OA19333A - Floating module for modular solar panel platforms. - Google Patents

Floating module for modular solar panel platforms. Download PDF

Info

Publication number
OA19333A
OA19333A OA1201900063 OA19333A OA 19333 A OA19333 A OA 19333A OA 1201900063 OA1201900063 OA 1201900063 OA 19333 A OA19333 A OA 19333A
Authority
OA
OAPI
Prior art keywords
component
floating
floating module
rigid component
valve
Prior art date
Application number
OA1201900063
Inventor
Nuno Correia
Caria GOMES
Ricardo PINTO
Luis PINA
Nuno MOITA
Jorge TEIXEIRA DA SILVA
Original Assignee
Solarisfloat Lda
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Solarisfloat Lda filed Critical Solarisfloat Lda
Publication of OA19333A publication Critical patent/OA19333A/en

Links

Abstract

The present application describes a floating module (1) for modular solar panel platforms. For the purpose of this application, two separate components are mounted, a structural component - rigid component (2) - and a buoyancy component -flexible component (3) - allowing for a more compact and simple solution all-around. The technology used and developed for the present application allows for a technologically more advanced floating component, easier to produce, transport and deploy than most currently available solutions.

Description

Current energy production centrais based on photovoltaic cells, ranging different scales, are installed either on ground (onshore) or on pre-existing structures. These Systems are rarely installed in water surfaces such as lakes, lagoons, ponds, dam réservoirs, rivers, among others.
The document WO 2012/139998 describes a floating structure that is itself the solar panel fixture, manufactured either by the techniques of roto-moulding or extrusion blow-moulding, thus creating a thermoplastic rigid component with encapsulated air, which can be added or removed in order to control its buoyancy. The proposed System is bulky and difficult to transport and assemble.
The document JP 2007173710 describes a floating structure for the assembly of energy production cells, that uses a thermoplastic resin foam encapsulated by two sheets of thermoplastic material, thus creating the floating component and granting the structure buoyancy.
Summary
The présent application describes a floating module comprising a rigid component and at least one flexible component with encapsulated air or gas, wherein the flexible component is 1 confined inside the rigid component in a space defined by a top surface surrounded by a latéral cover, said latéral cover having structural reinforcements formed by a horizontal base rib and latéral vertical ribs, and the top surface being characterized by:
— an interior surface formed by a matrix of ribs, designed to withstand the loads and weights applied to the top surface;
— an exterior surface comprising a mounting area for assembly of a solar panel structure and a mounting area for assembly the respective through-support;
— a central passage hole to increase the structural résistance of the rigid component and to correct position of the at least one flexible component inside of the rigid component;
— at least one valve access cavity to allow the access to the interior of the respective flexible component.
In one embodiment of the floating module, the rigid component is of a thermoplastic material.
In another embodiment of the floating module, the rigid component comprises two connection ports.
Yet in another embodiment of the floating module, the flexible component comprises at least one membrane of a thermoplastic material.
Yet in another embodiment of the floating module, the flexible component comprises a valve.
Yet in another embodiment of the floating module, the assembly between the rigid component and the flexible component is performed by housing the valve of the flexible component in the valve access cavity of the rigid component through the application of a valve brake.
Yet in another embodiment of the floating module, the assembly of the solar panel structure and its through support in each respective mounting area is of a screw and nut type.
The présent application also discloses a floating platform comprising at least three floating modules as described previously.
General description
The technology now developed is related to a floating module, which allows for the buoyancy at surface level of a floating platform formed by the connection of at least two floating modules.
The floating module is to be installed in a group with at least three floating modules, forming a platform suitable to support a solar module capable of producing energy through a photovoltaic panel over an aquatic medium.
Due to the fluctuation and instability of the aquatic medium, the floating module is designed to withstand loads imposed either by the dynamics of the medium as well as those imposed by people and equipment necessary during system maintenance. For 25 that purpose, an intricate geometry assures that the mechanical stress and load is absorbed by the component without posing any issue to its integrity. Besides that, its geometry also makes the éléments of the solution easily stackable, creating a compact product that is simpler to transport.
In the light of that, a floating module is comprised by a rigid component and at least one flexible component. The flexible component is filled with air or other gas, being confined inside the space defined by the rigid component.
The rigid component is responsible for the structural rigidity and integrity of the floating module and the assembled floating platform by extension, needed for the support of solar modules and people undergoing maintenance activities, when the platform is deployed in aquatic médiums.
The rigid component is produced with the use of thermoplastic processing technologies, specifically injection moulding, which enables the production of a single part with intricate geometry, lightweight and highly résistant. The rigid component has several géométrie features representing structural reinforcements which are responsible for the superior résistance and mechanical behavior: the base ribs ensure the large cavity retains its shape and don't allow for the material to bend in such a way that it would deform permanently; the interior surface of the component présents a complex matrix of ribs, which are engineered to withstand the loads and weights applied to the superior surface of the floating module, ensuring a smooth and homogeneous distribution of the loads to the latéral ribs. These, in turn, transmit the load further to the base ribs, therefore making the load bearing ability of the whole component dépendent on the conjunction of these features. The central passage hole allows for shafts to pass and for the correct positioning of the flexible component, while also increasing the structural résistance of the structure.
The top surface of the rigid component comprises at least one valve access cavity, to allow the access to the interior of the respective flexible component. It also comprises a mounting area promoting the contact and fixation of a solar panel structure in the rigid component and also a mounting area for the respective through-support solar panel structure; both of these assemblies are achieved with screws and nuts.
The rigid component comprises additionally two connection ports, one in each latéral surface, promoting the reunion of other floating modules - and in particular its rigid components - to form a platform.
The flexible component compléments the rigid component in a way that it grants buoyancy to the element itself and to the assembled platform by extension. This is a flexible component comprised of one or more membranes of flexible material, like a thermoplastic material, which allows for air or other gases to be enclosed inside through a valve which is part of the component, granting a buoyant force strong enough to counteract the forces applied by the solar module and every other components needed for the normal operation of the platform.
The séparation of the flexible and the rigid components allow for an easier and simpler maintenance. The assembly between those components is performed using a valve mounted in the flexible component and the valve access cavity installed in the rigid component. Specifically, when the valve is housed in the valve access cavity, the position of the flexible component inside of the rigid component is achieved from the application of a valve brake which holds it in place, even when deflated. The arrangement valve, valve brake and valve access cavity also allows for secure maintenance operations of the flexible component, in particularly its refill with air or gas, even during the utilization course of the platform.
The floating module is to be applied in conjunction with proper connectors to build a platform intended to support solar panel modules. The construction of a floating platform requires the use of three floating components, in order to support a solar modular structure.
Brief description of drawings
For easier understanding of this application, figures are attached in the annex that represent the preferred forms of implémentation which nevertheless are not intended to limit the technique disclosed herein.
Figure 1: Schematic représentation of a floating component (1), where the reference numbers represent:
- Rigid component;
- Flexible component;
- Valve brake;
Figure 2: Schematic représentation of a rigid component (2), where the reference numbers represent:
- Connection port;
- Mounting Area for Panel Supports;
- Mounting Area for Through-Support;
- Valve Access Cavities;
Figure 3: Schematic représentation of the inferior view of a rigid component (2), where the reference numbers represent:
- Connection port;
- Base Ribs;
- Rib Matrix;
- Latéral Ribs;
- Central passage hole.
Figure 4: Schematic représentation of a functional assembly for energy production platform, where the reference numbers represent:
- Solar Panel Support;
- Shaft;
- Connector;
- Cover lid.
Description of embodiments
For easier understanding of this application, figures are attached in the annex that represent example forms of implémentation, which, nevertheless, are not intended to limit the application, disclosed herein.
The présent application describes a floating module (1) for modular solar panel platforms. For the purpose of this application, two separate components are mounted: a rigid component (2) and a buoyancy flexible component (3), allowing for a more compact and simple solution all-around.
The rigid component (2) has functional areas that, when properly assembled by the connection ports (5), allow for the fixation of solar panel supports in the mounting area for solar panels (6) and mounting area for through-support solar panel structure (7). Its shape, structural integrity and résistance are guaranteed by the existence of géométrie features (9, 10, 11, 12) throughout its surface area.
The flexible component's (3) valve is mounted through a valve brake (4) which holds it in place, even when deflated. This assembly is accessible through the valve access cavities (8); this allows for maintenance and filling of the flexible component from the top of the rigid component, eliminating the need for disassembly of these two components.
In a particular embodiment, for full assembly of an energy production floating platform, at least three floating modules (1) are assembled by means of a connector (15) with the connection ports (5), receiving in the proper mounting areas (6, 7) solar panels supports (13) and a shaft (14) from the solar module. This allows for the deployment of a solar panel platform in water surfaces.

Claims (8)

1. A floating module comprising a rigid component and at least one flexible component with encapsulated air or gas, wherein the flexible component is confined inside the rigid component in a space defined by a top surface surrounded by a latéral cover, said latéral cover having structural reinforcements formed by a horizontal base rib and latéral vertical ribs, and the top surface is characterized by:
— an interior surface formed by a matrix of ribs, designed to withstand the loads and weights applied to the top surface;
— an exterior surface comprising a mounting area for assembly of a solar panel structure and a mounting area for assembly the respective through-support;
— a central passage hole to increase the structural résistance of the rigid component and to correct position of the at least one flexible component inside of the rigid component;
— at least one valve access cavity to allow the access to the interior of the respective flexible component.
2. Floating module according to claim 1, wherein the rigid component is of a thermoplastic material.
3. Floating module according to claims 1 and 2, wherein the rigid component comprises two connection ports.
4. Floating module, according to claim 1, wherein the flexible component comprises at least one membrane of a thermoplastic material.
5. Floating module, according to claims 1 and 4, wherein the flexible component comprises a valve.
6. Floating module, according to claims 1 and 5, wherein the assembly between the rigid component and the flexible component is performed by housing the valve of the flexible component in 5 the valve access cavity of the rigid component through the application of a valve brake.
7. Floating module according to claim 1, wherein the assembly of the solar panel structure and its through support in each 10 respective mounting area is of a screw and nut type.
8. Floating platform comprising at least three floating modules described in claims 1 to 7.
OA1201900063 2016-09-26 2017-09-01 Floating module for modular solar panel platforms. OA19333A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PT109636 2016-09-26

Publications (1)

Publication Number Publication Date
OA19333A true OA19333A (en) 2020-06-29

Family

ID=

Similar Documents

Publication Publication Date Title
US10480828B2 (en) Floating module for modular solar panel platforms
US20190168847A1 (en) Rotating floating platform
KR101390068B1 (en) Floating Body
US9297351B2 (en) Clustering of cycloidal wave energy converters
CN105460174A (en) Floating carrier
CN105099342A (en) Integral double-hull floating platform device for offshore water-floating type photovoltaic power station
AU2021254256B2 (en) Marine-pumped hydroelectric energy storage
EP3516765B1 (en) Connectors for modular support platforms
CN210246650U (en) Solar module floating system and structure thereof
OA19333A (en) Floating module for modular solar panel platforms.
KR101971095B1 (en) Floating Solar Power Plant System Mixed Floatert With AirCap(Bubble Wrap) And Floatert Without AirCap
KR20130071831A (en) Surface of water floating platform for solar energy generation
CN207045634U (en) A kind of photovoltaic transformer pier
KR200477471Y1 (en) Fixing unit of solar cell installation
JP2016078781A (en) Photovoltaic power generation device
TW202034619A (en) Floating module for modular solar panel platforms
CN104260842A (en) Large-sized aquatic float platform capable of being flexibly assembled and disassembled
CN204124330U (en) Can the large-scale floating on water surface platform of dismounting flexibly
KR101948432B1 (en) Marine floating type small wind power generator improving power generation efficiency
ES2807586T3 (en) Floating module for modular solar panel platforms
WO2022019845A1 (en) Modular floating structure for floating solar photovoltaic power plants
ATE469022T1 (en) BUOYANCY MODULE
CN219172632U (en) Floating platform for offshore wind turbine
KR102248933B1 (en) Buoyance body for installation of solar power panel
JP7347764B2 (en) A composite floating base and a floating offshore wind power generation facility equipped with the composite floating base