd, J= 3.1, 1.7 Hz, 1H), 7.94 (d, J= 3.1 Hz, 20 1H), 7.47-7.35 (m, 2H), 7.18 (td, J= 8.5, 2.6 Hz, 1H), 6.05 (s, 1H), 4.06-3.91 (m, 4H), 3.60 (d, J= 5.0
Hz, 1H), 3.41 (d, J= 1.6 Hz, 3H), 3.12-2.93 (m, 1H), 2.92-2.76 (m, 1H), 2.67 (s, 1H), 1.94 (s, 1H), 1.77 (s, 1H), 1.04 (t, J= 7.1 Hz, 3H). ESI-MS (m/z): 529.2 [M + H]+.
Example 9 Synthesis of (R)-ethyl
4-(2-chloro-4-fluorophenyl)-6-(((3R,4R)-3-fluoro-4-hydroxypyrrolidin-l-yl)methyl)-2-(thiazol-225 yl)-l,4-dihydropyrimidine-5-carboxylate (10-34)
Step 1: Synthesis of (3R,4R)-4-fluoropyrroIidin-3-ol (9-2)
Under cooling in an ice bath, (3R,4R)-terributyl 3-hydroxy-4-fluoropyrrolidine-l-carboxylate (9-1) (60 mg, 0.3 mmol) was dissolved in dichloromethane (1 mL), trifluoroacetic acid (0.3 mL) was added, and the reaction was performed at room température for 1.5h. The solvent was distilled off under reduced pressure, to afford a trifluoroacetate sait of the title compound 60 mg. ESI-MS (m/z): 106.1 [M + H]+.
Step 2: Synthesis of (jR)-ethyl
4-(2-chloro-4-fluorophenyl)-6-(((3R,4R)-3-fluoro-4-hydroxypyrrolidin-l-yl)methyl)-2-(thiazol-2yl)-l,4-dihydropyrimidine-5-carboxylate (10-34)
The title compound 30 mg was prepared by a method similar to that described in Step 3 of Example 1 (3,3-difluoropiperidin-4-ol hydrochloride was replaced by compound (9-2)).
The structure was characterized as foliows:
‘H NMR (400 MHz, CDC13) δ 7.86 (t, J = 2.6 Hz, 1H), 7.59 (s, 2H), 7.49-7.33 (m, 1H), 7.16 (ddd, J= 8.3, 4.3, 2.6 Hz, 1H), 7.02 (d, J= 9.0 Hz, 1H), 6.18 (d, J= 2.3 Hz, 1H), 5.19 (d, J= 50.5 Hz, 1H), 4.93-4.26 (m, 4H), 4.06 (qd, J = 7.1, 1.7 Hz, 2H), 3.53 (s, 2H), 1.10 (td, J = ΊΛ, 4.5 Hz, 3H). ESI-MS (m/z): 483.2 [M + H]+.
Example
Synthesis of
2-(((3R,4R)-l-(((R)-6-(2-chloro-4-fluorophenyl)-5-(ethoxycarbonyl)-2-(thiazol-2-yl)-3,6-dihydrop yrimidin-4-yl)methyl)-4-fluoropyrrolidin-3-yl)oxy)acetic acid (10-36)
Step 1:
ce ,N Step 1
10-3
10c 0>“
Step 4
Synthesis of (3R,4R)-to7-butyl
3-(2-ethoxy-2-oxoethoxy)-4-fluoropyrrolidine-l-carboxylate (10-b)
TerAbutyl (3R,4R)-3-hydroxy-4-fluoropyrrolidine-l-carboxylate (10-a) (100 mg, 0.49 mmol) was dissolved in tetrahydrofuran (5 mL), sodium hydride (40 mg, 60% in oil, 0.98 mmol) was added under cooling in an ice bath, and the reaction was warmed to room température and allowed to proceed for 2h. Under cooling in an ice bath, ethyl bromoacetate (124 mg, 0.74 mmol) was added, and the reaction was performed at room température ovemight. Saturated ammonium chloride (3 mL) was added, followed by dilution with dichloromethane (15 mL), the reaction was washed with saturated brine, and dried over anhydrous sodium sulfate. The drying agent was removed by filtration, the solvent was distilled off under reduced pressure, to afford the title compound 120 mg. ESI-MS (m/z): 292.2 [M +
H]*.
Step 2: Synthesis of 2-(((3R,4R)-l-(tert-butoxycarbonyl)-4-fluoropyrrolidin-3-yl)oxy)acetic acid (10-c)
Compound (10-b) (120 mg, 0.41 mmol) was dissolved in a mixed solution of tetrahydrofuran and water (v:v=l:l, 3 mL), lithium hydroxide monohydrate (104 mg, 2.47 mmol) was added, and the reaction was performed at room température for 3.5 h. The pH was adjusted to 5 with an aqueous solution of citric acid, dichloromethane (15 mL) was added, and the reaction was washed with saturated brine, and dried over anhydrous sodium sulfate. Anhydrous sodium sulfate was removed by filtration, the solvent was distilled off under reduced pressure, to afford the title compound 100 mg. ESI-MS (m/z): 263.2 [M + H]+.
Step 3: Synthesis of 2-(((3R,4R)-4-fluoropyrrolidin-3-yl)oxy)acetic acid (10-d)
At room température, compound (10-c) (100 mg, 0.38 mmol) was dissolved in dichloromethane (1 mL), trifluoroacetic acid (0.3 mL) was added, and the reaction was performed at room température for 1.5h. The solvent was distilled off under reduced pressure, to afford a trifluoroacetate sait of the title compound 60 mg. ESI-MS (m/z): 164.1 [M + H]+.
Step 4: Synthesis of
2-(((3R,4R)-l-(((R)-6-(2-chloro-4-fluorophenyl)-5-(ethoxycarbonyl)-2-(thiazol-2-yl)-3,6-dihydrop yrimidin-4-yl)methyl)-4-fluoropyrrolidin-3-yl)oxy)acetic acid (10-36)
The title compound 13 mg was prepared by a method similar to that described in Step 3 of Example 1 (3,3-difluoropiperidin-4-ol hydrochloride was replaced with compound (10-d)).
The structure was characterized as follows:
‘H NMR (400 MHz, DMSO-76) δ 12.66 (s, 1H), 9.47 (d, J= 12.6 Hz, 1H), 7.98 (dd, J= 5.1, 3.2 Hz, 1H), 7.93 (dd, 7= 3.2, 1.9 Hz, 1H), 7.41 (ddd, J = 9.5, 6.4, 3.0 Hz, 2H), 7.19 (tt, J = 8.5, 2.0 Hz, 1H), 6.04 (d, J = 1.4 Hz, 1H), 5.15 (d, J= 51.7 Hz, 1H), 4.40-3.77 (m, 9H), 3.12-2.87 (m, 2H), 1.04 (td, 7=7.1, 2.1 Hz, 3H). ESI-MS (m/z): 541.2 [M + H]\
Example 11 Synthesis of (4R)-ethyl
4-(2-chloro-4-fluorophenyl)-6-((3,3-difluoro-4-hydroxypyrrolidin-l-yl)methyl)-2-(thiazol-2-yl)-l, 4-dihydropyrimidine-5-carboxylate (10-40)
Step 1: Synthesis of 2,2-difluorovinyl p-methylbenzenesulfonate (11-2)
2,2,2-trifluoroethyl p-methylbenzenesulfonate (11-1) (2.57 g, 10.0 mmol) was dissolved in tetrahydrofuran (15 mL), the reaction solution was cooled to -78°C under protection of nitrogen, and n-butyllithium (2.5 M in hexane, 8 mL, 20 mmol) was slowly dropwise added. The reaction solution was stirred at -78°C for 40 minutes, and water (4.5 g, 25 mmol) and tetrahydrofuran (10 mL) were slowly dropwise added. The reaction solution was slowly warmed to room température. The reaction was added with water (60 mL), and extracted with ethyl acetate (30 mLx2). The organic phase was collected, washed with saturated sodium chloride solution (50 mL><2), dried over anhydrous sodium sulfate, filtered to remove anhydrous sodium sulfate, concentrated under reduced pressure, followed by purification through column chromatography, and the target compound 2.4 g was obtained. ESI-MS (m/z): 235.1 [M + H]+.
Step 2: Synthesis of l-benzyl-4,4-difluoropyrrolidin-3-yl p-methylbenzenesulfonate (11-3)
Compound (11-2) (2340 mg, 10.0 mmol) and jV-methoxymethyl-A-trimethylsilyl- benzylamine (9500 mg, 40.0 mmol) were stirred at 130°C in an oil bath for 5 minutes, and trifluoroacetic acid (110 mg, 1.1 mmol) was added dropwise. The reaction was stirred for an additional 1 hour, cooled to room température, diluted with ethyl acetate, and purified to obtain the target compound 3.0 g. ESI-MS (m/z): 368.1 [M + H]+.
Step 3: Synthesis of l-benzyl-4,4-difluoropyrrolidin-3-ol (11-4)
Compound (11-3) (500 mg, 1.35 mmol) was dissolved in methanol (5 mL), magnésium tumings (326 mg, 13.6 mmol) were added, and the reaction was stirred at room température for 2 hours. Ice-water (20 mL) was added, concentrated hydrochloric acid was added dropwise until ail solids dissolved. The reaction was extracted with ethyl acetate, the aqueous phase was collected, adjusted to pH=7 with saturated sodium hydroxide, and extracted with ethyl acetate. The organic phase was collected, washed with saturated sodium chloride solution, dried over anhydrous sodium sulfate, filtered to remove anhydrous sodium sulfate, concentrated under reduced pressure, and the crude product was purified by préparative chromatography on silica gel (petroleum ether/ethyl acetate=3/2), to afford the target compound 240 mg. ESI-MS (m/z): 214.2 [M + H]+.
Step 4: Synthesis of 4,4-difluoropyrrolidin-3-ol (11-5)
Compound (11-4) (100 mg, 0.47 mmol) was dissolved in methanol (2 mL), palladium on carbon (8 mg, 10% Pd, 0.047 mmol) was added, and the reaction was stirred overnight at room température under a hydrogen atmosphère. Palladium on carbon was removed by filtration, and the reaction was concentrated under reduced pressure, to afford the target compound 50 mg. ESI-MS (m/z): 124.1 [M + H]+.
Step 5: Synthesis of (4R)-ethyl
4-(2-chloro-4-fluorophenyl)-6-((3,3-difluoro-4-hydroxypyrrolidin-l-yl)methyl)-2-(thiazol-2-yl)-l, 4-dihydropyrimidine-5-carboxylate (10-40)
The title compound 33 mg was prepared by a method similar to that described in Step 3 of Example 1 (3,3-difluoropiperidin-4-ol hydrochloride was replaced with compound (11-5)).
The structure was characterized as follows:
‘H NMR (400 MHz, CDC13) δ 9.36 (s, 1H), 7.84 (d, J = 3.1 Hz, 1H), 7.48 (s, 1H), 7.31 (s, 1H), 7.14 (dt, J= 8.5, 2.5 Hz, 1H), 6.94 (s, 1H), 6.20 (d, J = 6.9 Hz, 1H), 4.45-3.87 (m, 6H), 3.20 (s, 2H), 2.85 (s, 1H), 1.13 (td, J= 7.1,4.7 Hz, 3H). ESI-MS (m/z): 501.0 [M + H]+.
Example 12 Synthesis of
2-((l-(((R)-6-(2-chloro-4-fluorophenyl)-5-(ethoxycarbonyl)-2-(thiazol-2-yl)-3,6-dihydropyrimidin -4-yl)methyl)-4,4-difluoropyrrolidin-3-yl)oxy)acetic acid (10-42)
Step 1: Synthesis of ethyl 2-((l-benzyl-4,4-difluoropyrrolidin-3-yl)oxy)acetate (12-2) l-benzyl-4,4-difluoropyrrolidin-3-ol (12-1) (100 mg, 0.47 mmol) was dissolved in tetrahydrofuran (5 mL), sodium hydride (40 mg 60% in oil, 0.94 mmol) was added under cooling in an ice bath, and the reaction was warmed to room température and allowed to proceed for 2h. Ethyl bromoacetate (119 mg, 0.71 mmol) was added under cooling in an ice bath, and the reaction was perform at room température until completion of the reaction. The reaction was added with saturated ammonium chloride (3 mL), diluted with dichloromethane (15 mL), washed with saturated brine, and dried over anhydrous sodium sulfate. Anhydrous sodium sulfate was removed by filtration, and the solvent was distilled off under reduced pressure, to afford the title compound 123 mg, which was used directly for the next reaction without purification. ESI-MS (m/z): 300.1 [M + H]T.
Step 2: Synthesis of 2-((l-benzyl-4,4-difluoropyrrolidin-3-yl)oxy)acetic acid (12-3)
Compound (12-2) (123 mg, 0.41 mmol) was dissolved in a mixed solution of tetrahydrofuran and water (v:v=l:l, 3 mL), lithium hydroxide monohydrate (104 mg, 2.47 mmol) was added, and the reaction was performed at room température for 3.5 h. The reaction was adjusted to pH 5 with an aqueous solution of citric acid, added with dichloromethane (15 mL), washed with saturated brine, and dried over anhydrous sodium sulfate. The drying agent was removed by filtration, the solvent was distilled off under reduced pressure, and the crude product was purified by préparative chromatography, to afford the title compound 50 mg. ESLMS (m/z): 272.1 [M + H]+.
Step 3: Synthesis of 2-((4,4-difluoropyrrolidin-3-yl)oxy)acetic acid (12-4)
Compound (12-3) (50 mg, 0.18 mmol) was dissolved in methanol (2 mL), palladium on carbon (5 mg, 10% Pd, 0.018 mmol) was added, and the reaction was stirred ovemight at room température under a hydrogen atmosphère. The reaction was filtered to remove palladium on carbon, and concentrated under reduced pressure, to afford the target compound 30 mg. ESLMS (m/z): 182.1 [M + H]+.
Step 4: Synthesis of
2-((l-(((R)-6-(2-chloro-4-fluorophenyl)-5-(ethoxycarbonyl)-2-(thiazol-2-yl)-3,6-dihydropyrimidin -4-yl)methyl)-4,4-difluoropyrrolidin-3-yl)oxy)acetic acid
The title compound 25 mg was prepared by a method similar to that described in Step 3 of Example 1 (3,3-difluoropiperidin-4-ol hydrochloride was replaced with compound (12-4)).
The structure was characterized as follows:
'H NMR (400 MHz, CDC13) δ 7.87 (dd, 7= 3.1, 1.3 Hz, 1H), 7.49 (s, 1H), 7.33 (t, J= 7.4 Hz, 1H), 7.14 (dd, J = 8.5, 2.6 Hz, 1H), 6.96 (t, J= 8.3 Hz, 1H), 6.19 (d, J= 2.3 Hz, 1H), 4.44 (d, J= 16.3 Hz, 1H), 4.26 (dd, 7= 16.3, 2.3 Hz, 4H), 4.08-4.01 (m, 2H), 3.43 (s, 4H), 1.12 (t, J = 7.1 Hz, 3H). ESLMS (m/z): 559.2 [M + H]+.
Example 13 Synthesis of (E)-3-(4-(((R)-6-(2-chloro-4-fluorophenyl)-5-(ethoxycarbonyl)-2-(thiazol-2-yl)-3,6-dihydropyrimi din-4-yl)methyl)morphoIin-3-yl)acrylic acid (10-182)
Step l
8oc
Step 2
Step 3
Step 4
Step 5
Step 1 : Synthesis of teri-butyl 3-(hydroxymethyl)morpholine-4-carboxyIate (13-2)
Morpholin-3-yl methanol hydrochloride (1.0 g, 6.5 mmol), triethylamine (1.64 g, 16 mmol) and dichloromethane (10 mL) were added to a 50 mL three-neck flask, stirred under protection of nitrogen, and cooled to 0 °C, followed by addition of di-tertibutyl dicarbonate (2.1 g, 10 mmol). After the addition, the reaction was warmed to room température and allowed to proceed for 3 hours. The reaction solution was slowly poured into water, and extracted with dichloromethane. The organic phase was collected, washed with saturated brine, and dried over anhydrous sodium sulfate. Anhydrous sodium sulfate was removed by filtration, the solvent was distilled off under reduced pressure, and the target compound 1.32 g was obtained after purification. ESI-MS (m/z): 162.0 [M+H]+.
Step 2: Synthesis of mrt-butyl 3-formylmorpholine-4-carboxylate (13-3)
Compound (13-2) (500 mg, 2.3 mmol) and dichloromethane (10 mL) were added to a 50 mL three-neck flask, Dess-Martin reagent (1.3 g, 3.0 mmol) was added thereto at room température, and the reaction was stirred for 3 hours. The reaction solution was slowly poured into aqueous sodium bicarbonate, and extracted with dichloromethane. The organic phase was collected, washed with saturated brine, dried over anhydrous sodium sulfate, filtered to remove anhydrous sodium sulfate, and the solvent was distilled off under reduced pressure, to afford a crude product 520 mg. ESI-MS (m/z): 160.0 [M+H]+.
Step 3: Synthesis of (E)-tert-butyl
3-(3-ethoxy-3-oxoprop-l-en-l-yI)morpholine-4-carboxylate (13-4)
Triethyl phosphonoacetate (600 mg, 3.3 mmol) and tetrahydrofuran (10 mL) were added to a 50 mL three-neck flask, stirred under protection of nitrogen, and cooled to 0 °C, followed by addition of sodium hydride (320 mg, 6.6 mmol). After the addition, the reaction was performed for 10 min, and then a solution of compound (13-3) (520 mg, 3.3 mmol) in tetrahydrofuran (5 mL) was added dropwise. After the dropwise addition, the reaction was warmed to room température, and allowed to proceed for 16h. The reaction solution was slowly poured into water, and extracted with ethyl acetate. The organic phase was collected, washed with saturated brine, and dried over anhydrous sodium sulfate. The drying agent was removed by filtration, and the solvent was distilled off under reduced pressure, to afford a crude product 620 mg. ESI-MS (m/z): 186.0 [M+H]+.
Step 4: Synthesis of (E)-3-(4-(tert-butoxycarbonyl)morpholin-3-yl)acrylic acid (13-5)
At room température, compound (13-4) (620 mg, 2.2 mmol), anhydrous éthanol (10 mL) and water (10 mL) were added to a 50 mL flask, stirred followed by addition of sodium hydroxide (260 mg, 6.6 mmol), and the reaction was performed at room température for 4h. The reaction was then quenched by adding water (20 mL) thereto, subjected to rotary évaporation to remove éthanol, and extracted with methyl teri-butyl ether. The aqueous phase was adjusted to pH 2-3 with IN aqueous hydrochloric acid, and then extracted with ethyl acetate. The organic phase was collected, washed with saturated brine, and dried over anhydrous sodium sulfate. Anhydrous sodium sulfate was removed by filtration, and the solvent was distilled off under reduced pressure, to afford a crude product 460 mg, which was used directly for the next reaction without purification. ESI-MS (m/z): 158.0 [M+H]+.
Step 5: Synthesis of (E)-3-(morpholin-3-yl)acrylic acid (13-6)
A solution of 4N hydrochloric acid in dioxane (5 mL) was added to a 25 mL flask, cooled to 0 °C, followed by dropwise addition of a solution of compound (13-5) (460 mg, 1.8 mmol) in ethyl acetate (5 mL), and the reaction was performed at room température for 2h. The solvent was distilled off under reduced pressure, to afford a hydrochloride sait of the title compound 300 mg. ESI-MS (m/z): 158.0 [M+H]+.
Step 6: Synthesis of (E)-3-(4-(((R)-6-(2-chloro-4-fluorophenyI)-5-(ethoxycarbonyl)-2-(thiazol-2-yl)-3,6-dihydropyrimi din-4-yI)methyl)morpholin-3-yl)acrylic acid (10-182)
The title compound 47 mg was prepared by a method similar to that described in Step 3 of Example 1 (3,3-difluoropiperidin-4-ol hydrochloride was replaced with compound (13-6)).
The structure was characterized as follows:
Ή NMR (400 MHz, DMSO-î76) δ 12.47 (s, 1H), 9.69 (d, J = 2%.Ί Hz, 1H), 8.11-7.91 (m, 2H), 7.53-7.27 (m, 2H), 7.23-7.10 (m, 1H), 6.66 (ddd, J= 35.0, 15.8, 8.8 Hz, 1H), 6.11 (dd, J= 28.6, 15.7 Hz, 1H), 6.03 (d, J = 14.0 Hz, 1H), 4.02-3.85 (m, 4H), 3.84-3.70 (m, 2H), 3.70-3.57 (m, 1H), 3.46-3.35 (m, 2H), 2.84 (dd, J= 38.9, 12.6 Hz, 1H), 2.48-2.41 (m, 1H), 1.03 (t, J = 7.1 Hz, 3H). ESI-MS (m/z): 535.1 [M + H]+.
Example 14 Synthesis of (E)-3-(4-(((R)-6-(2-chloro-4-fluorophenyl)-5-(ethoxycarbonyl)-2-(thiazoI-2-yl)-3,6-dihydropyrimi din-4-yl)methyl)morpholin-2-yl)acrylic acid (10-180)
According to the above reaction scheme, employing procedures similar to those in Example 13 and using morpholin-2-yl methanol hydrochloride as a starting material, the title compound (22 mg) was prepared.
The structure was characterized as follows:
’H NMR (400 MHz, DMSO-î/6) δ 12.40 (s, 1H), 9.64 (d, J = 2.4 Hz, 1H), 8.02 (d, J = 2.92 Hz, 2H), 7.95 (d, J= 3.12 Hz, 2H), 7.21-7.16 (m, 1H), 6.83-6.72 (m, 1H), 6.05 (d, 1H), 6.00-5.91 (m, 1H), 4.27-4.22 (m, 1H), 4.00-3.85 (m, 5H), 3.70-3.61 (m, 1H), 3.07-2.94 (m, 1H), 2.84-2.66 (m, 1H), 2.42-2.67 (m, 1H), 2.17-2.04 (m, 1H), 1.04 (t, J= 7.0 Hz, 3H). ESI-MS (m/z): 535.1 [M + H]+.
Example 15
2-((4-(((R)-6-(2-chloro-4-fluorophenyl)-5-(ethoxycarbonyl)-2-(thiazol-2-yl)-3,6-dihydropyrimidin -4-yl)methyl)morpholin-3-yl)metlioxy)acetic acid (10-162)
Step 1: Synthesis of tert-butyl
3-((2-(tert-butoxy)-2-oxoethoxy)methyl)morpholme-4-carboxylate (15-2)
Tert-butyl 3-(hydroxymethyl)morpholine-4-carboxylate (200 mg, 0.99 mmol) and tetrahydrofuran (6 mL) were added to a 50 mL three-neck flask, sodium hydride (47.3 mg, 1.2 mmol) was added thereto at room température, stirred for 30 minutes, followed by addition of tert-butyl bromoacetate (192 mg, 0.99 mmol), and the reaction was performed at room température for 3 hours. The reaction 20 solution was slowly poured into 10 mL water, adjusted to pH 2-3 with IN aqueous hydrochloric acid, and extracted with ethyl acetate. The organic phase was collected, washed with saturated brine, dried over anhydrous sodium sulfate, filtered to remove anhydrous sodium sulfate, and the solvent was distilled off under reduced pressure, to afford a crude product 300 mg. ESI-MS (m/z): 232.0 [M+H]T.
Step 2: Synthesis of 2-(morpholin-3-ylmethoxy)acetic acid trifluoroacetate sait (15-3)
Compound (15-2) (300 mg, 0.9 mmol) and dichloromethane (6 mL) were added to a 25 mL flask, cooled to 0 °C, trifluoroacetic acid (2 mL) was then added thereto, and the reaction was performed at 5 room température for 3 hours. The solvent was distilled off under reduced pressure, to afford a crude product 250 mg. ESI-MS (m/z): 176.0 [M+H]+.
Step 3: Synthesis of
2-((4-(((R)-6-(2-chloro-4-fluorophenyl)-5-(ethoxycarbonyl)-2-(thiazol-2-yl)-3,6-dihydropyrimidin -4-yl)methyI)morpholin-3-yl)methoxy)acetic acid (10-162)
The title compound 73 mg was prepared by a method similar to that described in Step 3 of Example 1 (3,3-difluoropiperidin-4-ol hydrochloride was replaced with compound (15-3)).
The structure was characterized as follows:
'H NMR (400 MHz, DMSO-d6) δ 12.70 (s, 1H), 9.79 (d, J= 22.9 Hz, 1H), 8.01 (t, J= 2.8 Hz, 1H), 7.93 (t, J= 3.0 Hz, 1H), 7.50-7.37 (m, 2H), 7.18 (qd, J= 8.3, 2.6 Hz, 1H), 6.04 (d, J = 1.4 Hz, 15 1H), 4.32 (dd, J= 20.0, 17.6 Hz, 1H), 4.09-3.91 (m, 4H), 3.87-3.63 (m, 3H), 3.62-3.50 (m, 3H), 3.46 (dd, J = 11.2, 8.2 Hz, 1H), 2.87 - 2.66 (m, 2H), 2.48-2.39 (m, 1H), 1.05 (td, J = 7.0, 1.5 Hz, 3H). ESI-MS (m/z): 553.1 [M + H]+.
Example 16 Synthesis of
2-((l-(((R)-6-(2-chloro-4-fluorophenyl)-5-(ethoxycarbonyl)-2-(thiazol-2-yI)-3,6-dihydropyrimidin 20 -4-yl)methyl)-5,5-difluoropiperidin-3-yl)methoxy)acetic acid (10-136)
Step 1: Synthesis of 1-tert-butyl 3-methyl 5-oxopiperidine-l,3-dicarboxylate(16-2)
At room température, 1-ZerLbutyl 3-methyl 5-hydroxypiperidine-l,3-dicarboxylate (16-1) (1.0 g, 3.86 mmol) was dissolved in dichloromethane (20 mL), the reaction was cooled to 0°Cafter complété 25 dissolution, Dess-Martin reagent (3.27 g, 7.71 mmol) was added with stirring, and the reaction was stirred ovemight at room température after the addition. A large amount of white solid precipitated in the reaction solution, which was filtered, and the filtrate was washed successively with water (50 ml,) 47 and saturated aqueous sodium carbonate (50 mL). The organic phase was dried over anhydrous sodium sulfate, and the solvent was distilled off under reduced pressure, to afford the title compound 1.0 g. ESI-MS (m/z): 202.1 [M + H-56]+.
Step 2: Synthesis of 1 -tert-butyl 3-methyl 5,5-difluoropiperidine-l,3-dicarboxylate (16-3)
Compound (16-2) (1.0 g, 3.89 mmol) was dissolved in dichloromethane (20 mL), the reaction was cooled to -70°C after dissolved with stirring, DAST (1.9 g, 11.67 mmol) was slowly dropwise added, and the reaction was warmed to room température and allowed to proceed for 4.5 h after the dropwise addition. After complété reaction of the starting material monitored by LC-MS, the reaction solution was quenched with saturated aqueous sodium bicarbonate (20 mL), extracted with dichloromethane, dried, and purified to obtain the title compound 550 mg. ESI-MS (m/z): 224.1 [M + H-56]+.
Step 3: Synthesis of tert-butyl 3,3-difluoro-5-(hydroxymethyl)piperidine-l-carboxylate (16-4)
At room température, compound (16-3) (500 mg, 1.79 mmol) was added to methanol (8 mL), the reaction was cooled to 0°C, and sodium borohydride (272 mg, 7.16 mmol) was slowly added in portions. After the addition, the reaction was performed at room température ovemight, incomplète reaction of the starting material was monitored by LC-MS, sodium borohydride (136 mg, 3.58 mmol) was supplemented, and the reaction was continued ovemight until complété reaction of the starting material. The reaction was quenched by adding water (20 mL), and extracted with ethyl acetate. The organic phase was combined, washed with water, dried over anhydrous sodium sulfate, and the solvent was distilled off under reduced pressure, to afford the title compound 500 mg. ESI-MS (m/z): 196.1 [M + H-56]+.
Step 4: Synthesis of tert-butyl
5-((2-(tert-butoxy)-2-oxoethoxy)methyl)-3,3-difluoropiperidine-l-carboxylate (16-5)
At room température, compound (16-4) (150 mg, 0.60 mmol) was added to tetrahydrofuran (4 mL), the reaction was cooled to 0°C, and sodium hydride (48 mg, 1.2 mmol) was slowly added. After the addition, the reaction was stirred at 0°C for 30 min, and then a solution of tert-butyl bromoacetate (140 mg, 0.72 mmol) in tetrahydrofuran (1.0 mL) was added. The reaction was performed at room température ovemight, incomplète reaction of the starting material was monitored by LC-MS, tert-butyl bromoacetate (35 mg, 0.18 mmol) was supplemented, and the reaction was continued ovemight until complété reaction of the starting material. The reaction solution was quenched by adding a saturated aqueous solution of ammonium chloride (5 mL), diluted with water (20 mL), and extracted with ethyl acetate. The organic phase was combined, washed with water, dried and purified, to afford the title compound 120 mg. ESI-MS (m/z): 254.1 [M + H-112]+.
Step 5: Synthesis of 2-((5,5-difluoropiperidin-3-yI)methoxy)acetic acid (16-6)
At room température, compound (16-5) (60 mg, 0.16 mmol) was added to dichloromethane (3 mL), the reaction was cooled to 0°C, and trifluoroacetic acid (1.0 mL) was added. After the addition, the reaction was performed at room température for 1 h, incomplète reaction of the starting material was monitored by LC-MS, the reaction was then continued ovemight until complété reaction of the starting material. The solvent was distilled off under reduced pressure, to afford a trifluoroacetate sait of the title compound 60 mg. ESI-MS (m/z): 210.1 [M + H] .
Step 6: Synthesis of
2-((l-(((R)-6-(2-chloro-4-fluorophenyl)-5-(ethoxycarbonyl)-2-(thiazoï-2-yl)-3,6-dihydropyrimidin -4-yI)methyI)-5,5-difluoropiperidin-3-yl)methoxy)acetic acid (10-136)
The title compound 19 mg was prepared by a method similar to that described in Step 3 of Example 1 (3,3-difluoropiperidin-4-ol hydrochloride was replaced with compound (16-5)).
The structure was characterized as follows:
‘H NMR (400 MHz, chlorofornwZ) δ 7.93 (dd, J= 9.67, 3.06 Hz, 1H), 7.54 (s, 1H), 7.46-7.31 (m, 1H), 7.13 (ddd, J= 8.55, 2.63, 1.35 Hz, 1H), 6.96 (d, J= 8.50 Hz, 1H), 6.24 (d, J= 3.93 Hz, 1H), 4.28 (d, J= 16.74 Hz, 1H), 4.14 (d, J = 16.81 Hz, 1H), 3.94 (t, J= 16.64 Hz, 2H), 3.80 (t, J= 8.68 Hz, 1H), 3.65 (t, J = 8.64 Hz, 1H), 3.56-3.43 (m, 1H), 2.94 (d, J = 53.06 Hz, 4H), 2.65 (s, 1H), 2.45 (s, 1H), 2.13 (dd, J= 26.84, 13.90 Hz, 1H), 1.92 (d, J = 9.36 Hz, 1H), 1.13 (td, J = 7.10, 3.76 Hz, 3H). ESI-MS (m/z): 587.2 [M + H]+.
Example
Synthesis of (jE)-3-(l-(((R)-6-(2-chloro-4-fluorophenyl)-5-(ethoxycarbonyl)-2-(thiazol-2-yl)-3,6-dihydropyrimi din-4-yl)methyl)-5,5-difluoropiperidin-3-yl)acrylic acid (10-116)
Step 1
Step 1: Synthesis of to t-butyl 3,3-difluoro-5-formylpiperidine-l-carboxyIate (17-2)
At room température, tert-butyl 3,3-difluoro-5-(hydroxymethyl)piperidine-l-carboxylate (17-1) (50 mg, 0.2 mmol) was dissolved in dichloromethane (2.0 mL), the reaction was cooled to 0°C after complété dissolution, Dess-Martin reagent (102 mg, 0.24 mmol) was added with stirring, and the reaction was performed at room température for 3 h after the addition. A large amount of white solid precipitated in the reaction solution, which was filtered, and the filtrate was evaporated under reduced pressure, and the title compound 50 mg was obtained.
Step 2: Synthesis of (Ej-teri-butyl
5-(3-ethoxy-3-oxoprop-l-en-l-yl)-3,3-difluoropiperidine-l-carboxylate (17-3)
At room température, compound (17-2) (50 mg, 0.2 mmol) was dissolved in dichloromethane (2.0 mL), (carbethoxymethylene)triphenylphosphorane (70 mg, 0.2 mmol) was added with stirring after complété dissolution, and the reaction was performed at room température ovemight after the addition. The reaction solution was purified to afford the title compound 30 mg. ESI-MS (m/z): 264.1 [M + H-56]+.
Step 3: Synthesis of (£)-3-[l-(fért-butoxycarbonyl)-5,5-difluoropiperidin-3-yl)acryIic acid (17-4)
At room température, compound (17-3) (30 mg, 0.1 mmol) was dissolved in tetrahydrofuran (4.0 mL) and water (2 mL), lithium hydroxide (19 mg, 0.47 mmol) was added with stirring after complété dissolution, and the reaction was performed at room température for 4 h after the addition. The reaction solution was diluted with water, adjusted to pH=3-4 with IN hydrochloric acid, and extracted with ethyl acetate. The organic phase was combined, washed with water, and dried to afford the title compound 30 mg.
Step 4: Synthesis of (£)-3-(5,5-difluoropiperidin-3-yI)acrylic acid trifluoroacetate sait (17-5)
At room température, compound (17-4) (30 mg, 0.1 mmol) was added to dichloromethane (1.5 mL), cooled to 0°C, followed by addition of trifluoroacetic acid (0.5 mL). After the addition, the reaction was performed at room température for 1.5 h. The solvent in the reaction solution was distilled off under reduced pressure, to afford the title compound 30 mg. ESI-MS (m/z): 192.1 [M + H]+.
Step 5: Synthesis of (£)-3-(l-(((R)-6-(2-chloro-4-fluorophenyI)-5-(ethoxycarbonyl)-2-(thiazol-2-yl)-3,6-dihydropyrimi din-4-yl)methyl)-5,5-difluoropiperidin-3-yl)acrylic acid (10-116)
The title compound 10 mg was prepared by a method similar to that described in Step 3 of Example 1 (3,3-difluoropiperidin-4-ol hydrochloride was replaced with compound (17-5)).
The structure was characterized as follows:
'H NMR (400 MHz, chloroform-t/) δ 7.90 (s, 1H), 7.36 (s, 1H), 7.14 (dt, J = 8.53, 2.80 Hz, 1H), 7.02-6.86 (m, 2H), 6.25 (d, J= 8.50 Hz, 1H), 5.90 (dd, J= 23.97, 15.72 Hz, 1H), 4.20 (d, J = 15.93 Hz, 1H), 4.04 (q, J= 5.70, 5.05 Hz, 3H), 3.11 (d, J= 62.19 Hz, 3H), 2.71 (s, 2H), 2.36 (s, 2H), 1.14 (td, J= 7.06, 5.31 Hz, 3H). ESI-MS (m/z): 569.2 [M + H]+.
Example 18 Synthesis of
2-((l-(((R)-6-(2-chloro-4-fluorophenyl)-5-(ethoxycarbonyl)-2-(thiazol-2-yl)-3,6-dihydropyrimidin
-4-yl)methyl)-4,4-difluoropyrrolidin-2-yl)methoxy)acetic acid (10-56)
Step
Synthesis of te/7-butyl
2-((2-ethoxy-2-oxoethoxy)methyl)-4,4-difluoropyrrolidine-l-carboxylate (18-2)
Tert-butyl 4,4-difluoro-2-(hydroxymethyl)pyrrolidine-l-carboxylate (18-1) (80 mg, 0.34 mmol) was dissolved in tetrahydrofuran (5 mL), sodium hydride (27 mg 60% in oil, 0.68 mmol) was added under cooling in an ice bath, and the reaction was warmed to room température and allowed to proceed for 2h. Under cooling in an ice bath, ethyl bromoacetate (85 mg, 0.51 mmol) was added, and the reaction was performed at room température for 4h. The reaction was added with saturated ammonium chloride (3 mL), diluted with dichloromethane (15 mL), washed with saturated brine, and dried over anhydrous sodium sulfate. The title compound 100 mg was obtained after work up, and was used directly for the next reaction without purification.
Step 2: Synthesis of 2-((l-(fért-butoxycarbonyl)-4,4-difluoropyrrolidin-2-yl)methoxy)acetic acid (18-3)
Compound (18-2) (100 mg, 0.31 mmol) was dissolved in a mixed solution of tetrahydrofuran and water (v:v=l:l, 3 mL), lithium hydroxide monohydrate (45 mg, 1.86 mmol) was added, and the reaction was performed at room température for 3.5 h. The reaction was adjusted to pH 5 with an aqueous solution of citric acid, added with dichloromethane (15 mL), washed with saturated brine, and dried over anhydrous sodium sulfate, and the title compound 80 mg was obtained after work up.
Step 3: Synthesis of 2-((4,4-difluoropyrrolidin-2-yl)methoxy)acetic acid (18-4)
At room température, compound (18-3) (80 mg, 0.27 mmol) was dissolved in dichloromethane (1 mL), trifluoroacetic acid (0.3 mL) was added, and the reaction was performed at room température for 1,5h. The solvent was distilled off under reduced pressure, to afford a trifluoroacetate sait of the title compound 60 mg.
Step 4: Synthesis of
2-((l-(((R)-6-(2-chloro-4-fluorophenyl)-5-(ethoxycarbonyI)-2-(thiazol-2-yl)-3,6-dihydropyrimidin -4-yl)methyl)-4,4-difluoropyrrolidin-2-yl)methoxy)acetic acid (10-56)
The title compound 25 mg was prepared by a method similar to that described in Step 3 of Example 1 (3,3-difluoropiperidin-4-ol hydrochloride was replaced with compound (18-4)).
The structure was characterized as follows:
‘H NMR (400 MHz, DMSO-î/6) δ 12.52 (s, 1H), 9.54 (s, 1H), 7.96 (dd, J = 27.4, 3.2 Hz, 2H), 7.51-7.27 (m, 2H), 7.19 (td, J = 8.5, 2.8 Hz, 1H), 6.01 (d, J = 12.5 Hz, 1H), 4.21 (d, J= 2.7 Hz, 1H), 4.01-3.84 (m, 3H), 3.66-3.44 (m, 3H), 3.34-3.26 (m, 4H), 3.14-2.96 (m, 1H), 2.33-2.07 (m, 1H), 1.08-0.98 (m, 3H). ESI-MS (m/z): 573.2 [M + H]+.
Example 19 Synthesis of
2-((4-(((R)-6-(2-chloro-4-fluorophenyl)-5-(ethoxycarbonyI)-2-(thiazol-2-yl)-3,6-dihydropyrimidin -4-yl)methyl)morpholin-2-yl)methoxy)acetic acid (10-160)
Step 1: Synthesis of tert-butyl 2-(hydroxymethyl)morpholine-4-carboxylate (19-2)
Morpholin-2-yl methanol hydrochloride (19-1) (500 mg, 3.3 mmol), triethylamine (0.82 g, 8 mmol) and dichloromethane (10 mL) were added to a 50 mL three-neck flask, stirred under protection of nitrogen, cooled to 0 °C, and then di-tert-butyl dicarbonate (1.1 g, 5 mmol) was added. After the addition, the reaction was performed at room température for 3 hours. The reaction solution was slowly poured into water, and extracted with dichloromethane (30 mL><3). The organic phase was collected, washed with saturated brine, and dried over anhydrous sodium sulfate. Anhydrous sodium sulfate was removed by filtration, the solvent was distilled off under reduced pressure, and the title compound 0.6 g was obtained after purification. ESI-MS (m/z): 162.0 [M+H]+.
Step 2 to Step 4
The title compound 70 mg was prepared from compound (19-2), employing procedures similar to those in Step 1 to Step 3 of Example 15.
The structure was characterized as follows:
'H NMR (400 MHz, DMSO-</6) δ 12.60 (s, 1H), 9.66 (d, J = 2.7 Hz, 1H), 8.07-7.90 (m, 2H), 7.49-7.35 (m, 2H), 7.18 (td, J= 8.5, 2.5 Hz, 1H), 6.05 (s, 1H), 4.04 (s, 1H), 4.01-3.80 (m, 6H), 3.68 (s, 1H), 3.63-3.43 (m, 3H), 2.78 (ddd, J= 56.5, 46.6, 11.4 Hz, 2H), 2.41-2.25 (m, 1H), 2.15 (dt, J= 31.9,
10.6 Hz, 1H), 1.05 (t, J= ΊΛ Hz, 3H). ESI-MS (m/z): 553.1 [M + H]+.
Example
Synthesis of
A-((4-(((R)-6-(2-chloro-4-fluorophenyl)-5-(ethoxycarbonyl)-2-(thiazol-2-yl)-3,6-dihydropyrimidi n-4-yl)methyl)morpholin-2-yl)methyl)-7V-methylglycine (10-168)
Step 1: Synthesis of toT-butyl
2-(((2-methoxy-2-oxoethyl)(methyl)amino)methyl)morpholine-4-carboxylate (20-2)
Tert-butyl 2-formylmorpholine-4-carboxylate (20-1) (117 mg, 0.5 mmol) and sarcosine methyl ester hydrochloride (84 mg, 0.6 mmol) were dissolved in methanol (3 mL), glacial acetic acid (0.2 mL) was added under cooling in an ice bath, sodium cyanoborohydride (76 mg, 1.2 mmol) was then added in portions, and the reaction was warmed to room température and allowed to proceed for 2h. The reaction was added with ethyl acetate (20 mL), stirred for 10 min, filtered to remove insolubles, and the fîltrate was concentrated, to afford the title compound 98 mg. ESI-MS (m/z): 303.2 [M + H]+.
Step 2: Synthesis of A'-((4-(r6’rt-butoxycarbonyl)morpholin-2-yl)methyI)-A-mcthylglycine (20-3)
Compound (20-2) (98 mg, 0.3 mmol) was dissolved in a mixed solvent of methanol and water (v:v=l:l, 4 mL), lithium hydroxide monohydrate (84mg, 2 mmol) was added, and the reaction was stirred ovemight. The pH was adjusted to 2 with a IN hydrochloric acid solution, and the solvent was distilled off under reduced pressure, to afford the title compound 80 mg, which was used directly for the next reaction without purification. ESI-MS (m/z): 289.2 [M + H]+.
Step 3: Synthesis of Ar-methyl-A-((morpholin-2-ylmethyl)gIycine (20-4)
At room température, compound (20-3) (80 mg, 0.28 mmol) was dissolved in dichloromethane (3 mL), trifluoroacetic acid (1 mL) was added, and the reaction was performed at room température for 3h. The solvent was distilled off under reduced pressure, to afford a trifluoroacetate sait of the title compound 94 mg. ESI-MS (m/z): 189.2 [M + H]+.
Step 4: Synthesis of
A-((4-(((R)-6-(2-chloro-4-fluorophenyl)-5-ethoxycarbonyl-2-(thiazol-2-yl)-3,6-dihydropyrimidin53
4-yl)methyl)morpholin-2-yl)methyl)-jV-methylglycine (10-168)
The title compound 9 mg was prepared by a method similar to that described in Step 3 of Example 1 (3,3-difluoropiperidin-4-ol hydrochloride was replaced with compound (20-4)).
The structure was characterized as follows:
'H NMR (400 MHz, DMSO-î/6) δ 9.66 (d, 1H), 8.03-8.01 (m, 1H), 7.95-7.94 (m, 1H), 7.44-7.39 (m, 2H), 7.22-7.17 (m, 1H), 6.05 (d, 1H), 3.99-3.82 (m, 5H), 3.70-3.68 (m, 1H), 3.63-3.54 (m, 1H), 3.25 (d, 1H), 3.16 (d, 1H), 2.92-2.56 (m, 4H), 2.34 (d, 3H), 2.35-2.24 (m, 1H), 2.14-1.98 (m, 1H), 1.04 (t, J= 7.1 Hz, 3H). ESI-MS (m/z): 566.1 [M + H]+.
Example
Synthesis of
2-((l-(((5)-5-(ethoxycarbonyl)-6-(4-fluorophenyI)-6-methyl-2-(thiazol-2-yl)-3,6-dihydropyrimidin
-4-yl)methyl)-3,3-difluoropiperidin-4-yl)oxy)acetic acid (10-224)
Step 1: Synthesis of (É)-ethyl 2-acetyl-3-(4-fluorophenyl)but-2-enoate
At room température, ethyl acetoacetate (3.12 g, 24.0 mmol), 4-fluorophenylethyne (2.88 g, 24.0 mmol) and indium triflate (216 mg, 0.384 mmol) were added to o-xylene (15 mL), the reaction was heated to 120°C, and held at this température for 2 hours, LC-MS detected the completion of the reaction. The reaction was cooled to room température, and the solvent was distilled off under reduced pressure to afford a crude product 6.0 g. ESLMS (m/z): 251.1 [M + H]T
Step 2: Synthesis of ethyl
4-(4-fluorophenyl)-4,6-dimethyl-2-(thiazoL2-yl)-l,4-dihydropyrimidine-5-carboxylate
Thiazole-2-carboximidamide hydrochloride (3.03 g, 18.5 mmol), sodium bicarbonate(3.15 g, 37.5 mmol) were added to A-methyl pyrrolidone(40 mL), the reaction was warmed to 120°C, dropwise added with compound (21-1) (3.12 g, 12.5 mmol), and incubated for 1 hour, LC-MS detected the completion of the reaction. The reaction was cooled to room température, added with ethyl acetate (60 mL), washed with water and saturated brine, and dried over anhydrous sodium sulfate. Anhydrous sodium sulfate was removed by filtration, and the solvent was distilled off under reduced pressure to give a crude product. The crude product was purified by flash column chromatography on silica gel (petroleum ether : ethyl acetate = 10 : 1) to afford the title compound as a yellow solid (2.11 g). The above product 350 mg was separated by chiral chromatography, using the following séparation conditions: séparation column: CHIRALPAK IC 0.46 cm LD. * 15 cm L, mobile phase: hexane/IPA/DEA=90/10/0.1 (V/V), flow rate: 1.0 ml/min, wavelength: UV 254 nm, température: 35 °C.
The following products were obtained by séparation: (5)-ethyl
4-(4-fluorophenyl)-4,6-dimethyl-2-(thiazol-2-yl)-l ,4-dihydropyrimidine-5-carboxylate (21-2) 172 mg, ee%=99.3%, Rt=3.555 min. ESI-MS (m/z): 360.1 [M + H]+; and (R)-ethyl 4-(4-fluorophenyl)-4,6-dimethyl-2-(thiazol-2-yl)-l,4-dihydropyrimidine-5-carboxylate (21-2’) 171 mg, ee%=98.1%, Rt=4.873 min. ESI-MS (m/z): 360.1 [M + H]+.
Step 3 to Step 4:
2-((l-(((5)-5-(ethoxycarbonyl)-6-(4-fluorophenyl)-6-methyl-2-(thiazol-2-yl)-3,6-dihydropyrimidin -4-yI)methyl)-3,3-difluoropiperidin-4-yl)oxy)acetic acid (10-224)
Employing procedures similar to those described in Step 2 and Step 3 of Example 1, the title compound 15 mg was obtained by reacting compound (21-2), after subjected to a bromination reaction, with 2-((3,3-difluoropiperidin-4-yl)oxy)acetic acid (compound 5-5 in Example 5).
The structure was characterized as follows:
'H NMR (400 MHz, DMSO-d6) δ 9.35 (s, 1H), 8.01 (d, J= 3.2 Hz, 1H), 7.92 (d, J= 3.2 Hz, 1H), 7.41 (dd, J = 8.8, 5.5 Hz, 2H), 7.11 (t, J = 8.8 Hz, 2H), 4.18-4.06 (m, 2H), 3.89-3.53 (m, 6H), 3.04-2.60 (m, 4H), 2.44 (s, 1H), 1.97 (s, 1H), 1.80 (s, 3H), 0.92 (td, J = 7.1, 1.4 Hz, 3H). ESI-MS (m/z): 553.2 [M + H]+.
Example 22 Synthesis of
2-((l-(((7?)-5-(ethoxycarbonyl)-6-(4-fluorophenyl)-6-methyl-2-(thiazol-2-yl)-3,6-dihydropyrimidi n-4-yl)methyl)-3,3-difluoropiperidin-4-yl)oxy)acetic acid (10-225)
F
The title compound 15 mg was prepared from compound (21-2’) in Example 21, employing procedures similar to those described in Step 3 to Step 4 of Example 21.
The structure was characterized as follows:
‘H NMR (400 MHz, DMSO-î/6) δ 9.35 (s, 1H), 8.01 (d, J= 3.2 Hz, 1H), 7.92 (d, J= 3.2 Hz, 1H),
7.41 (dd, J = 8.8, 5.5 Hz, 2H), 7.11 (t, J = 8.8 Hz, 2H), 4.21-4.11 (m, 2H), 3.94-3.54 (m, 6H), 3.14-2.70 (m, 4H), 2.45 (s, 1H), 1.97 (s, 1H), 1.80 (s, 4H), 0.92 (td, J = 7.1, 1.4 Hz, 3H). ESI-MS (m/z): 553.2 [M + H]+.
Example
Synthesis of
2-((l-(((53-5-(ethoxycarbonyl)-6-(4-fluorophenyI)-6-methyl-2-(thiazol-2-yl)-3,6-dihydropyrimidin
-4-yl)methyl)-4,4-difluoropyrrolidin-3-yl)oxy)acetic acid (10-211)
Employing procedures similar to those described in Step 2 and Step 3 of Example 1, the title compound 2 mg was obtained by reacting compound (21-2) in Example 21, after subjected to a bromination reaction, with 2-((4,4-difluoropyrrolidin-3-yl)oxy)acetic acid (compound (12-4) in Example 12).
The structure was characterized as follows:
'H NMR (400 MHz, CDC13) δ 7.85 (s, 1H), 7.50-7.35 (m, 3H), 6.99 (t, J= 8.6 Hz, 2H), 4.22-4.12 (m, 1H), 3.94-3.84 (m, 3H), 3.30-3.17 (m, 3H), 3.08-2.93 (m, 2H), 2.27-1.99 (m, 1H), 1.91 (s, 3H), 1.68-1.48 (m, 1H), 0.97 (t, J= ΊΛ Hz, 3H). ESI-MS (m/z): 539.2 [M + H]+.
Example
Synthesis of
2-((l-(((jR)-5-(ethoxycarbonyl)-6-(4-fluorophenyl)-6-methyl-2-(thiazol-2-yl)-3,6-dihydropyrimidi n-4-yl)methyl)-4,4-difluoropyrrolidin-3-yl)oxy)acetic acid (10-212)
Employing procedures similar to those described in Step 2 and Step 3 of Example 1, the title compound 4 mg was obtained by reacting compound (21-2’) in Example 21, after subjected to a bromination reaction, with 2-((4,4-difluoropyrrolidin-3-yl)oxy)acetic acid (compound (12-4) in Example 12).
The structure was characterized as follows:
’H NMR (400 MHz, CDC13) δ 7.85 (s, 1H), 7.51-7.35 (m, 3H), 6.99 (t, J= 8.6 Hz, 2H), 4.23-4.09 (m, 1H), 3.94-3.82 (m, 3H), 3.33-3.17 (m, 3H), 3.13-2.90 (m, 2H), 2.27-1.98 (m, 1H), 1.91 (s, 3H), 1.68-1.45 (m, 1H), 0.97 (t, J= 7.0 Hz, 3H). ESI-MS (m/z): 539.2 [M + H]+.
Example 25 Synthesis of (£)-3-((7î)-4-(((7î)-6-(2-chloro-4-fluorophenyl)-5-(ethoxycarbonyl)-2-(thiazol-2-yl)-3,6-dihydropy rimidin-4-yl)methyl)morpholin-2-yl)acrylic acid (10-226)
o
Step 1 : Synthesis of (M-tert-butyl 2-formylmorpholine-4-carboxylate (25-2)
Under cooling in an ice bath, (S)-tert-butyl 2-(hydroxymethyl)morpholine-4-carboxylate (25-1) (1.0 g, 4.6 mmol) was dissolved in dichloromethane (10 mL), Dess-Martin reagent (2.9 g, 6.9 mmol) was added in portions, and the reaction was stirred at 15°C for 4 h. A large amount of solid precipitated in the reaction solution, which was fïltered, the filter cake was discarded, the filtrate was added with a saturated solution of sodium thiosulfate, stirred for 30 min, and the layers were settled and separated. The organic layer was washed with a saturated solution of sodium bicarbonate and brine, dried over anhydrous sodium sulfate, and concentrated under reduced pressure, to afford a crude product 980 mg. The crude product was used for the next reaction without purification.
Step 2: Synthesis of (R,£)-tert-butyl
2-(3-(tert-butoxy)-3-oxoprop-l-en-l-yl)morpholine-4-carboxylate (25-3)
At room température, NaH (60%, 182 mg, 4.55 mmol) was dispersed in dry tetrahydrofuran (7 mL), stirred for 5 min, then a solution of tert-butyl diethylphosphonoacetate (1.21 g, 4.78 mmol) in dry tetrahydrofuran (3 mL) was slowly added dropwise, and the reaction was stirred at room température for 2 h. Then, the reaction solution was added to a solution of compound (25-2) (980 mg, 4.55 mmol) in dry tetrahydrofuran (5 mL), and the reaction was stirred ovemight at room température after the dropwise addition. The solvent was distilled off under reduced pressure, and the residue was purified by column chromatography to afford a colorless oil (520 mg), which was settled at room température to allow solid précipitation, HPLC détection indicated Z/E<l/35, ee (enantiomeric excess) value is 94%. ESI-MS (m/z): 214.1 [M +1- 100]+.
Step 3: Synthesis of (JÎ,£)-3-(morpholin-2-yI)acrylic acid trifluoroacetate sait (25-4)
At room température, compound (25-3) (520 mg, 1.66 mmol) was dissolved in dichloromethane (10 mL), trifluoroacetic acid (5 mL) was added, and the reaction was performed at room température for 3 h. The insolubles were filtered off, and the filtrate was concentrated to afford a crude product of the title compound 423 mg, which was used directly for the next reaction without purification. ESI-MS (m/z): 158.1 [M + H]+.
Step 4: Synthesis of (£)-3-((JR)-4-(((J?)-6-(2-chloro-4-fluorophenyl)-5-(ethoxycarbonyl)-2-(thiazol-2-yl)-3,6-dihydropy rimidin-4-yl)methyl)morpholin-2-yl)acrylic acid (10-226)
At room température, (R)-ethyl
6-(bromomethyl)-4-(2-chloro-4-fluorophenyl)-2-(thiazol-2-yl)-l,4-dihydropyrimidine-5-carboxylate (400 mg, 0.87 mmol), compound (25-4) (423 mg, 1.66 mmol) and N,N-diisopropylethylamine (451 mg, 3.49 mmol) were added to dichloromethane (10 mL), and the reaction was performed at room température ovemight. The reaction solution was concentrated to afford a crude product, which was purified by préparative liquid chromatography to afford the title compound 200 mg. Z/E<l/35, ee value is 95.5%.
The structure was characterized as follows:
'H NMR (400 MHz, DMSO-î/6) δ 12.50 (s, 1H), 9.63 (s, 1H), 8.02 (d, J= 3.12 Hz, 1H), 7.95 (d, J = 3.16 Hz, 1H), 7.44-7.40 (m, 2H), 7.18 (td, J = 8.48, 2.64 Hz, 1H), 6.73 (dd, J = 15.80, 4.08 Hz, 1H), 6.05 (s, 1H), 5.93 (dd, J = 15.80, 1.76 Hz, 1H), 4.24-4.21 (m, 1H), 3.98-3.92(m, 5H), 3.68 (td, J = 10.92, 1.72 Hz, 1H), 2.95 (d, J = 11.12 Hz, 1H), 2.83 (d, J = 10.92 Hz, 1H), 2.40(td, J = 11.16, 2.68 Hz, 1H), 2.07 (t, J = 10.64 Hz, 1H), 1.04 (t, J= 7.08 Hz, 3H). ESLMS (m/z): 535.2 [M + H]+.
Example 26 Synthesis of (£)-3-((R)-l-(((R)-6-(2-chloro-4-fluorophenyl)-5-(ethoxycarbonyl)-2-(thiazol-2-yl)-3,6-dihydropy rimidin-4-yl)methyl)-5,5-difluoropiperidin-3-yI)acrylic acid (10-230)
The compound of Example 17 (608 mg) was separated by chiral chromatography, using the following séparation conditions: séparation column: CHIRALPAK IG 0.46 cm LD. x 15 cm L, mobile phase: hexane/EtOH/HOAc=75/25/0.1 (V/V/V), flow rate: 1.0 ml/min, wavelength: UV 254 nm, température: 35 °C. The title compound 277 mg was obtained by séparation, ee%=99.5%, Rt=l5.656 min, and the structural characterization data were as follows:
’H NMR (400 MHz, DMSO-î/6) δ 12.32 (brs, 1H), 9.55 (s, 1H), 8.00 (d, J= 3.12 Hz, 1H), 7.94 (d, J= 3.12 Hz, 1H), 7.45-7.41 (m, 2H), 7.19 (td, J = 8.48 Hz, 2.68 Hz, 1H), 6.76 (dd, J= 15.85 Hz, 6.64 Hz, 1H), 6.06 (s, 1H), 5.82 (dd, J= 15.85 Hz, 1.16 Hz, 1H), 4.08 (d, J = 16.53 Hz, 1H), 4.01 (d, J 58 = 16.53 Hz, 1H), 3.98-3.92 (m, 2H), 3.26-3.13 (m, 1H), 2.90 (brd, J= 11.08 Hz, 1H), 2.79-2.69 (m, 2H), 2.29 (t, J= 10.80 Hz, 2H), 1.94-1.77 (m, 1H), 1.04 (t, 7= 7.12 Hz, 3H). ESI-MS (m/z): 569.2 [M + ΗΓ.
Example 27 Synthesis of (E)-3-((7î)-4-(((i?)-6-(2-chloro-4-fluorophenyl)-5-(methoxycarbonyl)-2-(thiazol-2-yl)-3,6-dihydrop yrimidin-4-yl)methyl)morpholin-2-yl)acrylic acid (10-227)
F
O
At room température, (R )-methyl
6-(bromomethyl)-4-(2-chloro-4-fluorophenyl)-2-(thiazol-2-yl)-l,4-dihydropyrimidine-5-carboxylate (400 mg, 0.90 mmol) and compound (25-4) (488 mg, 1.80 mmol) in Example 25 were dissolved in dichloromethane (10 mL), A,Mdiisopropylethylamine (696 mg, 5.40 mmol) was added, and the reaction was performed at room température ovemight. The reaction solution was concentrated to give a crude product, which was purified by préparative liquid chromatography, to afford the title compound 205 mg.
The structure was characterized as follows:
'H NMR (400 MHz, DMSO-76) δ 12.44 (s, 1H), 9.68 (s, 1H), 7.98 (dd, 7 = 27.6, 3.1 Hz, 2H), 7.48-7.36 (m, 2H), 7.18 (td, 7= 8.5, 2.6 Hz, 1H), 6.73 (dd, 7= 15.8, 4.1 Hz, 1H), 6.04 (s, 1H), 5.93 (dd, 7 = 15.8, 1.6 Hz, 1H), 4.23 (d,7=9.3 Hz, 1H), 4.01-3.90 (m, 3H), 3.68 (t,7= 10.2 Hz, 1H), 3.52 (s, 3H), 2.94 (d,7= 11.0 Hz, 1H), 2.82 (d,7= 11.1 Hz, 1H), 2.41 (dd,7= 11.0, 8.6 Hz, 1H), 2.08 (t, 7 = 10.7 Hz, 1H). ESI-MS (m/z): 521.1 [M + H]+.
Example 28 Synthesis of (E)-3-((7?)-4-(((jR)-6-(2-bromo-4-fluorophenyl)-5-(methoxycarbonyl)-2-(thiazol-2-yl)-3,6-dihydro pyrimidin-4-yl)methyI)morpholin-2-yl)acrylic acid (10-229)
O
At room température, (R)-methyl
6-(bromomethyl)-4-(2-bromo-4-fluorophenyl)-2-(thiazol-2-yl)-l,4-dihydropyrimidine-5-carboxylate (400 mg, 0.82 mmol) and compound (25-4) (443 mg, 1.63 mmol) in Example 25 were dissolved in dichloromethane (10 mL), MMdi isopropyl et hy lamine (635 mg, 4.92 mmol) was then added, and the reaction was performed at room température overnight. The reaction solution was concentrated to give a crude product, which was purified by préparative liquid chromatography, to afford the title compound 200 mg.
The structure was characterized as follows:
'H NMR (400 MHz, DMSO-76) δ 12.49 (s, 1H), 9.68 (s, 1H), 8.01 (d, J= 3.1 Hz, 1H), 7.95 (d, J = 3.1 Hz, 1H), 7.57 (dd, J= 8.6, 2.6 Hz, 1H), 7.38 (dd, J= 8.7, 6.2 Hz, 1H), 7.22 (td, J= 8.5, 2.6 Hz, 1H), 6.73 (dd, J= 15.8, 4.1 Hz, 1H), 6.02 (s, 1H), 5.93 (dd, J= 15.8, 1.7 Hz, 1H), 4.27-4.19 (m, 1H), 4.01-3.89 (m, 3H), 3.68 (t, J= 10.2 Hz, 1H), 3.52 (s, 3H), 2.94 (d, J= 11.0 Hz, 1H), 2.83 (d, J= 11.3 Hz, 1H), 2.41 (dd, J= 11.1, 8.4 Hz, 1H), 2.08 (t, J= 10.6 Hz, 1 H). ESI-MS (m/z): 567.1 [M + H]+.
Example 29 Synthesis of (£)-3-((7?)-4-(((R)-6-(2-bromo-3-fluorophenyl)-5-(methoxycarbonyl)-2-(thiazol-2-yl)-3,6-dihydro pyrimidin-4-yl)methyl)morpholin-2-yl)acrylic acid (10-236)
The title compound 25 mg was obtained employing procedures similar to those described in Example 27, and replacing (R)-methyl
6-(bromomethyl)-4-(2-chloro-4-fluorophenyl)-2-(thiazol-2-yl)-l,4-dihydropyrimidine-5-carboxylate with (R)-methyl
4-(2-bromo-3-fluorophenyl)-6-(bromomethyl)-2-(thiazol-2-yl)-l,4-dihydropyrimidine-5-carboxylate.
The structure was characterized as follows:
‘H NMR (400 MHz, DMSO-î/6) δ 9.70 (s, 1H), 8.02 (d, J = 3.2 Hz, 1H), 7.95 (d, J = 3.2 Hz, 1H), 7.39 (m, J= 7.9, 5.5 Hz, 1H), 7.31-7.17 (m, 2H), 6.74 (dd, J= 15.8, 4.1 Hz, 1H), 6.09 (s, 1H), 5.93 (d, J= 15.9 Hz, 1H), 4.27-4.19 (m, 1H), 4.02 (m, J= 16.8, 9.4 Hz, 1H), 3.95 (d, .7=7.7 Hz, 2H), 3.68 (td, J= 11.4, 2.5 Hz, 1H), 3.51 (s, 3H), 2.99-2.92 (m, 1H), 2.83 (d, J= 11.4 Hz, 1H), 2.42 (td, 7= 11.4, 3.3 Hz, 1H), 2.09 (t, J= 10.6 Hz, 1H), 1.41 (s, 1H). ESI-MS (m/z): 567.0 [M + H]+.
Example 30 Synthesis of (JE)-3-((R)-4-(((R)-6-(2-chloro-3,4-difluorophenyl)-5-(methoxycarbonyl)-2-(thiazol-2-yl)-3,6-dihy dropyrimidin-4-yl)methyI)morpholin-2-yl)acrylic acid (10-237)
The title compound 25 mg was obtained employing procedures similar to those described in Example 27, and replacing (R)-methyl
6-(bromomethyl)-4-(2-chloro-4-fluorophenyl)-2-(thiazol-2-yl)-l,4-dihydropyrimidine-5-carboxylate with (R)-methyl
6-(bromomethyl)-4-(2-chloro-3,4-difluorophenyl)-2-(thiazol-2-yl)-l,4-dihydropyrimidine-5-carboxyla te.
The structure was characterized as follows:
'H NMR (400 MHz, CDC13) δ 7.79 (d, J = 3.1 Hz, 1H), 7.45 (d, J= 3.1 Hz, 1H), 7.12-6.94 (m, 2H), 6.78 (dd, J=15.7, 4.0 Hz, 1H), 6.11 (s, 1H), 6.06 (d, J = 15.6 Hz, 1H), 4.53 (s, 1H), 4.31 (d,J = 15.8 Hz, 1H), 4.13 (d, J = 15.3 Hz, 1H), 4.01 (s, 2H), 3.54 (s, 3H), 3.27 (d, J = 70.2 Hz, 2H), 2.76 (s, 1H). ESI-MS (m/z): 539.2 [M + H]+.
Example
Synthesis of (£)-3-((Tf)-4-(((Æ)-6-(2-bromo-3,4-difluorophenyl)-5-(methoxycarbonyl)-2-(thiazol-2-yl)-3,6-dihy dropyrimidin-4-yI)methyl)morpholin-2-yl)acrylic acid (10-238)
The title compound 70 mg was obtained employing procedures similar to those described in Example 27, and replacing (R)-methyl
6-(bromomethyl)-4-(2-chloro-4-fluorophenyl)-2-(thiazol-2-yl)-l,4-dihydropyrimidine-5-carboxylate with (R) -methyl
4-(2-bromo-3,4-difluorophenyl)-6-(bromomethyl)-2-(thiazol-2-yl)-l,4-dihydropyrimidine-5-carboxyla te.
The structure was characterized as follows:
‘H NMR (400 MHz, CDC13) δ 9.66 (s, IH), 7.85 (d, J = 3.1 Hz, 1H), 7.47 (d, J = 3.1 Hz, 1H), 7.12 - 7.01 (m, 2H), 6.92-6.87 (m, 1H), 6.19 (s, 1H),6.13-6.09 (m, 1H), 4.50-4.35 (m, 1H), 4.20-4.05 (m, 3H), 4.00-3.80 (m, 2H), 3.62 (s, 3H), 3.05-2.75 (m, 2H), 2.71-2.55 (m,lH), 2.30-2.15 (m, 1H). ESI-MS (m/z): 584.0 [M + H]+.
Example
Synthesis of (E)-3-((R)-4-(((5)-6-(3,4-difluoro-2-methylphenyl)-5-(methoxycarbonyl)-2-(thiazol-2-yl)-3,6-dihy dropyrimidin-4-yl)methyl)morpholin-2-yl)acrylic acid (10-239)
The title compound 22 mg was obtained employing procedures similar to those described in Example 27, and replacing (R)-methyl
6-(bromomethyl)-4-(2-chloro-4-fluorophenyl)-2-(thiazol-2-yl)-l,4-dihydropyrimidine-5-carboxylate with (5)-methyl
6-(bromomethyl)-4-(3,4-difluoro-2-methylphenyl)-2-(thiazol-2-yl)-l,4-dihydropyrimidine-5-carboxyla te.
The structure was characterized as follows:
‘HNMR (400 MHz, CDC13) δ 7.93 (dd,J=3.2, 1.5 Hz, 1H), 7.72 (t, J=2.7 Hz, 1H), 7.02 (m, J = 7.2, 3.3 Hz, 2H), 6.82 (m, J= 15.8, 4.2 Hz, 1H), 6.16-5.96 (m, 1H), 5.91 (s, 1H), 4.37 (d, J= 9.8 Hz, 1H), 4.20-3.75 (m, 4H), 3.60 (s, 3H), 3.14-2.64 (m, 2H), 2.55 (d, J = 2.4 Hz, 3H), 2.60-2.41 (m, J = 11.7, 5.8 Hz, 1H), 2.29-2.20 (m, J= 10.6 Hz, 1H). ESI-MS (m/z): 519.2 [M + H]+.
Example 33 Synthesis of (E)-3-((R)-4-(((JR)-6-(2-chloro-3-fluorophenyl)-5-(methoxycarbonyl)-2-(thiazol-2-yl)-3,6-dihydrop yrimidin-4-yl)methyl)morpholin-2-yl)acrylic acid (10-240)
The title compound 36 mg was obtained employing procedures similar to those described in
Example 27, and replacing (R)-methyl
6-(bromomethyl)-4-(2-chloro-4-fluorophenyl)-2-(thiazol-2-yl)-l,4-dihydropyrimidine-5-carboxylate with (R)-methyl
6-(bromomethyl)-4-(2-chloro-3-fluorophenyl)-2-(thiazol-2-yl)-l,4-dihydropyrimidine-5-carboxylate.
The structure was characterized as follows:
’H NMR (400 MHz, CDC13) δ 7.84 (d, J= 3.1 Hz, 1H), 7.48 (s, 1H), 7.22-7.16 (m, J = 16.5 Hz, 2H), 7.06 (s, 1H), 6.89 (d, J= 15.7 Hz, 1H), 6.25 (s, 1H), 6.11 (d, J= 15.7 Hz, 1H), 4.50 (s, 1H), 4.22 (d, J = 15.6 Hz, 1H), 4.03 (dd, J = 31.8, 9.3 Hz, 3H), 3.60 (s, 3H), 3.04 (s, 2H), 2.70 (s, 1H), 2.35 (s, 1H). ESI-MS (m/z): 521.2 [M + H]+.
Example 34 Synthesis of (Æ)-3-((7?)-4-(((jR)-6-(2,4-dichlorophenyl)-5-(methoxycarbonyl)-2-(thiazol-2-yl)-3,6-dihydropyrim idin-4-yl)methyl)morpholin-2-yl)acrylic acid (10-241)
Cl
o
The title compound 400 mg was obtained employing procedures similar to those described in Example 27, and replacing (R)-methyl
6-(bromomethyl)-4-(2-chloro-4-fluorophenyl)-2-(thiazol-2-yl)-l,4-dihydropyrimidine-5-carboxylate with (R)-methyl
6-(bromomethyl)-4-(2,4-dichlorophenyl)-2-(thiazol-2-yl)-l,4-dihydropyrimidine-5-carboxylate.
The structure was characterized as follows:
'H NMR (400 MHz, CDC13) δ 9.64 (s, 1H), 7.86 (d, J = 3.1 Hz, 1H), 7.47 (d, J = 3.1 Hz, 1H), 7.42 (d, J = 2.1 Hz, 1H), 7.28 (d, J= 6.5 Hz, 1H), 7.19 (dd, J= 8.4, 2.1 Hz, 1H), 6.93 (dd, J= 15.7, 4.1 Hz, 1H), 6.22 (s, 1H), 6.12 (dd, J= 15.7, 1.8 Hz, 1H), 4.40 (d, J= 9.9 Hz, 1H), 4.12-4.01 (m, 2H), 3.96-3.85 (m, 2H), 3.62 (s, 3H), 2.89-2.75 (m, 2H), 2.60 (td, J= 10.9, 2.8 Hz, 1H), 2.23 (t, J= 10.7 Hz, 1H). ESI-MS (m/z): 537.2 [M + H]+.
Example 35 Synthesis of (£)-3-((7î)-4-(((»S)-6-(4-fluoro-2-methylphenyl)-5-(methoxycarbonyl)-2-(thiazol-2-yl)-3,6-dihydro pyrimidin-4-yl)methyl)morpholin-2-yl)acrylic acid (10-242)
The title compound 80 mg was obtained employing procedures similar to those described in
Example 27, and replacing (R)-methyl
6-(bromomethyl)-4-(2-chloro-4-fluorophenyl)-2-(thiazol-2-yl)-l,4-dihydropyrimidine-5-carboxylate with (S)-methyl
6-(bromomethyl)-4-(4-fluoro-2-methylphenyl)-2-(thiazol-2-yl)-l,4-dihydropyrimidine-5-carboxylate.
The structure was characterized as follows:
Ή NMR (400 MHz, CDC13) δ 9.59 (s, IH), 7.82 (d, J= 3.1 Hz, 1H), 7.44 (s, 1H), 7.13 (t, J= 7.1 Hz, 1H), 6.90 (t, J= 4.1 Hz, 2H), 6.80 (t, J= 3.6 Hz, 1H), 6.12 (dd, J = 15.7, 1.2 Hz, 1H), 5.96 (s, 1H), 4.40 (s, 1H), 4.05 (d, J= 11.3 Hz, 2H), 3.93 (d, J= 16.0 Hz, 2H), 3.61 (s, 3H), 2.81 (s, 2H), 2.63 (s, 3H), 2.57 (s, 1H), 2.20 (s, 1H). ESI-MS (m/z): 501.2 [M + H]+.
Example
Synthesis of (E)-3-((R)-4-(((lî)-6-(2-chloro-4-fluorophenyl)-5-(methoxycarbonyl)-2-(4-methylthiazol-2-yl)-3,6dihydropyrimidin-4-yl)methyl)morpholin-2-yl)acrylic acid (10-243)
The title compound 400 mg was obtained employing procedures similar to those described in Example 27, and replacing (R)-methyl
6-(bromomethyl)-4-(2-chloro-4-fluorophenyl)-2-(thiazol-2-yl)-l,4-dihydropyrimidine-5-carboxylate with (R)-methyl
6-(bromomethyl)-4-(2-methyl-4-fluorophenyl)-2-(4-methylthiazol-2-yl)-l,4-dihydropyrimidine-5-carb oxylate.
The structure was characterized as follows:
*H NMR (400 MHz, CDC13) δ 9.65 (s, 1H), 7.29-7.25 (m, 1H), 7.13 (dd, J= 8.6, 2.6 Hz, 1H), 7.01(s, 1H), 6.93-6.88 (m, 2H), 6.19 (s, 1H), 6.10 (d, J= 15.7 Hz, 1H), 4.38 (s, 1H), 4.06 (d, J = 12.5
Hz, 2H), 3.90-3.86 (m, 2H), 3.60 (s, 3H), 2.81 (s, 2H), 2.60 (s, 1H), 2.45 (s, 3H), 2.20 (s, 1H). ESLMS (m/z): 535.1 [M + H]+.
Example 37 Synthesis of (E)-3-((i?)-4-(((Æ)-6-(2-chloro-4-fluorophenyl)-5-(methoxycarbonyl)-2-(4-(trifluoromethyl)thiazol -2-yl)-3,6-dihydropyrimidin-4-yl)methyI)morpholin-2-yl)acrylic acid (10-244)
F
O
The title compound 80 mg was obtained employing procedures similar to those described in Example 27, and replacing (R)-methyl
6-(bromomethyl)-4-(2-chloro-4-fluorophenyl)-2-(thiazol-2-yl)-l,4-dihydropyrimidine-5-carboxylate with (R)-methyl
6-(bromomethyl)-4-(2-chloro-4-fluorophenyl)-2-(4-(trifluoromethyl)thiazol-2-yl)-l,4-dihydropyrimidi ne-5-carboxylate.
The structure was characterized as follows:
'H NMR (400 MHz, CDC13) δ 9.70 (s, 1H), 7.86 (s, 1H), 7.27 (s, 1H), 7.17 (dd, J = 8.6, 2.6 Hz, 1H), 6.96 (ddd, J = 11.3, 10.6, 3.4 Hz, 2H), 6.24 (s, 1H), 6.18 (d, J = 15.4 Hz, 1H), 4.38 (d, J= 10.4 Hz, 1H), 4.19-4.10 (m, 1H), 4.02 (d, J= 11.1 Hz, 1H), 3.83 (dd, J = 13.3, 9.8 Hz, 2H), 3.63 (s, 3H), 2.95 (d, J= 10.8 Hz, 1H), 2.66 (d, J= 11.6 Hz, 1H), 2.51-2.33 (m, 2H). ESI-MS (m/z): 589.1 [M + H]+.
Example
Synthesis of (E)-3-((ff)-4-(((5)-6-(2-(difluoromethyl)-4-fluorophenyl)-5-(methoxycarbonyl)-2-(thiazol-2-yl)-3,6
-dihydropyrimidin-4-yl)methyl)morpholin-2-yl)acrylic acid (10-245)
The title compound 70 mg was obtained employing procedures similar to those described in
Example
27, and replacing (R)-methyl
6-(bromomethyl)-4-(2-chloro-4-fluorophenyl)-2-(thiazol-2-yl)-l,4-dihydropyrimidine-5-carboxylate with (5)-methyl
6-(bromomethyl)-4-(2-(difluoromethyl)-4-fluorophenyl)-2-(thiazol-2-yl)-l,4-dihydropyrimidine-5-car boxylate.
The structure was characterized as follows:
'H NMR (400 MHz, CDC13) δ 9.68 (s, IH), 7.83 (d, J = 3.1 Hz, 1H), 7.69-7.55 (m, 1H), 7.46 (d, J = 2.9 Hz, 1H), 7.40 (d, J = 7.5 Hz, 1H), 7.20 (s, 1H), 7.08 (t, J = 7.5 Hz, 1H), 6.96 (dd, J = 15.7, 3.9 Hz, 1H), 6.15 (dd, J= 15.7, 1.5 Hz, 1H), 6.08 (s, 1H), 4.40 (d, J= 5.0 Hz, 1H), 4.16 (d, J = 17.6 Hz, 1H), 4.00 (d, J= 11.4 Hz, 1H), 3.93-3.80 (m, 2H), 3.62 (s, 3H), 2.93 (d, J= 9.2 Hz, 1H), 2.65 (d, J = 9.7 Hz, 1H), 2.46 (t, J= 11.1 Hz, 1H), 2.36 (d, J= 9.6 Hz, 1H).ESI-MS (m/z): 537.2 [M + H]+.
Example
Synthesis of (£)-3-((R)-4-(((R)-6-(2-chloro-4-fluorophenyl)-5-(methoxycarbonyl)-2-(thiazol-2-yl)-3,6-dihydrop yrimidin-4-yl)methyl)morpholin-2-yl)but-2-enoic acid (10-246)
Step 1: Synthesis of (S)-4-(tert-butoxycarbonyI)morpholine-2-carboxylic acid (39-2)
At room température, (S)-tert-butyl 2-(hydroxymethyl)morpholine-4-carboxylate (39-1) (5 g, 23.01 mmol) was dissolved in acetone (250 mL), and a saturated solution of sodium bicarbonate (75 mL) was added. The reaction was cooled to 0°C in an ice bath, sodium bromide (474 mg, 4.6 mmol) and tetramethylpiperidinyloxy (65 mg, 0.46 mmol) were added, followed by slow addition of trichloroisocyanuric acid (10.7 g, 46.03 mmol), and the reaction was performed at room température ovemight. The reaction was added with isopropanol (15 mL), stirred for 30 min, fdtered with suction, and the filter cake was discarded. The fïltrate was concentrated, added with a saturated solution of sodium carbonate (75 mL), extracted with ethyl acetate (50 mL><2), and the organic phase was discarded. The aqueous phase was neutralized with 6N hydrochloric acid, and extracted with ethyl acetate (50 mL*3). The organic phase was combined, dried over anhydrous sodium sulfate, the drying agent was fdtered off, and the fïltrate was concentrated to afford the title compound 3 g, which was used directly for the next reaction without purification. ESI-MS (m/z): 176.1 [M+l-56]+.
Step 2: Synthesis of (S)-tert-butyl 2-(methoxy(methyl)carbamoyl)morpholine-4-carboxylate (39-3)
At room température, compound (39-2) (2 g, 8.65 mmol) was dissolved in dichloromethane (20 mL), 2-(7-azabenzotriazol-l-yl)-N,N,N',N'-tetramethyluronium hexafluorophosphate (3.95 g, 10.38 mmol) was added, and the reaction was performed at room température for 30 min. W-diisopropylethylamine (2.57 g, 19.89 mmol) and Ν,Ο-dimethylhydroxylamine hydrochloride (1.01 g, 10.38 mmol) were added, and the reaction was performed ovemight. The reaction was added with water (20 mL), and extracted with dichloromethane (20 mLx3). The organic phase was combined, which was successively washed with 0.05N hydrochloric acid (20 mL), a saturated solution of sodium bicarbonate, water and a saturated solution of sodium chloride, and dried over anhydrous sodium sulfate, the drying agent was filtered off, and the fdtrate was concentrated to afford the title compound (2 g), which was used directly for the next reaction without purification. ESI-MS (m/z): 219.1 [M+l-56]+.
Step 3: Synthesis of (5)-teri-butyl 2-acetylmorpholine-4-carboxylate (39-4)
At room température, compound (39-3) (2 g, 7.29 mmol) was dissolved in anhydrous tetrahydrofuran (40 mL), cooled to -20°C under protection of nitrogen, methyl magnésium bromide (3M, 7.29 mL, 21.87 mmol) was added dropwise, and the reaction was performed at -20°C of 4h. The reaction was added with saturated ammonium chloride (20 mL), and extracted with ethyl acetate (20 mL*3). The organic phase was combined, successively washed with 0.05N hydrochloric acid (20 mL), a saturated solution of sodium bicarbonate, water and a saturated solution of sodium chloride, and dried over anhydrous sodium sulfate, the drying agent was filtered off, and the filtrate was concentrated to afford the title compound (1.5 g), which was used directly for the next reaction without purification. ESI-MS (m/z): 174.1 [M+l-56]+.
Step 4: Synthesis of (R,.E)-teri-butyl
2-(4-(tert-butoxy)-4-oxobut-2-en-2-yl)morpholine-4-carboxylate (39-5)
The title compound (1.1 g) was obtained by employing procedures similar to those described in Step 2 of Example 25, and replacing (S)-teri-butyl 2-formylmorpholine-4-carboxylate with compound (39-4). ESI-MS (m/z): 172.1 [M+l-100-56]+.
Step 5: Synthesis of (j?,E)-3-(morpholin-2-yl)but-2-enoic acid trifluoroacetate sait (39-6)
The title compound (491 mg) was obtained by employing procedures similar to those described in Step 3 of Example 25, and replacing (7?,£)-ierLbutyl 2-(3-(terributoxy)-3-oxoprop-l-en-l-yl)morpholine-4-carboxylate with compound (39-5). ESI-MS (m/z): 172.1 [M + H]+.
Step 6: Synthesis of (Æ)-3-((R)-4-(((lî)-6-(2-chloro-4-fluorophenyl)-5-(methoxycarbonyl)-2-(thiazol-2-yl)-3,6-dihydrop yrimidin-4-yl)methyl)morpholin-2-yl)but-2-enoic acid (10-246)
The title compound (180 mg) was obtained by employing procedures similar to those described in Example 27, and replacing (7?,E)-3-(morpholin-2-yl)acrylic acid trifluoroacetate sait with compound (39-6).
The structure was characterized as follows:
‘H NMR (400 MHz, CDC13) δ 7.85 (d, J= 3.1 Hz, 1H), 7.51 (d, J= 3.0 Hz, 1H), 7.33 (dd, J = 8.6, 2.0 Hz, 1H), 7.14 (dd, 7= 8.5, 2.6 Hz, 1H), 6.95 (td, J = 8.3, 2.6 Hz, 1H), 6.18 (s, 1H), 6.04 (s, 1H), 4.37-4.22 (m, 2H), 4.10-4.07 (m, 2H), 3.62 (s, 3H), 3.27 (s, 1H), 2.83 (s, 1H), 2.43 (s, 1H), 2.08 (s, 3H). ESI-MS (m/z): 535.1 [M + H]+.
The additional compounds can be synthesized by methods similar to those in the above Examples.
In the following pharmacological tests, comparison between the compound of the présent invention and compound GLS4 (Control compound 1), the compound of Example 9 in WO2015144093 (Control compound 2) and the compound of Example 5 in WO2014037480 (Control compound 3) mentioned in the “Background of the invention” section of the présent application was conducted, so as to adequately illustrate the advantages of the examples of the présent invention.
Experimental Example 1 : biological activity assay
The inhibitory effect of the compounds of the présent invention on hepatitis type B virus (HBV) was tested. Cytotoxicity and effects on nucleic acid (DNA) réplication level of the virus (HBV) of the compounds of the présent invention were tested at a virus-cell level.
Test method
HepG2.2.15 cells in the logarithmic growth phase were plated in a 96-well plate at a cell concentration of 40 cells per pL. The cells were incubated in a 5% CO2 incubator at 37°C for 3 days; and the culture medium was replaced with a new one (200 pL/well) before adding compounds. The concentration of the stock solution of each Example compound is 200 μΜ. With 200 μΜ as the highest concentration, the solution was diluted as varions concentrations with DMSO, and 1 μΕ of a test compound was added into a corresponding culture medium well, and the final test concentrations 68 of the compound were 0.06, 0.24, 0.98, 3.9, 15.6, 62.5, 250, 1000 nM (used for calculating the half effective concentration (EC50)). The test results are shown in Table 1-1 and Table 1-2.
Table 1-1
Compound No. EC50 (nM)
10-7 of Example 6 102.3
10-34 of Example 9 13.2
10-36 of Example 10 98.1
10-40 of Example 11 6.2
10-42 of Example 12 164.5
10-88 of Example 1 24.7
Isomer B of Example 4 34.7
Isomer A of Example 4 35.1
10-95 of Example 5 314.4
10-136 of Example 16 110.4
10-162 of Example 15 213.1
10-180 of Example 14 23.5
10-182 of Example 13 61.8
As shown in Table 1-1, the test compounds hâve potent inhibitory activity on hepatitis type B 5 virus (HBV).
Table 1-2
Compound No. EC50 (nM)
Control compound 2 89
10-226 of Example 25 9.2
10-227 of Example 27 10.0
10-229 of Example 28 8.3
10-230 of Example 26 11.2
10-237 of Example 30 10.9
10-238 of Example 31 10.2
10-239 of Example 32 28.9
10-240 of Example 33 21.1
As shown in Table 1 -2, the anti-HBV activity of the compounds having a single configuration of the présent invention is about 10 times of that of Control compound 2, indicating the compounds of the présent invention hâve stronger inhibitory activity on hepatitis type B virus (HBV).
The remaining compounds of the présent invention hâve inhibitory activity similar to the above.
Experimental Example 2: cytotoxicity détection
The test compounds were diluted to 30 mM with DMSO, with 30 rnM as the highest concentration, the compounds were subjected to three-fold serial dilution to various concentrations. 0.2 pL of the compounds at various concentrations were added to a 384-well plate, HepG2.2.15 cells having a concentration of 2000 cells per 50 pL were added to each well, and the highest concentration 10 of the test compounds was 150 pM. 1 pL of DMSO was added to corresponding wells for control. The plate was incubated in a 5% CO2 incubator at 37°C for 4 days; and 50 pL of CellTiter-Glo was added to each well after 4 days. The plate was read for détection, and a half cytotoxic concentration (CC50) was calculated. The test results are as shown in Table 2.
Table 2
Compound No. CC50 (μΜ)
10-7 of Example 6 129.5
10-34 of Example 9 79.6
10-36 of Example 10 >150.0
10-40 of Example 11 73.5
10-42 of Example 12 >150.0
10-88 of Example 1 61.1
Isomer B of Example 4 51.3
Isomer A of Example 4 43.9
10-95 of Example 5 131.3
10-136 of Example 16 122.3
10-162 of Example 15 >150.0
10-180 of Example 14 >150.0
10-182 of Example 13 >150.0
10-226 of Example 25 >150.0
10-230 of Example 26 137.0
10-227 of Example 27 >150.0
10-229 of Example 28 >150.0
10-237 of Example 30 >150.0
10-238 of Example 31 >150.0
10-239 of Example 32 >150.0
10-240 of Example 33 >150.0
The tested compounds of the présent invention hâve relatively low cytotoxicity and relatively high safety. The remaining compounds of the présent invention hâve similar safety characteristics.
Experimental Example 3: hERG Inhibitory effect assay
In cardiac muscle cells, hERG (human Ether-a-go-go Related Gene) coded potassium channel 5 médiates delayed rectifier potassium currents (IKr). IKr inhibition is the most important mechanism of QT interval prolongation caused by a drug. In a hERG test, the évaluation criterion is as follows: if IC50 of a compound is greater than ΙΟ μΜ, then the compound is determined as not having any inhibitory effect on the hERG.
Employing the Predictor™ hERG Fluorescence Polarization Assay, the effect of the compounds 10 on a hERG potassium ion channel was detected. The test results are as shown in Table 3 as follows:
Table 3
Compound No. IC50 value (μΜ)
Control compound 1 2.85
Control compound 2 l~10
10-36 of Example 10 >10
10-40 of Example 11 >10
10-42 of Example 12 >10
10-88 of Example 1 >10
Isomer B of Example 4 >10
Isomer A of Example 4 >10
10-93 of Example 2 >10
10-95 of Example 5 >10
10-226 of Example 25 >10
10-227 of Example 27 >10
10-230 of Example 26 >10
According to the above data, control compound 1 and control compound 2 hâve cardiotoxicity at different degrees (having a significant inhibitory effect on the hERG potassium ion channel in the cardiac muscle cells), and thus hâve a potential risk of inducing arrhythmia; while the tested compounds of the présent invention do not hâve an inhibitory effect on the hERG potassium ion channel, and thus do not hâve significant cardiotoxicity, thereby achieving higher safety. The remaining compounds of the présent invention hâve similar safety.
Experimental Example 4: in vivo study on pharmacokinetics (PK) in rats
The test compounds were administrated to male SD rats by intravenous (iv) and by gavage (po), respectively, the doses of the iv and po administration were respectively 1 mg/kg and 2 mg/kg, the solvent System for iv administration was 5% DMSO: 5% solutol: 90% physiological saline, and the solvent System for po administration was 0.5% MC. Blood was collected at multiple time points after iv administration and po administration for the PK study. Plasma samples and liver tissue samples were subjected to protein précipitation, followed by LC-MS/MS analysis. The mass spectrometer was API 5500, and the liquid chromatograph is a Waters ACQUITYI CLASS System; the chromatographie column was an Agela ASB Cj8 column (2.1 mm x 50 mm, 1.9 pm); mobile phase A was water+0.1% formic acid, and phase B was acetonitrile; the flow rate was 0.4 mL/min, and the column température was 40 °C. The ion source was an ESI source in a positive ion mode, and the scanning manner is multiple reaction monitoring (MRM). The test results are shown in the following table:
Table 4
Compound No. Administration route Dosage AUCjnf c v-max
mg/kg h*ng/ml ng/ml
Control compound 2 iv 1.00 2150 2470
10-226 of Example 25 iv 1.00 2400 2890
According to the data in Table 4, compared with Control compound 2, the compound of the présent invention (e.g., 10-226 of Example 25) intravenously administered at 1.00 mg/kg has better drug exposure (AUCINF) and higher blood-drug concentration (Cmax) in blood in vivo, and thus possesses better pharmacokinetic parameters.
Table 5 Pharmacokinetic parameters in plasma
Compound No. Administration route Dosage AUCinf c vmax
mg/kg h*ng/ml ng/ml
Control compound 2 po 2.00 897 1250
10-226 of Example 25 po 2.00 2290 2180
According to the data in Table 5, compared with Control compound 2, the compound of the présent invention (e.g., 10-226 of Example 25) administered by gavage at 2.00 mg/kg has better drug exposure (AUC^f) and higher blood-drug concentration (Cmax) in blood in vivo, and thus possesses better absorption properties.
Table 6 Pharmacokinetic parameters in liver
Compound No. Administration route Dosage aucinf c vmax
mg/kg h*ng/ml ng/ml
Control compound 2 PO 2.00 1490 547
10-226 of Example 25 Ρθ 2.00 3030 1690
According to the data in Table 6, compared with Control compound 2, the compound of the présent invention (e.g., 10-226 of Example 25) administered by gavage at 2.00 mg/kg has better drug exposure (AUCjnf) and higher blood-drug concentration (Cmax) in liver in vivo, which further indicates that the compound of the présent invention (e.g., 10-226 of Example 25) has better absorption properties. In addition, the bioavailability (F) of the compound of the présent invention (e.g., 10-226 of Example 25) administered by gavage at 2.00 mg/kg is 47.6%, which is significantly higher than that (20.9%) of Control compound 2.
Table 7
Compound No. Administration route Sample Dosage AUCinf c ^max
mg/kg h*ng/ml ng/ml
Control compound 2 po plasma 2.00 897 1250
liver 2.00 1490 547
10-230 of Example 26 PO plasma 2.00 236 179
liver 2.00 2340 1520
As shown in Table 7, the amount of exposure of the compound of the présent invention (e.g., 10-230 of Example 26) in liver in vivo is about 10 times of that in plasma, and the blood-drug concentration in liver in vivo is about 10 times of that in plasma; while the amount of exposure of control compound 2 in liver in vivo is about 1.5 times of that in plasma, and the blood-drug concentration in liver in vivo is about 0.5 time of that in plasma. The above indicates that the compound of the présent invention has excellent drug exposure (AUCjnf) and blood-drug concentration (Cmax) in liver in vivo, and thus has liver targeting properties.
Experimental Example 5: in vivo study on pharmacokinetics (PK) in Beagle dogs
The test compounds were administrated to male Beagle dogs by intravenous (iv) and by gavage (po), respectively, the doses of the iv and po administration were respectively 0.5 mg/kg and 2.5 mg/kg, the solvent System for iv administration was 5% DMSO: 5% solutol: 90% physiological saline, and the solvent System for po administration was 0.5% MC. Blood was collected at multiple time points after iv administration and po administration for the PK study. Plasma samples were subjected to protein précipitation, followed by LC-MS/MS analysis. The mass spectrometer was API 5500, and the liquid chromatograph was a Waters ACQUIT YI CL AS S System; the chromatographie column was an Agela ASB C18 column (2.1 mm * 50 mm, 1.9 pm); mobile phase A was water+0.1% formic acid, and phase B was acetonitrile; the flow rate was 0.4 mL/min, and the column température was 40°C. The ion source was an ESI source in a positive ion mode, and the scanning manner is multiple reaction monitoring (MRM). The test results are shown in the foliowing table:
Table 8
Compound No. Administration route Dosage AUCinf AUCiast c vmax
mg/kg h*ng/ml h*ng/ml ng/ml
Control compound 3 iv 0.50 1130 1120 2130
10-227 of Example 27 iv 0.50 8750 8690 2310
According to the data in Table 8, compared with Control compound 3, the compound of the présent invention (e.g., 10-227 of Example 27) intravenously administered at 0.50 mg/kg has better drug exposure (AUCjnf) and higher blood-drug concentration (Cmax) in blood in vivo, and thus possesses better pharmacokinetic parameters.
Table 9
Compound No. Administration route Dosage AUCINF AUC|ast c N- max
mg/kg h*ng/ml h*ng/ml ng/ml
Control compound 3 po 2.50 2360 2330 1210
10-227 of Example 27 PO 2.50 33200 32900 7200
As shown in Table 9, the amount of exposure in plasma of the compound of the présent invention (e.g., 10-227 of Example 27) administered by gavage at 2.50 mg/kg is about 14 times of that of control compound 3, and the blood-drug concentration is about 6 times of that of control compound 3, which further indicates that the compounds of the présent invention (e.g., 10-227 of Example 27) hâve better absorption properties. In addition, the bioavailability (F) of the compound of the présent invention (e.g., 10-227 of Example 27) administered by gavage at 2.50 mg/kg is 75.9%, which is significantly better than that (41.7%) of Control compound 3.
Experimental Example 6: in vivo study on pharmacokinetics (PK) in cynomolgus macaques
The test compounds were administrated to male cynomolgus macaques by intravenous (iv) and by gavage (po), respectively, the doses of the iv and po administration were respectively 0.5 mg/kg and 2.5 mg/kg, the solvent System for iv administration was 5% DMSO: 5% solutol: 90% physiological saline, and the solvent system for po administration was 0.5% MC. Blood was collected at multiple time points after iv administration and po administration for the PK study. Plasma samples were subjected to protein précipitation, followed by LC-MS/MS analysis. The mass spectrometer was API 5500, the liquid chromatograph was a Waters ACQUITY I CLASS system; the chromatographie column was an Agela ASB C18 column (2.1 mm * 50 mm, 1.9 pm); mobile phase A was water+0.1% formic acid, and phase B was acetonitrile; the flow rate was 0.4 mL/min, and the column température was 40°C. The ion source was an ESI source in a positive ion mode, and the scanning manner is multiple reaction monitoring (MRM). The test results are shown in the following table:
Table 10
Compound No. Administration route Dosage AUCjnf AUClast c vma.x
mg/kg h*ng/ml h*ng/ml ng/ml
Control compound 3 iv 0.50 623 623 1607
10-227 of Example 27 iv 0.50 2463 2441 1673
According to the data in Table 10, in the study on PK in cynomolgus macaques, compared with Control compound 3, the compound of the présent invention (e.g., 10-227 of Example 27) intravenously administered at 0.50 mg/kg has better drug exposure (AUCjnf) and higher blood-drug concentration (Cmax) in blood in vivo, and thus possesses better pharmacokinetic parameters.
Table 11
Compound No. Administration route Dosage AUCiNF AUClast c vmax
mg/kg h*ng/ml h*ng/ml ng/ml
Control compound 3 po 2.50 211 208 32
10-227 of Example 27 po 2.50 4566 4417 1069
As shown in Table 11, in the study on PK in cynomolgus macaques, the amount of exposure in plasma of the compound of the présent invention (e.g., 10-227 of Example 27) administered by gavage at 2.50 mg/kg is about 21 times of that of control compound 3, and the blood-drug concentration is about 33 times of that of control compound 3, which further indicates that the compound of the présent invention (e.g., 10-227 of Example 27) has better absorption properties. In addition, the bioavailability (F) of the compound of the présent invention (e.g., 10-227 of Example 27) administered by gavage at 2.50 mg/kg is 37.2%, which is significantly better than that (6.77%) of Control compound 3.
Experimental Example 7: study on CYP450 enzyme induction
Cell recovery
A test tube of HepG2 C3A / pCYP3A4-Luc, C8 cells was taken out of a liquid nitrogen tank, the cells were recovered in a stérile water bath at 37°C; and the test tube was gently shaken until ice completely melted. The recovered cells were transferred to a 15 mL stérile centrifùge tube, and 5-10 mL pre-heated basal cell culture medium at 37°C was added; the cells were naturally settled for 2 minutes and centrifuged (1000 rpm) for 8 minutes. The supematant was discarded, and the cells were re-suspended with 10 mL pre-heated cell culture medium. The cell suspension was transferred to a 10 cm cell-culture dish and incubated in a 5% CO2 incubator at 37°C. The original cell culture medium was replaced with a sélective cell culture medium after 24 hours.
Cell prolifération
The cells were digested after growing in 80%-90% of the culture dish, and then transferred to a 15 mL stérile centrifuge tube. Centrifugation was performed at 1000 rpm for 8 minutes, and the cells were collected. The supematant was discarded, and the cells were re-suspended with 3 mL pre-heated complété medium. The cell suspension was subcultured by a ratio of 1:3 or 1:5.
CYP3A4 induction test
A cell plate was prepared on the first day. 5 pL 1 xMatrigel was added into a 3 84-well white cell plate, and centrifugation was performed at 600 rpm for 1 minute. The culture dish was taken out, the culture medium was discarded, the cells were washed with 1 mL PB S which was then sucked out, 2 mL of 0.25% pancreatin was added, and the cells were incubated in an incubator for 2-3 minutes. 5 mL of cell culture medium was added for termination after complété trypsination of the cells, and then transferred to a centrifuge tube. Centrifugation was performed at 1000 rpm for 8 minutes. The 76 supematant was discarded, the cells were re-suspended and counted, and the suspension was diluted to 4 X 105 cells per mL. The cell suspension was plated to the 384-well white cell plate at 25 pL per well. The cell plate was centrifuged at 300 rpm for 1 minute and incubated in a 5% CO2 incubator at 37°C for 24 hours. On the second day, 300 nL 100X compounds were transferred to the cell plate from the compound plate. The cell plate was centrifuged at 300 rpm for 1 minute and incubated in the 5% CO2 incubator at 37°C for 72 hours. On the fifth day, the cell plate and a Bright-Glo luciferase reagent were taken out and equilibrated to room température. The Bright-Glo luciferase reagent was added to the cell plate (at 30 pL per well). The cell plate was centrifuged at 1000 rpm for 1 minute and incubated at the room température for 2 minutes. The fluorescence signal was measured on a plate reader.
Data processing
A concentration curve of the tested compounds was plotted by using software Prism 5, and the EC50 values were calculated.
Table 12
Compound No. 10-227 of Example 27 Control compound 3 Rifampicin
EC50 (pM) 122.8 5.641 1.828
As shown in Table 12, compared with control compound 3 and rifampicin, the compound of the présent invention (e.g., 10-227 of Example 27) has a weaker inductive effect on CYP450 isoform 3A4, and thus has better safety.
As shown in Figure 1, at a concentration of 10 pM, compared with control compound 3 and rifampicin, the compound of the présent invention (e.g., 10-227 of Example 27) has a weaker inductive effect on CYP450 isoform 3A4, which is about 29% of that of rifampicin; while the inductive effect of control compound 3 on CYP450 isoform 3A4 at the same concentration is comparable to that of rifampicin. The above data indicate that the compound of the présent invention (e.g., 10-227 of Example 27) has better safety.
In addition to those described herein, according to the foregoing description, various modifications to the présent invention would be apparent to those skilled in the art. Such modifications are intended to fall within the scope of the appended claims. Each reference cited herein (including ail patents, patent applications, journal articles, books and any other disclosures) are incorporated herein by reference in its entirety.

Claims (15)

1. A compound or a pharmaceutically acceptable sait, ester, stereoisomer, tautomer, polymorph, or isotopically labeled compound thereof, wherein the compound has the following structure:
wherein:
R1 and R2 are each independently selected from the group consisting of H, Ci_6 alkyl and C3.6 cycloalkyl;
Q is -(CRaRa )g- or -O-;
Ra, Ra, R4, R5 and R6, at each occurrence, are each independently selected from the group consisting of H, halogen, -OH, -COOH, -CN, -NO2, -N(R)2, Ομ6 alkyl, C,_6 haloalkyl, -W-Cj.6 alkyl, -C].6 alkylene-W-R, -W-Ci.6 alkylene-W’-R, -W-C2.6 alkenyl, -C2.6 alkenylene-W-R, -W-C2-6 alkenylene-W’-R and C3.6 cycloalkyl, wherein the alkylene and alkenylene are optionally further interrupted by one or more W;
Rb, at each occurrence, is each independently selected from the group consisting of H, halogen, Cj_6 haloalkyl, Ci.g alkyl and C3_g cycloalkyl;
Rc, at each occurrence, is each independently selected from the group consisting of F, Cl, Br, I, Ci-6 haloalkyl, C].s alkyl and C3.6 cycloalkyl;
R6 is attached to the ring carbon atom(s) marked with * and/or ** in the general formula;
W and W’, at each occurrence, are each independently selected from the group consisting of O, C(=O), C(=O)O, NR, S, S=O and S(=O)2;
R, at each occurrence, is each independently selected from the group consisting of H, Ci.g alkyl and C3.6 cycloalkyl;
g is 1 or 2;
i is 0, 1 or 2;
m is 0, 1, 2, 3 or 4; and t is 0, 1 or 2, provided that when t is greater than 1, each R6 can be the same or different.
2. The compound according to claim 1, or a pharmaceutically acceptable sait, ester, stereoisomer, tautomer, polymorph, or isotopically labeled compound thereof, wherein Rb, at each occurrence, is each independently selected from the group consisting of H, 5 halogen, Ci.6 alkyl and C3.6 cycloalkyl;
Rc, at each occurrence, is each independently selected from the group consisting of F, Cl, Br, I, Cpe alkyl and C3.6 cycloalkyl.
3. The compound according to claim 1 or 2, or a pharmaceutically acceptable sait, ester,
10 stereoisomer, tautomer, polymorph, or isotopically labeled compound thereof, wherein the compound has the following structure:
4. A compound or a pharmaceutically acceptable sait, ester, stereoisomer, tautomer, polymorph,
15 or isotopically labeled compound thereof, wherein the compound is selected from the group
5. A compound or a pharmaceutically acceptable sait thereof, wherein the compound is:
6. A pharmaceutical composition comprising a prophylactically or therapeutically effective amount of the compound according to any one of daims l to 4 or a pharmaceutically acceptable sait, ester, stereoisomer, tautomer, polymorph, or isotopically labeled compound thereof, or the compound according to claim 5 or a pharmaceutically acceptable sait thereof, and one or more pharmaceutically acceptable carriers.
7. The pharmaceutical composition according to claim 6, wherein the pharmaceutical composition is in the form of a solid, liquid, or transdermal formulation.
8. A method for preparing a pharmaceutical composition comprising combining the compound according to any one of daims 1 to 4 or a pharmaceutically acceptable sait, ester, stereoisomer, tautomer, polymorph, or isotopically labeled compound thereof, or the compound according to claim 5 or a pharmaceutically acceptable sait thereof, and one or more pharmaceutically acceptable carriers.
9. The compound according to any one of daims 1 to 4 or a pharmaceutically acceptable sait, ester, stereoisomer, tautomer, polymorph, or isotopically labeled compound thereof, or the compound according to claim 5 or a pharmaceutically acceptable sait thereof, or the pharmaceutical composition according to claim 6 or 7, for use in preventing or treating a viral disease.
10. The compound or pharmaceutical composition for use according to claim 9, wherein the compound or pharmaceutical composition is for oral, intravenous, intraarterial, subcutaneous, intraperitoneal, intramuscular, or transdermal administration.
11. The compound or pharmaceutical composition for use according to claim 9, wherein the viral disease is selected from the group consisting of viral hepatitis type A, viral hepatitis type B, viral hepatitis type C, influenza, herpes and acquired immunodeficiency syndrome (AIDS).
12. A method comprising the following steps:
wherein:
Hal is selected from the group consisting of F, Cl, Br and I;
the halogenating reagent is selected from the group consisting of Cl2, Br2, I2, N-chlorosuccinimide, N-bromosuccinimide and N-iodosuccinimide;
Ar2 is
L is -O-;
R3 is selected from the group consisting of
R1 and R2 are each independently selected from the group consisting of H, Ci_6 alkyl and C3_6 cycloalkyl;
R4 and R5, at each occurrence, are each independently selected from the group consisting of H, halogen, -OH, -COOH, -CN, -NO2, -N(R)2, Ομ6 alkyl, Ομ6 haloalkyl, -W-C].6 alkyl, -Cj.6 alkylene-W-R, -W-C1.6 alkylene-W’-R, -W-C2.6 alkenyl, -C2.6 alkenylene-W-R, -W-C2.6 alkenylene-W’-R and C3.6 cycloalkyl, wherein the alkylene and alkenylene are optionally further interrupted by one or more W;
Rb, at each occurrence, is each independently selected from the group consisting of H, halogen, C|.6 haloalkyl, Ci.g alkyl and C3.g cycloalkyl;
Rc, at each occurrence, is each independently selected from the group consisting of F, Cl, Br, I, Ci.g haloalkyl, Ci_g alkyl and C3.g cycloalkyl;
W and W’, at each occurrence, are each independently selected from the group consisting of O, C(=O), C(=O)O, NR, S, S=O and S(=O)2;
R, at each occurrence, is each independently selected from the group consisting of H, Ci.g alkyl and C3_6 cycloalkyl; and i is 0, 1 or 2;
step 1 is performed in a protic solvent in the presence of an alkali métal sait;
step 2 is performed in an aprotic solvent; and step 3 is performed in an aprotic solvent in the presence of an organic or inorganic base.
13. Amethod comprising the following steps:
or
Step I
Step II
ArH.
NH
Halogenating Reagent
Step III
r3-h
Step IV
Step I
Step II
O Ar' r!, JL L 'r2 ^'μΆαγ2
O Ar'
Halogenating Reagent
Step III
Hal
r3-h
Step IV
wherein:
R2 is H or C]-5 alkyl;
Hal is selected from the group consisting of F, Cl, Br and I;
the halogenating reagent is selected from the group consisting of Cl2, Br2, I2, N-chlorosuccinimide, N-bromosuccinimide and N-iodosuccinimide;
Ar1 is
n
Ar is
L is -O-;
T 7Γ
ΗΟγνςγ;
R3 is selected from the group consisting of ο , o and [ Lr4 ° ;
R1 is selected from the group consisting of H, C]^ alkyl and C3.g cycloalkyl;
R4 and R5 are each independently selected from the group consisting of H, halogen, -OH, -COOH, -CN, -NO2, -N(R)2, C].6 alkyl, C).6 haloalkyl, -W-Cj.6 alkyl, -C).6 alkylene-W-R, -W-C,.6 alkylene-W’-R, -W-C2.6 alkenyl, -C2.6 alkenylene-W-R, -W-C2.6 alkenylene-W’-R and C3_6 cycloalkyl, wherein the alkylene and alkenylene are optionally further interrupted by one or more W;
Rb, at each occurrence, is each independently selected from the group consisting of H, halogen, C|.6 haloalkyl, Cj.g alkyl and C3.g cycloalkyl;
Rc, at each occurrence, is each independently selected from the group consisting of F, Cl, Br, I, Cp6 haloalkyl, Cpe alkyl and C3_g cycloalkyl;
W and W’, at each occurrence, are each independently selected from the group consisting of O, C(=O), C(=O)O, NR, S, S=O and S(=O)2;
R, at each occurrence, is each independently selected from the group consisting of H, Ci.g alkyl and C3.g cycloalkyl; and i is 0, 1 or 2;
step I is performed in a nonpolar solvent in the presence of a Lewis acid;
step II is performed in an aprotic solvent in the presence of an organic or inorganic base;
step III is performed in an aprotic solvent; and step IV is performed in an aprotic solvent in the presence of an organic or inorganic base.
14. A method comprising the following steps:
Ar Ah *
Step 1
Halogenating Reagent
Step 2
r3-h
Step 3
or
NH
O aH - O Ar _·, , II JL.R2 Halogenating R1 II
Reagent R3-H
Step 1 ^N^Ar2 Step 2 | N Ar2 Step 3
Hal
wherein:
Hal is selected from the group consisting of F, Cl, Br and I;
the halogenating reagent is selected from the group consisting of Cl2, Br2, I2, N-chlorosuccinimide, N-bromosuccinimide and N-iodosuccinimide;
F
L is -O-;
R1 and R9 are each independently selected from the group consisting of H, Ci_6 alkyl and C3_6 cycloalkyl;
Q is -(CRaRa )g- or -O-;
Ra, Ra, R4, R5 and R6, at each occurrence, are each independently selected from the group consisting of H, halogen, -OH, -COOH, -CN, -NO2, -N(R)2, C,.6 alkyl, Cj_6 haloalkyl, -W-Ci.6 alkyl, -C^ alkylene-W-R, -W-Ci.6 alkylene-W’-R, -W-C2_6 alkenyl, -C2_6 alkenylene-W-R, -W-C2.6 alkenylene-W’-R and C3_6 cycloalkyl, wherein the alkylene and alkenylene are optionally further interrupted by one or more W;
Rb, at each occurrence, is each independently selected from the group consisting of H, halogen, C]_6 haloalkyl, Ci_6 alkyl and C3_6 cycloalkyl;
Rc, at each occurrence, is each independently selected from the group consisting of F, Cl, Br, I, Ci-6 haloalkyl, C|_g alkyl and C3.g cycloalkyl;
R6 is attached to the ring carbon atom(s) marked with * and/or ** in the general formula;
W and W’, at each occurrence, are each independently selected from the group consisting of O, C(=O), C(=O)O, NR, S, S=O and S(=O)2;
R, at each occurrence, is each independently selected from the group consisting of H, Ci_6 alkyl and C3_g cycloalkyl;
g is l or 2;
i is 0, 1 or 2;
m is 0, 1,2,3 or 4; and t is 0, 1 or 2, provided that when t is greater than 1, each R6 can be the same or different;
step 1 is perfonned in a protic solvent in the presence of an alkali métal sait;
step 2 is performed in an aprotic solvent; and step 3 is performed in an aprotic solvent in the presence of an organic or inorganic base.
15. A method comprising the foliowing steps:
Step I
O Ar'
Step II
Halogenating rL Reagent
Step III
R3-H
Step IV
or
Step II
Ri
r3-h
Step IV
wherein:
R2 is H or Ci-5 alkyl;
Hal is selected from the group consisting of F, Cl, Br and I;
the halogenating reagent is selected from the group consisting of Cl2, Br2, I2, N-chlorosuccinimide, N-bromosuccinimide and N-iodosuccinimide;
F
L is -O-;
R1 is selected from the group consisting of H, Ci_6 alkyl and C3_6 cycloalkyl;
Q is -(CRaRa )g- or -O-;
Ra, Ra, R4, R5 and R6, at each occurrence, are each independently selected from the group consisting of H, halogen, -OH, -COOH, -CN, -NO2, -N(R)2, Ci.g alkyl, Ci_g haloalkyl, -W-Ci.g alkyl, -Ομ6 alkylene-W-R, -W-C].6 alkylene-W’-R, -W-C2-6 alkenyl, -C2.6 alkenylene-W-R, -W-C2_6 alkenylene-W’-R and C3_6 cycloalkyl, wherein the alkylene and alkenylene are optionally further interrupted by one or more W;
Rb, at each occurrence, is each independently selected from the group consisting of H, halogen, C]_6 haloalkyl, Ci-6 alkyl and C3_6 cycloalkyl;
Rc, at each occurrence, is each independently selected from the group consisting of F, Cl, Br, I, Ci_g haloalkyl, C|_6 alkyl and C3_6 cycloalkyl;
R6 is attached to the ring carbon atom(s) marked with * and/or ** in the general formula;
W and W’, at each occurrence, are each independently selected from the group consisting of O, C(=O), C(=O)O, NR, S, S=O and S(=O)2;
R, at each occurrence, is each independently selected from the group consisting of H, C]_6 alkyl and C3.6 cycloalkyl;
g is 1 or 2;
i is 0, 1 or 2;
m is 0, 1, 2, 3 or 4; and t is 0, 1 or 2, provided that when t is greater than 1, each R6 can be the same or different;
step I is performed in a nonpolar solvent in the presence of a Lewis acid;
step II is performed in an aprotic solvent in the presence of an organic or inorganic base;
step III is performed in an aprotic solvent; and step IV is performed in an aprotic solvent in the presence of an organic or inorganic base.
OA1201900166 2016-11-18 2017-11-09 Dihydropyrimidine compound and preparation method and use thereof. OA19422A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611015150.5 2016-11-18
CN201710328659.3 2017-05-11

Publications (1)

Publication Number Publication Date
OA19422A true OA19422A (en) 2020-09-18

Family

ID=

Similar Documents

Publication Publication Date Title
KR102496508B1 (en) Dihydropyrimidine Compounds and Methods and Uses of These Compounds
KR102148678B1 (en) Dihydropyrimidine compounds and their application in pharmaceuticals
US10442782B2 (en) Kynurenine-3-monooxygenase inhibitors, pharmaceutical compositions, and methods of use thereof
AU2009331179B2 (en) Novel bicyclic heterocyclic compound
JP6603213B2 (en) Pyrimidinedione compounds for heart conditions
CA3078312A1 (en) Chemical compounds
EP2897956B1 (en) Novel bicyclic pyridinones
EP3441389B1 (en) Pyrazole-oxazolidinone compound for anti-hepatitis b virus
US20220079928A1 (en) Lysophosphatidic acid receptor antagonist and preparation method therefor
JPH04230681A (en) 1,4-benzothiazepine derivative
KR20200032098A (en) Dihydropyrimidine compounds and their use in pharmaceuticals
CN112638376A (en) Substituted tetrahydrocyclopenta [ c ] pyrroles, substituted dihydropyrrolizines, analogs thereof and methods of use thereof
OA19422A (en) Dihydropyrimidine compound and preparation method and use thereof.
US11166954B2 (en) Dihydropyrimidine compound and preparation method and use thereof
EA039977B1 (en) DIHYDROPYRIMIDINE COMPOUNDS AND METHOD FOR THEIR PRODUCTION AND APPLICATION
KR20190049884A (en) Composition for treating hypertension and / or pulmonary fibrosis